

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SENSE IT WITH YOUR EYES: SENSATION GENERATION AND UNDERSTANDING FOR ADVERTISEMENTS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Effective advertisements might persuade the audience by evoking human sensations,
012 yet current Text-to-Image (T2I) models struggle to generate persuasive visual-
013 als that convey implicit sensory experiences. We introduce the **SensoryAd Gen-**
014 **eration task**: given an advertisement message and a specific sensation related to
015 the advertisement message, the goal is to generate advertisement images that both
016 convey the message and evoke the sensation. To support this task, we build the
017 SensoryAd dataset, consisting of human-designed and generated advertisements
018 annotated with sensation categories, visual elements evoking the sensation, and
019 human ratings. We further propose an evaluation method using contrastive and
020 consistency losses across hierarchical sensation levels.

1 INTRODUCTION

024 “I have left behind illusion, I said to myself. Henceforth I live in a world of three dimensions—with
025 the **aid of my five senses**. I have since learned that there is no such world, but then, as the car turned
026 out of sight of the house, I thought it took no finding, but lay all about me at the end of the avenue.”

027 *Evelyn Waugh, “Brideshead Revisited”*

030 The full spectrum of senses (not only vision and hearing, but also touch, smell and taste) is important
031 for humans to navigate and experience their environments. However, humans sometimes hallucinate
032 sensations, with very real effects: people experiencing lexical-gustatory synesthesia experience taste
033 triggered by words (Ward & Simner, 2003), visually impaired people can “see” with their tongue
034 through electrical signals (Nau et al., 2015), phantom limb pain can be treated with augmented
035 reality (Prahm et al., 2025), and advertisements (ads) can evoke taste (Palcu et al., 2019).

036 An effective ad is not only defined by what elements it represents, but also by *how* they are repre-
037 sented. Designers often rely on creative techniques to better capture attention and enhance credibility
038 and impact of ads. Sensory advertising (Krishna, 2012) is one creative technique, where some ads
039 evoke one or more of the five human senses (e.g., touch, taste), allowing the audience to imagine
040 the benefit of a product or the consequence of an action in a visceral way. Stimulating the senses
041 in the exact sense modality is infeasible (e.g., through the taste buds) so ads resort to visual con-
042 tent *associated* with the target sensation. For example in Fig. 1, for a beer advertisement, on a hot
043 summer day, image (b) is more likely to convince a thirsty audience to buy the beer by evoking the
044 cooling and refreshing sensation (through the inclusion of the ice cubes), compared to image (a).
045 Similarly, evoking the pain sensation in image (d) makes the parents better feel the consequence of
046 using negative words by feeling the pain, compared to the more sensory-neutral image (c).

047 In this work, we conduct the first investigation of *how ads evoke the senses through visual means*.
048 We focus on three facets, (1) understanding, (2) evaluating and (3) generating sensory ads. First, we
049 develop a taxonomy of senses at different levels of granularity in which the first layer corresponds
050 to these five fundamental sensory modalities (information perceived through the five primary human
051 sensory organs of eyes, ears, nose, skin, and tongue). These senses are then further refined into more
052 specific subcategories (e.g., “temperature” is a type of “touch” sensation). Fig. 1, e and g, represent
053 example outputs of T2I models on given “cooling and refreshing” and “sharp pain” sensations. We
construct a dataset with samples of these senses, by collecting annotations from Prolific annotators
on 670 images sourced from an existing dataset of advertisements (PittAd (Hussain et al., 2017)). We

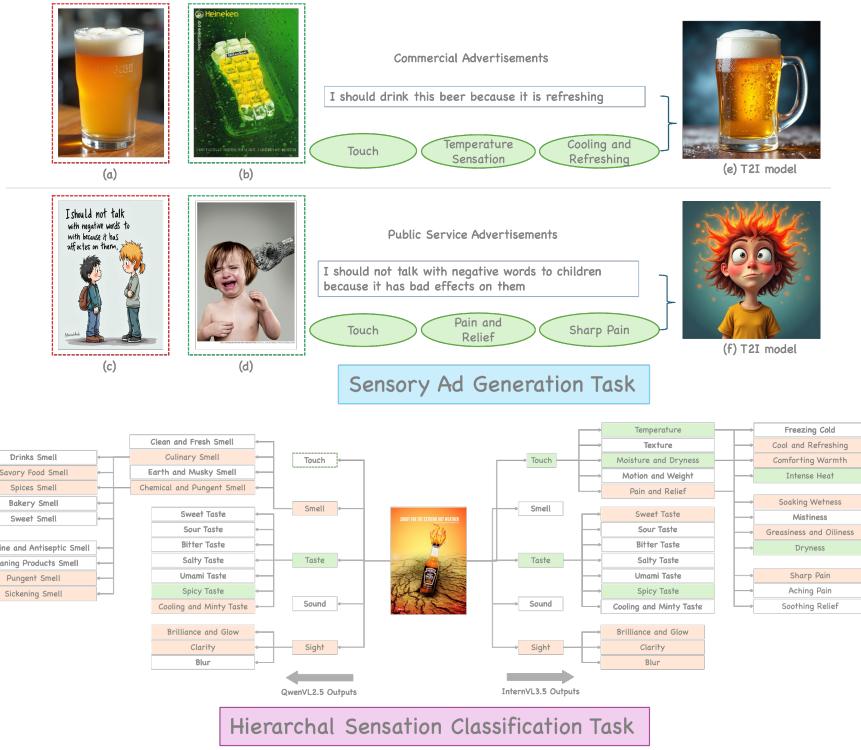


Figure 1: **Sensory Ad Generation Task (Top):** Two examples of ad images that evoke desired sensation for action-reason statements (b) and (d) designed by human, and images that do not evoke any sensation (a) and (c) generated by T2I models without sensory awareness. Images (e) and (f) represent the output of T2I models on the SensoryAd generation task given the ground-truth sensations for the advertisements. **Hierarchical Sensation Classification Task (Bottom):** Image shows an example of two MLLMs on the proposed task given an image evoking the sensations of spicy taste, intense heat, dryness. In the image, green background represents correct sensations chosen by the model, and red background represents sensations chosen incorrectly.

collect information about whether the image evokes a sensation and if so, the category of sensation, the visual elements evoking it, and score of how well the image evokes the sensation.

We introduce two sensation classification tasks to evaluate how well LLMs and MLLMs perform on the task of classifying the senses in an ad.

Second, we propose a novel evaluation method, **EvoSense**, that measures how effectively an image evokes a target sensation. EvoSense first utilizes an LLM to generate the description of the image and then use a fine-tuned LLM to get the average log probability of the tokens of the target sensation when prompting the model with “*The described image evokes the:*”. Experimental results show that our evaluation metric achieves a Kappa (Cohen, 1960) agreement score of 0.86 with human annotators, representing an improvement of 56% over existing baseline metrics.

Third, we introduce the **SensoryAd Generation** task, where the goal is to generate advertisement images that both convey a given message and evoke a specified sensation. The messages are collected from the PittAd dataset (Hussain et al., 2017) and structured in the form “*I should {action} because {reason}*” called action-reason (AR) statements. Our results show that existing T2I models fail in generating advertisement images that evoke specific sensation.

To summarize our contributions: (1) We introduce the SensoryAd dataset including the sensations advertisement images evoke, the score on how well the images evoke each sensation, and visual elements in the image evoking the sensation. (2) We introduce two sensation classification tasks. (3)

108 We introduce the novel task of Sensory Ad Generation. (4) We propose an evaluation method for
 109 sensation evocation in generated images.
 110

111 2 RELATED WORKS

114 **Text to Image Generation.** T2I models such as Flux (Black Forest Labs, 2024), Stable Diffusion
 115 (Esser et al., 2024), Qwen-Image (Wu et al., 2025), PixArt (Chen et al., 2024), DALLE3 (Betker
 116 et al., 2023), etc. have advanced in generating high quality and realistic images given the explicit
 117 description of the prompt. Some existing work (Aghazadeh & Kovashka, 2024; Liao et al., 2024)
 118 assess the capability of models in generating images from abstract concepts and messages like adver-
 119 tisement design tasks. (Yang et al., 2024b; Dang et al., 2025; Park & Lee, 2020), focus on emotion
 120 transfer through images. The main focus of these works is on transferring emotion which is the
 121 interpretation of sensation and differs from evoking sensation. For example, in Fig. 1 both image
 122 (c) and (d) can transfer sadness, but only image (d) evokes the pain sensation. In this work, we
 123 benchmark the T2I models on generating advertisement images that evoke specific sensations.

124 **Text to Image Evaluation.** Existing evaluation metrics, such as (Lin et al., 2024; Xu et al., 2023),
 125 are primarily designed to assess how well an image corresponds to an explicit prompt. These met-
 126 rics are effective when the prompt specifies concrete objects, attributes, or relations between visual
 127 elements. Evaluating **sensation evocation** poses a unique challenge: the sensation is not only an
 128 implicit concept but the same sensation can be represented through entirely different visual designs.

129 **Understanding Modalities beyond Sight.** Our work is part of a bigger trend of understanding
 130 modalities beyond sight, including understanding audio and touch data (Ghosh et al., 2024; Yang
 131 et al., 2024a) or semantic-taste mappings using the wine taste dataset of (Bender et al., 2023). Other
 132 work seeks to predicting physical properties such as density and hardness from images and descrip-
 133 tions (Zhai et al., 2024). However, no prior work studies how images are created to evoke specific
 134 sensations, nor predicts computationally the impact of sensations on an audience.

135 **Understanding and Generating Advertisements.** Hussain et al. (2017) pioneer the task of compu-
 136 tational visual ad understanding, but do not capture sensory information. Prior work has investigated
 137 the use of T2I models for generating advertisements, focusing on criteria such as creativity, and per-
 138 suasion (Aghazadeh & Kovashka, 2024) or for depicting specific metaphorical relationships (Akula
 139 et al., 2023). However, these studies do not examine the models’ ability to implement specific per-
 140 suasion strategies, such as the evocation of specific sensations, which play a crucial role in making
 141 advertisements more influential and memorable.

142 **Sensory Advertising.** (Krishna, 2012) define sensory marketing as “marketing that engages the con-
 143 sumers’ senses and affects their perception, judgment and behavior.” The author describes evidence
 144 that the subconscious sensory triggers may make the ad’s message more compelling than explicit
 145 messaging, including causing viewers to perceive specific properties of the product. They discuss
 146 the sensory aspects of product packaging (e.g., Hershey’s chocolate kisses creating the sensation of
 147 a drop melting), sound symbolism (e.g., the word “frosh” evoking the sensation of creaminess more
 148 than “frish”), the memories scents create and evoke, etc. Cian et al. (Cian et al., 2014) describe the
 149 dynamics encoded in similar but slightly varied imagery (e.g., a horizontal vs tilted seesaw). Other
 150 related work in marketing and psychology studying sensory marketing is (Krishna & Schwarz, 2014;
 151 Petit et al., 2019; Hultén, 2015; Krishna et al., 2016). Related to sensory image Yang et al. (2024b)
 152 focus on emotion, interpretation of sensation by human, generation and Singh et al. (2024) on un-
 153 derstanding content with focus on human reaction upon receiving content.

154 3 SENSORYAD BENCHMARK

155 3.1 SENSORYAD DATASET

158 **Sensation Hierarchy (Taxonomy).** Some advertisements are designed to evoke sensations that
 159 help the audience imagine a specific situation and the need for a product more vividly, which is an
 160 important factor in ad effectiveness (Krishna et al., 2016). In this work, we formalize the notion of
 161 sensation using a hierarchical taxonomy (partly shown in Fig. 2; complete hierarchy in sec. A.4).
 At the top level, our taxonomy corresponds to the five primary human senses. Each of these is

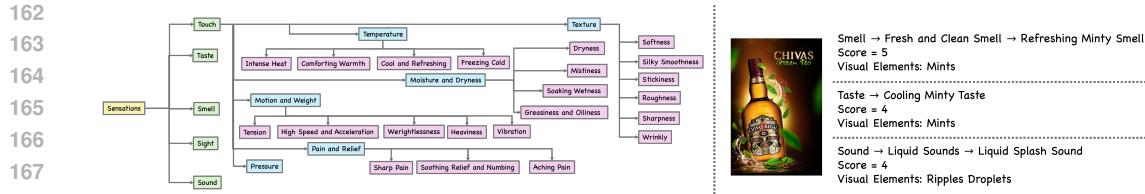


Figure 2: **Sensation Hierarchy** (left; only categorizing the Touch sensation): **Green box** represents first level sensation, **blue** represents second level, and **purple** represents third level sensations. **Annotation Example** (right): Example of annotations in our SensoryAd dataset.

further subdivided into more fine-grained categories. For example, “Touch” is refined into “Texture”, “Temperature,” “Moisture and Dryness,” “Pain and Relief,” and “Pressure”. By definition, if an image evokes a child sensation (e.g., “Temperature”), it also evokes its parent (e.g., “Touch”). We introduce a dataset of both real and generated ads annotated with (i) up to three groups (leaf and ancestors) of sensations evoked by each image, (ii) a score reflecting the strength of evocation, and (iii) the visual elements that contribute to the sensation. Fig. 2 shows an example annotation.

Data Collection. We first selected 670 images from the PittAd dataset (Hussain et al., 2017), including 250 public service advertisements (designed to raise awareness about societal issues or influence behavior) and 420 commercial advertisements (promoting products or services) to ensure a diverse range of sensory content. We have included the data statistics including the topics diversity, sensations diversity, and human-human agreement in sec. A.4. Annotation was carried out by trained crowd-workers on Prolific and using forms created on Qualtrics. Before contributing, each annotator was tested and approved/filtered based on completing a practice form after reading detailed instructions, definitions of sensations, and illustrative examples. The annotation task followed a structured protocol: annotators first chose the most prominent sensation among the five top-level categories (with the option of selecting “None” if no sensation was evoked). Based on their choice, they were presented with progressively narrower subcategories until reaching a leaf-level sensation. For each selected sensation, annotators provided a strength score and listed the visual elements (e.g., colors, objects, textures) that contributed to it, using free-form text (which can be used in future work). This process was repeated up to three times per image unless “None” was chosen as the sensation evoked by the image. We also get the human-human agreement on about 10% of the annotated images and the Kappa agreement Cohen (1960) is 0.83 with 95% confidence interval of [0.831, 0.838]. The full annotation and testing forms are provided in the supplement file, and the dataset will be released upon acceptance.

We also annotated ad images generated by text-to-image models, to test performance of our evaluation model on these. First, we used the action-reason statements (from (Hussain et al., 2017)) and three annotated sensations (from the above paragraph), as inputs to three T2I models: Flux (Black Forest Labs, 2024), AuraFlow (Fal, 2024), PixArt (Chen et al., 2024), Stable Diffusion 3 (Esser et al., 2024), and Qwen-Image (Wu et al., 2025). From 75 images generated by each model, we randomly selected 15 and annotated them using the same procedure as for the real ads.

3.2 SENSATION CLASSIFICATION TASK

Interpreting sensory ads, and the evaluation of their effectiveness, hinges on understanding which sensations an image evokes and with what intensity. Moreover, Some sensations like pain sensation can be sensitive to a group of audience such as children in a certain age. Given this, to prevent the presentation of a specific sensation to a specific group, the filtering systems should be able to detect the sensations evoked by the content. To formalize this, we introduce the **Sensation Classification Task**, which involves recovering the correct sensations evoked by an image. We consider two complementary formulations: (i) **Hierarchical Selection** and (ii) **Single Selection**.

Hierarchical Classification. In this setting, sensations are defined according to our hierarchical taxonomy. Data annotation proceeds level by level: starting from the top-level categories, annotators choose the sensation best evoked by the image, then move to its subcategories, and so on until reaching a fine-grained leaf. The Hierarchical Selection Sensation classification task mirrors this process. Given an image, the goal is to predict the complete sensation path(s) from the root to the

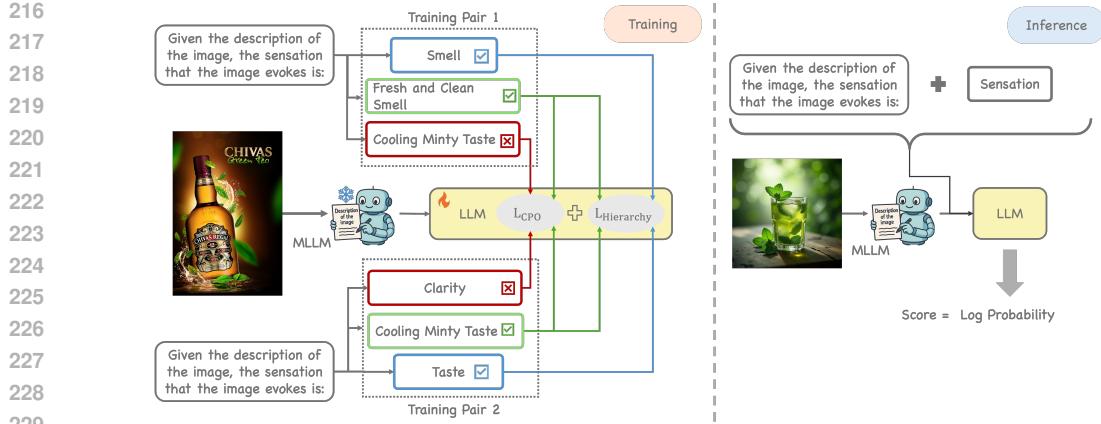


Figure 3: **EvoSense Evaluation Method.** Left: **Training** of LLM with two different set of sensations for one image. **Green border** shows the winner sensation, **blue border** represents the parent of winner sensation (used in hierarchy loss), and **red border** denotes the loser sensation in the pair. Each pair is derived from a triplet of annotations, where A is preferred over B, and B over C. Right: score computation in **inference** with the fine-tuned LLM.

leaf node (e.g., Touch → Temperature → Freezing Cold). To do so, a model is recursively prompted to predict up to three sensations, advancing down the hierarchy by selecting among the children of each of the previously chosen nodes. To provide sufficient context, the definition of each potential sensation was included in the prompt. An example of this task is visualized in Fig. 1.

Single (Multi-Label) Classification. This task flattens the taxonomy and treats every sensation, regardless of its level, as a potential label. The goal is for a model to predict the complete set of sensations that an image evokes from all possible labels in the hierarchy. A critical constraint in this task is maintaining hierarchical consistency. By definition, if an image evokes a specific sensation, it must also evoke its parent sensation (e.g., if “Temperature” is evoked, “Touch” is evoked as well). To evaluate a models’ understanding of these relationships, we define an additional metric: Parent Recall (R_{parent}), which measures the fraction of predicted non-root sensations for which the direct parent sensation was also predicted. It is formally defined as:

$$R_{parent} = \frac{|\{s \in S_{pred} \mid s \text{ is not a root node and } parent(s) \in S_{pred}\}|}{|\{s \in S_{pred} \mid s \text{ is not a root node}\}|} \quad (1)$$

where S_{pred} is the set of sensations predicted by the model. A high R_{parent} score indicates that the model understands the hierarchical dependencies of sensations.

3.3 EVOSENSE: EVALUATING SENSATION EVOCATION

Sensation evocation can make advertisements more persuasive by enabling viewers to vividly picture the intended context. To quantitatively assess this effect, it is not sufficient to simply identify which sensations are present; it is also crucial to evaluate their intensity. To address this, we introduce **EvoSense**, an evaluation method to assess how strongly an image evokes a given sensation. EvoSense uses two stages. (i) **Image Description Generation**: An MLLM (e.g., InternVL) generates a textual description of the image. (ii) **Sensation Intensity Scoring**: An LLM is prompted with the template “*Given the description of the image, the sensation that the image evokes is:*” and the average log-probability of producing the target sensation is reported as the sensation intensity score.

Initial experiments using zero-shot LLMs show low agreement with human annotations, both in retrieving correct sensations and in estimating their intensity. To address this, we fine-tune the models using a subset of our annotated dataset. In our task some sensations are evoked more than some other sensations, for example, in Fig. 2 while both *Taste* and *Smell* are evoked by the image, *Smell* sensation is evoked more. A simple supervised fine-tuning approach treats both sensations as equally correct. In contrast, by pairing sensations and asking the model to choose, *Smell* should be preferred over *Taste*. On the other hand, when *Taste* is paired with *Sight*, *Taste* should be preferred

instead. To capture such relative preferences, we train EvoSense with **Contrastive Preference Optimization** (CPO) (Xu et al., 2024) loss, which requires models to rank sensations. However, CPO does not account for the hierarchical dependencies between sensations (i.e., a child sensation implies its parent). To incorporate this structure, we augment CPO with a hierarchy loss:

$$L_{\text{CPO+Hierarchy}} = -\log \sigma(\beta [\log \pi_\theta(y^+ | x) - \log \pi_\theta(y^- | x)]) + \text{ReLU}(\log \pi_\theta(y^+ | x) - \log \pi_\theta(y^{\text{parent}} | x)). \quad (2)$$

where x is input (prompt), y^+ is preferred output, y^- is rejected output, y^{parent} is parent of chosen output, $\pi_\theta(y | x)$ is the model’s conditional probability of y given x , β is a temperature scaling factor, and $\sigma(\cdot)$ is the logistic sigmoid function. $L_{\text{CPO+Hierarchy}}$ encourages the model to choose y^+ over y^- and prevent the probability of y^{parent} to be lower than y^+ . We illustrate in Fig. 3.

3.4 SENSORYAD GENERATION TASK

Recent advancements in Text-to-Image (T2I) generation have enabled the generation of high quality and realistic images, leading to their adoption in applications such as automated advertisement image generation. While prior work has studied the ability of generative models to convey emotions Yang et al. (2024b), their capability in generating images that evoke specific sensations, which is a persuasive strategy, remains unexplored.

To address this gap, we introduce the **SensoryAd Generation** task where the input consists of an advertisement message (action-reason statement (Hussain et al., 2017)) and target sensation, and the objective is to generate an image that effectively evokes the specified sensation. Examples of outputs from existing T2I models for different prompts and target sensations are shown in Fig. 1 (e, f).

4 RESULTS

This section presents our experimental results. We begin by benchmarking LLMs and MLLMs on our sensation classification tasks to assess their understanding of sensory concepts. We then validate our proposed EvoSense metric, comparing against baseline metrics. Finally, we evaluate the performance of leading T2I models on the SensoryAd Generation task. Implementation details for all experiments are in the sec. A.5.

4.1 SENSATION CLASSIFICATION TASKS

We assess the capability of LLMs and MLLMs on our two sensation classification tasks. Our evaluation follows two distinct protocols based on the model’s input modality. For MLLMs (InternVL, QwenVL, and Gemma, and LLAVA-Next), the advertisement image was provided as direct visual input. The model was then tasked with classifying the corresponding sensations based on a task-specific prompt (see sec. A.5). To assess the performance of text-only LLMs (LLAMA3-instruct, QwenLM, and Gemma), we employed a two-stage pipeline. First, we utilized different MLLM (InternVL, QwenVL, and Gemma) to generate a description for the image (D_{MLLM}). These generated descriptions were utilized as input context for the LLMs to perform sensation classification. This approach allows us to isolate and evaluate the language-based reasoning capabilities of LLMs for this specific task. We report Recall (R), Precision (P), and F1-score (F1). For Single Classification, we also report the Parent Recall (R_{parent}) to assess understanding the hierarchical relations.

Hierarchical Classification. Table 1 reveals a consistent trend across all models: significantly higher recall than precision. This imbalance indicates that while models are proficient at identifying potentially relevant sensations, they struggle to reject incorrect ones, leading to many false positives. Notably, MLLMs generally outperform their LLM counterparts on this task. This suggests that direct visual input provides crucial cues that are lost or distorted in text-only descriptions. This loss is particularly evident in the performance of Gemma (Team et al., 2025). The MLLM version, which processes the image directly, achieves higher Recall and F-1 score than the LLM version, which operates on a text description from that same MLLM.

Single Classification. The results in Table 1 show that while MLLMs achieve higher precision and F1-scores, LLMs have a stronger performance on Parent Recall (R_{parent}). This suggests MLLMs are more adept at grounding their selections in visual evidence, leading to more accurate overall

Model	Hierachal Selection			Single Selection			
	P	R	F1	P	R	F1	R_{parent}
MLLMs							
QwenVL	0.17	0.62	0.10	0.33	0.18	0.11	0.45
InternVL	0.13	0.60	0.08	0.18	0.44	0.08	0.41
LLAVA-Next	0.10	0.60	0.07	-	-	-	-
GEMMA	0.17	0.66	0.11	0.11	0.39	0.05	0.49
LLMs							
QwnLM + D_{QwnVL}	0.18	0.45	0.08	0.18	0.42	0.07	0.24
GEMMA + D_{QwenVL}	0.16	0.54	0.09	0.13	0.54	0.07	0.65
LLAMA3 + D_{QwenVL}	0.19	0.43	0.08	0.15	0.47	0.08	0.48

Table 1: **Sensation Classification:** Results of MLLMs and LLMs on classification tasks.

Metrics	Real Ads		Generated Ads	
	r	κ	r	κ
VQA-score	0.27	0.55	0.25	0.52
Image-Reward	0.21	0.46	0.21	0.40
CLIP-score	0.22	0.43	0.21	0.45
Pick-score	0.15	0.38	0.15	0.41
LLAMA3-instruct (zero-shot) + $D_{InternVL}$	-0.02	-0.01	-0.02	-0.01
QwenLM (zero-shot) + $D_{InternVL}$	-0.02	-0.02	-0.02	-0.04
EvoSense (LLAMA3-instruct + $D_{InternVL}$)	0.38	0.86	0.31	0.68
EvoSense (LLAMA3-instruct + D_{QwenVL})	0.35	0.80	0.31	0.67
EvoSense (QwenLM + $D_{InternVL}$)	0.32	0.70	0.26	0.56
EvoSense (QwenLM + D_{QwenVL})	0.30	0.65	0.26	0.55

Table 2: **Metric Quality.** Pearson Corr. (r) and Kappa agreement (κ) between metric [scores/chosen sensations] and human [scores/chosen] on 5000 real and 5000 generated image-sensation pairs.

classification. Conversely, LLMs, operating on textual descriptions and definitions, develop a better understanding of the abstract, semantic relationships between sensations in the hierarchy.

4.2 EVOSENSE

EvoSense is our evaluation method designed to assess the intensity with which an image evokes a specific sensation. To evaluate the accuracy of our metric, we use human annotations in our dataset (separate from those used for training EvoSense). For each image, if a sensation was chosen by an annotator, the intensity of that sensation is set the same as the score chosen by the annotator, otherwise it is set to zero. For agreement computation we use: (1) Pearson Correlation (r) between the scores for each (image, sensation) pair chosen by annotators and computed by the metrics, and (2) Kappa (κ), where we use the sensation with higher score as the chosen one.

EvoSense compared to baselines. We benchmark EvoSense against baseline metrics, including VQA-score (Lin et al., 2024), ImageReward (Xu et al., 2023), CLIP-score (Hessel et al., 2021), and Pick-score (Kirstain et al., 2023). To demonstrate the necessity of our proposed fine-tuning procedure, we further compare EvoSense against the zero-shot performance of the EvoSense inference pipeline using LLAMA3-instruct (*LLAMA3*) and QwenLM (*QwenLM*) with image descriptions generated by InternVL ($D_{InternVL}$) and QwenVL (D_{QwenVL}). As observed in Table 2, among baseline metrics, VQA-score achieves the highest human-metric agreement with moderate performance ($\kappa = 0.55$, $r = 0.27$ on real ads and $\kappa = 0.52$, $r = 0.25$ on generated images). In contrast, fine-tuned EvoSense reaches near-perfect agreement with human ($\kappa = 0.86$, $r = 0.38$) on

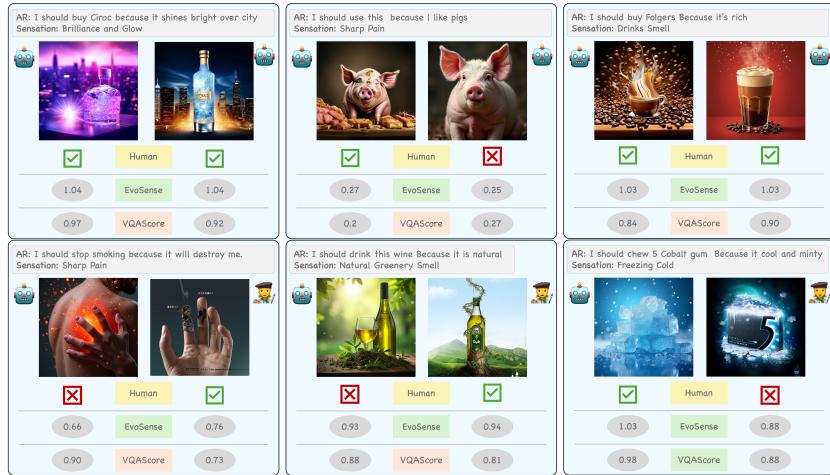


Figure 4: **Examples on human agreement with EvoSense and VQA-score** on intensity of sensations in the image. The Human row shows the chosen (✓) image(s) (including ties) and rejected (✗) image. Red background indicates the model-chosen (higher-scoring) option is misaligned with human choice, and green background shows it is aligned.

real ads and substantial performance ($\kappa = 0.68$, $r = 0.31$) on generated ads, representing a 56% and 30% improvement on Kappa agreement for real and generated ads, and 41% and 24% on Pearson Corr. improvement over the best baseline. Notably, zero-shot EvoSense exhibits negative agreement—complete misalignment with human judgments, emphasizing that our fine-tuning procedure is essential for alignment with human perception. The examples in Fig. 4 show higher agreement of EvoSense with human annotation compared to VQA-score (the best baseline), especially in cases where humans give equal scores for both images.

Ablation on EvoSense. We conducted an ablation study to analyze the impact of the core components of EvoSense: the base LLM and the MLLM used for description generation. The results in Table 2 show that while both fine-tuned LLMs significantly outperform all baseline metrics, LLAMA3-instruct holds a slight edge over QwenLM in human agreement. Furthermore, the results demonstrate the robustness of our method to the source of the image descriptions. When the descriptions are generated by QwenVL (D_{QwenVL}) instead of InternVL ($D_{InternVL}$), the change in agreement scores for the fine-tuned models is minimal.

4.3 SENSORYAD GENERATION

First, we benchmark different T2I models including Flux (Black Forest Labs, 2024), Stable Diffusion 3 (SD3) (Esser et al., 2024), AuraFlow (Fal, 2024), PixArt (Chen et al., 2024), and Qwen-Image (Wu et al., 2025), on the SensoryAd task evaluating their abilities in generating images that convey specific ad messages and evoke the given sensation to make the images more persuasive. Next, we benchmark the models on generating images that evoke specific sensation without any other information (such as ad message) in the prompt ('Generate an image evoking {sensation}'), to better understand their abilities in sensory image generation, as a reference point for our analysis.

Sensation Intensity in Generated Ads. Table 3 shows that among T2I models, Qwen-Image achieves the highest sensation intensity and SD3 has the lowest intensity. We note that while the goal is to evoke specific sensations, sometimes models exaggerate in evoking the sensation, overlook the advertisement message, and only show sensation-associated objects. For example, in Fig. 4, the image generated for an ad conveying 'I should chew 5 Cobalt gum Because it cool and minty' evoking Freezing Cold sensation, only depicts ice-cubes in the image which does not convey the message. See sec. A.1 for further analysis comparing sensation intensity in generated and real ads.

Comparison of Sensory Ad Generation and Sensory Image Generation. Table 3 shows that sensation intensity in images (not ads) generated for 'Generate an image evoking {sensation}' is

432	433	434	Sensory Ad Generation		Sensory Image Generation		
			EvoSense (LLAMA3)	AIM	EvoSense (LLAMA3)	EvoSense (QwenLM)	
			$D_{InternVL}$	$D_{InternVL}$	D_{QwenVL}	$D_{InternVL}$	D_{QwenVL}
435	Flux		0.90	0.60	0.72	0.72	0.71
436	SD3		0.89	0.61	0.69	0.68	0.69
437	AuraFlow		0.90	0.59	0.74	0.74	0.74
438	PixArt		0.91	0.59	0.76	0.75	0.76
439	Qwen-Image		0.93	0.63	0.77	0.76	0.75

Table 3: Evaluating Generated Sensory Ads, and Sensory Images

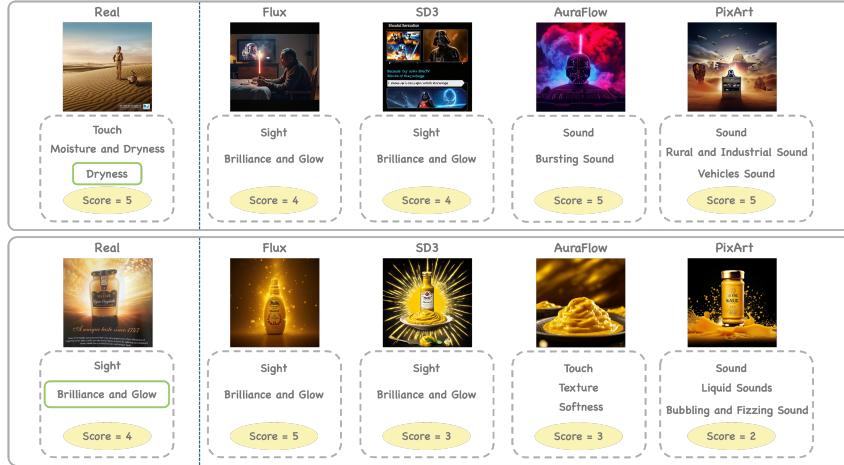


Figure 5: **Sensory Ad examples.** Two examples of real advertisement and generated advertisements by Flux (Black Forest Labs, 2024), SD3 (Esser et al., 2024), AuraFlow(Fal, 2024), and PixArt (Chen et al., 2024) given the action-reason interpretation and sensation annotation for the real advertisement. **Green border** represents the sensation used in the prompt of T2I models.

lower than intensity of sensation in Sensory Ads. When sensations are commonly associated with specific objects, the model exaggerates in evoking the sensation and overlooks the advertisement message, but when sensation is less common, or it is not associated with an object, existence of some visual elements or attributes in the advertisement message (action-reason statement) can help the model in evoking the sensation.

We compare intensity of sensations for real and generated images, and for different sensations, in Fig. 5 and sec. A.1. For some sensations like “Brilliance and Glow” which are either visual sensation or commonly associated with specific objects, not only can the model evoke the target sensation, but it can evoke it with higher intensity than the corresponding real image (ex. Flux in evoking Brilliance and Glow). In contrast, for sensations which are less visual, like Dryness, the models fail in generating images evoking the sensations.

5 CONCLUSION

We addressed the challenging, previously unexplored task of generating and understanding visual content that evokes specific human sensations, a crucial element of persuasive advertising. To facilitate research in this area, we introduced the *SensoryAd benchmark* including the SensoryAd dataset with a detailed hierarchical taxonomy for sensation, two Sensation Classification tasks, and the new SensoryAd Generation task. We propose *EvoSense*, an evaluation metric that accurately measures the intensity of evoked sensations. By fine-tuning an LLM with a hybrid objective (CPO and hierarchical constraints), *EvoSense* achieves high agreement with human judgments, significantly outperforming existing baselines by up to 56%. This work lays the foundation for developing a new generation of sensation-aware models and expanding the scope beyond advertising.

486 REFERENCES
487

488 Aysan Aghazadeh and Adriana Kovashka. Cap: Evaluation of persuasive and creative image gener-
489 ation. *arXiv preprint arXiv:2412.10426*, 2024.

490 Arjun R Akula, Brendan Driscoll, Pradyumna Narayana, Soravit Changpinyo, Zhiwei Jia, Suyash
491 Damle, Garima Pruthi, Sugato Basu, Leonidas Guibas, William T Freeman, et al. Metaclue:
492 Towards comprehensive visual metaphors research. In *Proceedings of the IEEE/CVF conference*
493 *on computer vision and pattern recognition*, pp. 23201–23211, 2023.

494 Thoranna Bender, Simon Sørensen, Alireza Kashani, Kristjan Eldjarn Hjorleifsson, Grethe Hyldig,
495 Søren Hauberg, Serge Belongie, and Frederik Warburg. Learning to taste: A multimodal wine
496 dataset. *Advances in Neural Information Processing Systems*, 36:7351–7360, 2023.

497

498 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
499 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer*
500 *Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

501 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

502

503 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
504 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photore-
505 alistic text-to-image synthesis. In *ICLR*, 2024.

506 Luca Cian, Aradhna Krishna, and Ryan S Elder. This logo moves me: Dynamic imagery from static
507 images. *Journal of marketing research*, 51(2), 2014.

508 Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and psychological mea-
509 surement*, 20(1):37–46, 1960.

510

511 Shengqi Dang, Yi He, Long Ling, Ziqing Qian, Nanxuan Zhao, and Nan Cao. Emoticrafter: Text-to-
512 emotional-image generation based on valence-arousal model. *arXiv preprint arXiv:2501.05710*,
513 2025.

514 Ryan S Elder and Aradhna Krishna. A review of sensory imagery for consumer psychology. *Journal*
515 *of Consumer Psychology*, 32(2):293–315, 2022.

516

517 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
518 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
519 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
520 2024.

521 Fal. Introducing auraflow v0.1, an open exploration of large rectified flow models, 2024. Available
522 at: <https://blog.fal.ai/auraflow/> [Accessed: 2024-11-07].

523

524 Sreyan Ghosh, Sonal Kumar, Ashish Seth, Chandra Kiran Reddy Evuru, Utkarsh Tyagi, S Sakshi,
525 Oriol Nieto, Ramani Duraiswami, and Dinesh Manocha. Gama: A large audio-language model
526 with advanced audio understanding and complex reasoning abilities. In *Proceedings of the 2024*
527 *Conference on Empirical Methods in Natural Language Processing*, pp. 6288–6313, 2024.

528

529 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
530 reference-free evaluation metric for image captioning. In *Proceedings of the 2021 Conference*
531 *on Empirical Methods in Natural Language Processing*, pp. 7514–7528, 2021.

532

533 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
534 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
535 ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

536

537 Bertil Hultén. *Sensory marketing: Theoretical and empirical grounds*. Routledge, 2015.

538

539 Zaeem Hussain, Mingda Zhang, Xiaozhong Zhang, Keren Ye, Christopher Thomas, Zuha Agha,
540 Nathan Ong, and Adriana Kovashka. Automatic understanding of image and video advertise-
541 ments. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
542 1705–1715, 2017.

540 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 541 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural*
 542 *information processing systems*, 36:36652–36663, 2023.

543 Aradhna Krishna. An integrative review of sensory marketing: Engaging the senses to affect per-
 544 ception, judgment and behavior. *Journal of consumer psychology*, 22(3):332–351, 2012.

545 Aradhna Krishna and Norbert Schwarz. Sensory marketing, embodiment, and grounded cognition:
 546 A review and introduction. *Journal of consumer psychology*, 24(2):159–168, 2014.

547 Aradhna Krishna, Luca Cian, and Tatiana Sokolova. The power of sensory marketing in advertising.
 548 *Current Opinion in Psychology*, 10:142–147, 2016.

549 Jiayi Liao, Xu Chen, Qiang Fu, Lun Du, Xiangnan He, Xiang Wang, Shi Han, and Dongmei Zhang.
 550 Text-to-image generation for abstract concepts. In *Proceedings of the AAAI Conference on Arti-
 551 ficial Intelligence*, volume 38, pp. 3360–3368, 2024.

552 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 553 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *ECCV*,
 554 2024.

555 Martin Lindstrom. Brand sense: How to build powerful brands through touch, taste, smell, sight and
 556 sound. *Strategic Direction*, 22(2), 2006.

557 Amy C Nau, Christine Pintar, Aimee Arnoldussen, and Christopher Fisher. Acquisition of visual
 558 perception in blind adults using the brainport artificial vision device. *The American Journal of
 559 Occupational Therapy*, 69(1):6901290010p1–6901290010p8, 2015.

560 Johanna Palcu, Simona Haasova, and Arnd Florack. Advertising models in the act of eating: How
 561 the depiction of different eating phases affects consumption desire and behavior. *Appetite*, 139:
 562 59–66, 2019.

563 Chanjong Park and In-Kwon Lee. Emotional landscape image generation using generative adver-
 564 sarial networks. In *Proceedings of the Asian Conference on Computer Vision*, 2020.

565 Olivia Petit, Carlos Velasco, and Charles Spence. Digital sensory marketing: Integrating new tech-
 566 nologies into multisensory online experience. *Journal of Interactive Marketing*, 45(1):42–61,
 567 2019.

568 Cosima Prahm, Korbinian Eckstein, Michael Bressler, Zhixing Wang, Xiaotong Li, Takashige
 569 Suzuki, Adrien Daigeler, Jonas Kolbenschlag, and Hideaki Kuzuoka. Phantomar: gamified mixed
 570 reality system for alleviating phantom limb pain in upper limb amputees—design, implemen-
 571 tation, and clinical usability evaluation. *Journal of NeuroEngineering and Rehabilitation*, 22(1):21,
 572 2025.

573 Somesh Singh, Harini SI, Yaman K Singla, Veeky Baths, Rajiv Ratn Shah, Changyou Chen, and
 574 Balaji Krishnamurthy. Teaching human behavior improves content understanding abilities of
 575 llms. *arXiv preprint arXiv:2405.00942*, 2024.

576 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 577 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 578 report. *arXiv preprint arXiv:2503.19786*, 2025.

579 Jamie Ward and Julia Simner. Lexical-gustatory synesthesia: linguistic and conceptual factors.
 580 *Cognition*, 89(3):237–261, 2003.

581 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 582 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 583 2025.

584 Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
 585 Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of
 586 llm performance in machine translation. In *International Conference on Machine Learning*, pp.
 587 55204–55224. PMLR, 2024.

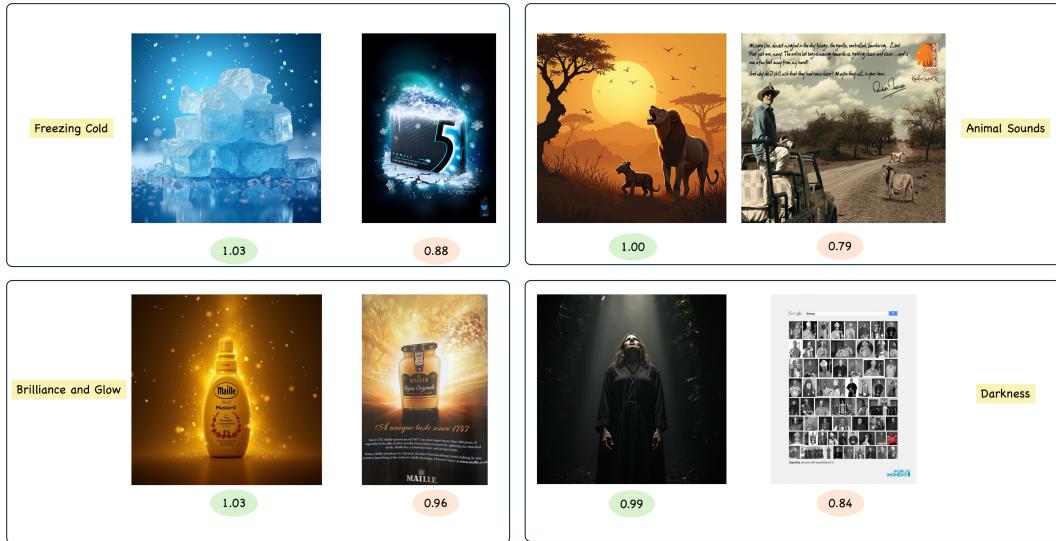


Figure 6: **Examples of exaggeration in sensation evocation.** In each group image on the left represents the generated images and image on the right represents real advertisement.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

Fengyu Yang, Chao Feng, Ziyang Chen, Hyoungseob Park, Daniel Wang, Yiming Dou, Ziyao Zeng, Xien Chen, Rit Gangopadhyay, Andrew Owens, et al. Binding touch to everything: Learning unified multimodal tactile representations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26340–26353, 2024a.

Jingyuan Yang, Jiawei Feng, and Hui Huang. Emogen: Emotional image content generation with text-to-image diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6358–6368, 2024b.

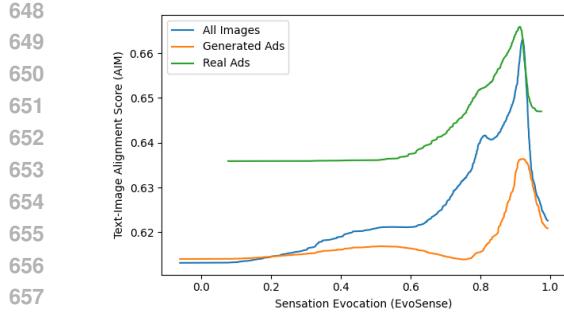
Sung-Joon Yoon and Ji Eun Park. Do sensory ad appeals influence brand attitude? *Journal of Business Research*, 65(11):1534–1542, 2012.

Albert J Zhai, Yuan Shen, Emily Y Chen, Gloria X Wang, Xinlei Wang, Sheng Wang, Kaiyu Guan, and Shenlong Wang. Physical property understanding from language-embedded feature fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 28296–28305, 2024.

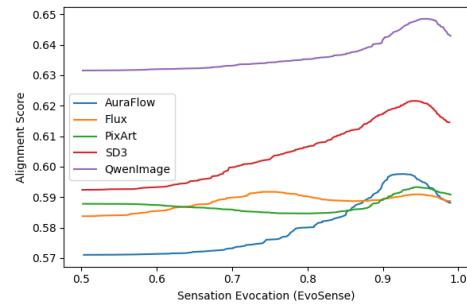
A APPENDIX

A.1 COMPARISON OF REAL AND GENERATED ADVERTISEMENTS

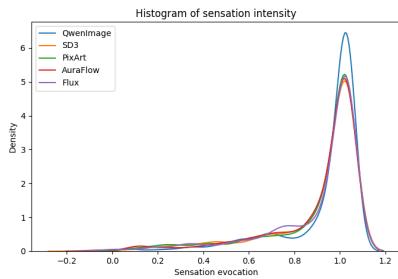
As part of our analysis on how well T2I models are capable in generating effective intensity of sensation, we compared the intensity of sensation in generated advertisements and real advertisements. Average sensation intensity of sensations in real ads computed by EvoSense is 0.83 which is lower than intensity of sensations in the ads generated by T2I models. However, this does not represent the capability of T2I models in generating Sensory Ads, in contrast it is due to exaggeration in evoking sensations (Sensory Exaggeration) that are either related to visual sensations (any sensation under sight category) or sensations that commonly associated with some objects like ‘Freezing Cold’ which is commonly represented by ice-cubes or intense snow. In Fig. 6, generated images evoke the input sensation with higher intensity than real advertisement; however, this exaggeration in evoking the sensation results in overlooking the Advertisement message and failing in conveying it. For example, in Fig. 6 - top left image is supposed to convince the audience to buy the Five gum



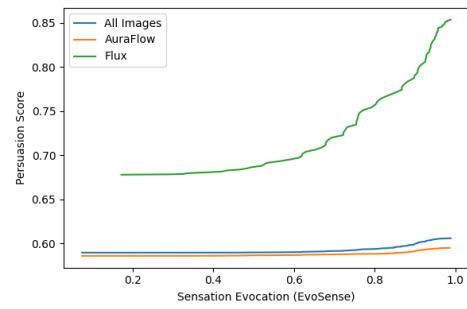
(a) Relationship between Sensation Evocation and Text-Image Alignment in real and generated advertisements.



(b) Relationship between Sensation Evocation and Text-Image Alignment in generated advertisement by different T2I models in the benchmark.



(c) Density of sensation intensity evoked by images generated by different T2I models.



(d) Relation between sensation and persuasion.

Figure 7: Analysis of sensation intensity, text-image alignment, and persuasion in generated and real advertisements.

by showing the cooling and refreshing feature of the product; however, while the image intensely evokes the sensation it fails to convey the message.

We further examine the alignment between AR messages and images across varying sensation quality values. For alignment, we employ the AIM metric from Aghazadeh & Kovashka (2024), while sensation quality is measured using EvoSense. Although an overall trend exists in the relationship between alignment and sensation evocation, the plot exhibits considerable noise due to confounding factors such as image generation quality. To address this, we applied a Gaussian filter to the AIM scores to smooth the visualization. Fig. 7a presents the smoothed plot, which reveals that alignment initially increases with sensation evocation, reaches a peak, and subsequently decreases as sensation evocation continues to increase.

We then analyze the relation between sensation intensity and both alignment of the generated images by each T2I model in our benchmark in Fig. 7b. We observe, QwenImage while keeping the same behavior as other models, alignment increases with the increase of sensation intensity at first and decreases after, the alignment score of AIM metric is constantly higher which highlights the better performance of QwenImage in SensoryAd Generation. Finally, in Fig. 7c, show the density of sensation intensity values for images generated by each model. The plot in Fig. 7c further supports the exaggeration in evoking the sensation by generated images, by representing the highest density of sensation evocation value is in the domain that the alignment score decreases.

A.2 CONNECTION OF PERSUASION AND SENSATION EVOCATION

While previously studied in marketing, and psychology area Lindstrom (2006); Yoon & Park (2012); Elder & Krishna (2022); Krishna et al. (2016) by doing the human study on sensory advertisement, in this section we analyze the relation between the persuasion and sensation evocation in generated images using computational persuasion evaluation metric from Aghazadeh & Kovashka (2024). We

702 plot the persuasion score over sensation intensity in the images in Fig. 7d, to analyze the effect
 703 of evoking sensation in making the images more persuasion. In the figure, we observe that the
 704 persuasion score for the images increases with the increase in the sensation intensity of the images.
 705

706 **Ethical concerns around sensory advertisements.** There are two main implications: First genera-
 707 tion of adversarial persuasive content such as encouraging the audience to drink alcohol more often.
 708 This is a general problem with any T2I model. Second, the model might generate sensitive content
 709 for a certain group of audience and this is one of the motivations for classification tasks. While
 710 automatically generating the Sensory Ads can be helpful, some sensitive sensations (for example
 711 pain) should be detected and prevented from showing to a specific group of audience. This is why it
 712 is also important to be able to classify the sensations evoked by the image.
 713

714 A.3 COMPARISON OF DIFFERENT SENSATIONS.

715 To analyze the capability of the T2I model in generating images evoking each sensation in our
 716 taxonomy, we isolated the sensation and only prompted the model to ‘Generate an image that evokes
 717 {sensation}’ with seeds from 0 to 9 resulting in 960 images for each model and 4800 images in
 718 overall. Fig. 8 represents the intensity of different sensations evoked in Sensory Image generation
 719 task. As shown in Fig. 8, models struggle more in evoking sensations with less common visual
 720 representation such as different human voice, or in overall different sounds. In contrast, models can
 721 evoke visual sensations - Sight and its children - with high intensity.
 722

723 Fig. 9, shows an example of advertisements generated evoking four different sensations. Fig. 9,
 724 further represents the difference between capabilities of T2I models in evoking visual sensations
 725 like “Brilliance and Glow” and more abstract sensations like “Pressure”.
 726

727 A.4 DATASET

728 To collect the dataset we defined the taxonomy represented in Fig. 10. Next, we randomly sampled
 729 670 images from PittAd dataset Hussain et al. (2017) images covering 95 sensations and more
 730 than 40 topics. The diversity of images over 5 main sensations and 10 most frequent topics is
 731 represented in Fig. 11. For data annotation, we first had a test phase study on Prolific, gave the
 732 annotators detailed instruction with examples of images evoking each sensation, and selected a
 733 group of annotators based on the quality of their responses to do the main study. We used Qualtrics
 734 to create dynamic forms showing different options based on annotators choice in each step. The
 735 form is uploaded as the supplementary file.
 736

737 The annotations were done by 12 annotators from different genders, within the age range of 25–60,
 738 and with education level of minimum high school diploma, achieving approval rate above 90%
 739 on more than 1000 annotations, and located in the United States. For each image, 1 annotator
 740 annotated the image, then the quality of annotations were approved by a skilled evaluator. If there
 741 was a disagreement on the annotation, the annotator was asked to explain the reasons for choosing
 742 a specific sensation (this happened very rarely), and if the second annotator was not convinced the
 743 annotation was ignored and the image was available in the pool for the new annotation. To further
 744 confirm the reliability of annotations for about 10% of images we collected 2 annotations from two
 745 different annotators and computed the κ agreement between them. The human-human agreement in
 746 our dataset is 0.83 with 95% CI equal to [0.831, 0.838].
 747

748 A.5 EXPERIMENTAL SETUP DETAILS.

749 In this section we explain our experimental setup. We will also release the github link upon the ac-
 750 ceptance of the paper. For all the models we used Hugging Face implementation of the models. **Sen-**
 751 **sation Classification.** In sensation classification tasks, we evaluated the model on real advertisement
 752 images in our dataset. We benchmarked MLLMs including the InternVL (InternVL3.5-8B), Gemma
 753 (gemma-3-4b-it), QwenVL (Qwen2.5-VL-7B-Instruct), and LLaVA-Next (llava-v1.6-vicuna-13b-
 754 hf) with 8-bit quantization for models with more than 4Billion parameters. We also benchmarked
 755 LLMs including Gemma, LLaMA3 (Meta-Llama-3-8B-Instruct), and QwenLM (Qwen2.5-7B-
 756 Instruct), given the descriptions generated by the same MLLMs. Similar to MLLMs 8-bit quan-
 757 tization was applied on models with more than 4B parameters.
 758

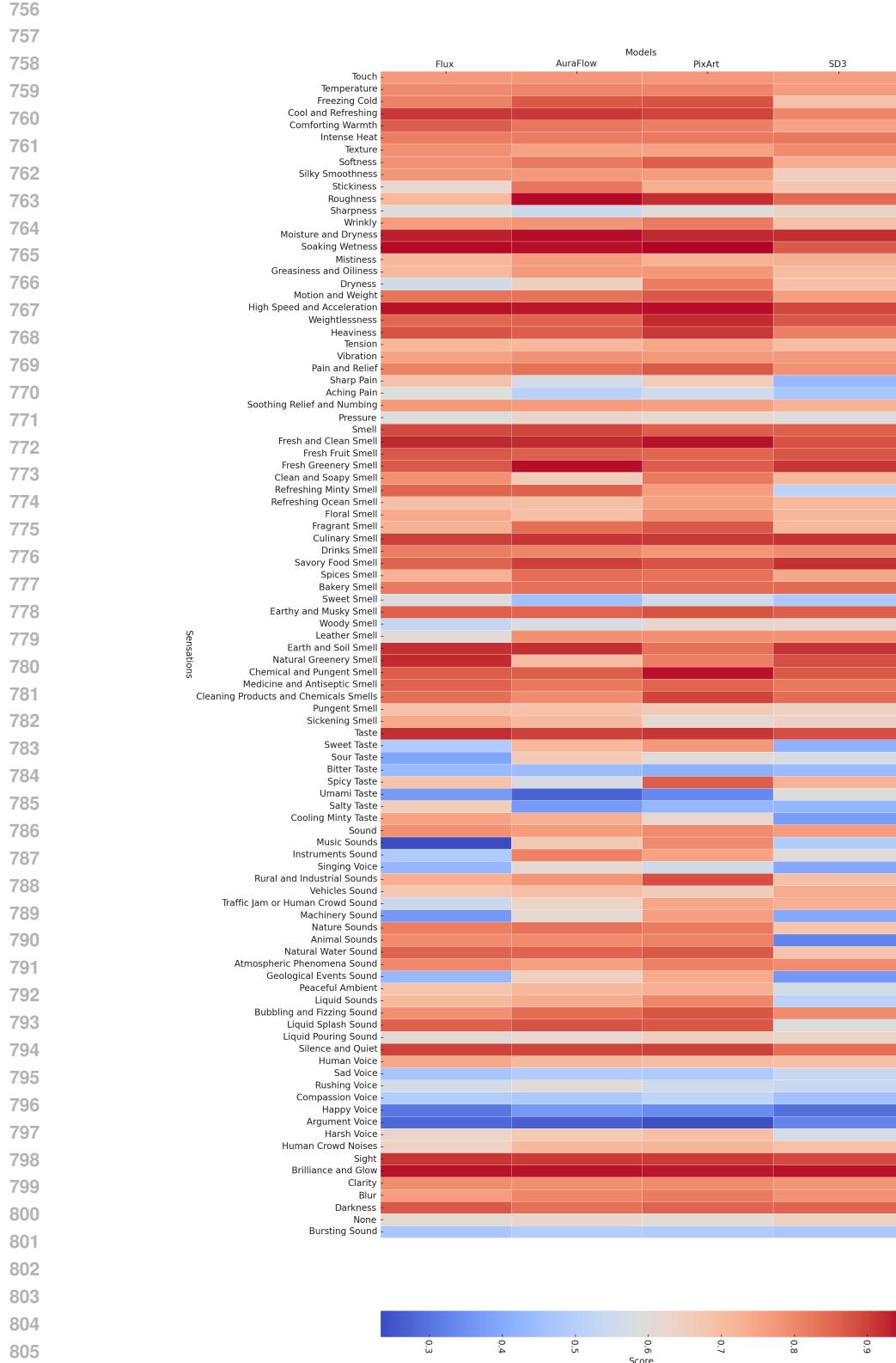


Figure 8: **Sensation Heatmap.** Average EvoSense score for images generated by each model for each sensation. Each model generates ten images evoking each sensation.

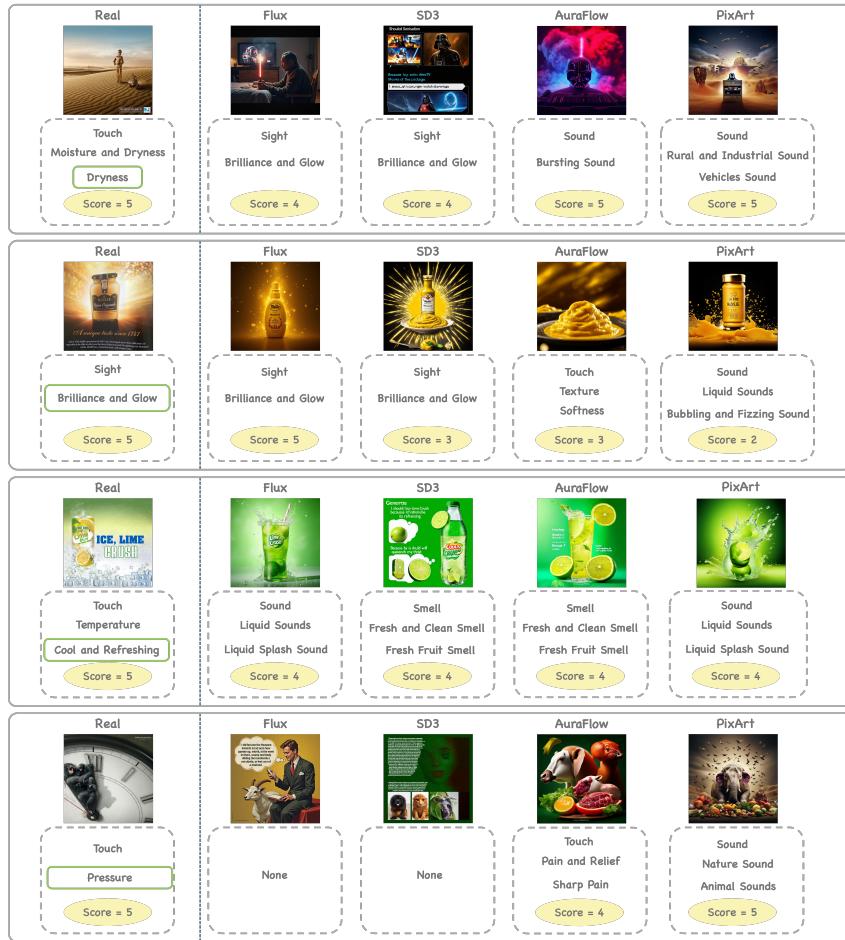


Figure 9: **Sensory Ad examples.** Four examples of real advertisement and generated advertisements by Flux (Black Forest Labs, 2024), SD3 (Esser et al., 2024), AuraFlow(Fal, 2024), and PixArt (Chen et al., 2024) given the action-reason interpretation and sensation annotation for the real advertisement. **Green border** represents the sensation used in the prompt of T2I models.

EvoSense Training. To train and evaluate our proposed evaluation metric, we randomly selected 50 images from annotations to create our training data. In our proposed training, we pair each two sensations with different intensity (scores chosen by human annotators) as chosen and rejected. Each data point in our training, included description of the image, chosen sensation, rejected sensation, and parent of chosen sensation. This training data setting resulted in 21000 data point. We fine-tuned the LLMs - LLAMA3 (Meta-Llama-3-8B-Instruct), and QwenLM (Qwen2.5-7B-Instruct) - using LoRA Hu et al. (2022) with batch-size of 1, and learning rate 5e-5. Our evaluation of EvoSense performance was on a subset of the images not selected for training.

EvoSense Evaluation. In this part we do a more in depth evaluation on EvoSense. We increase the number of images in our human-metric agreement evaluation to 100 images and more than 100000 (as before the images are unseen in the fine-tuning phase) and break-down the images by the high level sensation each image evokes and report the agreement under each category of sensation.

First, we do an ablation on number of fine-tuning steps (i.e. number of images in the fine-tuning set) to analyze the effect of fine-tuning data size on the performance of our evaluation metric. In table 4, we observe that the agreement of our metric with human annotators stays almost consistent with the increase in the size of fine-tuning data showing the effectiveness of our data expansion approach.

Next, we add InternVL, and QwenVL performing as a judge for sensation intensity to EvoSense baselines in our evaluation reporting the per sensation kappa agreement between human and metrics

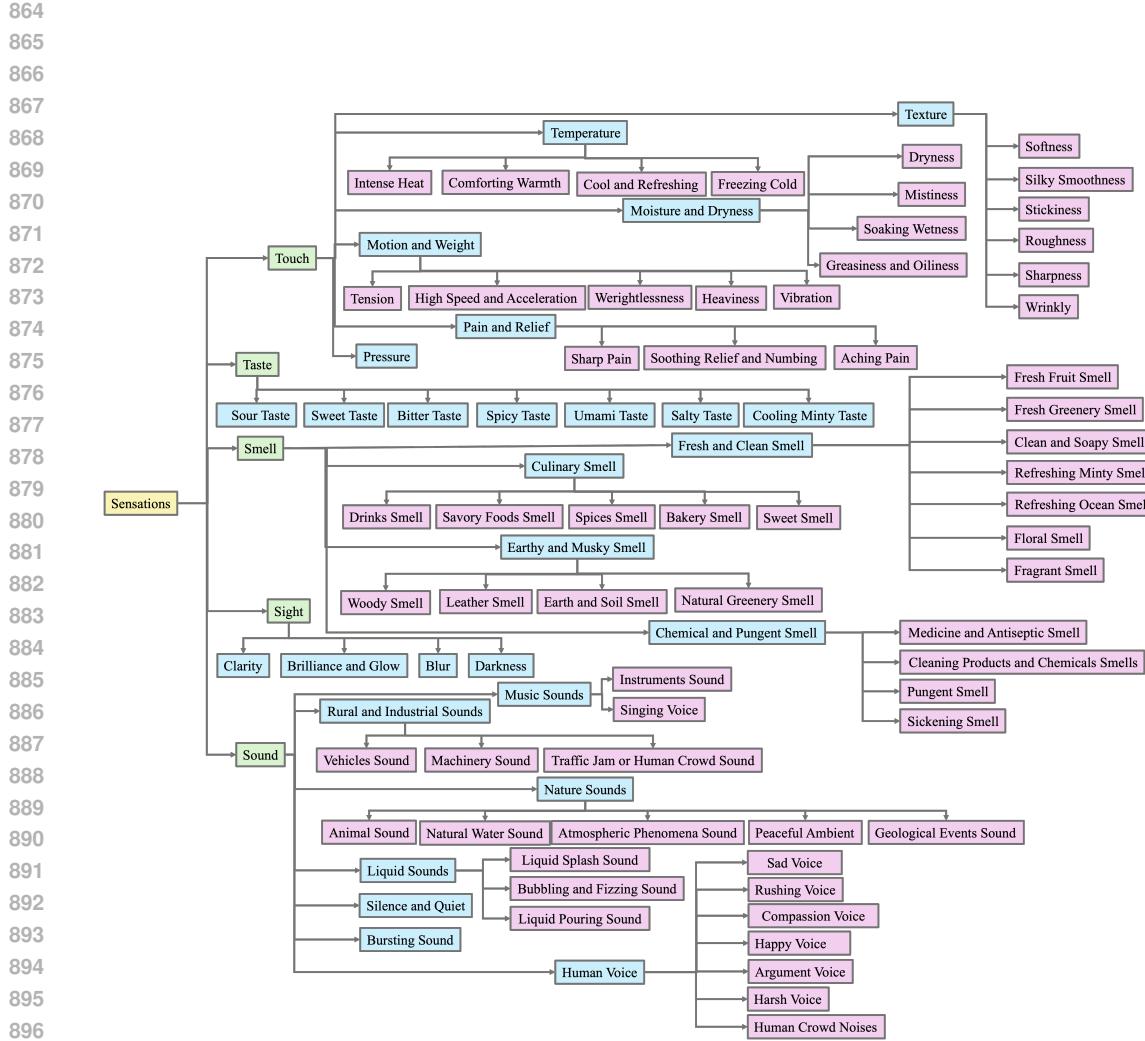


Figure 10: **Sensation Hierarchy.** First level, represents the main five human sensations, and each sensation is categorized into different set of sensations.

Metrics	steps	touch	smell	sound	taste	sight	All
EvoSense (LLAMA3-instruct + $D_{InternVL}$)	21000	0.79	0.82	0.77	0.84	0.85	0.80
EvoSense (LLAMA3-instruct + $D_{InternVL}$)	25000	0.80	0.82	0.78	0.83	0.88	0.81
EvoSense (LLAMA3-instruct + $D_{InternVL}$)	30000	0.80	0.82	0.78	0.84	0.88	0.81
EvoSense (LLAMA3-instruct + $D_{InternVL}$)	30000	0.80	0.81	0.78	0.84	0.87	0.81

Table 4: **Fine-tuning Ablation.** Kappa agreement (κ) between EvoSense metric with different number of fine-tuning steps on ζ 10000 image-sensation pairs broken down into the sensation each image evokes among the high level sensations.

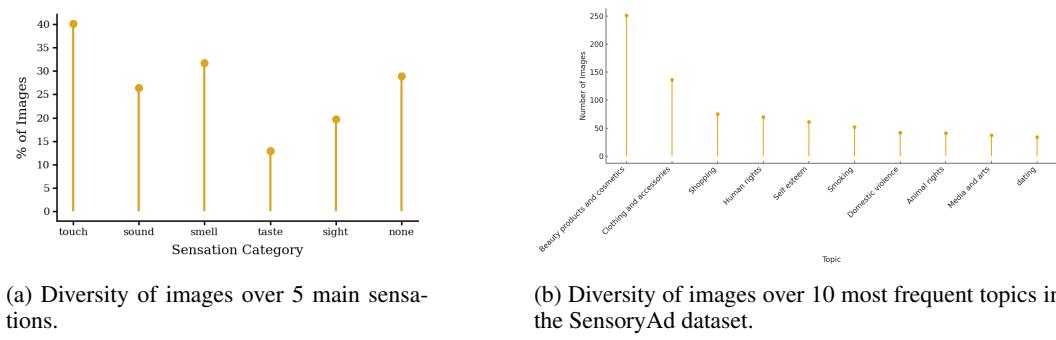


Figure 11: Image Distribution. Percentage of images evoking each high-level sensation category on left and distribution of different topics on right side.

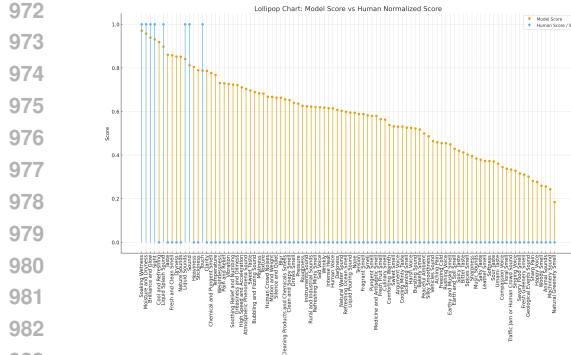
Metrics	touch	smell	sound	taste	sight	All	95% CI
VQA-score	0.58	0.60	0.42	0.65	0.58	0.57	[0.561, 0.570]
Image-Reward	0.49	0.50	0.38	0.34	0.45	0.46	[0.457, 0.467]
CLIP-score	0.48	0.47	0.36	0.41	0.30	0.44	[0.430, 0.440]
Pick-score	0.38	0.45	0.12	0.36	0.30	0.36	[0.350, 0.361]
LLAMA3-instruct (zero-shot)	-0.09	0.08	-0.22	-0.005	-0.007	-0.04	[-0.038, -0.027]
QwenLM (zero-shot)	-0.15	0.04	-0.22	0.03	0.003	-0.06	[-0.064, -0.053]
InternVL (zero-shot)	0.54	0.48	0.43	0.54	0.49	0.50	[0.507, 0.514]
QwenVL (zero-shot)	0.55	0.48	0.43	0.54	0.50	0.50	[0.507, 0.514]
EvoSense (LLAMA3-instruct + $D_{InternVL}$)	0.79	0.82	0.77	0.84	0.85	0.80	[0.806, 0.813]
EvoSense (LLAMA3-instruct + D_{QwenVL})	0.76	0.77	0.70	0.79	0.73	0.75	[0.754, 0.761]
EvoSense (QwenLM + $D_{InternVL}$)	0.64	0.69	0.57	0.73	0.64	0.66	[0.658, 0.666]
EvoSense (QwenLM + D_{QwenVL})	0.62	0.66	0.50	0.67	0.58	0.61	[0.612, 0.621]

Table 5: Kappa agreement between human annotators and evaluation metrics over different sensation categories on 100 images (10000 image-sensation pairs)

along with confidence intervals for all the image-sensation pairs. In table 5, it is observed that EvoSense improves the agreement with human by 60% compared to 0-shot MLLMs as a judge. Table 5 further represents that the agreement between EvoSense and human annotators is consistent over different sensation categories. EvoSense achieves higher agreement by at least 40% compared to baselines over different sensation categories.

Kappa Agreement and Pearson Correlation Gap. As observed in table 2, there is a big gap in the values of Kappa agreement (κ) and Pearson Correlation (r) reflected on all the metrics. In this part, we analyze the reason why the gap exist using a qualitative example of scores. The difference is because the annotators choose up-to 3 sensation groups evoked by the image, and the rest of the scores are 0. On the other hand, the computational metrics (including EvoSense and the baselines) choose different scores for each sensation. For computing κ agreement, we use the sensation intensity as the criteria for choosing the winner sensation for the image given each two sensation. We ignore the sensation pairs where the human annotators assign the same score to both sensations. This way we significantly reduce the sparsity of human annotations for the image. So, while the incorrect sensations are included paired with selected sensations, they are not included as paired with other unselected sensations. This is why κ is bigger than r where the 0 scores are kept in correlation computation. Fig. 12a shows the scores from human and metrics for each sensation given the image highlighting the problem of correlation because of the sparsity of the human scores. The figure represents while high scores assigned by metric represent the sensations evoked by the image selected by the human, because of the sudden drop in the values of human scores, correlation becomes lower.

Description Generation. We generate descriptions of images with 0-shot InternVL, Gemma, and QwenVL and utilize the same descriptions in assessing LLMs' capabilities on sensation classifica-



(a) Scores assigned to each sensation by human annotator and EvoSense.

(b) Example images.

Figure 12: Comparison of human scores and metric scores for each sensation’s intensity evoked by the example image.

tion tasks, and EvoSense evaluation. Fig. 13, represents two examples of descriptions generated by each of the MLLMs. As shown in the examples, given the prompt in table 10 the models generate accurate descriptions of the image without interpreting the image. This prevents the information leakage in EvoSense while providing the accurate description of the image for LLMs in both classification and evaluation tasks. Negative agreements of zero-shot LLMs (LLAMA3-instruct and QwenLM) in table 2 further rejects the hypothesis of information leakage from MLLM description generation.

SensoryAd Generation. We benchmarked different T2I models including Stable Diffusion 3 (stable-diffusion-3-medium-diffusers), PixArt (PixArt-alpha/PixArt-XL-2-1024-MS), AuraFlow (AuraFlow-v0.3), Flux (FLUX.1-dev), and QwenImage (Qwen-Image) with 4-bit quantization on QwenImage and 8-bit quantization on rest of the models. We set the seed to 0 and number of time-steps as 28. For the rest of the model setting we use the default values. To generate the Sensory Ads, we utilized the sensation group (different level in hierarchy) evoked by the image with highest intensity generating an image for each sensation.

Fine-tuning SD3 on SensoryAd Generation. To further analyze the capability of T2I models, we fine-tuned the SD3 model on SensoryAd data. After fine-tuning text-image alignment of images increases by 0.01 compared to 0-shot SD3 and sensation intensity stays unchanged. We hypothesize, this is the result of implicitness of the text input and the sensation as previously suggested by Aghazadeh & Kovashka (2024) making the generation task more challenging.

Prompts. We have included prompts in Tables 10 (for image description generation), 9, 8, 7, 6 (for Sensation Classification tasks), and 12, 11 (for Sensory Image Generation tasks).

Usage of AI: We use AI to polish writing.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

InternVL

Q1: Yes, there are objects in the image. The objects include: 1. A waterfall 2. Two wooden posts 3. A bird on the left wooden post 4. A bird in flight above the waterfall 5. Rocks at the base of the waterfall
 Q2: The image features a large waterfall cascading down a cliff into a body of water below. Two wooden posts stand on either side of the waterfall, with a bird perched on the left post. Another bird is flying in the sky above the waterfall. The water at the base of the waterfall is turbulent, with visible rocks protruding from the water. The sky is partly cloudy, and the overall scene has a serene and natural appearance. In the bottom right corner, there is text that reads "Great wash! Water purification systems by SIEMENS."

Gemma

Q1: Waterfall, rocks, sky, clouds, clothespins, bird.
 Q2: The image depicts a large waterfall cascading down a rocky cliff face into a body of water. The water is white and turbulent, creating a misty spray. Darker rocks are visible at the base of the waterfall. Above the waterfall, a blue sky with white, fluffy clouds dominates the upper portion of the image. Two wooden clothespins are attached to the waterfall at approximately the same height. A bird is flying across the sky. The bottom of the image shows the water flowing into a wider, calmer section of the body of water. The text "Great wash! Water purification systems by SIEMENS" is positioned at the bottom left corner of the image.

QwenVL

Q1: Yes, there are objects in the image, excluding text-only logos, and text. The objects are: - A bird flying in the sky - Two wooden clothespins
 Q2: The image depicts a dramatic waterfall cascading over a rocky cliff into a body of water below. The water appears turbulent, creating mist as it falls. Two wooden clothespins are humorously placed at the top of the waterfall, one on each side, as if they are holding back the water. The sky above is partly cloudy with a soft blue hue. In the bottom right corner, there is text that reads "Great wash! Water purification systems by SIEMENS."

InternVL

Q1: Bottle, leaves, liquid splash, cap, label.
 Q2: The image features a bottle of Chivas Regal 12 Years Old Blended Scotch Whisky. The bottle is prominently displayed against a warm, golden background. Green leaves are scattered around the bottle, with some leaves and a splash of liquid appearing to emerge from the bottle. The cap is purple, and the label on the bottle includes text and decorative elements. The text "CHIVAS Green Tea" is displayed at the top right of the image.

Gemma

Q1: Bottle, green leaves, water splashes, dark background, and light reflections.
 Q2: The image shows a brown bottle of Chivas Regal 12-year-old blended Scotch whisky. The bottle is positioned on a dark, slightly reflective surface. Several green leaves are scattered around the bottle, some with water splashes emanating from them. The background is dark, with hints of green and light reflections. The words "CHIVAS Green Tea" are displayed in a green, stylized font above the bottle. The bottle has a red-colored cap. There are also several more green leaves near the bottom of the image."

QwenVL

Q1: Yes, there are objects in the image, excluding text-only logos, and text. The objects are: - A bottle of Chivas Regal whisky - Green leaves - Water splashes
 Q2: The image features a bottle of Chivas Regal 12-year-old Blended Scotch Whisky with a label prominently displayed. The bottle is set against a dark background with a warm, glowing light effect. Surrounding the bottle are green leaves and water splashes, creating a dynamic and refreshing visual. The text "CHIVAS Green Tea" is written in a stylized font, suggesting a fusion of the brand's signature whisky with green tea. The overall composition emphasizes the product's premium quality and the addition of green tea as a unique element.

Figure 13: **Image Description Examples.** Two examples of descriptions generated by InternVL, Gemma, and QwenVL. Both images are real advertisements from PittAdHussain et al. (2017) dataset.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093

Table 6: Prompt for LLM Hierarchical Sensation Classification

1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Prompt
System: You are a helpful assistant, choosing the sensations evoked by the described image given the following definition in ordered form. You can choose up to 3 sensations evoked by the image ranked in order of how well the sensations are evoked. If the image does not evoke any sensation you can choose None.
Context:
Sensation is the process of detecting and receiving information from the environment or the body through specialized sensory organs, which send signals to the brain for interpretation.
Definition of the sensations in the options:
<code>{{context}}</code>
User: What are the sensations evoked the most by the described image? Only return the indices of maximum of 3 options in ordered form without any further explanation.
Image Description:
<code>{{description}}</code>
Options:
<code>{{options}}</code>
Your answer must follow the following format:
Answer: <code>[indices of maximum of 3 correct options separated by comma]</code>

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147

1148 Table 7: Prompt for MLLM Hierarchical Sensation Classification
 1149

1150
 1151
 1152
 1153
 1154

Prompt

System: You are a helpful assistant, choosing the sensations evoked by the input image given the following definition in ordered form. You can choose up to 3 sensations evoked by the image ranked in order of how well the sensations are evoked. If the image does not evoke any sensation you can choose None.

1155
 1156
 1157
 1158
 1159
 1160

Context:

Sensation is the process of detecting and receiving information from the environment or the body through specialized sensory organs, which send signals to the brain for interpretation.

1161

1162
 1163

Definition of the sensations in the options:

`{{context}}`

1164

1165
 1166
 1167

User: What are the sensations evoked the most by this image? Only return the indices of maximum of 3 options in ordered form without any further explanation.

1168

1169

Options:

`{{options}}`

1170

1171

1172

Your answer must follow the following format:

1173
 1174

Answer: `[indices of maximum of 3 correct options separated by comma]`

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199

1200 Table 8: Prompt for LLM Multi-choice Sensation Classification
 1201

Prompt
<p>System: You are a helpful assistant, choosing the sensations evoked by the described image given the following definition in ordered form. You are asked to choose all the sensations evoked by the image ranked in order of how well the sensations are evoked. If the image does not evoke any sensation you can choose None.</p>
<p>Context: Sensation is the process of detecting and receiving information from the environment or the body through specialized sensory organs, which send signals to the brain for interpretation.</p>
<p>Definition of the sensations in the options: <code>{{context}}</code></p>
<p>User: What are the sensations evoked the most by the described image? Only return the indices of the options in ordered form without any further explanation.</p>
<p>Image Description: <code>{{description}}</code></p>
<p>Options: <code>{{options}}</code></p>
<p>Your answer must follow the following format: Answer: <code>[indices of correct options separated by comma]</code></p>

1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

Table 9: Prompt for MLLM Multi-choice Sensation Classification

Prompt
System: You are a helpful assistant, choosing the sensations evoked by the input image given the following definition in ordered form. You are asked to choose all the correct sensations evoked by the image ranked in order of how well the sensations are evoked. If the image does not evoke any sensation you can choose None.
Context:
Sensation is the process of detecting and receiving information from the environment or the body through specialized sensory organs, which send signals to the brain for interpretation.
Definition of the sensations in the options:
<code>{{context}}</code>
User: What are the sensations evoked the most by this image? Only return the indices of the options in ordered form without any further explanation.
Options:
<code>{{options}}</code>
Your answer must follow the following format:
Answer: <code>[indices of correct options separated by comma]</code>

Table 10: Prompt for Structured Description Generation

Prompt
Carefully analyze the image and respond only in the specified format, without any interpretations or inferences. Focus on only the visible elements in the image. Ensure that any object seen in the image is included in Q1, even if it is described in more detail in Q2.
Response Format:
Q1: \${answer to Q1}
Q2: \${answer to Q2}
Questions:
Q1: Are there any objects in the image, excluding text-only logos, and text? List at most 5 such objects if present.
Q2: Describe the image in detail, focusing only on visible objects and elements without adding any interpretation, opinion, or analysis in a single paragraph.

Table 11: Prompt for Sensory Image Generation

Prompt
Generate an image that evokes <code>{{sensation}}</code> sensation.

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318

1319 Table 12: Prompt for Image Generation with Action-Reason and Sensation

1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

Prompt
Generate an advertisement image that evokes {{sensation}} sensation and conveys the following messages: { % for statement in action_reason %} - {{statement}} { % endfor %}