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Abstract

Speaker identification, determining which char-001
acter said each utterance in text, benefits many002
downstream tasks. Most existing approaches003
use expert-defined rules or rule-based features004
to directly approach this task, but these ap-005
proaches come with significant drawbacks,006
such as lack of contextual reasoning and poor007
cross-lingual generalization. In this work, we008
propose a speaker identification framework that009
addresses these issues. We first extract large-010
scale distant supervision signals in English011
via general-purpose tools and heuristics, and012
then apply these weakly-labeled instances with013
a focus on encouraging contextual reasoning014
to train a cross-lingual language model. We015
show that our final model outperforms the pre-016
vious state-of-the-art methods on two English017
speaker identification benchmarks by 5.4% in018
accuracy, as well as two Chinese speaker iden-019
tification datasets by up to 4.7%.020

1 Introduction021

Speaker identification (also called quote attribu-022

tion) is the task of deciding which character said023

or implied each quote/utterance in a document (El-024

son and McKeown, 2010). It is mostly studied in025

the domain of literature and novels because, unlike026

news, the speakers in stories are often not explic-027

itly specified by a name. This task directly ben-028

efits many downstream applications such as char-029

acter detection (Vala et al., 2015), character pro-030

filing (Kokkinakis and Malm, 2011), and text-to-031

speech (Iosif and Mishra, 2014). While good sys-032

tems exist (e.g., Muzny et al. (2017) report >80%033

accuracy), speaker identification is still challenging.034

As speaker identification datasets are usually too035

small-scale to sufficiently train large models, most036

previous work directly rely on language-specific037

patterns and heuristics, which cannot sufficiently038

solve hard cases (e.g., those that are implicit and039

require contextual reasoning). This kind of knowl-040
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Figure 1: Overview of our framework. RULEIE extracts
incidental supervisions that are used to train DISSI.

edge also cannot be easily transferred to other lan- 041

guages, limiting cross-lingual performances. 042

In this work, we address these issues with a novel 043

framework for cross-lingual speaker identification 044

without relying on any domain, task, or language- 045

specific annotation. The framework, as overviewed 046

in Fig. 1, starts with extracting large-scale distant 047

and incidental supervision (Roth, 2017) from un- 048

structured corpora. We propose a rule-based sys- 049

tem called RULEIE to do this (§3). We collect 050

100K weakly-labeled instances with RULEIE and 051

transform them to encourage more contextual rea- 052

soning (§4). We train a cross-lingual language 053

model (LM) (Conneau et al., 2020) with the re- 054

sulting data and name the resulting model DISSI 055

(Distantly-Supervised Speaker Identification). We 056

hypothesize that DISSI may improve cross-lingual 057

performance because the speaker identification task 058

shares many language-invariant features (§5). 059

Experimental results1 show that DISSI achieves 060

state-of-the-art English performance on the P&P 061

dataset (He et al., 2013), improving 2.4% in the 062

unsupervised setting, and 5.4% with full supervi- 063

sion. With minimum language-specific efforts, our 064

cross-lingual model also outperforms state-of-the- 065

art methods on two Chinese datasets WP (Chen 066

et al., 2019, 2021) and Jinyong (Jia et al., 2020), 067

by up to 4.7%. Comparing to the baseline LM, our 068

distant supervision brings an improvement of more 069

than 40% in realistic few-shot settings. 070

1We will release all code and data upon publication.
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2 Related Work071

Speaker Identification. Language-specific expert-072

designed rules, patterns, and features (Elson and073

McKeown, 2010; He et al., 2013; Muzny et al.,074

2017; Ek et al., 2018) are widely used to iden-075

tify speakers. To leverage large unlabeled cor-076

pora, previous work (Pavllo et al., 2018) starts077

from a small number of seed patterns and obtains078

more lexical patterns by conducting an unsuper-079

vised bootstrapping, which however will lead to080

semantic drifts, and pattern-based methods usually081

suffer from low recall. This work studies the usage082

of high-precision heuristics and patterns, which083

fully leverage coreference resolution information,084

to build distant supervision data without hurting085

model generalization. In addition, previous cross-086

lingual studies in this direction mainly focus on di-087

rect speech identification (Kurfali and Wirén, 2020;088

Byszuk et al., 2020). To the best of our knowledge,089

this is the first work on cross-lingual speaker iden-090

tification without the need for redesigning rules,091

patterns, and features for a new language.092

Indirect Supervision and LM. Studies have093

shown that distant supervision is effective in bridg-094

ing the knowledge gaps in pre-trained LMs (Zhou095

et al., 2020, 2021). People have also discussed the096

ability of LMs to learn from indirect but related097

supervision signals (Khashabi et al., 2020).098

3 English Speaker Extraction099

In this section, we introduce a rule-based informa-100

tion extraction system named RULEIE: it receives101

a long document as input and output (context, ut-102

terance, speaker) triples in the document. RULEIE103

can be directly applied to identify speakers in En-104

glish texts in a given dataset, but we mainly use it2105

to automatically extract incidental signals that ap-106

proximates the target task from unlabeled corpora,107

which is later used as distant supervision to train108

our cross-lingual system DISSI in §5.109

3.1 Main Heuristics110

The core of this RULEIE component follows three111

basic rules. Inspired by previous work (He et al.,112

2013; Muzny et al., 2017), we design the first two:113

direct speaker identification for explicit speakers114

and conversational pattern for implicit speakers115

(i.e., no speaker mentions exist in the nearby con-116

text). We introduce a novel and intuitive third rule117

2This is because RULEIE is not guaranteed to produce a
predicted speaker for every utterance.

based on local coreference to further improve the 118

precision and recall of this component. 119

Direct Speaker Identification. We use semantic 120

role labeling (SRL) to identify direct speakers (e.g., 121

Mary said: “...”). We construct a list of 113 speech 122

verbs (e.g., “say” and “answer”).3 If an utter- 123

ance is either ARG-1 or ARG-2 in a frame whose 124

verb exists in this list, we treat the ARG-0 of that 125

frame as the direct speaker. If the speaker mention 126

is named (e.g.,“Mary” but not “his sister”), we 127

assign the utterance to the corresponding character. 128

Conversational Pattern. Often times, the speaker 129

names for some utterances are implicit because of 130

ongoing dialogues between a limited amount of 131

characters (typically two). In these cases, we, the 132

readers, may identify the speakers by tracking the 133

alternation. As a result, if multiple utterances are 134

not separated by additional context, we decide that 135

a given utterance is not from the speaker of the 136

immediate previous or next utterance, but are likely 137

from the same speaker of the skip-utterances. 138

Local Coreference Resolution. Previous work 139

only use coreference resolution (coref) to resolve 140

direct speaker mentions (Muzny et al., 2017). We 141

extend the application of coref to all pronouns in 142

the utterance, because i) any linked names of first- 143

person pronouns (“I”, “me”, “my”) indicates the 144

actual speaker and ii) those of second and third- 145

person pronouns (“you”, “she”, and “they”) are 146

excluded from the candidate speakers. We run 147

coref on every three-sentence-windows to avoid 148

mistakes made by trying to reduce the number of 149

clusters. Empirically, we find that modern coref 150

tools perform reasonably well on short literal texts, 151

even when the texts contain dialogue alternations. 152

3.2 Iterations and Voting 153

RULEIE runs in iterations with different heuristics 154

for best precision-recall tradeoff. In the first itera- 155

tion, it extracts direct speaker mentions, collect all 156

person names, and try to link other nominal/pro- 157

nouns to a name. We do this first to introduce 158

only high-confidence predictions to the following 159

two iterations, which use conversational patterns 160

(noise-sensitive) and pronoun coreference resolu- 161

tion. Instead of using a hard assignment that may 162

produce conflicts, we let each rule to “vote” or 163

“vote against” for a speaker and assign the character 164

with the highest vote count to each utterance. 165

3We will also release the speech verb list.
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4 Distant Supervision Acquisition166

We hypothesize that the speaker identification task167

shares many commonalities across languages (e.g.,168

the patterns people use to describe explicit, im-169

plicit, and anaphoric speakers in texts). If we can170

do well on one language, we may improve on other171

languages with the help of cross-lingual language172

models. In this section, we describe how we use173

RULEIE to acquire large-scale English speaker174

identification instances as distant supervision.175

4.1 Automatic Extraction176

We use Project Gutenberg, which contains over177

60,000 books, as the source corpus.4 We iden-178

tify sentences that contain at least one utterance179

by simply running a sentence chunker and find-180

ing quotation marks in each sentence. As a result,181

we collect 1.5M sentences that contain utterances182

and their surrounding context. For each sentence,183

we run named entity recognition (NER) to find184

person-named entities in the chapter that includes185

the sentence and use them as candidate characters.186

We then run RULEIE to try to assign characters187

to utterances. From the raw sentences, we extract188

100K (context, utterance, speaker) triples. We view189

these triples as distant supervision as they are auto-190

matically collected (therefore with a certain level191

of noise) from external resources and do not rely192

on any task or domain-specific annotation.193

4.2 Contextual Reasoning with Masking194

As argued in §1, we need to build models that195

approach speaker identification with contextual un-196

derstanding and reasoning. However, many of au-197

tomatically extracted instances have explicit speak-198

ers (53% discussed in § 6.4) and do not contribute199

much to a stronger reasoning model. As an im-200

provement, we mask explicit speaker mentions201

with “someone” with a probability of 15%, so that202

models are forced to use other textual clues to iden-203

tify the speaker, which often times involve under-204

standing the story and the context. In addition,205

to avoid the model overfitting on speaker names,206

which are relatively irrelevant in determining who207

said each utterance, we randomly assign each char-208

acter a masked name “Person [X]” (where [X] is209

a letter except those meaningful letters (e.g., “A”210

and “I”), and we replace corresponding mentions211

in the input context with the masked name.212

4https://www.gutenberg.org/ (books are not protected by
copyright laws and distributed for free use).

5 Cross-Lingual Model 213

Given the large amount of English-based distant su- 214

pervision, we explore the possibility of transferring 215

mono-lingual signals to cross-lingual applications, 216

under the help of pre-trained cross-lingual LMs. In 217

this section, we propose and describe DISSI. 218

5.1 Model Formulation 219

We formulate the data into a span-selection task. 220

We use the previous three sentences and the next 221

two sentences, together with the sentence contain- 222

ing the target utterance, to form an input document. 223

For each document, following previous work, we 224

assume a given list of characters and their named 225

aliases. For the distant supervision data, we ap- 226

proximate such lists via NER and span overlap. 227

We format the list of character names and an 228

input document as People:[C-1][C-2]...[C-N] 229

[SEP] [Document] and a corresponding ques- 230

tion that specifies the target utterance who said 231

“[U]”?. Here [C-1]...[C-N] are the character 232

names in the document, [SEP] is a model-specific 233

separator token, [Document] is the input document, 234

and [U] is the target utterance, which is a sub-string 235

of the input document. The labels are the span start 236

and end indices of the speaker mention (one of 237

[C-1]...[C-N]) in character list provided at the 238

beginning of the input. 239

6 Experiments 240

6.1 Data and Baselines 241

For English, we use Pride & Prejudice (P&P) and 242

its official splits and settings (He et al., 2013). We 243

shorten the utterances if they are too long and re- 244

place character mentions with masked names fol- 245

lowing §4.2. We also report results on the Emma 246

dataset (Muzny et al., 2017), but we remove 127 247

test instances due to conflicting aliases (dataset er- 248

ror), hence making the comparison on Emma with 249

previous work indirect. For Chinese, we use two 250

datasets, one based on Jinyong novels (JY) and 251

another based on novel World of Plainness (WP). 252

We compare with published best results on each 253

dataset, and the baseline language model in multi- 254

ple settings. Emma does not provide training data, 255

so no in-domain numbers are reported. 256

6.2 Implementation Details 257

We use AllenNLP (Gardner et al., 2017) for SRL, 258

NER, and coref. As base LMs, we use RoBERTa- 259

large (Liu et al., 2019) for English and XLMR- 260
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System Supervision P&P Emma

Muzny et al. (2017) no 83.6 (75.3)
Muzny et al. (2017) in-domain 85.2 –
RoBERTa in-domain 71.1 –
DISSI-R w/o masking no 85.2 79.1
DISSI-R no 86.0 81.2
DISSI-R in-domain 90.6 –

Table 1: Accuracy (%) on English speaker identification
datasets. Supervision in w/o masking is not masked
per §4. Numbers in parentheses are for reference only.
DISSI-* are our proposed systems.

System Supervision JY WP

MLP† in-domain 95.6 70.5
CSN† in-domain – 82.5
XLMR in-domain 98.3 53.4
DISSI-X in-domain+distant 98.4 87.2

XLMR mini 51.7 40.9
DISSI-X mini+distant 95.6 67.8

Random† no 33.7 37.6
DISSI-X no 70.7 50.3

Table 2: Accuracy (%) on Chinese speaker identification
datasets (†: numbers from (Jia et al., 2020) and (Chen
et al., 2021)). Mini uses 200 in-domain instances.

large (Conneau et al., 2020) for other languages261

such as Chinese. Both LMs are trained on our dis-262

tant supervision data for one epoch, which we de-263

note as DISSI-R and DISSI-X respectively. We re-264

port single-run results. We use Transformers (Wolf265

et al., 2020) and default parameters. Both runs266

finish in an hour with single RTX A6000.267

Inference. For English evaluation, we apply an268

inference process similar to §3 to both the baseline269

LM and our proposed LM with distant supervision.270

We treat any named mentions identified as direct271

speakers as final predictions. If the direct speaker272

mention is a pronoun that indicates genders (e.g.,273

he, she), we remove all gender-incompliant candi-274

dates. We also apply conversational patterns onto275

the output probabilities to achieve maximum likeli-276

hood for any conversational sequences.277

6.3 Main Results278

Table 1 compares English speaker identification279

accuracy with state-of-the-art (SOTA) numbers280

(Muzny et al., 2017; Yoder et al., 2021). DISSI-R281

outperforms previous SOTA results by 5.4%. The282

masking process proposed in §4.2 evidently con-283

tributes to this gain, improving as much as 2.1%.284

Table 2 shows performance on Chinese bench-285

marks. With full supervision, our model DISSI-X286

System Explicit Anaphoric Implicit

XLMR 52.3 54.2 48.3
CSN† 93.2 81.3 75.9
DISSI-X 97.7 84.9 89.7

Table 3: Accuracy (%) by type according to the WP
dataset. Results are produced with full supervision.

improves 2.8% and 4.9% over previous SOTA on 287

JY and WP respectively, and it gains 34% over the 288

XLMR baseline on WP. We also achieve compa- 289

rable performance (+44%) on JY with only 200 290

training instances (Mini). 291

As Table 3 shows, we find that our method out- 292

performs previous methods on identifying all three 293

types of speakers by a large margin. On the WP 294

dataset that provides ground truth type labels for 295

instances, for the most challenging implicit cate- 296

gory, our method obtains a 13.8% improvement 297

compared with the state-of-the-art performance. 298

6.4 The Quality of Weakly-Labeled Data 299

Based on 100 random extractions from §4, we find 300

that 29% require contextual reasoning as no di- 301

rect evidence exists. In the following example, the 302

speaker of the utterance “I wasn’t far...been there.” 303

is correctly identified (Person X). 304

This, to some extent, explains the large gain 305

achieved by our method on the implicit instances 306

as shown in Table 3. The accuracy of RULEIE on 307

the selected samples is 68%. 308

7 Conclusion and Future Work 309

In this work, we propose a multi-step framework 310

for speaker identification that includes i) RULEIE, 311

a ruled-based system which we use to extract ii) 312

100K distant supervision instances. We use them 313

to train iii) a cross-lingual model DISSI that out- 314

performs previous bests on English and Chinese 315

benchmarks, by as much as 5.4%, and over 40% in 316

low-resource settings. The limitations of our work 317

also inspire future directions, which may include i) 318

improving distant supervision accuracy, ii) propos- 319

ing global inference for long documents that cannot 320

fit into LMs, and iii) auto-learning and generalizing 321

rules and heuristics such as those in §3 on the fly. 322
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