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Abstract—Chagas disease, caused by Trypanosoma cruzi, de-
mands accurate and interpretable detection methods to support
clinical decision-making. While deep learning models such as
YOLOv8 and DINO-DETR perform well on microscopy im-
ages, their lack of interpretability hinders clinical adoption. We
present the first comparative explainability study of CNN- and
transformer-based object detectors for Trypanosoma cruzi detec-
tion. For YOLOVS8, we benchmark ten Class Activation Mapping
explainable AI (CAM-XAI) methods across multiple internal
layers, evaluating interpretability using Intersection-over-Union
(IoU) and Energy-Based Pointing Game (EBPG). For DINO-
DETR, we introduce a query-specific attention visualization
method that maps decoder attention of a query to image space
without backpropagation. OQur results reveal complementary
behaviors: CAMs highlight broad parasite regions, while DETR
attention targets fine-grained, discriminative features. We further
demonstrate that existing localization metrics are inadequate for
shared heatmaps in multi-object settings, underscoring the need
for new localization evaluation metrics in medical explainability.

Index Terms—Explainable AI, Chagas disease, Trypanosoma
cruzi, Class Activation Mapping, Medical image analysis, Blood
parasites, Microscopy

I. INTRODUCTION

Chagas disease is a life-threatening parasitic illness caused
by the protozoan Trypanosoma cruzi (T. cruzi). It is classified
by the World Health Organization (WHO) as a neglected
tropical disease, endemic to 21 countries in the Americas [1],
affecting approximately 7 million people and causing an
estimated 10,000 deaths annually [2]. The disease progresses
through two phases: acute and chronic. The acute phase
typically lasts around two months, during which the parasite is
abundant in the bloodstream. Early detection and treatment in
this phase are critical to preventing progression to the chronic
stage [2].

Traditional diagnosis through microscopy requires highly
trained personnel and specialized equipment [3], such as
professional-grade microscopes with high-resolution imaging
capabilities. This process is labor-intensive, time-consuming,
and often inaccessible in resource-limited settings. These
limitations contribute to diagnostic delays and underdiagnosis
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in endemic regions, emphasizing the need for automated and
cost-effective methods to detect parasites.

Machine learning (ML) and computer vision techniques
have emerged as promising solutions for parasite detection
in microscopy images [4-6]. Recent work has demonstrated
strong detection performance across various architectures.
For instance, YOLO-based frameworks [4], vision transform-
ers [7], detection transformer (DETR-based models) [8], and
hybrids such as MeDINO [9] have been explored. Prior work
also demonstrates the viability of low-cost imaging (e.g.,
smartphone microscopy) using traditional ML classifiers [5],
laying the foundation for deep learning (DL) systems that can
directly learn parasite features from raw images.

By automating the detection of 7. cruzi trypomastigotes
in blood smear images, ML-based approaches can improve
diagnostic speed and consistency. However, despite gains
in detection accuracy, ML models often lack transparency,
limiting trust and adoption in clinical workflows [10]. Inter-
pretability is essential to ensure that model predictions are
grounded in biologically meaningful features rather than spu-
rious correlations or background artifacts. This is particularly
critical in clinical settings, where clinician trust depends not
only on correctness but on the transparency of the decision-
making process.

Explainable Al (XAI) methods aim to address this challenge
by generating human-interpretable explanations of model pre-
dictions. In medical imaging, XAI can highlight regions of
interest that influenced the model’s output, enabling prac-
titioners to verify that the model is focusing on clinically
meaningful structures (e.g., parasite morphology rather than
irrelevant artifacts). Despite growing interest in XAlI, prior
work on T. cruzi detection has largely prioritized performance
benchmarks, with limited attention to interpretability. This
gap in model transparency remains a key barrier to clinical
deployment.

In this paper, we bridge this gap by performing a com-
parative explainability study of convolutional neural network
(CNN) and transformer-based object detection models for
automated parasite detection. Our contributions are as follows:

o« We introduce a novel query-specific attention visual-

ization method for DINO-DETR that extracts decoder
attention weights and corresponding spatial sampling



locations, producing fine-grained, interpretable saliency
maps.

e We conduct the first comparative analysis of explain-
ability techniques across CNN-based (YOLOv8) and
transformer-based (DINO-DETR) detection architectures
using quantitative localization metrics.

e We present the first systematic benchmarking of
ten gradient-based CAM-XAI methods across multiple
YOLOVS internal layers, identifying optimal method-
layer configurations for visualizing 7. cruzi features in
blood smear images.

II. BACKGROUND AND RELATED WORK

DL has transformed medical image analysis, enabling the
development of automated tools for disease diagnosis and cell
detection. For parasitic infections like Chagas disease, object
detection models offer a promising solution by identifying 7.
cruzi trypomastigotes in blood smear images, supporting faster
diagnosis in both clinical and resource-limited settings. CNNs
and transformer-based detectors have emerged as dominant
architectural paradigms for these tasks. However, limited in-
terpretability remains a critical barrier to clinical integration.
This section reviews prior work on parasite detection and XAlI,
with a focus on their application to 7. cruzi detection in blood
smear images.

A. Parasite Detection in Blood Smear Images

Early approaches to parasite detection relied on classical
ML methods. For example, Morais et al. [5] used a random
forest classifier on handcrafted morphological and textural fea-
tures extracted from smartphone-acquired images, achieving
an 89% F1 score. While this work demonstrated the feasibility
of mobile microscopy, the approach required manual feature
engineering and lacked the scalability and generalizability of
deep learning models.

More recently, DL-based object detectors have become
state-of-the-art. Mura et al. [4] proposed YOLO-Tryppa, a
YOLO-based model evaluated on T. brucei images, achiev-
ing a mean average precision (mAPsg) of 71.3%. Rada et
al. [6] evaluated multiple object detectors, including Reti-
naNet, Faster R-CNN, FCOS, and YOLOVS8, on 7. cruzi mi-
croscopy images. YOLOvVS achieved the highest performance
(mAPsg = 0.951), even on low-resolution clinical images,
which shows its robustness and suitability for real-world
deployment in resource-constrained environments.

Transformer-based object detectors are emerging as an alter-
native to CNNs. DETR and its variants, such as DINO-DETR,
utilize encoder-decoder attention mechanisms to detect objects
without requiring anchor boxes or region proposals. Guemas
et al. [11] and Nakarmi et al. [12] explored the combination
of Deformable DETR and CNNs for parasite detection. Lin et
al. [7] compared ViT and YOLOVS for parasite classification,
while Miao et al. [9] introduced MeDINO, a DINO-DETR
variant optimized for medical imaging tasks. However, to our
knowledge, no prior work has applied DETR-based models

to 7. cruzi detection specifically, nor has any evaluated their
interpretability in this context.

B. Explainable Al for Parasite Detection

Despite impressive performance, most existing parasite de-
tection studies emphasize detection accuracy, with limited
attention to how or why predictions are made. In medical
imaging, where diagnostic decisions directly impact patient
outcomes, this opacity undermines trust and slows clinical
adoption. In high-stakes applications, such as parasite detec-
tion, false positives or negatives can lead to misdiagnosis,
making interpretability crucial. XAl aims to bridge this gap by
revealing which image regions or features influence a model’s
decision, helping clinicians verify that predictions align with
biological and diagnostic expectations.

Among XAI methods, class activation mapping (CAM)
techniques are widely used for visualizing model decisions.
Grad-CAM [13] is a foundational gradient-based method that
highlights important regions in intermediate feature maps.
Its variants improve localization in various ways: Grad-
CAM++ [14] uses higher-order gradients for small or over-
lapping objects, while XGrad-CAM [15] and LayerCAM [16]
provide fine-grained localization using axiomatic or pixel-wise
mechanisms. Gradient-free methods, such as EigenCAM [17],
utilize the principal components of feature activations to gener-
ate class-agnostic saliency maps, thereby enhancing robustness
to model noise. EigenGradCAM [18] combines gradient-based
localization with dimensionality reduction for smoother visu-
alizations. HiResCAM [19] avoids global pooling to improve
resolution, while KPCA-CAM [20] captures nonlinear patterns
in feature space. RandomCAM [18] serves as a baseline
sanity check. These methods differ in localization precision,
computational cost, and robustness to noise. While commonly
applied to classification tasks such as tumor detection and
pathology analysis, the systematic evaluation of these methods
in parasite detection remains limited.

With the advent of transformer-based detectors, attention
maps have emerged as a complementary form of explainability.
DETR models compute deformable attention weights that
connect object queries to image regions, providing insight into
the model’s internal reasoning. Visualizing decoder or self-
attention maps can highlight which regions the model focuses
on when generating predictions. Unlike CAMs, these maps are
intrinsic to the model’s forward pass. Several studies suggest
that attention-based explanations can correlate well with se-
mantically meaningful regions and, under certain conditions,
outperform CAMs in highlighting objects of interest [21, 22].

To our knowledge, no prior work systematically evaluates
the interpretability of DETR-based and CNN-based detectors
for T. cruzi. This gap motivates our work, which provides
a comprehensive comparison of CAM-based and attention-
based XAI methods for parasite detection in blood smear
microscopy.
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Fig. 1. Overview of the deformable attention-based explainability pipeline.
An input image is processed by DINO-DETR, generating queries {q; };V: 1
From the 6th decoder layer, query-specific sampling locations P L; €

RHattn XMXKX2 and attention weights Wj € RHattn XMXEK gre ex-
tracted. Queries with confidence scores greater than 0.5 are used to generate
saliency maps S;(x,y), where attention weights define intensity values
at sampled locations. Final map S7#"%! is obtained by aggregating and
smoothing individual maps using Gaussian blur.

III. METHODOLOGY
A. Dataset

We use the publicly available dataset of blood smear images,
introduced by Morais et al. [5], which consists of 674 high-
resolution microscopy images (3456x4608 pixels) of 1,314 T.
cruzi parasites’ instances, captured using a smartphone camera
attached to an optical microscope. The dataset was acquired
from Giemsa-stained blood smears prepared from Swiss mice
infected with T cruzi during the acute phase of infection.
We randomly selected 569 images for training and 105 for
validation.

B. Parasite Detection Models

We evaluated two representative object detection archi-
tectures: YOLOVS, a state-of-the-art CNN-based model, and
DINO-DETR, a representative transformer-based baseline.

We selected YOLOVS due to its state-of-the-art performance
on medical datasets and its proven accuracy in related work.
Rada et al. [6] and Mura et al. [4] benchmarked several
YOLO object detectors on 7. cruzi images and found YOLOvS8
outperformed alternatives like RetinaNet and FCOS, achieving
high mAP scores even under constrained imaging conditions.

To represent the transformer-based detection family, we
adopted DINO-DETR as a strong baseline model. It has
been effectively used in prior medical imaging studies such
as MeDINO [9], and it retains the original encoder-decoder
attention architecture of DETR, which is essential for gener-
ating query-based visual explanations. Moreover, since DINO-
DETR follows the general DETR design, our explainabil-
ity approach is broadly applicable to other DETR-family
models, making it a representative and extensible choice for
transformer-based explainability analysis.

TABLE I
PERFORMANCE OF YOLOVS8 AND DINO-DETR ON T. cruzi DETECTION

Model Prec. Rec. mAP mAP AR Inference
@0.5 @0.5:0.95 100 Time (ms)

YOLOV8 0.864  0.903 0913 0.432 - 12.8

DINO-DETR - - 0.872 0.420 0.599 29.9

C. CAM-Based Explainability for YOLOVS

To interpret YOLOV8’s predictions, we selected CAM-
based methods due to their low inference time and abil-
ity to produce spatially informative explanations, mak-
ing them well-suited for time-sensitive clinical applica-
tions [23]. We adapted ten CAM methods: Grad-CAM,
Grad-CAM++, EigenCAM, EigenGradCAM, XGradCAM,
LayerCAM, HiResCAM, RandomCAM, KPCA-CAM, and
GradCAM-ElementWise (GradCAM-EW). While these tech-
niques were originally developed for image classification,
we modified them to support object detection by aggregat-
ing anchor-level predictions into a unified score per image,
which was then passed to the CAM computation pipeline.
We extended the PyTorch-Grad-CAM library to accommodate
YOLOVS8’s multi-scale detection heads. The resulting saliency
maps reveal spatial regions that most influence the model’s
predictions, aiding both qualitative and quantitative analysis
of interpretability.

D. Deformable Attention-Based Explainability for DINO-
DETR

In transformer-based detectors like DINO-DETR, each ob-
ject prediction is generated from a distinct decoder query.
This structure makes query-specific attention well-suited for
producing interpretable explanations that maintain a clear
correspondence between individual predictions and the regions
they attend to. Existing explainability methods for transformer
detectors are typically not query-specific or rely on com-
plex post-hoc computations. To address this, we introduce a
simple, architecture-aligned approach that extracts decoder-
level deformable attention weights and sampling locations to
generate spatially precise, query-specific saliency maps. This
method avoids backpropagation and enables localized, per-
object explanations that complement CAM-based methods and
highlight cases where convolutional saliency may be diffuse
or ambiguous.

E. Deformable Attention-Based Saliency Extraction

Prediction and Query Selection. Given an input image I €
RH*W>3 DINO-DETR produces N decoder queries {g;}}_,
with confidence scores s;. We retain high-confidence queries:

Qvalid:{je{la”'vN}|5j20'5} (1)

Deformable Attention Extraction. For each valid query g;,
we extract sampling locations: P; € RHuxMxKx2 gpq
Attention weights of last decoder layer: W; € RHunxMxK
where Hyy, is the number of attention heads, M is the number
of feature pyramid levels, and K is the number of sampling
points per level.

Coordinate Conversion. The normalized sampling locations
are converted to discrete pixel coordinates:

h,m.k h,m,k h,m.,k
"  (round (P [0] x W), round (P 1] x H)
2
where W and H are the image width and height respec-
tively, and round(-) denotes rounding to the nearest integer.



Per-Query Saliency Map Construction. We construct a
query-specific saliency map by accumulating attention weights
at their corresponding pixel locations:

Sj(xay) == Z W§h7m7k) -1 |:X§»h1m7k) - (zay)i| (3)
h,m,k

where 1[] is the indicator function that equals 1 when the
condition is true and O otherwise.
Aggregation Across Queries. To obtain a unified saliency
map for the image, we aggregate contributions from all valid
queries:
S(z,y) = > S;(z,y) &)

7€ Quatia

Post-processing. The aggregated saliency map is smoothed
using a Gaussian kernel G, with standard deviation o and
normalized to the range [0, 1]:

Gy, *S
maxy ,(Go * S)

where * denotes convolution.

Interpretability. The final saliency map S highlights spa-
tial regions most influential to the model’s predictions. By
leveraging decoder deformable attention without requiring
gradients, this method provides faithful, architecture-aware
explanations suited to transformer-based object detectors.

Sﬁnal _

®)

FE. Evaluation Metrics for XAl Evaluation

To evaluate the spatial alignment between saliency maps
and ground truth objects in object detection, we consider two
widely adopted localization metrics, EBPG, and IoU.
Energy-Based Pointing Game. EBPG measures the propor-
tion of total saliency energy that lies inside the ground truth
regions. Let S(p) denote the saliency at pixel p and Qg the
union of all ground truth bounding box regions. The EBPG
score is given by:

EBPG — M (©6)

>, S(p)
Intersection over Union. IoU compares a thresholded
saliency map (converted to a binary mask) to the ground truth
regions. Let 7 be a threshold applied to the saliency map, and
let Spin be the resulting binary map. The IoU is defined as:

|Sbin N Q]

IoU =
|Sbin U Qar]

)

G. Implementation Details

Our experiments were conducted on an NVIDIA RTX 6000
Ada Generation GPU with 48 GB of VRAM. We trained
the YOLOv8m and DINO-DETR (4-scale ResNet backbone)
object detection models for 7. cruzi detection using their
default hyperparameter settings and 25 epochs. To binarize
the saliency maps, we applied a fixed threshold of 7 = 0.3.
We used a Gaussian kernel size of (11 x 11) to smooth the
saliency maps, where the standard deviation o was automati-
cally computed by OpenCV based on the kernel size.

IV. RESULTS
A. Parasite Detection

Table I presents the detection performance metrics on val-
idation dataset. YOLOVS, achieved superior detection perfor-
mance with an mAPg 5 of 0.913, precision of 0.864, and recall
of 0.903. DINO-DETR achieved an mAPg 5 of 0.872 and an
Average Recall at 100 detections (AR(g) of 0.599. The higher
mAP of YOLOVS indicates its effectiveness in accurately
localizing Trypanosoma cruzi parasites in microscopic blood
smear images.

B. Explainability Analysis of YOLOVS using Class Activation
Mapping (CAM) Methods

To assess the interpretability of YOLOvS8 for parasite de-

tection, we applied ten Class Activation Mapping (CAM)
techniques on the validation set using the fine-tuned YOLOvVS8
model and measured their performance using IoU and EBPG
metrics. These metrics capture region-level overlap and fine-
grained saliency accuracy, respectively.
Observation 1: The choice of layer substantially impacts
the quality of CAM explanations. We observe that the
effectiveness of each CAM method is highly dependent on
the specific layer from which it is computed. Tables II and III
show that performance varies considerably across layers (12,
15, 17, 21), with most methods achieving their best results
at Layer 17. For instance, GradCAM++ and EigenGradCAM
reach peak IoU scores of 0.1482 and 0.1303, and EBPG
scores of 0.1220 and 0.4375, respectively. Saliency maps at
Layer 17 consistently localize parasite regions, suggesting
that intermediate features strike a balance between spatial
detail and semantic relevance as shown in Figure 2. These
findings highlight the importance of carefully selecting the
right intermediate layer used for explanation, as suboptimal
choices can degrade interpretability.

EigenCAM

EigenGradCAM GradCAM GradCAM-EW GradCAM++

LayerCAM

Fig. 2. Visual comparison of CAM methods applied to YOLOVS outputs
using Layer 17, which yielded the best or near-best performance for most
methods across both IoU and EBPG metrics. The saliency maps demonstrate
that Layer 17 captures consistent and informative visual cues for localizing
T. cruzi parasites across different CAM approaches. All maps are overlaid on
the same predicted image, with bounding boxes corresponding to YOLOv8
model predictions.

Observation 2: No single layer optimally balances spatial
alignment and pixel-level relevance across CAM meth-
ods. Tables II and III show a divergence between IoU and
EBPG scores across layers, indicating that region-overlap
and point-wise relevance are not simultaneously maximized.



TABLE II
AVG. IoU SCORES ACROSS LAYERS FOR EACH CAM METHOD, EVALUATED ON THE VALIDATION DATASET (HIGHER IS BETTER).

Layer EigenGrad GradCAM EigenCAM XGradCAM RandomCAM LayerCAM KPCA-CAM HiResCAM GradCAM++ GradCAM-EW
Layer 12 0.2712 0.0131 0.0003 0.0081 0.0049 0.0167 0.0000 0.3446 0.0052 0.4310
Layer 15 0.1025 0.0159 0.0006 0.0301 0.0691 0.2763 0.0188 0.1861 0.0304 0.4673
Layer 17 0.1303 0.2912 0.1583 0.1292 0.1135 0.1659 0.0507 0.1183 0.1482 0.1823
Layer 21 0.0000 0.0000 0.0198 0.0000 0.0133 0.0000 0.0000 0.0000 0.0000 0.0000
Layer 15+17 0.1846 0.0797 0.0090 0.0574 0.0882 0.3016 0.0313 0.1998 0.0784 0.3957
Layer 15+17+21 0.1846 0.0797 0.0119 0.0574 0.0239 0.3016 0.0060 0.1998 0.0784 0.3957
TABLE IIT

AVG. EBPG SCORES ACROSS LAYERS FOR EACH CAM METHOD, EVALUATED ON THE VALIDATION DATASET (HIGHER IS BETTER).

Layer EigenGrad GradCAM EigenCAM XGradCAM RandomCAM LayerCAM KPCA-CAM HiResCAM GradCAM++ GradCAM-EW
Layer 12 0.2550 0.0123 0.0004 0.0096 0.0061 0.0843 0.0001 0.3669 0.0070 0.3489
Layer 15 0.4208 0.0128 0.0013 0.0141 0.0652 0.5988 0.0226 0.4005 0.0209 0.4705
Layer 17 0.4375 0.1749 0.0864 0.0584 0.0612 0.3925 0.0265 0.3172 0.1220 0.3213
Layer 21 0.0000 0.0000 0.0203 0.0000 0.0136 0.0000 0.0003 0.0000 0.0000 0.0000
Layer 15+17 0.3777 0.0192 0.0079 0.0193 0.0317 0.4936 0.0243 0.3640 0.0284 0.4083
Layer 15+17+21 0.3777 0.0192 0.0138 0.0193 0.0166 0.4936 0.0085 0.3640 0.0284 0.4083

IoU measures the spatial overlap with ground-truth bounding
boxes, while EBPG assesses whether the most salient point
falls within the target region. LayerCAM, RandomCAM, and
HiResCAM achieve their best IoU and EBPG scores on
different layers. For example, LayerCAM performs best in IoU
on Layer 15+17 (0.3016), but its highest EBPG score (0.5988)
occurs on Layer 15 alone. Likewise, HiResCAM achieves
peak IoU on Layer 12 (0.3446) and peak EBPG on Layer
15 (0.4005). To further illustrate this inconsistency, Figure 3
presents qualitative visualizations of saliency maps for the
same image. The top row displays CAM outputs generated
from the layer with the highest IoU, showing broader and more
diffuse heatmaps that roughly align with object boundaries.
The bottom row, by contrast, displays outputs from the layer
with the highest EBPG, where the saliency is more concen-
trated and localized around key discriminative regions, often at
the center of parasite bodies. These inconsistencies highlight
that no single layer optimally satisfies both region-overlap and
pixel-level relevance criteria.

These findings show that the choice of layer strongly affects
explanation quality and that the optimal layer varies by metric,
highlighting the need for multi-metric evaluation in medical
XAI benchmarking.

C. Explainability of DINO-DETR using Deformable Attention
Maps

To explore explainability in transformer-based object de-
tection, we implemented a query-specific, attention-based vi-
sualization method for DINO-DETR. As detailed earlier, we
extracted deformable attention weights and their associated
sampling locations directly from the last decoder layer of
DINO-DETR for high-confidence queries. These weights were
used to construct per-query attention maps by mapping the
sampled locations (in normalized coordinates) to absolute
pixel coordinates, followed by Gaussian smoothing and nor-
malization for visualization.

Observation 3: DINO-DETR attention localizes compact
regions corresponding to parasite centers. Figure 5 il-
lustrates the resulting attention maps alongside ground truth

annotations and predicted bounding boxes. The attention maps
from DINO-DETR tend to concentrate around compact, high-
confidence regions, often aligning with parasite centers, unlike
CNN-based CAM methods, which typically activate over
broader spatial areas. This focused behavior suggests that
transformer-based detectors attend more precisely to discrim-
inative visual features, such as nuclei or dense morphological
markers, making their outputs more semantically targeted. The
contrast in spatial behavior highlights that CNN and trans-
former architectures learn different visual representations for
parasite detection, suggesting potential benefits for ensemble-
based interpretability in medical image analysis.

EigenGradCAM

HiResCAM LayerCAM

RandomCAM

(b) CAM heatmaps from each method using its best YOLOV8 layer based on EBPG.

Fig. 3. Qualitative comparison of CAM methods where the best-performing
layer differs across IoU and EBPG metrics. The top row (a) shows saliency
maps for each method using the layer with the highest IoU score, while the
bottom row (b) uses the layer with the highest EBPG score. This highlights
the layer-dependent nature of each evaluation metric.

Observation 4: DINO-DETR demonstrates strong point-
wise localization of discriminative features, despite lower
spatial coverage. Quantitative evaluation shows that DINO-
DETR attention maps achieve an average IoU of 0.0949 and
EBPG of 0.8063 on the validation dataset. While its saliency
maps exhibit limited spatial overlap with annotated parasite re-
gions, they consistently focus on highly informative points. As
shown in Table IV, the highest IoU among CAM methods is
achieved by GradCAM-EW at Layer 15, whereas LayerCAM
yields the highest EBPG. Notably, DINO-DETR surpasses
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Fig. 4. Average XAl heatmap generation time (in seconds) for various CAM
methods across YOLOVS layers, computed on the validation dataset.

both in EBPG, indicating that its attention mechanism more
reliably identifies semantically meaningful regions, even if the
spatial extent is coarse. This highlights a trade-off between
region-level coverage (IoU) and point-wise semantic precision
(EBPG) across architectures.

Observation 5: Figure 4 summarizes the average inference
time for various CAM methods across YOLOvVS layers. Eigen-
GradCAM, EigenCAM, and KPCA-CAM consistently take
longer on Layer 15 due to its high spatial resolution (80x80),
which significantly increases processing time, especially for
eigen-based methods that perform decomposition over large
activation maps. The dominance of Layer 15 is also evident
in combined layers (e.g., 15+17, 15+17+21), where it drives
the overall inference time. Layer 17 shows higher latency than
Layer 21 across all methods, despite both having 576 channels,
because it operates at a higher spatial resolution (40x40 vs.
20x20), which impacts computation cost.

Ground Truth DINO DETR Predictions

Query-Specific Attention XAl

Fig. 5. Comparison of ground truth, predicted detections, and attention-based
explanations for a sample blood smear image.

V. DISCUSSION

D1: Shared heatmaps align with feature-sharing architec-
tures and clinical expectations. Our design choice to generate
a single explanation heatmap for all the predictions per image
reflects the underlying architecture of models such as YOLOvS8
and DINO-DETR, which compute predictions from a shared
feature representation. A unified heatmap more accurately
represents the model’s internal reasoning and decision-making
process. From a clinical perspective, a single interpretable
visualization is more aligned with diagnostic workflows, where
the goal is to validate the model’s focus across the image holis-
tically, rather than interpreting each prediction in isolation.

TABLE IV
COMPARISON OF LOCALIZATION METRICS FOR ToP CAM METHODS
AND QUERY-SPECIFIC ATTENTION XAI

Method (Layer) Avg. IoU Avg. EBPG

GradCAM-EW (Layer 15) 0.4673 0.4705
LayerCAM (Layer 15) 0.2763 0.5988
DINO-DETR (Final Decoder Layer, ) 0.0949 0.8063

D2: Current localization metrics are misaligned with
shared heatmap assumptions. Conventional localization met-
rics such as IoU, the Pointing Game (PG), and EBPG as-
sume that each object is explained using a dedicated saliency
map [24]. When applied to shared explanations, as in our
setup, these metrics can yield misleading evaluations. For
instance, PG computes whether the most activated pixel lies
within a ground truth box, but ignores the overall spatial
distribution of saliency. In multi-object settings, this leads
to overestimation: a single correct pixel can yield a perfect
score even when other targets are missed entirely. EBPG
improves on PG by integrating energy within each bounding
box. However, it still assigns zero penalty for objects that
receive no attention at all, allowing a single well-localized
object to dominate the score.

On the other hand, IoU penalizes heatmaps that accurately

highlight semantically meaningful subregions, such as the
nucleus of a Trypanosoma cruzi parasite, if they do not span
the entire ground-truth bounding box.
D3: A new localization metric is needed for dense predic-
tions per saliency map. Our findings reveal the inadequacy
of current interpretability localization metrics in dense, multi-
object settings with a shared saliency map. To address this,
we advocate for the development of a new localization metric
that accounts for shared saliency attribution.

VI. LIMITATIONS AND FUTURE WORK

While this study provides valuable insights into the explain-
ability of object detection models for T. cruzi detection, a few
areas remain open for further development. First, clinician
involvement was not included in the evaluation of saliency
maps. Although our visualizations were designed to reflect
known morphological features of the parasite, expert feed-
back would offer stronger validation of their clinical utility.
Second, through our analysis, we found that commonly used
localization metrics such as PG, IoU, and EBPG are insuf-
ficient for evaluating shared saliency maps in dense, multi-
object scenarios. This is not only a limitation but also one
of the key findings of our study. Finally, this work focuses
on a single-parasite dataset. In future research, we plan to
expand our analysis to multi-parasite detection and investigate
whether explainability methods remain reliable across varying
morphological structures and prediction challenges. We also
aim to develop new evaluation metrics that address these
shortcomings and better reflect the interpretability needs of
detection models.



VII. CONCLUSION

We present explainability analysis of deep learning models
for Trypanosoma cruzi detection in microscopy images, com-
paring CAM-based methods for YOLOVS8 and attention-based
explanations for DINO-DETR. For YOLOVS, we benchmarked
ten CAM variants across layers using IoU and EBPG. For
DINO-DETR, we introduced a query-specific attention visual-
ization method that produces saliency maps without backprop-
agation. Our findings reveal that CAM methods emphasize
broader image regions, while DINO-DETR localizes parasite
features with higher semantic precision. We also highlight lim-
itations of existing metrics when evaluating shared heatmaps
in multi-object settings. Our findings provide practical insights
for model interpretability and underscore the need for local-
ization evaluation metrics in clinical Al applications.
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