
CADMorph: Geometry-Driven Parametric CAD
Editing via a Plan-Generate-Verify Loop

Weijian Ma∗
Fudan University

weijian.ma1@gmail.com

Shizhao Sun†

Microsoft Research, Asia
shizsu@microsoft.com

Ruiyu Wang
University of Toronto

rwang@cs.toronto.edu

Jiang Bian
Microsoft Research, Asia
jiabia@microsoft.com

Abstract

A Computer-Aided Design (CAD) model encodes an object in two coupled forms: a
parametric construction sequence and its resulting visible geometric shape. During
iterative design, adjustments to the geometric shape inevitably require synchronized
edits to the underlying parametric sequence, called geometry-driven parametric
CAD editing. The task calls for 1) preserving the original sequence’s structure,
2) ensuring each edit’s semantic validity, and 3) maintaining high shape fidelity
to the target shape, all under scarce editing data triplets. We present CADMorph,
an iterative plan–generate–verify framework that orchestrates pretrained domain-
specific foundation models during inference: a parameter-to-shape (P2S) latent
diffusion model and a masked-parameter-prediction (MPP) model. In the planning
stage, cross-attention maps from the P2S model pinpoint the segments that need
modification and offer editing masks. The MPP model then infills these masks
with semantically valid edits in the generation stage. During verification, the P2S
model embeds each candidate sequence in shape-latent space, measures its distance
to the target shape, and selects the closest one. The three stages leverage the
inherent geometric consciousness and design knowledge in pretrained priors, and
thus tackle structure preservation, semantic validity, and shape fidelity respectively.
Besides, both P2S and MPP models are trained without triplet data, bypassing
the data-scarcity bottleneck. CADMorph surpasses GPT-4o and specialized CAD
baselines, and supports downstream applications such as iterative editing and
reverse-engineering enhancement.

1 Introduction

Computer-Aided Design (CAD) serves as the vital bridge between an initial concept and a manufac-
turable product. A CAD model thus exhibits a representational duality, carrying two tightly coupled
representations of the same object. The parametric construction sequence (left in Figure 1(a)) defines
exact spatial relationships through operations (e.g., Line and Extrude) and numeric parameters (e.g.,
223 and 128), ensuring manufacturing accuracy while preserving full editability for future revision.
The visible geometric shape (right of Figure 1(a)) is rendered from that sequence, providing an
intuitive and universally understood visual reference for inspection, simulation and validation.

During CAD development, the geometric shape is frequently adjusted—whether to satisfy simulation
feedback, ergonomic requirements or aesthetic goals—which in turn demands corresponding edits to

∗Work done during internship at Microsoft Research, Asia.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

[SOL] Line 223 128 Arc 128 223 64
Counterclockwise Line 128 128
[SOL] Circle 162 162 11 Extrude 128
128 128 128 128 128 96 150 128
New_body One_sided [SEP] [EOS]

[SOL] Line 223 128 Line 223 223 Line
128 223 Line 128 128 [SOL] Circle
176 176 48 Extrude 128 128 128 128
128 128 96 150 128 New_body
One_sided [SEP] [EOS]

Original Parametric Sequence + Target Geometry | Updated Parametric Sequence
Rendering Rendering

(a) (b) (c)

Figure 1: Given a parametric construction sequence (left) and a target geometry-only shape
(centre), CADMorph outputs an updated construction sequence (right) whose rendering matches
the target while maintaining the pattern of the original construction sequence. Renderings in grey
are shown only for visual reference. Edits in the sequences are highlighted. An intentionally simple
example is shown here for clarity. More complex results appear in Section 4.2 and the Appendix.

the underlying parametric sequence, the authoritative source for manufacturing. We call this process
geometry-driven parametric CAD editing: given an original parametric sequence and a target
geometric shape, generate an updated parametric sequence that reproduces the target geometric
shape (Figure 1). This task is laborious and error-prone, as engineers must assess the magnitude
of shape changes, pinpoint the exact segments to modify within a complex and nested parametric
sequence, and then propagate those changes through all dependent segments.

Despite its practical importance, geometry-driven parametric editing remains largely unexplored.
Most prior work addresses unconditional editing [Xu et al., 2022, 2023, Zhang et al., 2024], which
generates an edited parametric sequence from an original parametric sequence without any explicit
guidance. A few studies explore text-based editing [Yuan et al., 2025], which uses a textual instruction
alongside the original parametric sequence to drive edits. However, expressing comprehensive shape
changes through a single textual instruction is often cumbersome and unintuitive for end users.

The task of geometry-driven parametric CAD editing presents several core challenges. The first,
structure preservation, demands that edits be confined to those segments of the original parametric
sequence responsible for the desired shape change, leaving all other parts untouched. The second,
semantic validity, requires that the updated parametric sequence not only be syntactically correct but
also yield a realistic CAD model that adheres to design conventions—–such as evenly distributing
bolt holes rather than placing them arbitrarily. The third, shape fidelity, mandates that the updated
parametric sequence, when rendered, reproduce the target shape. In addition, data scarcity poses a
fundamental obstacle, since no existing dataset combines an original parametric sequence with both a
target geometric shape and its corresponding updated sequence.

To tackle these challenges, we leverage the geometric and design priors insde the domain-specific pre-
trained foundation models, and introduce CADMorph (Figure 2), an iterative plan–generate–verify
framework that incrementally transforms the original parametric sequence into one that reproduces the
target geometry by employing two complementary models, the parameter-to-shape model (P2S) and
the masked-parametric-prediction (MPP) model. The P2S is a latent diffusion model (LDM) [Rom-
bach et al., 2022] trained to map a parametric sequence into its corresponding geometric shape, while
the MPP model is a Large Language Model [Touvron et al., 2023, Meta AI, 2024] trained to infill
masked segments of the parametric sequence. Neither model relies on scarce triplet data—〈original
sequence, target geometry, updated sequence〉—–thereby sidestepping the data-scarcity bottleneck.

The editing is an iterative synchronization between P2S and MPP. In each iteration, the planning
stage identifies which segments in the current parametric sequence to modify. Inspired by advances
in text-to-image LDMs [Rombach et al., 2022, Hertz et al., 2022a], we analyze cross-attention maps
inside P2S to quantify segment-wise influence on the target geometric shape. The segments no longer
contributes to target geometric shape are deemed safe to edit and replaced by a special [mask] token.
This masking strategy confines edits into useless segments, thereby preserving the useful segments of
the sequence and satisfying the structure-preservation requirement. The generation stage proposes
candidate edits by changing identified segments only. We utilize the MPP model to infill each [mask]
with suitable edits. As the model is trained on large-scale parametric sequence data, it produces
syntactically correct and semantically meaningful edits, ensuring semantic validity. The validation
stage selects the candidate parametric sequence that best matches the target geometric shape. We map
both the candidate parametric sequences and the target geometric shape into a shared space, i.e., the
latent space of the P2S model. Distances in this shared space serve as an efficient proxy for geometric

2

dissimilarity. The candidate of minimal distance to the target geometric shape is retained for the next
iteration, driving convergence toward the target geometric shape and thereby enforcing shape fidelity.

CADMorph offers several key advantages. First, it is data-efficient. Rather than relying on labor-
intensive triplet supervision, it allocates effort to inference time by running the P2S and MPP models
in its plan–generate–verify cycle. This strategy mirrors the principle of test-time scaling [Cobbe et al.,
2021, Ma et al., 2025], where additional computation during inference yields significantly improved
results. Second, it is exploration-efficient. By leveraging P2S model in the planning stage, it reduce
the search space of possible edits; by using P2S model again in the verification stage, it provides an
effective signal that steers the edit toward a promising direction.

Experiments demonstrate that CADMorph outperforms state-of-the-art general-purpose models
(GPT-4o [OpenAI, 2024]) and powerful CAD-specific baselines [Ma et al., 2024, Zhang et al.,
2024] both quantitatively and qualitatively. In addition, we showcase two downstream applications—
iterative geometry editing and reverse-engineering refinement—highlighting CADMorph’s versatility
in real-world design workflows. Our key contributions are summarized as follows:

• We formalize geometry-driven parametric CAD editing, a practical task in CAD workflow.
It takes an original parametric sequence and a target geometric shape as input and produces
an updated parametric sequence whose rendered shape matches the target.

• We leverage two complementary models, a parameter-to-shape (P2S) diffusion model and a
masked-parametric prediction (MPP) Transformer, sidestepping the data-scarcity bottleneck.

• We introduce an iterative plan-generate-verify framework that jointly exploits P2S and MPP
models. We analyze P2S model’s cross-attention maps to localize segments requiring edits
(planning), use MPP model to infill those segments with semantically valid candidate revi-
sions (generation), and embed each candidate and the target shape in the P2S model’s latent
space to select the sequence whose rendering closely matches the target shape (verification).

2 Related Work
Deep Learning in CAD. Since the pioneering work of Wu et al. [2021], deep learning research
in Computer-Aided Design (CAD) has witnessed a surge and now spans four main directions:
representation learning, generation, reverse engineering, and editing. Representation learning methods
derive compact embeddings, either unimodal [Wu et al., 2021] or multimodal [Ma et al., 2023], to
support downstream recognition tasks. Generation approaches translate free-form text into CAD
parametric sequences [Khan et al., 2024b, Wang et al., 2025c, Li et al., 2024]). Reverse-engineering
pipelines reconstruct editable primitives [Uy et al., 2022, Li et al., 2023, Ren et al., 2022] or full
parametric sequences [Khan et al., 2024a, Ma et al., 2024, Lambourne et al., 2022] from raw 3D
geometry. Editing methods begin with an original parametric sequence and output a revised one, either
via random sampling [Xu et al., 2022, 2023, Zhang et al., 2024] or under text-driven guidance [Yuan
et al., 2025]. Our focus, geometry-driven parametric editing, shares surface similarities with previous
reverse engineering and editing methods, yet differs in essential ways. Reverse-engineering pipelines
ignore the designer’s intent embodied in the original parametric sequence, while prior editing methods
disregard the rich visual cues provided by a target geometry shape. By simultaneously respecting
the original sequence and leveraging the target shape as guidance, our work bridges this gap and
addresses a problem that neither existing reverse-engineering nor editing methods fully resolve.

3D Shape Editing. Research in this area operates directly on the geometry shape, whether as
mesh, signed distance field (SDF) or neural radiance field (NeRF). These methods offer part-aware,
NeRF-based, mesh-guided, coupled-optimization, and SDF-sculpting frameworks for 3D shape
editing [Hertz et al., 2022b, Wang et al., 2023b, Chen et al., 2023, Wang et al., 2023a, Hu et al.,
2024, Rubab and Tong, 2025]. Besides, pretrained text-to-image diffusion models have been used to
guide 3D shape editing, e.g., integrating 2D inpainting or score-distillation sampling (SDS) losses to
achieve multi-view-consistent modifications [Yu et al., 2023, Jiang et al., 2023, Zhou et al., 2023,
Dihlmann et al., 2024, Poole et al., 2022]. In contrast, our work treats the shape as guidance and
performs edits on the underlying parametric sequence, rather than directly deforming the shape itself.

Test-time Scaling with Verifiers. The core idea is to increase inference-time effort, i.e., generating
multiple candidate outputs and then using a verifier to select the best one, a paradigm shown to
substantially improve generative models [Cobbe et al., 2021]. This strategy has been applied across
domains, e.g., large language models, vision-language models, image generation, speech synthesis
and video generation [Lee et al., 2025, Wang et al., 2025b, Dong et al., 2023, Wang et al., 2025a,

3

Stage 1: Planning

[SOL] Line …
Extrude [EOS]

Cross
Attn.

Cross
Attn.

𝐸𝑆 𝐷𝑆

𝐸𝑐

Add
Noise

…

𝑧0 𝑧0𝑧1

DDIM Inversion Reverse Process

<Instruction> + [SOL] Line … [MASK] Extrude [EOS]

Pretrained Large Language Models
+

LoRA

Line Line
Arc Arc , ……

Command
Proposals

Infilling

[SOL] Line
Arc ……
Extrude
[EOS]

𝑧𝑇

P2S Model
(DDIM Inv.)𝑆𝑟−1

′

𝐶𝑟−1
′

𝑆′ P2S Model
(DDIM Inv.)

𝐶𝑟
𝑚𝑎𝑠𝑘

𝐶𝑟−1
′ → 𝐶𝑟

𝑚𝑎𝑠𝑘 Stage 2: Generation 𝐶𝑟
𝑚𝑎𝑠𝑘 → {𝐶𝑟

𝑖}

MPP Model
([SOL] Line [MASK]
… Extrude [EOS])

<Instr.> + 𝐶𝑟
𝑚𝑎𝑠𝑘 ① [SOL] Line Line Line … [SOL] Circle Extrude [EOS]

② [SOL] Line Arc Arc … [SOL] Circle Extrude [EOS]
③ [SOL]Line Line … [SOL] Circle Extrude [EOS]

Stage 3: Verification
𝑎𝑟𝑔𝑚𝑖𝑛

j∈{①, ②, ③}

∥ 𝑗 − ∥2= ①

① ② ✘ ③ ✘

P2S Model
(Rev. Process)

𝐶𝑟
𝑗

∈ {𝐶𝑟
𝑖}

Parameter-to-Shape (P2S) Model Masked Parameter Prediction (MPP) Model

{𝐶𝑟
𝑖} → 𝐶𝑟

′

↺ × 𝑅 (a)

(b)

Figure 2: General pipeline of CADMorph. (a) Iterative editing loop. For each round r ∈ R: (i) The
planning stage selects the editing location via peeking the cross-attention map of the P2S model.
(ii) The generation stage propose candidate sequences via the MPP model (a finetuned LLM). (iii)
The verification stage selects the candidate sequence best matches the target shape for round r. The
parameters of each primitive in C are omitted for brevity. (b) Architecture of P2S and MPP model.

Xie et al., 2025, Zhang et al., 2025, Chen et al., 2025, Li et al., 2025a, Ye et al., 2025, Peng et al.,
2025, Cong et al., 2025, Li et al., 2025b]. In our approach, the generation stage invokes the MPP
model multiple times to generate diverse candidate parametric sequences, and the verification stages
examine their embeddings in latent space of the P2S model to select the sequence that best matches
the target geometry shape. This procedure mirrors the principle of test-time scaling with verifiers,
and is the first application of this paradigm to CAD related tasks.

3 Method

We first formalize the task of geometry-driven parametric CAD editing (Section 3.1). Then, we
present an overview for CADMorph, our iterative plan-generate-verify framework that leverages the
interplay between two complementary pretrained foundation models in CAD domains: the parameter-
to-shape (P2S) model and the masked-parameter-prediction (MPP) model (Section 3.2). Next, we
introduce the architecture of the P2S and MPP model (Section 3.3). Finally, we delve into each stage
of the plan-generate-verify pipeline (Section 3.4).

3.1 Task Formulation

For a given CAD model, let C denote its parametric construction sequence and S its visual geometric
shape. Given an original parametric sequence C and a target geometric shape S′, geometry-driven
parametric CAD editing seeks an updated parametric sequence C ′ that reproduces S′ (Figure 1).
Although many parametric sequences may reproduce S′, the preferred solution is the one that
preserves the structure of C rather than replacing it with an entirely different sequence. Thus, the
overall goal is:

C ′ = argmin
C′

Dgeometry(F(C ′), S′) + λRstructure(C
′, C). (1)

Here, F(C ′) denotes the rendered geometric shape of the sequence C ′, either via CAD kernels
or neural networks. Dgeometry(·, ·) measures the discrepancy between two geometric shapes, and
Rstructure(·, ·) measures the structure similarity between two parametric sequences. λ is an illustrative
hyperparameter.

4

[SOL] [EOS]ExtrudeLine LineArc Extrude [SOL] Circle

Token-wise Cross-attention Map Projected to Shape Meshes

P2S Model
(DDIM Inv.)

P2S Model
(DDIM Inv.)𝑆′

𝐶𝑟−1
′

𝑆𝑟−1
′

Figure 3: Visualization of P2S model’s cross-attention (CA) maps. For each segment in the
parametric sequence C ′

r−1, we project its CA score on the derived mesh of its corresponding shape
S′
r−1 (top row) and the target shape S′ (bottom row). Bright regions highlight the geometry that is

strongly associated with the corresponding sequence segment, indicating that a part of the shape is
more attracted to the sequence segment that describes it.

3.2 Approach Overview

CADMorph orchestrates two complementary pretrained foundation models (Figure 2(b)), a parameter-
to-shape (P2S) model and a masked-parameter-prediction (MPP) model. The P2S model is a latent
diffusion model trained on 〈parametric sequence, shape rendering〉 pairs, which translates a parametric
sequence to a geometric shape. The MPP model is a Large Language Model (LLM) trained on
massive construction sequences, which infills the masked region of plausible parametric sequences.
Neither model requires scarce 〈original sequence, target shape, updated sequence〉 triplets for training.

Built on these models, CADMorph incrementally transforms the original parametric sequence C
into the sequence C ′ that reproduces the target geometry S′ by iterating over three stages: planning,
generation and verification (Figure 2(a)). At the r-th iteration:

1. Planning. Starting from the parametric sequence from the last iteration C ′
r−1 (C ′

0 = C), we locate
the segments requiring edits by analyzing the P2S model’s cross-attention maps. Those segments are
replaced with the special token [mask], yielding the masked parametric sequence Cmask

r .

2. Generation. The MPP model infills the [mask] tokens N times, producing a set of candidate
sequences C1

r , . . . , C
N
r that propose semantically plausible edits.

3. Verification. Each candidate is projected into the P2S model’s latent space, and the one closest to
the target geometric shape S′ is chosen as C ′

r. This sequence seeds the next iteration.

The loop terminates when C ′
r converges or a maximum number of iterations is reached, yielding the

final parametric sequence C ′ that reproduces the target shape S′. For the details of each stage, please
refer to Section 3.4

3.3 Model Architecture

CADMorph involves two foundation models pretrained on existing data in CAD domain. These
models are originally designed for other tasks and are jointly used in our plan-generate-verify
framework to achieve the geometry-driven parametric CAD editing task.

Parameter-to-Shape (P2S) Model (left of Figure 2(b)). We represent each shape as a voxelized
truncated signed distance field (tSDF). The P2S model transforms parametric sequences into 3D
shape latents, and further decodes it into SDF. It follows SDFusion’s architecture [Cheng et al., 2023],
and is re-trained on 〈parametric sequences, SDF〉 pairs of CAD data. It comprises two components:
(1) a shape encoder-decoder pair (Es and Ds) that embeds SDFs into a latent space and reconstructs
them, and (2) a diffusion model that maps parametric sequence into 3D shape latents.

Masked-Parameter-Prediction (MPP) Model (right of Figure 2(b)). It infills the masked segments
of a parametric sequence. It adopts the the architecture of FlexCAD [Zhang et al., 2024], i.e., a
LoRA-finetuned Llama-3 [Meta AI, 2024] 8B model with hierarchical masking strategies.

5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Target
Shape

GPT-4o

o4-mini

o4-mini
-high

CAD-
Diffuser

FlexCAD

Input

Ours
(11)

Figure 4: Qualitative results. Top row: rendering of original parametric sequence (shown instead of
tokens for clarity). Second row: target shape. Other rows: renderings of the edited sequences from
each method; empty cells indicate that no valid shape could be rendered. Better view zoomed in.

3.4 The Plan-Generate-Verify Framework

Planning. It receives the previous parametric sequence C ′
r−1 and returns a masked parametric

sequence Cmask
r , where each special [mask] token marks a segment requiring edits. A naive strategy

would mask segments at random, but this wastes computation on portions of C ′
r−1 that already match

the target shape S′. Therefore, we focus on segments in C ′
r−1 that mismatch S′.

To locate those segments, we need a segment-level metric that estimates each segment’s contribution
to the target shape. Recent work on text-to-image diffusion [Rombach et al., 2022] shows that
cross-attention maps expose the correspondence between words and the pixels they describe. We
observe an analogous effect in our P2S model: the cross-attention maps indicate which parametric
sequence segments are responsible for which geometric parts. As Figure 3 illustrates, when the
shape-sequence pair (Sr, Cr) comes from the same CAD model, attention peaks align tightly—e.g.,
the “Line” segment in Cr attends to the line in Sr. Conversely, when (S′, Cr) comes from different
models, segments irrelevant to S′ (such as “Arc”) receive low attention scores, while relevant ones
(e.g., “Line”, “Circle”) still correlate well.

Motivated by this insight, we take the cross-attention score between the i-th segment of C ′
r−1 and

the latent representation of S′ as a raw contribution score, denoted as M(C ′
r−1(i), S

′). As absolute
magnitudes of M vary across segments (e.g., [SOL] tends to receive a lower score compared to other
segments in Figure 3), we convert this raw value into a scale-invariant relative score:

J(i) = |M(C ′
r−1(i), S

′)−M(C ′
r−1(i), S

′
r−1)|. (2)

J(i) measures how much each segment’s influence changes between S′
r−1 and S′. At each iteration,

we rank segments by J(i) and mask the K largest ones (in practice, those above the mean J̄) to
obtain Cmask

r . This strategy concentrates computational effort on the segments most responsible for
the discrepancy with the target shape S′, yielding more efficient and accurate edits.

Generation. Starting from the masked parametric sequence Cmask
r from the planning stage, the

generation stage calls the MPP model N times to produce a set of candidate parametric sequence
C1

r , . . . , C
N
r . For each candidate Cn

r , the MPP model infills the masked segments autoregressively,

6

Table 1: Quantitative results. IoU, mean CD, and median CD quantify how closely the shape
rendered from the edited sequence matches the target geometry. Edit Dist. measures how much the
edited sequence diverges from the original sequence. IR is the percentage of edited sequences that
cannot be rendered into a valid shape, and JSD is the distributional gap between the generated and
target shapes. Human Eval. reports the average rank assigned by human annotators.

Method IoU↑ mean CD↓ median CD↓ JSD↓ IR (%)↓ Edit Dist.↓ Human Eval.↓
GPT-4o 0.247 0.107 0.0171 0.737 25.1 21.12 4.57
o4-mini 0.185 0.118 0.0283 0.748 32.95 22.49 5.40
o4-mini-high 0.193 0.100 0.0200 0.745 40.5 25.27 5.37
CAD-Diffuser 0.548 0.097 0.0093 0.689 5.7 17.29 1.94
FlexCAD 0.447 0.029 0.0065 0.634 15.3 22.29 2.35
Ours 0.687 0.009 0.0031 0.621 3.1 16.87 1.37

drawing on the CAD knowledge it gained through pre-training and task-specific fine-tuning:

P (Cn
r | Cmask

r) =

T∏
t=1

P (Cn,t
r | Cmask

r , Cn,<t
r), (3)

where Cn,t
r is the token autoregressively generated at step t and Cn,<t

r denotes the partial sequence
generated so far.

Verification. It receives candidate parametric sequences C1
r , . . . , C

N
r produced in the generation

stage, and selects the one whose corresponding shape latent representation lies closest to that of
the target shape S′. As the P2S model builds a bridge between parametric sequences and the latent
space of geometric shapes, we diffuse every candidate sequence and encode the target shape into the
shape latent space and measure their Euclidean distance. For a candidate sequence Cn

r , we obtain its
latent vector through a reverse process of the P2S model, denoted as F(Cn

r). The target shape S′ is
embedded by the P2S model’s shape encoder Es, denoted as Es(S

′). We then choose:

C ′
r = arg min

C̃∈Q
∥F(C̃)− Es(S

′)∥2, (4)

where Q is a priority queue that retains the X best candidate sequences seen up to iteration r.
Maintaining this cross-iteration priority queue enlarges the search horizon: it rescues high-quality
candidates generated in earlier rounds and attenuates the impact of occasional noisy candidates,
leading to more reliable convergence toward the target shape.

4 Experiment

4.1 Experimental Setup

Datasets. We train both the P2S and MPP model on the DeepCAD corpus [Wu et al., 2021], which
contains about 130k CAD models after removing non-renderable shapes. We keep the official
train/validation/test splits. Parametric construction sequences follow the format of Ma et al. [2024];
voxelised SDFs are obtained with PythonOCC [Paviot and Contributors, 2025], Trimesh [Dawson-
Haggerty and Contributors, 2025], and meshtosdf [Kleineberg, 2025]. For evaluation, we adopt the
2k test set from CAD-Editor [Yuan et al., 2025]. Each data provides an “edited” parametric sequence
whose rendered voxelized SDFs serves as the target shape in our task, while the the accompanying
textual instructions are discarded. Following common practice [Yuan et al., 2025, Wang et al., 2025c,
Cheng et al., 2023], we generate 5 outputs for each test case for fair comparison and utilize truncated
SDFs with the distance range in [−0.2, 0.2].

Implementation Details. The MPP model is finetuned from Llama3-8b-Instruct [Meta AI, 2024]
with a LoRA [Hu et al., 2022] rank of 32 under the batch of 16 for 60 epochs on 8 A100-40GB-SXM
GPUs. The initial learning rate is set to 5e− 4 with maximal token length of 1024. The P2S model is
trained on the same hardware with a total batch size of 8 and an initial learning rate of 5e − 5 for
600k steps. The maximum iteration of the plan-generation-verify framework is set as 10.

Metrics. As the first work for geometry-driven parametric editing, we introduce evaluation metrics
that assess the task from the following perspectives. 1) Target shape adherence. The shape rendered

7

[SOL] Circle 176 128 47 [SOL] Circle 188
116 30 Extrude 128 128 128 109 127 126
15 176 130 New_body Two_sided [SEP]
[SOL] Circle 176 128 48 Extrude 128 128
128 111 127 126 13 226 130 New_body
Two_sided [SEP] [EOS]

[SOL] Circle 176 128 47 [SOL] Circle 188 116
30 Extrude 128 128 128 109 127 126 15 176
130 New_body Two_sided [SEP] [SOL] Circle
176 128 48 Extrude 128 128 128 119 124 126 4
226 130 New_body Two_sided [SEP] [EOS]

[SOL] Line 156 49 Line 223 114 Line 223 128
Line 128 128 [SOL] Circle 149 110 5 [SOL]
Circle 151 68 2 [SOL] Circle 195 111 7 Extrude
128 128 128 84 161 126 103 136 130
New_body Two_sided [SEP] [SOL] Line 153 128
Line 153 223 Line 128 128 Extrude 192 128 192
126 112 132 92 130 128 New_body Symmetric
[SEP] [EOS]

[SOL] Line 156 49 Line 223 114 Line 223
128 Line 128 128 [SOL] Circle 149 110 5
[SOL] Circle 151 68 2 [SOL] Circle 195
111 7 Extrude 128 128 128 78 166 126
118 138 130 New_body Two_sided [SEP]
[SOL] Line 153 128 Line 153 223 Line 128
128 Extrude 128 128 128 147 62 126 102
138 130 New_body Two_sided [SEP] [EOS]

INPUT (parametric sequence only) + TARGET SHAPE | OUTPUT (parametric sequence only)

Rendering

Rendering Rendering

Rendering

[SOL] Circle 176 128
48 Extrude 128 128
128 119 124 126 4 224
48 New_body
Two_sided [SEP] [EOS]

SOL] Line 156 49 Line 223 114 Line 223 128 Line 192 128
Arc 176 128 223 Counterclockwise Line 128 128 [SOL]
Circle 149 110 5 Extrude 128 128 128 84 161 126 103 136
130 New_body Two_sided [SEP] [SOL] Line 153 128 Line
153 223 Line 128 128 Extrude 192 128 192 126 112 132 92
130 128 New_body Symmetric [SEP] [EOS]

Rendering Rendering

(i)

(ii)(i)

(ii)

CAD-
Diffuser

Ours

Figure 5: Comparison of edited parametric sequences. Our method is compared with the strongest
baseline, CAD-Diffuser. Yellow highlights mark segments where our method preserves the original
sequence with only minimal changes, whereas CAD-Diffuser introduces larger modifications.

[SOL] Circle 176
128 48 Extrude 128
128 128 32 159 127
105 164 128 New_
body One_sided
[SEP] [EOS]

...... [SEP] [SOL] Circle
176 128 48 Extrude
128 128 128 108 129
160 17 43 128 Cut
One_sided [SEP] [EOS]

Rendering Rendering

...... [SEP] [SOL] Line 223 128 Line 223
223 Line 128 223 Line 128 128 Extrude
255 128 255 119 185 126 6 148 128
New_body One_sided [SEP] [SEP] [SOL]
Line 223 128 Line 223 223 Line 128 223
Line 128 128 Extrude 255 128 255 218
185 126 6 148 128 Join One_sided [SEP]

[SOL] Line 223 128
Line 223 176 Line
128 176 Line 128
128 Extrude 128 128
128 122 123 126 101
131 128 New_body
One_sided [SEP]
[EOS]

Rendering Rendering

…… Circle 176 128
48 Extrude 128 128
128 108 129 160 17
145 128 New_body
One_sided [SEP]
[EOS]

Rendering

…… [SOL] Line 176 102 Line
223 128 Line 223 187 Line 176
216 Line 128 187 Line 128 128
Extrude 128 128 128 108 129
160 17 145 128 New_body
One_sided [SEP] [EOS]

Rendering

[SOL] Line 223 128 Line 223 191 Line 128 191 Line 128 128
Extrude 128 128 128 32 64 128 192 144 128 New_body
One_sided [SEP] [SOL] …… Extrude 128 128 128 32 176
144 16 176 128 Join One_sided [SEP] [SOL] …… Extrude
128 128 128 208 176 144 16 176 128 Join One_sided [SEP]
[SOL] …… Extrude 128 128 128 208 64 144 16 176 128 Join
One_sided [SEP] [SOL] …… Extrude 128 128 128 32 64 144
16 176 128 Join One_sided [SEP] [EOS]

Rendering

Figure 6: Iterative editing capability of CADMorph. Yellow highlights indicate the modified segments,
while “......” denotes parts left unchanged from the previous parametric sequence.

from the updated parametric sequence should closely reproduce the target shape. We adopt Chamfer
Distance (CD) [Wu et al., 2021] and Intersection over Union (IOU) [Ma et al., 2024] to quantify
the surface and volume consistency between the result shape and the target shape. 2) Source sequence
consistency. The updated parametric sequence should be loyal to the original sequence, instead of
generating a completely different sequence. We measure this with the Edit Distance (Edit Dist.)
[Ma et al., 2024] between the result sequence and the original parametric sequence. 3) Generation
Fidelity. These metrics reflect the overall quality of the outputs. We report the Invalid Rate (IR)
[Wu et al., 2021], which is the fraction of updated parametric sequences that fail to render into a
valid shape, and Jensen-Shannon Divergence (JSD) [Wu et al., 2021] between the distribution of
generated outcomes and the ground-truth with respect to rendered point clouds.

4.2 Comparison with Existing Methods

Baseline Methods. We benchmark CADMorph against three families of baselines. 1) Vision-
language models (VLMs) their reasoning variants. We test GPT-4o-241210, o4-mini-250421,
o4-mini-high-250421. Following standard practice [Khan et al., 2024b, Wu et al., 2024], each model
is provided with a explanation of the CAD construction sequence grammar and multi-view renderings
of the target shape. 2) Reverse engineering methods. We adopt CAD-Diffuser [Ma et al., 2024],
which is a reproducible state-of-the-art method that reconstructs parametric sequence directly from
geometry. 3) Classical editing methods. We adopt FlexCAD [Zhang et al., 2024], which edits a given
parametric sequence without explicit guidance. Reverse-engineering methods ignore the user intent
embedded in the original sequence, while classical editing methods disregard the visual cues in the
target geometry; neither is designed for geometry-driven parametric editing. We include them to
highlight the difficulty of the task and demonstrate the advantage of our method.

8

Table 2: Quantitative results for ablation studies.

No. Method IoU↑ mean CD↓ JSD↓ IR (%)↓ Edit Dist. ↓
A. Ours 0.687 0.009 0.621 3.1 16.87
B. - Candidate queue Q of verification stage 0.619 0.010 0.635 3.3 16.93
C. - Verification stage 0.517 0.023 0.633 10.7 18.42
D. - Planning stage 0.447 0.029 0.634 15.3 22.29

[SOL] Line 159 128 Line 159 86 Line 223
86 Line 223 106 Line 181 106 Line 181
148 Line 128 148 Line 128 128 Extrude
192 64 192 32 126 184 145 184 128
New_body One_sided [SEP] [EOS]

[SOL] Line 159 128 Line 159 86 Line 223 86
Line 223 106 Line 181 106 Line 181 148 Line
128 148 Line 128 128 Extrude 192 64 192 32
126 184 145 245 128 New_body One_sided
[SEP] [EOS]

Target Geometry

Rendering Rendering

Updated Parametric Sequence Reverse engineered Parametric Sequence

Reverse
Engineer CAD

Morph

Figure 7: Use CADMorph after conventional reverse engineering to further improve shape fidelity.

Quantitative Results. Table 1 shows results. Our method achieves better performance on all metrics.
VLM (GPT-4o) struggles to output syntactically valid sequences (high IR) and consequently produces
shapes with poor quality (low IoU, high CD and JSD). Adding visual-reasoning enhancements (o4-
mini and o4-mini-high) does not yield gains, underscoring the gap between generic VLM capabilities
and the demands of geometry-driven parametric editing. Traditional pipelines perform better: CAD-
Diffuser and FlexCAD outperform the VLMs, yet both still fall short of simultaneously preserving
the structure of the original construction sequence and reproducing the target shape.

Qualitative Results. Figure 4 shows results. Our method consistently yields shapes that most closely
reproduce the target shape. GPT-4o and its reasoning variants frequently generate invalid sequences,
and their valid shape renderings diverge from the target shape. FlexCAD almost always produces
syntactically valid sequence, but as it lacks visual guidance, its results rarely resemble the target
shape. CAD-Diffuser performs better than GPT-4o and FlexCAD, yet it still falls short of our method.

Figure 5 compares the edited parametric sequences from our method and the strongest baseline,
CAD-Diffuser. Whereas our approach strives for the smallest possible edits needed to reproduce the
target geometry, CAD-Diffuser often rewrites larger portions of the sequence. In example (i), our
method reuses an existing cylinder and simply adjusts its parameters; CAD-Diffuser collapses the two
original cylinders into a single one. In example (ii), our method preserves the circular hole from the
original sequence, while CAD-Diffuser proposes an adjacent arc. This difference is crucial in practice:
drilling a hole and cutting an inward arc involve distinct manufacturing processes. By retaining the
hole rather than proposing an arc, our edits leave the downstream manufacturing workflow intact.

Human Evaluation. 5 human annotators ranked 200 outputs from each method, jointly evaluating
(1) how closely the rendered shape matches the target and (2) how well the edited sequence preserves
the original structure. As shown in Table 1, our method receives the highest preference scores.

4.3 Downstream Applications

Iterative Editing Capability. Figure 6 illustrates CADMorph’s iterative editing workflow. In the
first round, the user provides an original parametric sequence and a target shape. CADMorph returns
an updated sequence that reproduces the target shape. In the subsequent rounds, the output from the
previous round is treated as the new “original” sequence. Given a new target shape, CADMorph
applies further edits to produce a sequence that meets the new target shape. This loop enables
successive refinements while preserving the edit history at each round.

A noteworthy pattern appears in the bottom example of Figure 6 and fifth example of Figure 4: when
the given shape is inaccurate—such as legs are not fully flush with the panel—CADMorph silently
correct them. We hypothesize that this behavior originates from the MPP model, which absorbed
extensive real-world and design knowledge during pre-training and CAD-specific fine-tuning.

Refining Reverse Engineering Results. As illustrated in Figure 7, a conventional reverse-engineering
pipeline first reconstructs a parametric sequence from the target geometry. CADMorph then takes

9

this preliminary sequence together with the target shape and outputs a refined sequence that more
faithfully reproduces the design—for example, by extending the extrusion height.

4.4 Ablation Studies

Table 2 shows ablation studies. 1) Remove the verifier’s priority queue (variant B). Without the queue,
the verifier can only pick the best candidate from the current round rather than from all previous
rounds, causing a large IoU decline. This confirms that the priority queue is helpful for retaining
high-quality candidates across iterations. 2) Remove verification stage (variant C). With no feedback
on shape similarity, this variant chooses the candidate at random. 3) Remove planning stage (variant
D). Segments requiring edits are now chosen at random. Variants C and D leads to a broad drop in
performance, highlighting the value of our plan–generate–verify framework.

5 Conclusion

We tackle geometry-driven parametric editing: given an original CAD sequence and a target shape,
produce an updated sequence that reproduces that shape. To solve this, we introduce CADMorph, an
iterative plan–generate–verify framework that couples two complementary components—a Parameter-
to-Shape (P2S) diffusion network and an LLM-based Masked Parameter Prediction (MPP) model.
Experiments demonstrate that CADMorph surpasses all baselines, and we showcase practical appli-
cations, i.e., iterative editing and refining reverse-engineered results. In the future, We will pursue
stronger P2S and MPP backbones to boost CADMorph’s performance. Besides, we plan to deploy
CADMorph as a data-generation engine to synthesize triplets for training a fully end-to-end model.

Limitations. 1) Inference latency. Like other test-time-scaling methods that employ verifiers,
CADMorph must execute several plan–generate–verify iterations, incurring noticeable runtime.
Future work could reduce this overhead by accelerating the component models and parallelizing
generation and verification. 2) Test set. Our experiments rely on the CAD-Editor’s test set [Yuan et al.,
2025], the only publicly available benchmark suited to CADMorph. However, its CAD models are
simpler than real-world assemblies, highlighting the need for a richer and more challenging dataset.

References
Jun-Kun Chen, Jipeng Lyu, and Yu-Xiong Wang. Neuraleditor: Editing neural radiance fields via manipulating

point clouds. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver,
BC, Canada, June 17-24, 2023, pages 12439–12448. IEEE, 2023. doi: 10.1109/CVPR52729.2023.01197.
URL https://doi.org/10.1109/CVPR52729.2023.01197.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou,
Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large
language models. arXiv preprint arXiv:2503.09567, 2025.

Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui. Sdfusion:
Multimodal 3d shape completion, reconstruction, and generation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4456–4465, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

Wenyan Cong, Hanqing Zhu, Peihao Wang, Bangya Liu, Dejia Xu, Kevin Wang, David Z Pan, Yan Wang,
Zhiwen Fan, and Zhangyang Wang. Can test-time scaling improve world foundation model? arXiv preprint
arXiv:2503.24320, 2025.

Michael Dawson-Haggerty and Contributors. trimesh: A pure python library for loading and using triangular
meshes. https://github.com/mikedh/trimesh, 2025. Accessed: 2025-04-29.

Jan-Niklas Dihlmann, Andreas Engelhardt, and Hendrik Lensch. Signerf: Scene integrated generation for neural
radiance fields. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 6679–6688, 2024.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng Zhang,
Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment.
arXiv preprint arXiv:2304.06767, 2023.

10

https://doi.org/10.1109/CVPR52729.2023.01197
https://github.com/mikedh/trimesh

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt
image editing with cross attention control. 2022a.

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. Spaghetti: Editing implicit
shapes through part aware generation. arXiv preprint arXiv:2201.13168, 2022b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jingyu Hu, Ka-Hei Hui, Zhengzhe Liu, Hao Zhang, and Chi-Wing Fu. Cns-edit: 3d shape editing via coupled
neural shape optimization. In Andres Burbano, Denis Zorin, and Wojciech Jarosz, editors, ACM SIGGRAPH
2024 Conference Papers, SIGGRAPH 2024, Denver, CO, USA, 27 July 2024–1 August 2024, page 110. ACM,
2024. doi: 10.1145/3641519.3657412. URL https://doi.org/10.1145/3641519.3657412.

Han Jiang, Haosen Sun, Ruoxuan Li, Chi-Keung Tang, and Yu-Wing Tai. Inpaint4dnerf: Promptable spatio-
temporal nerf inpainting with generative diffusion models. arXiv preprint arXiv:2401.00208, 2023.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and Djamila Aouada.
Cad-signet: Cad language inference from point clouds using layer-wise sketch instance guided attention. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4713–4722,
2024a.

Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin, Didier Stricker, Sk Aziz Ali, and Muhammad Zeshan
Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert level text prompts. Advances in
Neural Information Processing Systems, 37:7552–7579, 2024b.

Marian Kleineberg. mesh_to_sdf: Convert meshes to sdfs using a simple ray casting method. https://github.
com/marian42/mesh_to_sdf, 2025. Accessed: 2025-04-29.

Joseph George Lambourne, Karl Willis, Pradeep Kumar Jayaraman, Longfei Zhang, Aditya Sanghi, and
Kamal Rahimi Malekshan. Reconstructing editable prismatic cad from rounded voxel models. In SIGGRAPH
Asia 2022 Conference Papers, pages 1–9, 2022.

Hyunseok Lee, Seunghyuk Oh, Jaehyung Kim, Jinwoo Shin, and Jihoon Tack. Revise: Learning to refine at
test-time via intrinsic self-verification. arXiv preprint arXiv:2502.14565, 2025.

Pu Li, Jianwei Guo, Xiaopeng Zhang, and Dong-Ming Yan. Secad-net: Self-supervised cad reconstruction by
learning sketch-extrude operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16816–16826, 2023.

Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Arsh Koneru, Yusuke Kato, Kazuki Kozuka, and Aditya
Grover. Reflect-dit: Inference-time scaling for text-to-image diffusion transformers via in-context reflection.
arXiv preprint arXiv:2503.12271, 2025a.

Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Cad translator: An effective drive for text to
3d parametric computer-aided design generative modeling. In Proceedings of the 32nd ACM International
Conference on Multimedia, pages 8461–8470, 2024.

Yanshu Li, JianJiang Yang, Ziteng Yang, Bozheng Li, Hongyang He, Zhengtao Yao, Ligong Han, Yingjie Victor
Chen, Songlin Fei, Dongfang Liu, et al. Cama: Enhancing multimodal in-context learning with context-aware
modulated attention. arXiv preprint arXiv:2505.17097, 2025b.

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang, Yandong Li,
Tommi Jaakkola, Xuhui Jia, and Saining Xie. Inference-time scaling for diffusion models beyond scaling
denoising steps. arXiv preprint arXiv:2501.09732, 2025. URL https://arxiv.org/abs/2501.09732.

Weijian Ma, Minyang Xu, Xueyang Li, and Xiangdong Zhou. Multicad: Contrastive representation learning for
multi-modal 3d computer-aided design models. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management, pages 1766–1776, 2023.

Weijian Ma, Shuaiqi Chen, Yunzhong Lou, Xueyang Li, and Xiangdong Zhou. Draw step by step: Reconstructing
cad construction sequences from point clouds via multimodal diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 27154–27163, 2024.

Meta AI. The Llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. URL https://arxiv.org/
abs/2407.21783.

OpenAI. Gpt-4o system card. https://arxiv.org/abs/2410.21276, 2024. Accessed: 2025-05-16.

11

https://doi.org/10.1145/3641519.3657412
https://github.com/marian42/mesh_to_sdf
https://github.com/marian42/mesh_to_sdf
https://arxiv.org/abs/2501.09732
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.21276

Thomas Paviot and Contributors. pythonocc-core: 3d cad/brep modeling for python. https://github.com/
tpaviot/pythonocc-core, 2025. Accessed: 2025-04-29.

Xiangyu Peng, Zangwei Zheng, Chenhui Shen, Tom Young, Xinying Guo, Binluo Wang, Hang Xu, Hongxin
Liu, Mingyan Jiang, Wenjun Li, Yuhui Wang, Anbang Ye, Gang Ren, Qianran Ma, Wanying Liang, Xiang
Lian, Xiwen Wu, Yuting Zhong, Zhuangyan Li, Chaoyu Gong, Guojun Lei, Leijun Cheng, Limin Zhang,
Minghao Li, Ruijie Zhang, Silan Hu, Shijie Huang, Xiaokang Wang, Yuanheng Zhao, Yuqi Wang, Ziang Wei,
and Yang You. Open-sora 2.0: Training a commercial-level video generation model in $200k. arXiv preprint
arXiv:2503.09642, 2025. URL https://arxiv.org/abs/2503.09642.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv preprint arXiv:2209.14988, 2022.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and Junzhe Zhang. Extrudenet: Unsupervised inverse
sketch-and-extrude for shape parsing. In European Conference on Computer Vision, pages 482–498. Springer,
2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10684–10695, 2022.

Fizza Rubab and Yiying Tong. Inst-sculpt: Interactive stroke-based neural sdf sculpting. arXiv preprint
arXiv:2502.02891, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Mikaela Angelina Uy, Yen-Yu Chang, Minhyuk Sung, Purvi Goel, Joseph G Lambourne, Tolga Birdal, and
Leonidas J Guibas. Point2cyl: Reverse engineering 3d objects from point clouds to extrusion cylinders. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11850–11860,
2022.

Can Wang, Mingming He, Menglei Chai, Dongdong Chen, and Jing Liao. Mesh-guided neural implicit field
editing, 2023a. URL https://arxiv.org/abs/2312.02157.

Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhu Chen. Vl-rethinker: Incentivizing
self-reflection of vision-language models with reinforcement learning. arXiv preprint arXiv:2504.08837,
2025a.

Haozhe Wang, Haoran Que, Qixin Xu, Minghao Liu, Wangchunshu Zhou, Jiazhan Feng, Wanjun Zhong, Wei Ye,
Tong Yang, Wenhao Huang, et al. Reverse-engineered reasoning for open-ended generation. arXiv preprint
arXiv:2509.06160, 2025b.

Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-to-cad generation through infusing visual feedback in
large language models. arXiv preprint arXiv:2501.19054, 2025c.

Xiangyu Wang, Jingsen Zhu, Qi Ye, Yuchi Huo, Yunlong Ran, Zhihua Zhong, and Jiming Chen. Seal-3d:
Interactive pixel-level editing for neural radiance fields, 2023b. URL https://arxiv.org/abs/2307.
15131.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-aided design
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6772–6782,
2021.

Tong Wu, Guandao Yang, Zhibing Li, Kai Zhang, Ziwei Liu, Leonidas Guibas, Dahua Lin, and Gordon Wetzstein.
Gpt-4v (ision) is a human-aligned evaluator for text-to-3d generation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 22227–22238, 2024.

Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Yujun Lin, Zhekai Zhang, Muyang Li, Junyu
Chen, Han Cai, et al. Sana 1.5: Efficient scaling of training-time and inference-time compute in linear
diffusion transformer. arXiv preprint arXiv:2501.18427, 2025.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and Yasutaka
Furukawa. Skexgen: Autoregressive generation of cad construction sequences with disentangled codebooks.
arXiv preprint arXiv:2207.04632, 2022.

Xiang Xu, Pradeep Kumar Jayaraman, Joseph G Lambourne, Karl DD Willis, and Yasutaka Furukawa. Hierar-
chical neural coding for controllable cad model generation. arXiv preprint arXiv:2307.00149, 2023.

12

https://github.com/tpaviot/pythonocc-core
https://github.com/tpaviot/pythonocc-core
https://arxiv.org/abs/2503.09642
https://arxiv.org/abs/2312.02157
https://arxiv.org/abs/2307.15131
https://arxiv.org/abs/2307.15131

Zhen Ye, Xinfa Zhu, Chi-Min Chan, Xinsheng Wang, Xu Tan, Jiahe Lei, Yi Peng, Haohe Liu, Yizhu Jin, Zheqi
Dai, Hongzhan Lin, Jianyi Chen, Xingjian Du, Liumeng Xue, Yunlin Chen, Zhifei Li, Lei Xie, Qiuqiang
Kong, Yike Guo, and Wei Xue. Llasa: Scaling train-time and inference-time compute for llama-based speech
synthesis. arXiv preprint arXiv:2502.04128, 2025. URL https://arxiv.org/abs/2502.04128.

Lu Yu, Wei Xiang, and Kang Han. Edit-diffnerf: Editing 3d neural radiance fields using 2d diffusion model.
arXiv preprint arXiv:2306.09551, 2023.

Yu Yuan, Shizhao Sun, Qi Liu, and Jiang Bian. Cad-editor: A locate-then-infill framework with automated
training data synthesis for text-based cad editing. arXiv preprint arXiv:2502.03997, 2025.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin King, Xue
Liu, and Chen Ma. What, how, where, and how well? a survey on test-time scaling in large language models.
arXiv preprint arXiv:2503.24235, 2025.

Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. Flexcad: Unified and versatile
controllable cad generation with fine-tuned large language models. arXiv preprint arXiv:2411.05823, 2024.

Xingchen Zhou, Ying He, F Richard Yu, Jianqiang Li, and You Li. Repaint-nerf: Nerf editting via semantic
masks and diffusion models. arXiv preprint arXiv:2306.05668, 2023.

13

https://arxiv.org/abs/2502.04128

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Illustrated by the Method and Experiment Sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: At Section 4.3 and the last part of the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All network architectures, training settings and hyperparameters are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [No]
Justification: The code will be released upon acceptance and passed the code review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the experiment setting part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:In the part of Section 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In section 4.1 ans supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research does not include the content in the web page.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

17

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All use of existing assets have been cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

18

paperswithcode.com/datasets

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: In the supplementary materials.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The user study is compliant to the local regulations.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

	Introduction
	Related Work
	Method
	Task Formulation
	Approach Overview
	Model Architecture
	The Plan-Generate-Verify Framework

	Experiment
	Experimental Setup
	Comparison with Existing Methods
	Downstream Applications
	Ablation Studies

	Conclusion

