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Abstract

In the field of natural language processing, cor-001
rection of performance assessment for chance002
agreement plays a crucial role in evaluating003
the reliability of annotations. However, there004
is a notable dearth of research focusing on005
chance correction for assessing the reliabil-006
ity of sequence annotation tasks, despite their007
widespread prevalence in the field. To address008
this gap, this paper introduces a novel model for009
generating random annotations, which serves010
as the foundation for estimating chance agree-011
ment in sequence annotation tasks. Utilizing012
the proposed randomization model and a re-013
lated comparison approach, we successfully014
derive the analytical form of the distribution,015
enabling the computation of the probable loca-016
tion of each annotated text segment and subse-017
quent chance agreement estimation. Through a018
combination simulation and corpus-based eval-019
uation, we successfully assess its applicability020
and validate its accuracy and efficacy.021

1 Introduction022

Reliable annotation is a cornerstone of NLP re-023

search, enabling both supervised learning meth-024

ods and evaluation. Though not frequently em-025

ployed for evaluation of model performance in the026

field of NLP, one of the most widely accepted met-027

rics for evaluation of annotation reliability is Co-028

hen’s Kappa, which offers an assessment of inter-029

rater reliability that is adjusted in order to avoid030

offering credit for the portion of observed agree-031

ment that can be attributed to chance. Some NLP032

tasks, such as Named Entity Recognition or other033

span detection/labeling tasks, lack an appropriate034

chance corrected metric. This paper addresses this035

gap by proposing such a measure for these tasks,036

demonstrating its application in both simulation037

and CoNLL03 corpus experiments.038

Numerous studies caution against using non-039

chance-corrected agreement metrics. They can040

lead to unfair task or system comparisons due to041

biases introduced due to varying levels of chance 042

agreement across tasks and systems (Ide and Puste- 043

jovsky, 2017; Komagata, 2002; Gates and Ahn, 044

2017; Rand, 1971; Lavelli et al., 2008; Artstein 045

and Poesio, 2008). Furthermore, without correc- 046

tion for chance agreement, measurements tend to 047

cluster within a narrow range, making it difficult to 048

discern differences between approaches (Eugenio 049

and Glass, 2004). Therefore, both estimating and 050

correcting for chance agreement have become criti- 051

cal in annotation evaluation, except in cases where 052

chance agreement is negligible. 053

The main contributions of our work are summa- 054

rized as follows: 055

• We propose a novel random annotation model 056

that considers the specific characteristics of se- 057

quence annotation tasks as well as the annotation 058

tendencies of different annotators. This model 059

can be divided into sub-models, enabling us to 060

separately address cases with or without annota- 061

tion overlap. 062

• Due to the additive nature of many popular sim- 063

ilarity measures, we simplify the modeling of 064

dependent annotation segments within a text. We 065

successfully derive analytical probability distri- 066

butions for random annotations, presenting a 067

streamlined formulation that avoids redundant 068

calculations. 069

• We delve into the asymptotic properties of agree- 070

ment by chance, highlighting scenarios where it 071

can be disregarded. 072

• We design and implement both simulation-based 073

and naturalistic experiments, demonstrating that 074

our proposed method is accurate, effective, and 075

computationally efficient. 076

In the remainder of the paper, we provide a theoret- 077

ical foundation for our work through a review of 078

past literature. We then explain our methodology, 079

and evaluate it first through a simulation study, and 080

then through application to real-world corpora. Fi- 081

nally, we conclude with discussions of limitations, 082
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ethical considerations, and future research.083

2 Theoretical Foundation and Motivation084

Estimation of chance agreement is a key element085

in the evaluation of classification tasks. However,086

though the field of NLP features a wide variety of087

span detection and labeling tasks, there is a lack of088

widely adopted chance-corrected metrics for them.089

In classification tasks, the Kappa coefficient is090

one of the most popular chance-corrected inter-091

annotator agreement measures (Komagata, 2002;092

Artstein and Poesio, 2008; Eugenio and Glass,093

2004; Hripcsak and Rothschild, 2005; Powers,094

2015). The Kappa coefficient is defined as (Ao −095

Ae)/(1−Ae), whereAo is the observed agreement096

without chance agreement correction, and Ae is the097

expected agreement assuming random annotation098

behavior. To estimate the chance agreementAe, the099

key problem is how to build a random annotation100

model with reasonable assumptions.101

Chance-corrected agreement is unarguably desir-102

able for the evaluation of complex text annotation103

tasks beyond classification. These tasks encompass104

sequence annotation tasks (Lampert et al., 2016;105

Esuli and Sebastiani, 2010; Dai, 2018), which in-106

volve a wide array of challenges. The complexity107

arises from the fact that estimating chance agree-108

ment is notably more intricate in comparison to109

straightforward classification tasks. In classifica-110

tion, the decisions to be made and the available111

options for each decision are uniform among anno-112

tators. However, with span prediction tasks, anno-113

tators initially identify the spans requiring labeling114

and subsequently assign a category to each of these115

spans. Discrepancies can arise at either of these116

stages, resulting from variations in span selection117

or category assignment.118

Let’s consider the Named Entity Recognition119

(NER) task as an illustrative example. It’s impor-120

tant to note that the quantity and size of recognized121

entities can significantly differ among various an-122

notators working on the same text. In Table 1, we123

provide an example of a simplified NER task with124

annotations from two annotators. The text com-125

prises nine tokens, each represented by a single126

letter. The "Observed" column in the table show-127

cases the annotations made by these two annotators.128

In this toy example, annotator 1 identified and la-129

beled two entities: "CDE" consisting of 3 tokens,130

and "HI" with 2 tokens. Meanwhile, annotator 2131

identified a single entity, "EFGH," encompassing 4132

tokens. 133

While estimating inter-annotator agreement has 134

become a crucial step in annotation evaluation, the 135

challenge of estimating chance agreement for se- 136

quence annotation remains an open problem. As 137

highlighted by numerous prior studies, the sample 138

space for a sequence annotation task is often not 139

well-defined (Cunningham and et al., 2014). 140

For instance, when considering the variability 141

in annotator preferences, some tend to combine 142

adjacent information, while others prefer to label 143

them as distinct spans. Additionally, some annota- 144

tors choose to encompass surrounding text within 145

a segment, whereas others aim for shorter spans. 146

All of these factors contribute to the complexity 147

of estimating chance agreement in the context of 148

sequence annotation tasks. 149

There is very little research on estimating chance 150

agreement for span prediction tasks like NER. To 151

the best of our knowledge, the most comprehensive 152

and in-depth attempts so far have been the family of 153

Krippendorff’s Alpha coefficients. Unlike Kappa, 154

the Alpha coefficient is grounded in the concept of 155

disagreement, represented as 1−Do/De, whereDo 156

stands for observed disagreement, and De denotes 157

expected disagreement. 158

In 1995, Krippendorff first attempted to extend 159

his Alpha coefficient for classification tasks to se- 160

quence labeling tasks (Krippendorff, 1995). The 161

approach involved concatenating all annotations by 162

different annotators for the same text and gener- 163

ating two copies. One copy remained unaltered, 164

while the other undergoes all possible cyclic shifts. 165

Krippendorff estimated the expected disagreement 166

by comparing the differences between pairs of seg- 167

ments across these two sets of annotations. How- 168

ever, this shift-based random annotation model 169

lacks a solid theoretical foundation and exhibits 170

sensitivity to the location of relevant segments. 171

In 2016, Krippendorff introduced another data- 172

driven approach to estimate expected disagreement 173

(Krippendorff et al., 2016). This technique com- 174

pares the dissimilarities between pairs of segments 175

annotated by different annotators. It heavily relies 176

on a large-scale annotation dataset. Notably, as 177

it combines all annotation data from diverse texts 178

indiscriminately, it cannot differentiate between 179

different chance agreements corresponding to dif- 180

ferent annotation tasks. 181

It is critical to emphasize that neither of Krip- 182

pendorff’s methods are suitable for sequence anno- 183
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Observed Random Invalid Random

Annotator 1 ABCDEFGHI ABCDEFGHI ABCDEFGHI
Annotator 2 ABCDEFGHI ABCDEFGHI ABCDEFGHI

Table 1: Example of a Toy Named Entity Annotation. Highlighted texts are annotations.

tation tasks, especially within the context of infor-184

mation extraction. When calculating disagreement,185

the Alpha coefficient accounts for all disagreements186

between segment pairs, encompassing both rele-187

vant and irrelevant segments. In cases where rel-188

evant information is sparse, the Alpha coefficient189

may be disproportionately influenced by disagree-190

ments related to irrelevant information, regardless191

of the consistency of annotations for relevant con-192

tent. However, in information extraction tasks, our193

primary concern typically focuses on the consis-194

tency of annotations related to portions of text with195

a high concentration of relevant information. In the196

experiments section, we will probe further into this197

issue by exploring the limitations of Alpha coeffi-198

cients within the context of information extraction.199

While the specific problem of estimating chance200

agreement for span prediction tasks is an open prob-201

lem, we must acknowledge that some relevant re-202

search has been done in connection with classifica-203

tion and clustering problems that informs our work204

and provides a continuum that our work extends205

(Hennig et al., 2015; Fränti et al., 2014; Rezaei and206

Fränti, 2016; van der Hoef and Warrens, 2019; War-207

rens and van der Hoef, 2019; Meilă, 2007; Vinh208

et al., 2010). Estimating agreement by chance is rel-209

atively simple in classification, because the sample210

space is fixed and the same for each annotator.211

In contrast, clustering problems present a greater212

challenge and bear closer resemblance to span pre-213

diction issues. From a conceptual standpoint, one214

could draw a parallel between elements within215

the same span and elements within the same clus-216

ter. The most commonly employed randomization217

model in clustering is the permutation model (Gates218

and Ahn, 2017), where all potential clusters, each219

with a fixed number of clusters and a fixed cluster220

size, are randomly generated with equal probability.221

However, what distinguishes span prediction from222

clustering is that the permutation model in cluster-223

ing doesn’t impose any restrictions on the place-224

ment of elements within the same cluster. Elements225

within the same cluster can be positioned anywhere.226

This assumption isn’t suitable for sequence annota-227

tions, where segments are most typically comprise228

contiguous elements rather than fragmented. In229

essence, annotators treat each segment as a whole,230

rather than labeling each token independently. 231

The variation in sample spaces caused by differ- 232

ent labeling tendencies and connectivity constraints 233

within each segment makes this problem quite chal- 234

lenging, especially when annotated segments need 235

to be non-overlapping. Therefore, considering the 236

characteristics of span prediction tasks and differ- 237

ent annotation tendencies, we propose a new ran- 238

dom annotation model to fulfill these requirements. 239

Our random annotation model independently 240

models each annotator’s tasks. Specifically, given 241

the observed annotations for each task by each 242

annotator, our random model uniformly random- 243

izes entity positions while preserving the respective 244

number of entities and the length of each entity. 245

To cater to various application requirements, we 246

have designed two sub-models: the overlapping 247

model and the non-overlapping model. These sub- 248

models can accommodate situations where tasks 249

necessitate non-overlapping spans and situations 250

where no such requirement is specified. 251

For example, in Table 1, the "Random" column 252

presents a sample of random annotations for each 253

annotator. For annotator 1, the random annotation 254

still consists of two entities: one with 3 tokens 255

and the other with 2 tokens, both with randomized 256

positions. In contrast, the "Invalid random" column 257

in Table 1 provides examples of invalid random 258

annotations, as neither the number nor the length 259

of entities matches the observed annotation. It’s 260

important to note that in the random annotation 261

model, the number of entities and the length of 262

each entity are fixed for each annotator for each 263

task, but these may vary between annotators for the 264

same task. This flexibility is a deliberate choice 265

in the random annotation model to account for the 266

distinct annotation tendencies of each annotator, 267

resulting in different chance agreements. 268

As another motivating observation, we recog- 269

nize that many similarity measures are additive. 270

In essence, the comparison between the annota- 271

tions of different annotators involves accumulating 272

comparisons among all segment pairs annotated by 273

different annotators. For example, one of the most 274

popular metrics, the F1 score for binary classifica- 275

tion, can be expressed as 2a/(2a+ b+ c), where 276

a represents the number of items labeled as pos- 277
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itive by both annotators, and b and c indicate the278

numbers of items rated as positive by one annotator279

but negative by the other. It’s important to note280

that when the number and length of spans are both281

observed, the value of 2a+ b+ c is a constant. The282

"positive agreement" rating, denoted as a, reflects283

the cumulative sum of positive agreements for all284

compared segment pairs.285

To simplify the modeling of random sequence286

annotations, we approach each segment individ-287

ually, even though each labeled segment is still288

influenced by constraints imposed by other labeled289

segments within the same text, particularly in situ-290

ations where segment overlap is not allowed. We291

have successfully derived the analytical distribution292

for the location of each individually labeled seg-293

ment. Additionally, we’ve observed that the prob-294

ability remains relatively consistent across most295

segment locations, reducing the need for numer-296

ous redundant calculations. Further details will be297

presented in the next section.298

3 Method299

In this section, we provide the specification of the300

random annotation model for sequence annotation,301

also known as span prediction, and present the cal-302

culation, approximation, and asymptotic properties303

of chance agreement through random annotation.304

Taking NER as an example, we begin by intro-305

ducing random sequence annotation models for306

both non-overlapping and overlapping scenarios,307

accompanied by the mathematical definition of308

chance estimation. Leveraging additive similar-309

ity measures, we significantly simplify the esti-310

mation of expected chance agreement in Proposi-311

tion 1, alongside its corresponding analytical for-312

mula for the distribution of random annotations313

in Proposition 2. In Proposition 3, we emphasize314

that each randomly annotated segment exhibits the315

same probability for most locations, with the ex-316

ception of a few at the extreme ends, thus further317

reducing computational complexity.318

Moreover, for lengthy texts with sparse annota-319

tion information, the expected chance agreement320

becomes so negligible that it can be safely disre-321

garded. This assertion is substantiated in Proposi-322

tion 4. The preceding conclusions primarily pertain323

to non-overlapping scenarios, and we briefly encap-324

sulate the outcome for the overlapping model in325

Proposition 5, as its derivation is straightforward.326

Given space constraints, we present only the pri-327

mary conclusions and concepts within this section. 328

For detailed proofs, please consult the appendix. 329

We adopt the NER as a representative of com- 330

plex text sequence annotation tasks to demonstrate 331

how to estimate the chance agreement or perfor- 332

mance for sequence annotation evaluation. Given 333

a text T = {t1 ≺ t2 ≺ . . . ≺ tn} with a sequence 334

of n tokens ti, i ∈ {1, . . . , n}, and a pre-defined 335

tag set C = {c1, . . . , cm} with m categorical tags; 336

as a typical task in information extraction, named 337

entity recognition aims to locate and classify seg- 338

ments of text T into pre-defined categories C, such 339

as recognizing disease, medication, and symptom 340

information from clinical notes. 341

Mathematically, the annotation task for NER can 342

be formulated as a function Φ : T ×C 7→ Ω, where 343

Ω is the set of all possible annotations. For any ψ ∈ 344

Ω, ψ = {ψ1,1, . . . , ψ1,k1 , . . . , ψm,1, . . . , ψm,km}, 345

where ψ is an annotation of segments for all pre- 346

defined categories, ki is the number of segments 347

for i-th category. For an annotation segment 348

ψi,j = {sti,j , ai,j}, sti,j denotes the index of the 349

first token and ai,j denotes the length for the j-th 350

segment with i-th category. To simplify the discus- 351

sion, in the following we will focus on single-tag 352

text annotation (i.e., m = 1, ψ = {ψ1, . . . , ψk}, 353

ψj = {stj , aj}) since it is straightforward to gen- 354

eralize these techniques to multi-tag annotation as 355

shown in the experiments. 356

To gauge chance agreement, we need a precise 357

definition of random annotation. Adapting the per- 358

mutation model, which is commonly used for clus- 359

tering, to sequence annotation tasks is impractical 360

due to the absence of location constraints within 361

clusters. This conflicts with the usual intra-segment 362

connectivity assumption in a text annotation setting. 363

To overcome this, we propose a novel random an- 364

notation model. It accommodates annotator and 365

task variation while upholding the coherence of 366

text segments. 367

Random Sequence Annotation Model. The ran- 368

dom annotation model is designed to keep the count 369

and length of annotated segments consistent for 370

each annotator within each task, while allowing 371

variability across different annotators and tasks. 372

It generates all feasible annotation configurations 373

with equal probability. In other words, for a k- 374

segment random annotation Ψ = {Ψ1, . . . ,Ψk} 375

with each randomly annotated segment Ψi = 376

{STi, ai}, it has equal probabilities for all possi- 377

ble start indices {st1, . . . , stk} with fixed lengths 378
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a1, . . . , ak.379

For annotator 1 in Table 1, we have k = 2,380

a1 = 3, ST1 ∈ {1, . . . , 7}, and a2 = 2, ST2 ∈381

{1, . . . , 8}. The definition of a random annotation382

segment {STi, ai} indicates its connectivity. All383

tokens in the same segment are consecutive with-384

out gaps and the index of the last token in the i-th385

annotated segment is STi + ai − 1. In contrast, a386

random cluster generated by the permutation model387

for clustering does not require this property. Note388

that the permutation of different entities is still al-389

lowed in our model as long as the segments within390

each entity remain contiguous, in other words, that391

the entity is permuted as a whole. As shown in the392

"Annotator 1" row of Table 1, different from the ob-393

served two entities with 3 and 2 tokens (“CDF” and394

“HI”), the left and right positions of the annotated395

entities in our random model with 3 and 2 tokens396

(“EFG” and “BC”) can be swapped as illustrated397

in the "Random" column. With regards to differ-398

ent applications, the random annotation model can399

be further divided into two sub-models, namely,400

the overlapping model and the non-overlapping401

model. The overlapping model allows segments402

to overlap with each other, so each STi can take403

any value between 1 and n− ai + 1, whereas the404

non-overlapping model does not allow segments to405

overlap, i.e., STi ≥ STj + aj or STj ≥ STi + ai406

for any i ̸= j. Because the overlapping model is407

much easier to handle, we only focus on the non-408

overlapping model here.409

The problem of estimating chance agreement for410

annotation evaluation can be described as follows:411

Problem Definition. Assume there are two in-412

dependent random annotations, Ψ1 for annotator 1413

and Ψ2 for annotator 2 on the same text of length414

n. The problem is to estimate the expected sim-415

ilarity E(Sim(Ψ1,Ψ2)) based on a random non-416

overlapping annotation model.417

In this paper, we use right index instead of right418

subscript to represent the index of annotators, for419

example, k1 represents the number of segments420

annotated by annotator 1, and k2 for annotator421

2. We notice that many agreement measures,422

regardless of being token level or entity level, can423

be formulated as segment-wise measures, i.e.,424

Sim(ψ1, ψ2) = f(ϕ1,1(ψ11, ψ21), . . . , ϕk1,k2(ψ1k1, ψ2k2)),425

where ψ1i = {st1i, a1i} is the i-th annotated426

segment for annotator 1 and ψ2j = {st2j , a2j}427

is the j-th one for annotator 2. While it is428

challenging to estimate the chance agreement for429

a large number of dependent segments together 430

with the random non-overlapping annotation 431

model, the function f is additive for many popular 432

measures. This fact allows us to process each 433

segment individually, which greatly simplifies the 434

estimation. We call the segment-wise measure 435

with additive function f additive measure. 436

Proposition1. For the additive 437

similarity measure, the expected 438

chance agreement is E(Sim(Ψ1,Ψ2)) = 439

f(Eϕ1,1(Ψ11,Ψ21)), . . . , E(ϕk1,k2(Ψ1k1,Ψ2k2)). 440

Note that in the non-overlapping random annota- 441

tion model, the position of each random annotation 442

segment is dependent on all the other random an- 443

notation segments within the same document from 444

the same annotator. Since we assume all possible 445

random annotations are equally likely, the problem 446

of estimating the location distribution for each seg- 447

ment is equivalent to counting the number of all 448

possible configurations when we fix the location of 449

the corresponding segment. 450

Proposition2. For the non-overlapping random 451

annotation model, the number of all random anno- 452

tations with the i-th segment fixed as: 453

Π(STi = l) = π(l − 1, 0)π(n− l − a+ k, k − 1)+∑
i1 ̸=i

π(l − ai1 , 1)π(n− l − a+ ai1 + k − 1, k − 2)+

∑
i1 ̸=i

∑
i2 ̸=i

π(l − ai1 − ai2 + 1, 2)π(n− l − a+ ai1 + ai2 + k − 2, k − 3)

+ . . .+ π(l − a+ ai + k − 2, k − 1)π(n− l − ai + 1, 0),

(1) 454

where π(n, r) = n!/(n − r)! is the number of 455

permutations of n things taken r at a time, k is the 456

number of segments, ai denotes the length of the 457

i-th segment and a =
∑

i ai is the total length of 458

annotations. Then the corresponding probability is 459

p(STi = l) = Π(STi = l)/π(n − a + k, k), for 460

1 ≤ l ≤ n−ai+1. Here we treat each text segment 461

as a different annotation, regardless of length. If 462

we do not need to distinguish among entities of the 463

same length, this formula can also be applied after 464

a simple modification. 465

However, it is computationally expensive to cal- 466

culate Equation 2 for all possible random locations 467

of each text segment when the sequence is long. 468

To solve this issue, we find that Π(STi = l) is the 469

same for most locations when the text is of length 470

n≫ a. 471

Proposition3. STi is uniformly distributed for 472

a−ai−k+2 ≤ sti ≤ n−a+k, i.e., Π(sti = l1) = 473

Π(sti = l2) for ∀a−ai−k+2 ≤ l1, l2 ≤ n−a+k. 474

We further observe that it is not necessary to 475
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estimate chance agreement in all cases. Intuitively,476

we expect the chance agreement is small enough to477

be ignored when annotating sparse information in478

long texts and find that it is indeed the case. In most479

named entity recognition tasks, for example, the480

average tokens in an annotated sentence is usually481

large than 20 (Roth and Yih, 2004).482

Proposition4. When n≫ a1+ a2, the expected483

similarity E(Sim(Ψ1,Ψ2)) → 0, where a1 and484

a2 are the total lengths of all annotated segments485

for annotator 1 and annotator 2.486

For the overlapping model, as the probability of487

the location of each randomly annotated segment488

is uniform, we can easily derive its probability dis-489

tribution.490

Proposition5. For the overlapping random an-491

notation model, p(STi = l) = 1/(n− ai + 1), for492

1 ≤ l ≤ n− ai + 1.493

4 Experiments494

To demonstrate the accuracy and effectiveness of495

our approach, we conducted both simulation and496

corpus-based experiments1. We designed the simu-497

lation experiments to validate our probability distri-498

bution estimation for random sequence annotation.499

Additionally, by varying the length of text, entity500

length, and quantity in the simulation experiments,501

we demonstrated the effectiveness of chance cor-502

rection, comparing it with Alpha coefficients. Ulti-503

mately, we illustrated how our chance estimation504

impacts the evaluation and ranking of model perfor-505

mance in corpus experiment. Since the estimation506

of chance agreement for the overlapping model is507

considerably simpler than for the non-overlapping508

model, all experiments in this paper are configured509

with the non-overlapping constraint.510

Specifically, for the estimation of the probability511

distribution for random text annotation, we set to512

label four segments with lengths of 1, 5, 10, and513

15 on a sequence of length 100. Figure 1 shows514

the probability distributions of the four segments at515

all possible locations calculated with the analytical516

formula in Proposition 2. The four distributions are517

approximately distributed as the inverted trapezoids518

with high ends and flat middle part, which confirms519

the conclusions of Proposition 2 and 3.2520

1All experiments are implemented with MATLAB on a
2017 Mac Pro. The configuration of the Mac Pro is 2.9 GHz
Intel Core i7 processor and 16GB 2133 MHz LPDDR3 mem-
ory. The evaluation tool and datasets will be released as open-
source after the review period.

2The calculation time of the whole process is about 0.01

The problem of chance estimation and correction 521

is unique in that, to our knowledge, there is no real 522

benchmark data that can be used to evaluate the 523

performance. Therefore, most classic works in this 524

field use synthetic data to illustrate and evaluate 525

the effect of chance correction, such as Komagata 526

(2002) and Artstein and Poesio (2008). Intuitively, 527

we know that the chance agreement is related to the 528

size of the search space, the number of annotated 529

objects, and the lengths of the annotated objects. 530

We design the corresponding comparison experi- 531

ments by varying these three factors. 532

We design three sets of comparison experiments 533

by varying the length of text (simulation 1), the 534

number (simulation 2) and length (simulation 3) of 535

entities. In case A of simulation 1 shown in Table 2, 536

we use 1 or 0 to indicate that each token in the text 537

sequence is labeled or not. For the same sequence 538

with 20 tokens, annotator 1 labels 3 entities with 539

lengths of 2, 3, and 4. Annotator 2 labels 3 entities 540

with lengths of 3, 4, and 5. The annotations of 541

case B for two annotators are the same as in case 542

A, the only difference is that ten 0s are added af- 543

ter the 20 tokens, that is, neither annotator 1 nor 544

annotator 2 have labeled the extra 10 tokens. As re- 545

ported in Table 3, because F1 score only focuses on 546

the annotated tokens, the observed agreement (F1 547

score) is the same in both cases. However, since the 548

labeled information in case B is relatively sparse, 549

the chance agreement in case B is smaller, and the 550

corresponding corrected F1 score is larger which 551

means the agreement is higher. In simulation 2, 552

the text length and the total number of annotated 553

tokens remain the same, but the number of anno- 554

tated entities changes from 3 in case A to 1 in case 555

B. In simulation 3, the text length and the number 556

of annotated entities remain the same, whereas the 557

number of annotated tokens in case B is tripled. 558

The results in Table 3, 5 and 7 show that the longer 559

the text, or the more entities, or the shorter the en- 560

tities, the smaller the chance agreement. This is 561

consistent with our intuition. 562

We also compared our results with two Alpha 563

coefficients, namely Alpha and µAlpha. At first 564

glance, Alpha coefficients exhibit a similar trend 565

in simulations 1 and 3, consistent with intuition, 566

while the results in simulation 2 contradict intu- 567

ition. However, the underlying reasons are differ- 568

ent. Our results are derived from chance agreement 569

estimations that align with intuition, whereas the 570

seconds.

6



Figure 1: The probability distributions for all possible locations of each random segment in a length=100 sequence
annotated with four segments. The lengths of the four segments are 1, 5, 10, 15, from left to right.

Observed (case A) Observed (case B)

Annotator1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Annotator2 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Table 2: Sequence Annotation Simulation 1.

Sim1 ObsF1 ChanceF1 CorrF1 ObsD ExpD Alpha ObsµD ExpµD µAlpha

CaseA 0.8571 0.5335 0.6938 0.0075 0.0537 0.8602 0.15 0.5313 0.7177
CaseB 0.8571 0.3544 0.7787 0.0033 0.0366 0.9090 0.10 0.4704 0.7874

Table 3: Chance Agreement Estimation for Sequence Annotation Simulation 1.

Observed (case A) Observed (case B)

Annotator1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
Annotator2 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Table 4: Sequence Annotation Simulation 2.

Sim2 ObsF1 ChanceF1 CorrF1 ObsD ExpD Alpha ObsµD ExpµD µAlpha

CaseA 0.8571 0.5335 0.6938 0.0075 0.0537 0.8602 0.15 0.5313 0.7177
CaseB 0.8571 0.6455 0.5970 0.0125 0.1047 0.8806 0.15 0.5885 0.7451

Table 5: Chance Agreement Estimation for Sequence Annotation Simulation 2.

Observed (case A) Observed (case B)

Annotator1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
Annotator2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Table 6: Sequence Annotation Simulation 3.

Sim3 ObsF1 ChanceF1 CorrF1 ObsD ExpD Alpha ObsµD ExpµD µAlpha

CaseA 0.8571 0.1830 0.8251 0.0025 0.0388 0.9356 0.05 0.2996 0.8331
CaseB 0.8571 0.6455 0.5970 0.0125 0.1047 0.8806 0.15 0.5885 0.7451

Table 7: Chance Agreement Estimation for Sequence Annotation Simulation 3.

Gold Standard 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Annotator1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Annotator2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 8: Sequence Annotation Simulation 4.

Sim4 ObsF1 ChanceF1 CorrF1 ObsD ExpD Alpha ObsµD ExpµD µAlpha

Annotator1 0.6522 0.5013 0.3026 0.1523 0.2154 0.2931 0.3902 0.5222 0.2527
Annotator2 0.6808 0.5437 0.3005 0.0268 0.2881 0.9071 0.3659 0.5365 0.3181

Table 9: Chance Agreement Estimation for Sequence Annotation Simulation 4.
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Model F1-all F1-subset1 F1-subset2 TimeObs Rank Cor Rank Obs Rank Cor Rank Obs Rank Cor Rank

A 0.923 3 0.901 3 0.919 2 0.911 2 0.9369 3 0.9035 4 23
B 0.905 7 0.878 7 0.889 7 0.878 7 0.9305 6 0.8938 6 23
C 0.9072 6 0.881 6 0.892 6 0.881 6 0.9320 5 0.8963 5 23
D 0.902 8 0.874 8 0.885 8 0.874 8 0.9261 7 0.8878 7 23
E 0.785 11 0.730 11 0.731 11 0.707 11 0.8537 11 0.7838 11 19
F 0.846 9 0.805 9 0.815 9 0.798 9 0.8929 9 0.8391 9 18
G 0.925 2 0.904 2 0.917 3 0.908 3 0.9414 2 0.9103 2 24
H 0.921 4 0.898 4 0.913 4 0.904 4 0.9368 4 0.9036 3 24
I 0.932 1 0.913 1 0.922 1 0.914 1 0.9500 1 0.9232 1 23
J 0.9073 5 0.882 5 0.903 5 0.894 5 0.9240 8 0.8851 8 22
K 0.802 10 0.752 10 0.759 10 0.737 10 0.8537 10 0.7854 10 16

Table 10: Chance Agreement Estimation for CoNLL03 Dataset. Obs is short for observed F1 as reported in
corresponding real NER model (A-K), Cor is short for corrected F1. Time denotes the running time for chance
estimation in seconds.

results of Alpha coefficients are influenced by their571

measurement metrics. For the critical estimation572

of expected disagreement (ExpD and ExpµD), it573

should have an inverse trend with expected agree-574

ment (chanceF1) because the more the agreement,575

the less the disagreement. However, the actual576

results are the opposite, primarily because Alpha577

coefficients include agreement for irrelevant seg-578

ments, which does not align with the needs of most579

information extraction tasks.580

The main purpose of chance correction is to use581

different baselines for different tasks. In addition,582

chance correction may also change the ranking of583

model performance for the same task, although584

this is not common. As shown in the table 8, the585

gold standard annotation labels six entities with586

size of 3, 3, 3, 3, 3, 16. The annotator1 labels587

five 3-token entities correctly but misses the 16-588

token entity. The annotator2 labels the 16-token589

entities correctly but misses five 3-token entities.590

Note that the observed F1 score of annotator1 is591

lower than that of annotator2. But after the chance592

correction, the results are opposite (see table 9).593

Neither of the two Alpha coefficients demonstrated594

this capability.595

To evaluate our model on real data, we estimated596

the chance agreement of 11 state-of-the-art NER597

models (Liu et al., 2021) using the CoNLL03 NER598

dataset (Sang and De Meulder, 2003). The results599

are presented in Table 10. The CONLL03 testing600

dataset comprises 3,453 sentences, each annotated601

with four types of entities: persons (PER), organiza-602

tions (ORG), locations (LOC), and miscellaneous603

names (MISC).604

We employ a micro-average approach to handle605

multiple sentences and entity types. This involves606

separately calculating token-level observed agree-607

ment and chance agreement for each sentence and608

entity type. These token-level observed agreements609

and chance agreements are then aggregated to com- 610

pute the overall chance agreement, observed F1 611

score, and corrected F score. It’s important to note 612

that validating chance agreement for real data with- 613

out ground truth is challenging. However, the F1 614

scores demonstrate a noticeable widening of the 615

range after chance correction. 616

Furthermore, we partition the entire 3,453 sen- 617

tences of the CoNLL03 data into two roughly equiv- 618

alent subsets based on the chance agreement level 619

for each sentence. Subset1 consists of sentences 620

with a chance agreement level greater than 0.825, 621

while subset2 includes sentences with a chance 622

agreement level less than or equal to 0.825. The 623

results indicate significant changes in the perfor- 624

mance ranking of the 11 NER models across differ- 625

ent datasets. Additionally, the performance ranking 626

of all 11 models on subset2 also exhibits slight vari- 627

ations before and after chance correction. 628

5 Conclusion and Discussion 629

In this paper, we propose a novel sequence random 630

annotation model that takes into account the dif- 631

ferent annotation styles of annotators and the char- 632

acteristics of sequence annotations. For complex 633

cases where labeled objects are required to be dis- 634

joint, we investigate the corresponding distribution 635

characteristic and remove redundant calculations. 636

We also derive an analytical formula to calculate 637

the exact distribution. Our focus in this work is how 638

to establish a general framework and corresponding 639

fast algorithm for calculating similarity by chance 640

in complex text annotations. The framework and 641

method proposed in this paper are applicable to 642

all additive similarity measures. Moreover, our ap- 643

proach can extend to nested spans by iteratively 644

applying the same method layer by layer, ensuring 645

compliance with the nested structure. 646
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6 Limitations647

Since chance estimation for sequence annotation648

is an open problem, there is very limited similar649

work to provide as a baseline for direct comparison.650

In addition, chance estimation lacks benchmark651

data with ground truth, although we have applied652

it to real data in order to demonstrate its utility.653

The current analysis of its effectiveness is mainly654

based on simulated data and whether it is consistent655

with human intuition. We expect that this work656

will stimulate more related work and benchmark657

data creation. The chance estimation in this paper658

focuses on the comparison between two annotators,659

and we plan to extend it to team-wise agreement660

for more than two annotators or systems.661

7 Ethics Statement662

The use of data on this project strictly adhered to663

ethical standards required by the National Institute664

of Health (NIH).665

In addition to upholding ethical principles in con-666

ducting this work, we believe this work contributes667

to professional standards for rigor in the field. In668

particular, we expect that this paper will facilitate669

fair comparison of various annotation tasks or sys-670

tems and reduce random chance agreement caused671

by different annotation styles and metrics. Chance672

agreement can also be used as a quantitative aid673

to measure the difficulty of annotation task. This674

provides a new perspective for evaluating different675

annotation tasks.676
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8 Appendix 769

Proposition1 For the additive simi- 770

larity measure, the expected chance 771

agreement is E(Sim(Ψ1,Ψ2)) = 772

f(Eϕ1,1(Ψ11,Ψ21)), . . . , E(ϕk1,k2(Ψ1k1,Ψ2k2))). 773

Proof . 774

Since the function f is additive, the or- 775

der of the function f and expectation can 776

be interchanged. We have E(Sim(Ψ1,Ψ2)) = 777

E(f(ϕ1,1(Ψ11,Ψ21), . . . , ϕk1,k2(Ψ1k1,Ψ2k2))) = 778

f(E(ϕ1,1(Ψ11,Ψ21)), . . . , E(ϕk1,k2(Ψ1k1,Ψ2k2))). 779

Originally, to estimate the expectation 780

of similarity by chance, we need to sum 781

up the similarity in a high-dimensional 782

space of all possible random annotations, 783

i.e., E(Sim(Ψ1,Ψ2)) =
∑

Ψ11
. . .

∑
Ψ1k1

784∑
Ψ21

. . .
∑

Ψ2k2
f(.) × p(Ψ11 = 785

ψ11, . . . ,Ψ2k2 = ψ2k2). Now we can sim- 786

plify it to multiple low-dimensional summations, 787

such as E(ϕi,j(Ψ1i,Ψ2j)), under the condition of 788

additive measure. 789

Note that in the non-overlapping random annota- 790

tion model, the position of each random annotation 791

segment is dependent on all the other random an- 792

notation segments within the same document from 793

the same annotator. Since we assume all possible 794

random annotations are equally likely, the prob- 795

lem of estimating the location distribution for each 796

segment is equivalent to count the number of all 797

possible configurations when we fix the location of 798

the corresponding segment. 799

Proposition2 For the non-overlapping random 800

annotation model, the number of all random anno- 801

tations with the i-th segment fixed as: 802

Π(STi = l) = π(l − 1, 0)π(n− l − a+ k, k − 1)+∑
i1 ̸=i

π(l − ai1 , 1)π(n− l − a+ ai1 + k − 1, k − 2)+

∑
i1 ̸=i

∑
i2 ̸=i

π(l − ai1 − ai2 + 1, 2)π(n− l − a+ ai1 + ai2 + k − 2, k − 3)

+ . . .+ π(l − a+ ai + k − 2, k − 1)π(n− l − ai + 1, 0),

(2) 803

where π(n, r) = n!/(n − r)! is the number of 804

permutations of n things taken r at a time, k is the 805

number of segments, ai denotes the length of the 806

i-th segment and a =
∑

i ai is the total length of 807

annotations. Then the corresponding probability 808

is p(STi = l) = Π(STi = l)/π(n − a + k, k), 809

for 1 ≤ l ≤ n − ai + 1. Here we treat each 810

text segment as a different annotation, regardless 811

of whether they have the same length. If we do 812

not need to distinguish among entities of the same 813
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length, this formula can also be applied after a814

simple modification.815

Proof sketch. We can divide all possible random816

annotations with STi = l into k disjoint sets with817

m annotation segments located on the left of the818

specified i-th segment ψi and the remaining k −819

m−1 segments on the right side. The cardinality of820

each set with selected left m annotation segments821

(which then determines the segments on the right )822

is the number of all possible annotations on the left823

l − 1 times the number for n− l − ai of tokens on824

the right side.825

If we fix the order of m selected random annota-826

tion segments ψi1 , ..., ψim , the random annotation827

of the left l − 1 tokens is equivalent to distribute828

l − 1 −
∑m

j=1 aij objects into m + 1 spaces, be-829

fore the first annotation segment, between adjacent830

segments, and after the last one. This is a well stud-831

ied problem (integer weak composition into a fixed832

number of parts) with (l−1−
∑m

j=1 aij +m)!/(l−833

1−
∑m

j=1 aij )!/m! possible configurations. Since834

we treat all annotation segments as different ones,835

there are m! permutations for the left m segments836

and (k−m− 1)! for the right k−m− 1 ones, and837

the cardinality of each set is π(l−
∑m

j=1 aij +m−838

1,m)×π(n−l−a+
∑m

j=1 aij+k−m, k−m−1).839

Based on the above derivation, the number of all840

possible configurations when we fix the location of841

a segment can be expressed by Equation 2.842

However, it is computationally expensive to cal-843

culate Equation 2 for all possible random locations844

of each text segment when the sequence is very845

long. To solve this issue, we find that Π(STi = l)846

is the same for most locations when the text is of847

length n ≫ a. Please note that the effectiveness848

of Proposition3 is not related to the length of the849

sentence. It’s just that the longer the sentence, the850

more computation Proposition 3 can reduce. For851

short sentences, the computational cost itself is not852

significant.853

Proposition3. STi is uniformly distributed for a−854

ai − k+ 2 ≤ sti ≤ n− a+ k, i.e., Π(sti = l1) =855

Π(sti = l2) ∀ a− ai − k+2 ≤ l1, l2 ≤ n− a+ k856

.857

It is clear that proposition 3 and proposition 3*858

are equivalent.859

Proposition3*. Π(sti = l) = Π(sti = l+1)∀a−860

ai − k + 2 ≤ l ≤ n− a+ k − 1 .861

Proof sketch. Use mathematical induction862

Initial step: when k = 1, Π(st1 = l) = 1 and863

p(st1 = l) = 1/(n−a1+1), for 1 ≤ l ≤ n−a1+1.864

So the proposition 3* is true at k = 1. 865

Inductive step: assume the proposition 3* holds for 866

k = r. When k = r + 1, we partition all possible 867

configurations with sti = l into r + 1 disjoint 868

scenarios: the r scenarios with stj = l + ai for all 869

j ̸= i and the rest, i.e., the scenarios with a different 870

annotation segment next to ψi from right side or 871

none annotation segment next to ψi from right side. 872

So Π(sti = l) =
∑

j ̸=iΠ(sti = l&stj = l+ai)+ 873

Π(sti = l & stj ̸= l + ai, ∀j ̸= i). 874

We also partition all possible configurations with 875

sti = l + 1 into r + 1 disjoint scenarios: the r 876

scenarios with stj = l + 1 − aj for all j ̸= i 877

and the rest, i.e., the scenarios with a different 878

annotation segment next to ψi from left side or 879

none annotation segment next to ψi from left side. 880

Similarly, Π(sti = l + 1) =
∑

j ̸=iΠ(sti = l + 881

1 & stj = l + 1 − aj) + Π(sti = l + 1 & stj ̸= 882

l + 1− aj , ∀j ̸= i). 883

Since there is a bijection between the scenario 884

of sti = l & stj ̸= l + ai, ∀j ̸= i and the one 885

of sti = l + 1 & stj ̸= l + 1 − aj , ∀j ̸= i by 886

identity mapping except the annotation segment ψi 887

and the un-annotated token next to it with indices 888

from l to l + ai, Π(sti = l & stj ̸= l + ai,∀j ̸= 889

i) = Π(sti = l + 1&stj ̸= l + 1 − aj ,∀j ̸= i). 890

For the pair of scenarios sti = l & stj = l + ai 891

and sti = l + 1 & stj = l + 1 − aj , they can be 892

convert to scenarios st∗i = l & a∗i = ai + aj and 893

st∗i = l+1−aj&a∗i = ai+aj by merging ψi and 894

ψj . Based on the assumption that the proposition 3* 895

holds at k = r, their cardinalities should be equal 896

since there is only r segments after the combination 897

and a− (ai + aj)− (k− 1) + 2 ≤ l, l+1− aj ≤ 898

n − a + (k − 1). Therefore, Π(sti = l & stj = 899

l + ai) = Π(sti = l + 1 & stj = l + 1− aj) and 900

the proposition 3* holds for k = r + 1. 901

It is a tight bound since we have to satisfy the 902

condition of 0 ≤ l −
∑m

j=1 aij +m − 1 and 0 ≤ 903

n−l−a+
∑m

j=1 aij +k−m for all 0 ≤ m ≤ k−1 904

and ij ̸= i. This is the same as a− ai − k + 2 ≤ 905

l ≤ n− a+ k. 906

Proposition4. The expected similarity 907

E(Sim(Ψ1,Ψ2)) → 0 when n≫ a1+a2, where 908

a1 and a2 are the total lengths of all annotated 909

segments for annotator 1 and annotator 2. 910

Proof sketch. According to the proof process 911

of Proposition 2, we know the number of all pos- 912

sible random annotations of k segments with total 913

length a for a text with n tokens is π(n− a+ k, k). 914

Thus, the total number of comparisons between 915
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Figure 2: Convert the case of k = r + 1 to the case of
k = r by merging two adjacent text segments ψi and
ψj , the blue box represents the segment ψi , and the red
box represents the adjacent segment ψj .

random annotations from annotator 1 and annota-916

tor 2 is π(n− a1 + k1, k1)× π(n− a2 + k2, k2)917

under the independent annotation assumption. It is918

straight forward that the segment-wise agreement919

ϕi1,i2(ψ1i1 , ψ2i2) is zero if there is no overlap be-920

tween the i1-th text segment annotated by annotator921

1 and the i2-th text segment annotated by annotator922

2. The agreement between two annotators is zero if923

there is no overlap among all k1+k2 annotated text924

segments. The situation is equivalent to combining925

the annotation results of the two annotators and re-926

quiring no overlap among all k1+k2 text segments927

in the same text. The total number of such possible928

annotations is π(n− a1− a2+ k1+ k2, k1+ k2).929

Therefore, the probability of zero chance agree-930

ment p(Sim(Ψ1,Ψ2)) = 0) = π(n − a1 − a2 +931

k1+k2, k1+k2)/π(n−a1+k1, k1)/π(n−a2+932

k2, k2) = (n−a1−a2+k1+k2)× . . . (n−a1−933

a2+1)/((n−a1+k1)× . . . (n−a1+1)× (n−934

a2 + k2) × . . . (n − a2 + 1)) → 1 because both935

numerator and denominator are to the (k1+ k2)-th936

power of n and n≫ a1+a2 ≥ k1+k2. Thus, we937

have E(Sim(Ψ1,Ψ2)) → 0 when n≫ a1 + a2.938

Proposition5. For the overlapping random an-939

notation model, p(STi = l) = 1/(n− ai + 1), for940

1 ≤ l ≤ n− ai + 1.941

Proof sketch. This conclusion is straight forward942

because a random text segment annotation with943

length ai can be placed at any feasible locations944

with equal probability without the non-overlapping945

constraint.946

Computational complexity for random text an-947

notation. The computational cost of calculating948

the probability distribution of the location of k949

random annotated text segments is bounded by950

((k − 1) × a − k2 + 2k) × 2k × (k − 1) multi-951

plications and ((k− 1)× a− k2 + 2k)× (2k − 1)952

additions.953

In order to calculate the probability distributions954

for random text annotation, according to the propo- 955

sition 2 and the proposition 3, we could calculate 956

the probability of a− ai− k+2 possible positions 957

for each random annotated text segment with for- 958

mula 1. And the analytical formula is a summation 959

of 2k terms, and each term is equivalent to k − 1 960

multiplications, so the computational complexity is 961

bounded by
∑k

i=1(a−ai−k+2)×2k×(k−1) = 962

((k − 1)× a− k2 + 2k)× 2k × (k − 1) multipli- 963

cations and
∑k

i=1(a − ai − k + 2) × (2k − 1) = 964

((k−1)×a−k2+2k)× (2k−1) additions. Since 965

the formula 1 is a subset convolution, It may be 966

possible to speed up this calculation with the fast 967

subset convolution algorithm. 968

According to the above computational complex- 969

ity analysis, we know that the probability distri- 970

bution of the location of each random annotated 971

segment can be calculated efficiently using the for- 972

mula 1 when the number of text segments k is 973

small. But with the increase of k, the computa- 974

tional cost will increase rapidly. Fortunately, when 975

the text sequence is long enough and the annotated 976

information is sparse, we can use the uniform dis- 977

tribution to approximate the distribution. 978

Uniform approximation. The probability distri- 979

bution of the location of a random annotated text 980

segment can be approximated by uniform distri- 981

bution with p(sti = l) = 1/(n − ai + 1), for 982

1 ≤ l ≤ n−ai+1 if (n−a+k)/(n−ai+1) > α, 983

where α is a preset threshold which is close to 1 984

and less than 1, for example α = 0.99 . 985

We observe that the probability distribution of 986

the location of a random annotated text segment is 987

approximately inverted trapezoid distributed with 988

highest probabilities at both ends. And the majority 989

of the whole distribution is flat when n >> a. It 990

is straight forward to calculate the p(sti = 1) = 991

π(n−a+k−1, k−1)/π(n−a+k, k) = 1/(n− 992

a + k). So the distribution could be approximate 993

with uniform distribution if the highest probability 994

1/(n− a+ k) is close to the uniform probability 995

1/(n− ai + 1), i.e., (n− a+ k)/(n− ai + 1) is 996

close to 1 if n >> a. 997

CoNLL03 NER dataset and system outputs. 998

To evaluate our model in real data, we estimate 999

the chance agreement of 11 state-of-the-art NER 1000

models on CoNLL03 NER dataset, the results are 1001

shown in Table 10. CoNLL-2003 is a named en- 1002

tity recognition dataset that is released as a part of 1003

CoNLL-2003 shared task: language-independent 1004

named entity recognition. This corpus consists of 1005
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Reuters news stories between August 1996 and1006

August 1997. There are four types of annotated1007

entities: persons (PER), organizations (ORG), lo-1008

cations (LOC) and miscellaneous names (MISC).1009

We downloaded 15 system outputs for the English1010

test set from the Explained Board website after1011

approval. Since 4 system outputs use different sen-1012

tence segmentation, we limit our comparison to1013

11 system outputs that use the same sentence seg-1014

mentation. The test set consists of 231 articles that1015

include 3453 sentences.1016
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