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ABSTRACT

Effective advertisements might persuade the audience by evoking human sensa-
tions, yet current Text-to-Image (T2I) models struggle to generate persuasive visu-
als that convey implicit sensory experiences. We introduce the SensoryAd Gen-
eration task: given an advertisement message and a specific sensation related to
the advertisement message, the goal is to generate advertisement images that both
convey the message and evoke the sensation. To support this task, we build the
SensoryAd dataset, consisting of human-designed and generated advertisements
annotated with sensation categories, visual elements evoking the sensation, and
human ratings. We further propose an evaluation method using contrastive and
consistency losses across hierarchical sensation levels.

1 INTRODUCTION

“I have left behind illusion, I said to myself. Henceforth I live in a world of three dimensions–with
the aid of my five senses. I have since learned that there is no such world, but then, as the car turned
out of sight of the house, I thought it took no finding, but lay all about me at the end of the avenue.”

Evelyn Waugh, “Brideshead Revisited”

The full spectrum of senses (not only vision and hearing, but also touch, smell and taste) is important
for humans to navigate and experience their environments. However, humans sometimes hallucinate
sensations, with very real effects: people experiencing lexical-gustatory synesthesia experience taste
triggered by words (Ward & Simner, 2003), visually impaired people can “see” with their tongue
through electrical signals (Nau et al., 2015), phantom limb pain can be treated with augmented
reality (Prahm et al., 2025), and advertisements (ads) can evoke taste (Palcu et al., 2019).

An effective ad is not only defined by what elements it represents, but also by how they are repre-
sented. Designers often rely on creative techniques to better capture attention and enhance credibility
and impact of ads. Sensory advertising (Krishna, 2012) is one creative technique, where some ads
evoke one or more of the five human senses (e.g., touch, taste), allowing the audience to imagine
the benefit of a product or the consequence of an action in a visceral way. Stimulating the senses
in the exact sense modality is infeasible (e.g., through the taste buds) so ads resort to visual con-
tent associated with the target sensation. For example in Fig. 1, for a beer advertisement, on a hot
summer day, image (b) is more likely to convince a thirsty audience to buy the beer by evoking the
cooling and refreshing sensation (through the inclusion of the ice cubes), compared to image (a).
Similarly, evoking the pain sensation in image (d) makes the parents better feel the consequence of
using negative words by feeling the pain, compared to the more sensory-neutral image (c).

In this work, we conduct the first investigation of how ads evoke the senses through visual means.
We focus on three facets, (1) understanding, (2) evaluating and (3) generating sensory ads. First, we
develop a taxonomy of senses at different levels of granularity in which the first layer corresponds
to these five fundamental sensory modalities (information perceived through the five primary human
sensory organs of eyes, ears, nose, skin, and tongue). These senses are then further refined into more
specific subcategories (e.g., “temperature” is a type of “touch” sensation). Fig. 1, e and g, represent
example outputs of T2I models on given “cooling and refreshing” and “sharp pain” sensations. We
construct a dataset with samples of these senses, by collecting annotations from Prolific annotators
on 670 images sourced from an existing dataset of advertisements (PittAd (Hussain et al., 2017)). We
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Figure 1: Sensory Ad Generation Task (Top): Two examples of ad images that evoke desired
sensation for action-reason statements (b) and (d) designed by human, and images that do not evoke
any sensation (a) and (c) generated by T2I models without sensory awareness. Images (e) and
(f) represent the output of T2I models on the SensoryAd generation task given the ground-truth
sensations for the advertisements. Hierarchical Sensation Classification Task (Bottom): Image
shows an example of two MLLMs on the proposed task given an image evoking the sensations of
spicy taste, intense heat, dryness. In the image, green background represents correct sensations

chosen by the model, and red background represents sensations chosen incorrectly.

collect information about whether the image evokes a sensation and if so, the category of sensation,
the visual elements evoking it, and score of how well the image evokes the sensation.

We introduce two sensation classification tasks to evaluate how well LLMs and MLLMs perform on
the task of classifying the senses in an ad.

Second, we propose a novel evaluation method, EvoSense, that measures how effectively an image
evokes a target sensation. EvoSense first utilizes an LLM to generate the description of the image
and then use a fine-tuned LLM to get the average log probability of the tokens of the target sensation
when prompting the model with “The described image evokes the: ”. Experimental results show
that our evaluation metric achieves a Kappa (Cohen, 1960) agreement score of 0.86 with human
annotators, representing an improvement of 56% over existing baseline metrics.

Third, we introduce the SensoryAd Generation task, where the goal is to generate advertisement
images that both convey a given message and evoke a specified sensation. The messages are col-
lected from the PittAd dataset (Hussain et al., 2017) and structured in the form “I should {action}
because {reason}” called action-reason (AR) statements. Our results show that existing T2I models
fail in generating advertisement images that evoke specific sensation.

To summarize our contributions: (1) We introduce the SensoryAd dataset including the sensations
advertisement images evoke, the score on how well the images evoke each sensation, and visual
elements in the image evoking the sensation. (2) We introduce two sensation classification tasks. (3)
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We introduce the novel task of Sensory Ad Generation. (4) We propose an evaluation method for
sensation evocation in generated images.

2 RELATED WORKS

Text to Image Generation. T2I models such as Flux (Black Forest Labs, 2024), Stable Diffusion
(Esser et al., 2024), Qwen-Image (Wu et al., 2025), PixArt (Chen et al., 2024), DALLE3 (Betker
et al., 2023), etc. have advanced in generating high quality and realistic images given the explicit
description of the prompt. Some existing work (Aghazadeh & Kovashka, 2024; Liao et al., 2024)
assess the capability of models in generating images from abstract concepts and messages like adver-
tisement design tasks. (Yang et al., 2024b; Dang et al., 2025; Park & Lee, 2020), focus on emotion
transfer through images. The main focus of these works is on transferring emotion which is the
interpretation of sensation and differs from evoking sensation. For example, in Fig. 1 both image
(c) and (d) can transfer sadness, but only image (d) evokes the pain sensation. In this work, we
benchmark the T2I models on generating advertisement images that evoke specific sensations.

Text to Image Evaluation. Existing evaluation metrics, such as (Lin et al., 2024; Xu et al., 2023),
are primarily designed to assess how well an image corresponds to an explicit prompt. These met-
rics are effective when the prompt specifies concrete objects, attributes, or relations between visual
elements. Evaluating sensation evocation poses a unique challenge: the sensation is not only an
implicit concept but the same sensation can be represented through entirely different visual designs.

Understanding Modalities beyond Sight. Our work is part of a bigger trend of understanding
modalities beyond sight, including understanding audio and touch data (Ghosh et al., 2024; Yang
et al., 2024a) or semantic-taste mappings using the wine taste dataset of (Bender et al., 2023). Other
work seeks to predicting physical properties such as density and hardness from images and descrip-
tions (Zhai et al., 2024). However, no prior work studies how images are created to evoke specific
sensations, nor predicts computationally the impact of sensations on an audience.

Understanding and Generating Advertisements. Hussain et al. (2017) pioneer the task of compu-
tational visual ad understanding, but do not capture sensory information. Prior work has investigated
the use of T2I models for generating advertisements, focusing on criteria such as creativity, and per-
suasion (Aghazadeh & Kovashka, 2024) or for depicting specific metaphorical relationships (Akula
et al., 2023). However, these studies do not examine the models’ ability to implement specific per-
suasion strategies, such as the evocation of specific sensations, which play a crucial role in making
advertisements more influential and memorable.

Sensory Advertising. (Krishna, 2012) define sensory marketing as “marketing that engages the con-
sumers’ senses and affects their perception, judgment and behavior.” The author describes evidence
that the subconscious sensory triggers may make the ad’s message more compelling than explicit
messaging, including causing viewers to perceive specific properties of the product. They discuss
the sensory aspects of product packaging (e.g., Hershey’s chocolate kisses creating the sensation of
a drop melting), sound symbolism (e.g., the word “frosh” evoking the sensation of creaminess more
than “frish”), the memories scents create and evoke, etc. Cian et al. (Cian et al., 2014) describe the
dynamics encoded in similar but slightly varied imagery (e.g., a horizontal vs tilted seesaw). Other
related work in marketing and psychology studying sensory marketing is (Krishna & Schwarz, 2014;
Petit et al., 2019; Hultén, 2015; Krishna et al., 2016). Related to sensory image Yang et al. (2024b)
focus on emotion, interpretation of sensation by human, generation and Singh et al. (2024) on un-
derstanding content with focus on human reaction upon receiving content.

3 SENSORYAD BENCHMARK

3.1 SENSORYAD DATASET

Sensation Hierarchy (Taxonomy). Some advertisements are designed to evoke sensations that
help the audience imagine a specific situation and the need for a product more vividly, which is an
important factor in ad effectiveness (Krishna et al., 2016). In this work, we formalize the notion of
sensation using a hierarchical taxonomy (partly shown in Fig. 2; complete hierarchy in sec. A.4).
At the top level, our taxonomy corresponds to the five primary human senses. Each of these is
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Figure 2: Sensation Hierarchy (left; only categorizing the Touch sensation): Green box represents
first level sensation, blue represents second level, and purple represents third level sensations.
Annotation Example (right): Example of annotations in our SensoryAd dataset.

further subdivided into more fine-grained categories. For example, “Touch” is refined into “Texture”,
“Temperature,” “Moisture and Dryness,” “Pain and Relief,” and “Pressure”. By definition, if an
image evokes a child sensation (e.g., “Temperature”), it also evokes its parent (e.g., “Touch”). We
introduce a dataset of both real and generated ads annotated with (i) up to three groups (leaf and
ancestors) of sensations evoked by each image, (ii) a score reflecting the strength of evocation, and
(iii) the visual elements that contribute to the sensation. Fig. 2 shows an example annotation.

Data Collection. We first selected 670 images from the PittAd dataset (Hussain et al., 2017), includ-
ing 250 public service advertisements (designed to raise awareness about societal issues or influence
behavior) and 420 commercial advertisements (promoting products or services) to ensure a diverse
range of sensory content. We have included the data statistics including the topics diversity, sen-
sations diversity, and human-human agreement in sec. A.4. Annotation was carried out by trained
crowd-workers on Prolific and using forms created on Qualtrics. Before contributing, each annotator
was tested and approved/filtered based on completing a practice form after reading detailed instruc-
tions, definitions of sensations, and illustrative examples. The annotation task followed a structured
protocol: annotators first chose the most prominent sensation among the five top-level categories
(with the option of selecting “None” if no sensation was evoked). Based on their choice, they were
presented with progressively narrower subcategories until reaching a leaf-level sensation. For each
selected sensation, annotators provided a strength score and listed the visual elements (e.g., colors,
objects, textures) that contributed to it, using free-form text (which can be used in future work). This
process was repeated up to three times per image unless “None” was chosen as the sensation evoked
by the image. We also get the human-human agreement on about 10% of the annotated images and
the Kappa agreement Cohen (1960) is 0.83 with 95% confidence interval of [0.831, 0.838]. The full
annotation and testing forms are provided in the supplement file, and the dataset will be released
upon acceptance.

We also annotated ad images generated by text-to-image models, to test performance of our evalu-
ation model on these. First, we used the action-reason statements (from (Hussain et al., 2017)) and
three annotated sensations (from the above paragraph), as inputs to three T2I models: Flux (Black
Forest Labs, 2024), AuraFlow (Fal, 2024), PixArt (Chen et al., 2024), Stable Diffusion 3 (Esser
et al., 2024), and Qwen-Image (Wu et al., 2025). From 75 images generated by each model, we
randomly selected 15 and annotated them using the same procedure as for the real ads.

3.2 SENSATION CLASSIFICATION TASK

Interpreting sensory ads, and the evaluation of their effectiveness, hinges on understanding which
sensations an image evokes and with what intensity. Moreover, Some sensations like pain sensation
can be sensitive to a group of audience such as children in a certain age. Given this, to prevent
the presentation of a specific sensation to a specific group, the filtering systems should be able to
detect the sensations evoked by the content. To formalize this, we introduce the Sensation Classi-
fication Task, which involves recovering the correct sensations evoked by an image. We consider
two complementary formulations: (i) Hierarchical Selection and (ii) Single Selection.

Hierarchical Classification. In this setting, sensations are defined according to our hierarchical
taxonomy. Data annotation proceeds level by level: starting from the top-level categories, annotators
choose the sensation best evoked by the image, then move to its subcategories, and so on until
reaching a fine-grained leaf. The Hierarchical Selection Sensation classification task mirrors this
process. Given an image, the goal is to predict the complete sensation path(s) from the root to the
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Figure 3: EvoSense Evaluation Method. Left: training of LLM with two different set of sensa-
tions for one image. Green border shows the winner sensation, blue border represents the parent
of winner sensation (used in hierarchy loss), and red border denotes the loser sensation in the pair.
Each pair is derived from a triplet of annotations, where A is preferred over B, and B over C. Right:
score computation in inference with the fine-tuned LLM.

leaf node (e.g., Touch → Temperature → Freezing Cold). To do so, a model is recursively prompted
to predict up to three sensations, advancing down the hierarchy by selecting among the children of
each of the previously chosen nodes. To provide sufficient context, the definition of each potential
sensation was included in the prompt. An example of this task is visualized in Fig. 1.

Single (Multi-Label) Classification. This task flattens the taxonomy and treats every sensation,
regardless of its level, as a potential label. The goal is for a model to predict the complete set of
sensations that an image evokes from all possible labels in the hierarchy. A critical constraint in this
task is maintaining hierarchical consistency. By definition, if an image evokes a specific sensation,
it must also evoke its parent sensation (e.g., if “Temperature” is evoked, “Touch” is evoked as well).
To evaluate a models’ understanding of these relationships, we define an additional metric: Parent
Recall (Rparent), which measures the fraction of predicted non-root sensations for which the direct
parent sensation was also predicted. It is formally defined as:

Rparent =
|{s ∈ Spred | s is not a root node and parent(s) ∈ Spred}|

|{s ∈ Spred | s is not a root node}|
(1)

where Spred is the set of sensations predicted by the model. A high Rparent score indicates that the
model understands the hierarchical dependencies of sensations.

3.3 EVOSENSE: EVALUATING SENSATION EVOCATION

Sensation evocation can make advertisements more persuasive by enabling viewers to vividly pic-
ture the intended context. To quantitatively assess this effect, it is not sufficient to simply identify
which sensations are present; it is also crucial to evaluate their intensity. To address this, we intro-
duce EvoSense, an evaluation method to assess how strongly an image evokes a given sensation.
EvoSense uses two stages. (i) Image Description Generation: An MLLM (e.g., InternVL) gener-
ates a textual description of the image. (ii) Sensation Intensity Scoring: An LLM is prompted with
the template “Given the description of the image, the sensation that the image evokes is: ” and the
average log-probability of producing the target sensation is reported as the sensation intensity score.

Initial experiments using zero-shot LLMs show low agreement with human annotations, both in
retrieving correct sensations and in estimating their intensity. To address this, we fine-tune the
models using a subset of our annotated dataset. In our task some sensations are evoked more than
some other sensations, for example, in Fig. 2 while both Taste and Smell are evoked by the image,
Smell sensation is evoked more. A simple supervised fine-tuning approach treats both sensations as
equally correct. In contrast, by pairing sensations and asking the model to choose, Smell should be
preferred over Taste. On the other hand, when Taste is paired with Sight, Taste should be preferred
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instead. To capture such relative preferences, we train EvoSense with Contrastive Preference
Optimization (CPO) (Xu et al., 2024) loss, which requires models to rank sensations. However,
CPO does not account for the hierarchical dependencies between sensations (i.e., a child sensation
implies its parent). To incorporate this structure, we augment CPO with a hierarchy loss:

LCPO+Hierarchy = − log σ
(
β
[
log πθ(y

+ | x)− log πθ(y
− | x)

])
+ReLU

(
log πθ(y

+ | x)− log πθ(y
parent | x)

)
.

(2)

where x is input (prompt), y+ is preferred output, y− is rejected output, yparent is parent of chosen
output, πθ(y | x) is the model’s conditional probability of y given x, β is a temperature scaling
factor, and σ(·) is the logistic sigmoid function. LCPO+Hierarchy encourages the model to choose
y+ over y− and prevent the probability of yparent to be lower than y+. We illustrate in Fig. 3.

3.4 SENSORYAD GENERATION TASK

Recent advancements in Text-to-Image (T2I) generation have enabled the generation of high quality
and realistic images, leading to their adoption in applications such as automated advertisement im-
age generation. While prior work has studied the ability of generative models to convey emotions
Yang et al. (2024b), their capability in generating images that evoke specific sensations, which is a
persuasive strategy, remains unexplored.

To address this gap, we introduce the SensoryAd Generation task where the input consists of an
advertisement message (action-reason statement (Hussain et al., 2017)) and target sensation, and the
objective is to generate an image that effectively evokes the specified sensation. Examples of outputs
from existing T2I models for different prompts and target sensations are shown in Fig. 1 (e, f).

4 RESULTS

This section presents our experimental results. We begin by benchmarking LLMs and MLLMs
on our sensation classification tasks to assess their understanding of sensory concepts. We then
validate our proposed EvoSense metric, comparing against baseline metrics. Finally, we evaluate
the performance of leading T2I models on the SensoryAd Generation task. Implementation details
for all experiments are in the sec. A.5.

4.1 SENSATION CLASSIFICATION TASKS

We assess the capability of LLMs and MLLMs on our two sensation classification tasks. Our eval-
uation follows two distinct protocols based on the model’s input modality. For MLLMs (InternVL,
QwenVL, and Gemma, and LLAVA-Next), the advertisement image was provided as direct visual
input. The model was then tasked with classifying the corresponding sensations based on a task-
specific prompt (see sec. A.5). To assess the performance of text-only LLMs (LLAMA3-instruct,
QwenLM, and Gemma), we employed a two-stage pipeline. First, we utilized different MLLM (In-
ternVL, QwenVL, and Gemma) to generate a description for the image (DMLLM ). These generated
descriptions were utilized as input context for the LLMs to perform sensation classification. This
approach allows us to isolate and evaluate the language-based reasoning capabilities of LLMs for
this specific task. We report Recall (R), Precision (P), and F1-score (F1). For Single Classification,
we also report the Parent Recall (Rparent) to assess understanding the hierarchical relations.

Hierarchal Classification. Table 1 reveals a consistent trend across all models: significantly higher
recall than precision. This imbalance indicates that while models are proficient at identifying po-
tentially relevant sensations, they struggle to reject incorrect ones, leading to many false positives.
Notably, MLLMs generally outperform their LLM counterparts on this task. This suggests that di-
rect visual input provides crucial cues that are lost or distorted in text-only descriptions. This loss is
particularly evident in the performance of Gemma (Team et al., 2025). The MLLM version, which
processes the image directly, achieves higher Recall and F-1 score than the LLM version, which
operates on a text description from that same MLLM.

Single Classification. The results in Table 1 show that while MLLMs achieve higher precision and
F1-scores, LLMs have a stronger performance on Parent Recall (Rparent). This suggests MLLMs
are more adept at grounding their selections in visual evidence, leading to more accurate overall
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Model
Hierarchal Selection Single Selection

P R F1 P R F1 Rparent

MLLMs

QwenVL 0.17 0.62 0.10 0.33 0.18 0.11 0.45
InternVL 0.13 0.60 0.08 0.18 0.44 0.08 0.41

LLAVA-Next 0.10 0.60 0.07 - - - -
GEMMA 0.17 0.66 0.11 0.11 0.39 0.05 0.49

LLMs

QwnLM + DQwnV L 0.18 0.45 0.08 0.18 0.42 0.07 0.24
GEMMA + DQwenV L 0.16 0.54 0.09 0.13 0.54 0.07 0.65
LLAMA3 + DQwenV L 0.19 0.43 0.08 0.15 0.47 0.08 0.48

Table 1: Sensation Classification: Results of MLLMs and LLMs on classification tasks.

Metrics
Real Ads Generated Ads
r κ r κ

VQA-score 0.27 0.55 0.25 0.52
Image-Reward 0.21 0.46 0.21 0.40

CLIP-score 0.22 0.43 0.21 0.45
Pick-score 0.15 0.38 0.15 0.41

LLAMA3-instruct (zero-shot) + DInternV L -0.02 -0.01 -0.02 -0.01
QwenLM (zero-shot) + DInternV L -0.02 -0.02 -0.02 -0.04

EvoSense (LLAMA3-instruct + DInternV L) 0.38 0.86 0.31 0.68
EvoSense (LLAMA3-instruct + DQwenV L) 0.35 0.80 0.31 0.67

EvoSense (QwenLM + DInternV L) 0.32 0.70 0.26 0.56
EvoSense (QwenLM + DQwenV L) 0.30 0.65 0.26 0.55

Table 2: Metric Quality. Pearson Corr. (r) and Kappa agreement (κ) between metric [scores/chosen
sensations] and human [scores/chosen] on 5000 real and 5000 generated image-sensation pairs.

classification. Conversely, LLMs, operating on textual descriptions and definitions, develop a better
understanding of the abstract, semantic relationships between sensations in the hierarchy.

4.2 EVOSENSE

EvoSense is our evaluation method designed to assess the intensity with which an image evokes a
specific sensation. To evaluate the accuracy of our metric, we use human annotations in our dataset
(separate from those used for training EvoSense). For each image, if a sensation was chosen by
an annotator, the intensity of that sensation is set the same as the score chosen by the annotator,
otherwise it is set to zero. For agreement computation we use: (1) Pearson Correlation (r) between
the scores for each (image, sensation) pair chosen by annotators and computed by the metrics, and
(2) Kappa (κ), where we use the sensation with higher score as the chosen one.

EvoSense compared to baselines. We benchmark EvoSense against baseline metrics, including
VQA-score (Lin et al., 2024), ImageReward (Xu et al., 2023), CLIP-score (Hessel et al., 2021),
and Pick-score (Kirstain et al., 2023). To demonstrate the necessity of our proposed fine-tuning
procedure, we further compare EvoSense against the zero-shot performance of the EvoSense in-
ference pipeline using LLAMA3-instruct (LLAMA3) and QwenLM (QwenLM ) with image de-
scriptions generated by InternVL (DInternV L) and QwenVL (DQwenV L). As observed in Table
2, among baseline metrics, VQA-score achieves the highest human-metric agreement with moder-
ate performance (κ = 0.55, r = 0.27 on real ads and κ = 0.52, r = 0.25 on generated images). In
contrast, fine-tuned EvoSense reaches near-perfect agreement with human (κ = 0.86, r = 0.38) on
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Figure 4: Examples on human agreement with EvoSense and VQA-score on intensity of sen-
sations in the image. The Human row shows the chosen (✓) image(s) (including ties) and rejected
(×) image. Red background indicates the model-chosen (higher-scoring) option is misaligned with

human choice, and green background shows it is aligned.

real ads and substantial performance (κ = 0.68, r = 0.31) on generated ads, representing a 56% and
30% improvement on Kappa agreement for real and generated ads, and 41% and 24% on Pearson
Corr. improvement over the best baseline. Notably, zero-shot EvoSense exhibits negative agree-
ment—complete misalignment with human judgments, emphasizing that our fine-tuning procedure
is essential for alignment with human perception. The examples in Fig. 4 show higher agreement
of EvoSense with human annotation compared to VQA-score (the best baseline), especially in cases
where humans give equal scores for both images.

Ablation on EvoSense. We conducted an ablation study to analyze the impact of the core compo-
nents of EvoSense: the base LLM and the MLLM used for description generation. The results
in Table 2 show that while both fine-tuned LLMs significantly outperform all baseline metrics,
LLAMA3-instruct holds a slight edge over QwenLM in human agreement. Furthermore, the re-
sults demonstrate the robustness of our method to the source of the image descriptions. When the
descriptions are generated by QwenVL (DQwenV L) instead of InternVL (DInternV L), the change
in agreement scores for the fine-tuned models is minimal.

4.3 SENSORYAD GENERATION

First, we benchmark different T2I models including Flux (Black Forest Labs, 2024), Stable Diffu-
sion 3 (SD3) (Esser et al., 2024), AuraFlow (Fal, 2024), PixArt (Chen et al., 2024), and Qwen-Image
(Wu et al., 2025), on the SensoryAd task evaluating their abilities in generating images that convey
specific ad messages and evoke the given sensation to make the images more persuasive. Next, we
benchmark the models on generating images that evoke specific sensation without any other infor-
mation (such as ad message) in the prompt (‘Generate an image evoking {sensation}’), to better
understand their abilities in sensory image generation, as a reference point for our analysis.

Sensation Intensity in Generated Ads. Table 3 shows that among T2I models, Qwen-Image
achieves the highest sensation intensity and SD3 has the lowest intensity. We note that while the
goal is to evoke specific sensations, sometimes models exaggerate in evoking the sensation, over-
look the advertisement message, and only show sensation-associated objects. For example, in Fig. 4,
the image generated for an ad conveying ‘I should chew 5 Cobalt gum Because it cool and minty’
evoking Freezing Cold sensation, only depicts ice-cubes in the image which does not convey the
message. See sec. A.1 for further analysis comparing sensation intensity in generated and real ads.

Comparison of Sensory Ad Generation and Sensory Image Generation. Table 3 shows that
sensation intensity in images (not ads) generated for ‘Generate an image evoking {sensation}’ is

8
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T2I model
Sensory Ad Generation Sensory Image Generation

EvoSense (LLAMA3) AIM EvoSense (LLAMA3) EvoSense (QwenLM)
DInternV L DInternV L DQwenV L DInternV L DQwenV L

Flux 0.90 0.60 0.72 0.72 0.71 0.71
SD3 0.89 0.61 0.69 0.68 0.68 0.69

AuraFlow 0.90 0.59 0.74 0.74 0.74 0.73
PixArt 0.91 0.59 0.76 0.75 0.76 0.76

Qwen-Image 0.93 0.63 0.77 0.76 0.75 0.75

Table 3: Evaluating Generated Sensory Ads, and Sensory Images

Figure 5: Sensory Ad examples. Two examples of real advertisement and generated advertisements
by Flux (Black Forest Labs, 2024), SD3 (Esser et al., 2024), AuraFlow(Fal, 2024), and PixArt (Chen
et al., 2024) given the action-reason interpretation and sensation annotation for the real advertise-
ment. Green border represents the sensation used in the prompt of T2I models.

lower than intensity of sensation in Sensory Ads. When sensations are commonly associated with
specific objects, the model exaggerates in evoking the sensation and overlooks the advertisement
message, but when sensation is less common, or it is not associated with an object, existence of
some visual elements or attributes in the advertisement message (action-reason statement) can help
the model in evoking the sensation.

We compare intensity of sensations for real and generated images, and for different sensations,
in Fig. 5 and sec. A.1. For some sensations like “Brilliance and Glow” which are either visual
sensation or commonly associated with specific objects, not only can the model evoke the target
sensation, but it can evoke it with higher intensity than the corresponding real image (ex. Flux in
evoking Brilliance and Glow). In contrast, for sensations which are less visual, like Dryness, the
models fail in generating images evoking the sensations.

5 CONCLUSION

We addressed the challenging, previously unexplored task of generating and understanding visual
content that evokes specific human sensations, a crucial element of persuasive advertising. To facil-
itate research in this area, we introduced the SensoryAd benchmark including the SensoryAd dataset
with a detailed hierarchical taxonomy for sensation, two Sensation Classification tasks, and the
new SensoryAd Generation task. We propose EvoSense, an evaluation metric that accurately mea-
sures the intensity of evoked sensations. By fine-tuning an LLM with a hybrid objective (CPO and
hierarchical constraints), EvoSense achieves high agreement with human judgments, significantly
outperforming existing baselines by up to 56%. This work lays the foundation for developing a new
generation of sensation-aware models and expanding the scope beyond advertising.

9
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report. arXiv preprint arXiv:2503.19786, 2025.

Jamie Ward and Julia Simner. Lexical-gustatory synaesthesia: linguistic and conceptual factors.
Cognition, 89(3):237–261, 2003.

Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. arXiv preprint arXiv:2508.02324,
2025.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of
llm performance in machine translation. In International Conference on Machine Learning, pp.
55204–55224. PMLR, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Figure 6: Examples of exaggeration in sensation evocation. In each group image on the left
represents the generated images and image on the right represents real advertisement.
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A APPENDIX

A.1 COMPARISON OF REAL AND GENERATED ADVERTISEMENTS

As part of our analysis on how well T2I models are capable in generating effective intensity of sen-
sation, we compared the intensity of sensation in generated advertisements and real advertisements.
Average sensation intensity of sensations in real ads computed by EvoSense is 0.83 which is lower
than intensity of sensations in the ads generated by T2I models. However, this does not represent
the capability of T2I models in generating Sensory Ads, in contrast it is due to exaggeration in
evoking sensations (Sensory Exaggeration) that are either related to visual sensations (any sensa-
tion under sight category) or sensations that commonly associated with some objects like ‘Freezing
Cold’ which is commonly represented by ice-cubes or intense snow. In Fig. 6, generated images
evoke the input sensation with higher intensity than real advertisement; however, this exaggeration
in evoking the sensation results in overlooking the Advertisement message and failing in conveying
it. For example, in Fig. 6 - top left image is supposed to convince the audience to buy the Five gum
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(a) Relationship between Sensation Evocation and
Text-Image Alignment in real and generated ad-
vertisements.

(b) Relationship between Sensation Evocation
and Text-Image Alignment in generated advertise-
ment by different T2I models in the benchmark.

(c) Density of sensation intensity evoked by im-
ages generated by different T2I models.

(d) Relation between sensation and persuasion.

Figure 7: Analysis of sensation intensity, text-image alignment, and persuasion in generated and
real advertisements.

by showing the cooling and refreshing feature of the product; however, while the image intensely
evokes the sensation it fails to convey the message.

We further examine the alignment between AR messages and images across varying sensation qual-
ity values. For alignment, we employ the AIM metric from Aghazadeh & Kovashka (2024), while
sensation quality is measured using EvoSense. Although an overall trend exists in the relationship
between alignment and sensation evocation, the plot exhibits considerable noise due to confounding
factors such as image generation quality. To address this, we applied a Gaussian filter to the AIM
scores to smooth the visualization. Fig. 7a presents the smoothed plot, which reveals that alignment
initially increases with sensation evocation, reaches a peak, and subsequently decreases as sensation
evocation continues to increase.

We then analyze the relation between sensation intensity and both alignment of the generated images
by each T2I model in our benchmark in Fig. 7b. We observe, QwenImage while keeping the same
behavior as other models, alignment increases with the increase of sensation intensity at first and
decreases after, the alignment score of AIM metric is constantly higher which highlights the better
performance of QwenImage in SensoryAd Generation. Finally, in Fig. 7c, show the density of
sensation intensity values for images generated by each model. The plot in Fig. 7c further supports
the exaggeration in evoking the sensation by generated images, by representing the highest density
of sensation evocation value is in the domain that the alignment score decreases.

A.2 CONNECTION OF PERSUASION AND SENSATION EVOCATION

While previously studied in marketing, and psychology area Lindstrom (2006); Yoon & Park (2012);
Elder & Krishna (2022); Krishna et al. (2016) by doing the human study on sensory advertisement,
in this section we analyze the relation between the persuasion and sensation evocation in generated
images using computational persuasion evaluation metric from Aghazadeh & Kovashka (2024). We

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

plot the persuasion score over sensation intensity in the images in Fig. 7d, to analyze the effect
of evoking sensation in making the images more persuasion. In the figure, we observe that the
persuasion score for the images increases with the increase in the sensation intensity of the images.

Ethical concerns around sensory advertisements. There are two main implications: First genera-
tion of adversarial persuasive content such as encouraging the audience to drink alcohol more often.
This is a general problem with any T2I model. Second, the model might generate sensitive content
for a certain group of audience and this is one of the motivations for classification tasks. While
automatically generating the Sensory Ads can be helpful, some sensitive sensations (for example
pain) should be detected and prevented from showing to a specific group of audience. This is why it
is also important to be able to classify the sensations evoked by the image.

A.3 COMPARISON OF DIFFERENT SENSATIONS.

To analyze the capability of the T2I model in generating images evoking each sensation in our
taxonomy, we isolated the sensation and only prompted the model to ‘Generate an image that evokes
{sensation}’ with seeds from 0 to 9 resulting in 960 images for each model and 4800 images in
overall. Fig. 8 represents the intensity of different sensations evoked in Sensory Image generation
task. As shown in Fig. 8, models struggle more in evoking sensations with less common visual
representation such as different human voice, or in overall different sounds. In contrast, models can
evoke visual sensations - Sight and its children - with high intensity.

Fig. 9, shows an example of advertisements generated evoking four different sensations. Fig. 9,
further represents the difference between capabilities of T2I models in evoking visual sensations
like “Brilliance and Glow” and more abstract sensations like “Pressure”.

A.4 DATASET

To collect the dataset we defined the taxonomy represented in Fig. 10. Next, we randomly sampled
670 images from PittAd dataset Hussain et al. (2017) images covering 95 sensations and more
than 40 topics. The diversity of images over 5 main sensations and 10 most frequent topics is
represented in Fig. 11. For data annotation, we first had a test phase study on Prolific, gave the
annotators detailed instruction with examples of images evoking each sensation, and selected a
group of annotators based on the quality of their responses to do the main study. We used Qualtrics
to create dynamic forms showing different options based on annotators choice in each step. The
form is uploaded as the supplementary file.

The annotations were done by 12 annotators from different genders, within the age range of 25–60,
and with education level of minimum high school diploma, achieving approval rate above 90%
on more than 1000 annotations, and located in the United States. For each image, 1 annotator
annotated the image, then the quality of annotations were approved by a skilled evaluator. If there
was a disagreement on the annotation, the annotator was asked to explain the reasons for choosing
a specific sensation (this happened very rarely), and if the second annotator was not convinced the
annotation was ignored and the image was available in the pool for the new annotation. To further
confirm the reliability of annotations for about 10% of images we collected 2 annotations from two
different annotators and computed the κ agreement between them. The human-human agreement in
our dataset is 0.83 with 95% CI equal to [0.831, 0.838].

A.5 EXPERIMENTAL SETUP DETAILS.

In this section we explain our experimental setup. We will also release the github link upon the ac-
ceptance of the paper. For all the models we used Hugging Face implementation of the models. Sen-
sation Classification. In sensation classification tasks, we evaluated the model on real advertisement
images in our dataset. We benchmarked MLLMs including the InternVL (InternVL3.5-8B), Gemma
(gemma-3-4b-it), QwenVL (Qwen2.5-VL-7B-Instruct), and LLAVA-Next (llava-v1.6-vicuna-13b-
hf) with 8-bit quantization for models with more than 4Billion parameters. We also benchmarked
LLMs including Gemma, LLAMA3 (Meta-Llama-3-8B-Instruct), and QwenLM (Qwen2.5-7B-
Instruct), given the descriptions generated by the same MLLMs. Similar to MLLMs 8-bit quan-
tization was applied on models with more than 4B parameters.
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Figure 8: Sensation Heatmap. Average EvoSense score for images generated by each model for
each sensation. Each model generates ten images evoking each sensation.
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Figure 9: Sensory Ad examples. Four examples of real advertisement and generated advertisements
by Flux (Black Forest Labs, 2024), SD3 (Esser et al., 2024), AuraFlow(Fal, 2024), and PixArt (Chen
et al., 2024) given the action-reason interpretation and sensation annotation for the real advertise-
ment. Green border represents the sensation used in the prompt of T2I models.

EvoSense Training. To train and evaluate our proposed evaluation metric, we randomly selected
50 images from annotations to create our training data. In our proposed training, we pair each two
sensations with different intensity (scores chosen by human annotators) as chosen and rejected. Each
data point in our training, included description of the image, chosen sensation, rejected sensation,
and parent of chosen sensation. This training data setting resulted in 21000 data point. We fine-tuned
the LLMs - LLAMA3 (Meta-Llama-3-8B-Instruct), and QwenLM (Qwen2.5-7B-Instruct) - using
LoRA Hu et al. (2022) with batch-size of 1, and learning rate 5e-5. Our evaluation of EvoSense
performance was on a subset of the images not selected for training.

EvoSense Evaluation. In this part we do a more in depth evaluation on EvoSense. We increase the
number of images in our human-metric agreement evaluation to 100 images and more than 100000
(as before the images are unseen in the fine-tuning phase) and break-down the images by the high
level sensation each image evokes and report the agreement under each category of sensation.

First, we do an ablation on number of fine-tuning steps (i.e. number of images in the fine-tuning set)
to analyze the effect of fine-tuning data size on the performance of our evaluation metric. In table 4,
we observe that the agreement of our metric with human annotators stays almost consistent with the
increase in the size of fine-tuning data showing the effectiveness of our data expansion approach.

Next, we add InternVL, and QwenVL performing as a judge for sensation intensity to EvoSense
baselines in our evaluation reporting the per sensation kappa agreement between human and metrics
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Figure 10: Sensation Hierarchy. First level, represents the main five human sensations, and each
sensation is categorized into different set of sensations.

Metrics steps touch smell sound taste sight All
EvoSense (LLAMA3-instruct + DInternV L) 21000 0.79 0.82 0.77 0.84 0.85 0.80
EvoSense (LLAMA3-instruct + DInternV L) 25000 0.80 0.82 0.78 0.83 0.88 0.81
EvoSense (LLAMA3-instruct + DInternV L) 30000 0.80 0.82 0.78 0.84 0.88 0.81
EvoSense (LLAMA3-instruct + DInternV L) 30000 0.80 0.81 0.78 0.84 0.87 0.81

Table 4: Fine-tuning Ablation. Kappa agreement (κ) between EvoSense metric with different
number of fine-tuning steps on ¿10000 image-sensation pairs broken down into the sensation each
image evokes among the high level sensations.
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(a) Diversity of images over 5 main sensa-
tions.

(b) Diversity of images over 10 most frequent topics in
the SensoryAd dataset.

Figure 11: Image Distribution. Percentage of images evoking each high-level sensation category on
left and distribution of different topics on right side.

Metrics touch smell sound taste sight All 95% CI
VQA-score 0.58 0.60 0.42 0.65 0.58 0.57 [0.561, 0.570]

Image-Reward 0.49 0.50 0.38 0.34 0.45 0.46 [0.457, 0.467]
CLIP-score 0.48 0.47 0.36 0.41 0.30 0.44 [0.430, 0.440]
Pick-score 0.38 0.45 0.12 0.36 0.30 0.36 [0.350, 0.361]

LLAMA3-instruct (zero-shot) -0.09 0.08 -0.22 -0.005 -0.007 -0.04 [-0.038, -0.027]
QwenLM (zero-shot) -0.15 0.04 -0.22 0.03 0.003 -0.06 [-0.064, -0.053]
InternVL (zero-shot) 0.54 0.48 0.43 0.54 0.49 0.50 [0.507, 0.514]
QwenVL (zero-shot) 0.55 0.48 0.43 0.54 0.50 0.50 [0.507, 0.514]

EvoSense (LLAMA3-instruct + DInternV L) 0.79 0.82 0.77 0.84 0.85 0.80 [0.806, 0.813]
EvoSense (LLAMA3-instruct + DQwenV L) 0.76 0.77 0.70 0.79 0.73 0.75 [0.754, 0.761]

EvoSense (QwenLM + DInternV L) 0.64 0.69 0.57 0.73 0.64 0.66 [0.658, 0.666]
EvoSense (QwenLM + DQwenV L) 0.62 0.66 0.50 0.67 0.58 0.61 [0.612, 0.621]

Table 5: Kappa agreement between human annotators and evaluation metrics over different sensation
categories on 100 images (10000 image-sensation pairs)

along with confidence intervals for all the image-sensation pairs. In table 5, it is observed that
EvoSense improves the agreement with human by 60% compared to 0-shot MLLMs as a judge.
Table 5 further represents that the agreement between EvoSense and human annotators is consistent
over different sensation categories. EvoSense achieves higher agreement by at least 40% compared
to baselines over different sensation categories.

Kappa Agreement and Pearson Correlation Gap. As observed in table 2, there is a big gap in the
values of Kappa agreement (κ) and Pearson Correlation (r) reflected on all the metrics. In this part,
we analyze the reason why the gap exist using a qualitative example of scores. The difference is be-
cause the annotators choose up-to 3 sensation groups evoked by the image, and the rest of the scores
are 0. On the other hand, the computational metrics (including EvoSense and the baselines) choose
different scores for each sensation. For computing κ agreement, we use the sensation intensity as
the criteria for choosing the winner sensation for the image given each two sensation. We ignore
the sensation pairs where the human annotators assign the same score to both sensations. This way
we significantly reduce the sparsity of human annotations for the image. So, while the incorrect
sensations are included paired with selected sensations, they are not included as paired with other
unselected sensations. This is why κ is bigger than r where the 0 scores are kept in correlation
computation. Fig. 12a shows the scores from human and metrics for each sensation given the image
highlighting the problem of correlation because of the sparsity of the human scores. The figure rep-
resents while high scores assigned by metric represent the sensations evoked by the image selected
by the human, because of the sudden drop in the values of human scores, correlation becomes lower.

Description Generation. We generate descriptions of images with 0-shot InternVL, Gemma, and
QwenVL and utilize the same descriptions in assessing LLMs’ capabilities on sensation classifica-
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(a) Scores assigned to each sensation by human
annotator and EvoSense.

(b) Example images.

Figure 12: Comparison of human scores and metric scores for each sensation’s intensity evoked by
the example image.

tion tasks, and EvoSense evaluation. Fig. 13, represents two examples of descriptions generated by
each of the MLLMs. As shown in the examples, given the prompt in table 10 the models generate
accurate descriptions of the image without interpreting the image. This prevents the information
leakage in EvoSense while providing the accurate description of the image for LLMs in both clas-
sification and evaluation tasks. Negative agreements of zero-shot LLMs (LLAMA3-instruct and
QwenLM) in table 2 further rejects the hypothesis of information leakage from MLLM description
generation.

SensoryAd Generation. We benchmarked different T2I models including Stable Diffusion
3 (stable-diffusion-3-medium-diffusers), PixArt (PixArt-alpha/PixArt-XL-2-1024-MS), AuraFlow
(AuraFlow-v0.3), Flux (FLUX.1-dev), and QwenImage (Qwen-Image) with 4-bit quantization on
QwenImage and 8-bit quantization on rest of the models. We set the seed to 0 and number of time-
steps as 28. For the rest of the model setting we use the default values. To generate the Sensory
Ads, we utilized the sensation group (different level in hierarchy) evoked by the image with highest
intensity generating an image for each sensation.

Fine-tuning SD3 on SensoryAd Generation. To further analyze the capability of T2I models, we
fine-tuned the SD3 model on SensoryAd data. After fine-tuning text-image alignment of images
increases by 0.01 compared to 0-shot SD3 and sensation intensity stays unchanged. We hypothe-
size, this is the result of implicitness of the text input and the sensation as previously suggested by
Aghazadeh & Kovashka (2024) making the generation task more challenging.

Prompts. We have included prompts in Tables 10 (for image description generation), 9, 8, 7, 6 (for
Sensation Classification tasks), and 12, 11 (for Sensory Image Generation tasks).

Usage of AI: We use AI to polish writing.
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Figure 13: Image Description Examples. Two examples of descriptions generated by InternVL,
Gemma, and QwenVL. Both images are real advertisements from PittAdHussain et al. (2017)
dataset.
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Table 6: Prompt for LLM Hierarchical Sensation Classification

Prompt
System: You are a helpful assistant, choosing the sensations evoked by the described
image given the following definition in ordered form. You can choose up to 3 sensations
evoked by the image ranked in order of how well the sensations are evoked. If the image
does not evoke any sensation you can choose None.

Context:
Sensation is the process of detecting and receiving information from the environment or
the body through specialized sensory organs, which send signals to the brain for interpre-
tation.

Definition of the sensations in the options:
{{context}}

User: What are the sensations evoked the most by the described image? Only return the
indices of maximum of 3 options in ordered form without any further explanation.

Image Description:
{{description}}

Options:
{{options}}

Your answer must follow the following format:
Answer: ¡indices of maximum of 3 correct options separated by comma¿
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Table 7: Prompt for MLLM Hierarchical Sensation Classification

Prompt
System: You are a helpful assistant, choosing the sensations evoked by the input image
given the following definition in ordered form. You can choose up to 3 sensations evoked
by the image ranked in order of how well the sensations are evoked. If the image does not
evoke any sensation you can choose None.

Context:
Sensation is the process of detecting and receiving information from the environment or
the body through specialized sensory organs, which send signals to the brain for interpre-
tation.

Definition of the sensations in the options:
{{context}}

User: What are the sensations evoked the most by this image? Only return the indices of
maximum of 3 options in ordered form without any further explanation.

Options:
{{options}}

Your answer must follow the following format:
Answer: ¡indices of maximum of 3 correct options separated by comma¿
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Table 8: Prompt for LLM Multi-choice Sensation Classification

Prompt
System: You are a helpful assistant, choosing the sensations evoked by the described
image given the following definition in ordered form. You are asked to choose all the
sensations evoked by the image ranked in order of how well the sensations are evoked.If
the image does not evoke any sensation you can choose None.

Context:
Sensation is the process of detecting and receiving information from the environment or
the body through specialized sensory organs, which send signals to the brain for interpre-
tation.

Definition of the sensations in the options:
{{context}}

User: What are the sensations evoked the most by the described image? Only return the
indices of the options in ordered form without any further explanation.

Image Description:
{{description}}

Options:
{{options}}

Your answer must follow the following format:
Answer: ¡indices of correct options separated by comma¿
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Table 9: Prompt for MLLM Multi-choice Sensation Classification

Prompt
System: You are a helpful assistant, choosing the sensations evoked by the input image
given the following definition in ordered form. You are asked to choose all the correct
sensations evoked by the image ranked in order of how well the sensations are evoked. If
the image does not evoke any sensation you can choose None.

Context:
Sensation is the process of detecting and receiving information from the environment or
the body through specialized sensory organs, which send signals to the brain for interpre-
tation.

Definition of the sensations in the options:
{{context}}

User: What are the sensations evoked the most by this image? Only return the indices of
the options in ordered form without any further explanation.

Options:
{{options}}

Your answer must follow the following format:
Answer: ¡indices of correct options separated by comma¿

Table 10: Prompt for Structured Description Generation

Prompt
Carefully analyze the image and respond only in the specified format, without any inter-
pretations or inferences. Focus on only the visible elements in the image. Ensure that any
object seen in the image is included in Q1, even if it is described in more detail in Q2.

Response Format:
Q1: ${answer to Q1}
Q2: ${answer to Q2}

Questions:
Q1: Are there any objects in the image, excluding text-only logos, and text? List at most
5 such objects if present.
Q2: Describe the image in detail, focusing only on visible objects and elements without
adding any interpretation, opinion, or analysis in a single paragraph.

Table 11: Prompt for Sensory Image Generation

Prompt
Generate an image that evokes {{sensation}} sensation.
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Table 12: Prompt for Image Generation with Action-Reason and Sensation

Prompt
Generate an advertisement image that evokes {{sensation}} sensation and conveys
the following messages:
{% for statement in action reason %}
- {{statement}}
{% endfor %}
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