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Abstract

Despite the impressive capabilities of text-to-image diffusion models, they can also
generate undesirable images, including not-safe-for-work content and copyrighted
artworks. Recent studies have explored resolving this issue by fine-tuning model
parameters to erase problematic concepts. However, existing methods exhibit a
major flaw in robustness, as fine-tuned models often reproduce undesirable outputs
when faced with cleverly crafted prompts. This reveals a fundamental limitation in
current approaches and raises potential risks for deploying diffusion models in real-
world scenarios. To bridge this gap, we show that concept-related hidden states,
while deactivated by existing methods, can be reactivated under attacks, indicating
incomplete and temporary blocking of concept generation path. In response, we
introduce a simple yet efficient pruning-based framework for concept erasure. By
integrating concept erasing and pruning into a single objective, our method effec-
tively eliminating concept knowledge within models, while simultaneously cutting
off pathways the pathways that could potentially reactivate the concept-related
hidden states, ensuring robustness against adversarial prompts. Experiment results
demonstrate a significant enhancement in our model’s resilience to adversarial
attacks. Compared with existing concept erasing methods, our method achieves
about 30% improvement in erasing NSFW content and artwork style.

1 Introduction

Text-to-image diffusion models [26, 3] have demonstrated remarkable abilities in creating high-quality
images. These models can generate a variety of concepts, spanning natural landscapes, portraits,
abstract compositions, and artistic renditions. Thus, they hold great potential in many real-world
applications. Despite their powerful capabilities, these models, unfortunately, can be prompted
to generate undesirable content, including copyrighted artworks and certain Not-Safe-For-Work
(NSFW) content, such as nude images. As such, these models have raised significant concerns in
the community, and there is an emerging desire to eliminate such undesirable content from diffusion
models [24, 27, 9, 17, 34].

There have been several advances in preventing diffusion models from generating specific concepts.
Retraining models with carefully filtered datasets, although effective, is time-consuming and costly,
especially with large datasets such as the 5 billion samples mentioned in [28]. Consequently, recent
research has pivoted towards post-processing and post-training techniques. [24] introduced an NSFW
safety filter for sensitive prompt detection. However, its effectiveness is limited as even prompts
with low toxicity can still generate inappropriate images [27], and bypassing this filter is not very
hard [25]. To address this, concept erasing methods fine-tune diffusion models using techniques
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Figure 1: Left panel: semantic illustration of prior concept erasing methods (the top row) and
our method (the bottom row). Right panel: concrete examples illustrate the vulnerability of prior
concept-erasing methods and the robustness of our method.

like negative guidance [9] or altering the conditional distribution towards another anchor/surrogate
concept [17, 10, 11, 21].

Despite notable advancements in the field of concept erasing, fine-tuned diffusion models often exhibit
a lack of robustness. In particular, recent studies [6, 34] have shown that concepts trained to be erased
can easily be regenerated through meticulously designed prompts, referred to as adversarial prompts.
Consider the example shown in the first row of Fig. 1: although the model has been fine-tuned to
exclude “nudity" from its outputs, it inadvertently reproduces nude images when faced with slightly
modified, adversarial prompts. This reveals a fundamental weakness in current concept erasing
methods: the embedded knowledge of the concept within the models could be hidden rather than
forgotten. This vulnerability poses a significant risk when considering the deployment of diffusion
models in real-world scenarios and calls for new solutions. However, how to improve the robustness
performance has been a challenging problem yet to be solved.

With the above problem in mind, we first examine why fine-tuned diffusion models fail to be robust
against adversarial prompts. We analyze the behavior of hidden states within these models. By
tracing the activation of concept-related feature representations in neural networks, we have found
that current fine-tuning techniques merely deactivate the generation of concept-related hidden states
rather than eliminating them entirely. This deactivation is fragile, as input perturbations can reactivate
these hidden states, allowing for the regeneration of supposedly erased content. This implies that
the internal pathways for generating concept-related hidden states stay intact, even though they
are temporarily inactive. To enhance robustness, we propose a simple solution: pruning specific
parameters to sever these generation pathways completely. If we can strategically zero out certain
parameters, we may cut off the routes that lead to the reactivation of concept-related hidden states,
even in the face of adversarial prompts.

To achieve the above goal, we develop a differentiable pruning strategy for robust concept erasing.
Specifically, we parameterize a mask for each parameter and define the training objective with a
standard concept-erasing objective, such as ESD [9] and AC [17]. We then employ back-propagation
to optimize the mask, allowing the concept erasing loss to determine which parameters should be
pruned. That is, we integrate the erasing and pruning into a single objective. In this way, we can
achieve two goals simultaneously: 1) minimizing the loss associated with concept erasing, effectively
eliminating the concept knowledge within models, and 2) severing the pathways that could potentially
reactivate the concept-related hidden states, ensuring robustness against adversarial prompts.

The enhanced robustness of our proposed method, compared to previous approaches, has been
empirically validated across three widely-used test environments: the erasure of nudity, style, and
objects, as detailed in Section 4. We find that our method achieves comparable or even superior
performance in the concept erasing rate on normal prompts and significantly improves the robustness
performance on adversarial prompts, crafted by attack methods including UnlearnDiff [34] and
P4D [6]. A summarized comparison between the SOTA fine-tuning based method ESD and our
method P-ESD is reported in Fig. 2. Notably, we also empirically find that the sparsity of pruning is
well controlled under to a small portion (e.g., less than 0.01%) of parameters and does not sacrifice
generation quality on other concepts.
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Figure 2: Concept erasure rates of the fine-tuning-based ESD method [9] and our proposed pruning-
based P-ESD method, with both methods applying the same erasing objective. Higher values indicate
better performance. The results show that our method significantly outperforms the fine-tuning based
approach, especially when facing adversarial prompts.

We summarize our contributions as follows:

• We analyze why fine-tuning-based erasing is vulnerable to adversarial attacks, offering
insights to improve the robustness of concept erasing in diffusion models.

• We develop a new concept-erasing paradigm based on pruning to enhance robustness. This
approach integrates erasing and pruning into a single objective and can be easily applied to
existing concept-erasing objectives.

• Experiments demonstrate that our method significantly improves the robustness of diffusion
models across three test beds while maintaining the ability to generate standard concepts.

2 Related Work
2.1 Concept erasing in diffusion models

The task of concept erasing, or generally the removal of undesirable image generation, is introduced
in [24, 23, 27, 9, 17, 10]. There are two kinds of methods: inference-based and training-based. For
the former, there is no need to update the model’s parameters. In this vein, [27] proposed designing a
safety guidance to steer the generation in the opposite direction for unsafe prompts. [24] proposed
applying an NSFW safety filter to detect sensitive prompts before generation. On the other hand,
training-based approaches are believed to be safer as they aim to make the model forget undesirable
knowledge within the parameters. To name a few, [9] explored the use of negative guidance in text-
to-image diffusion models to reduce the conditional generation probability. [17, 10, 11, 21] showed
that modifying the conditional distribution of the target concept to that of another anchor/surrogate
concept also performs well. Note that closed-form solutions are available for [10, 11] since they
merely update the linear projection layer in the cross-attention module.

Concept erasing in text-to-image diffusion models is similar to the concept of machine unlearning,
which aims to remove the impact of certain data subsets from a trained model, as outlined in
[5, 29, 14, 18, 7]. While both processes share the goal of mitigating undesired influences, they differ
in focus. Concept erasing specifically targets the modification of content in generated images, as
highlighted in [9].

2.2 Neural network pruning

Pruning [16] is a compression technique commonly used to remove redundant components (e.g.,
weights or neurons) in neural networks. It is effective in reducing the number of neural network
parameters, thereby improving computational efficiency on edge devices [13]. Typically, pruning
strategies are designed to prune “less important" parameters while preserving the acquired abilities
[8, 4, 30]. Different from them, our framework requires to prune critical parameters associated
the concept for removal. We are motivated by previous studies [32, 12, 31, 15] that pruned neural
networks are sparse, which can reduce the correlation among dominant features and thereby enhance
robustness. They demonstrated that pruning is beneficial for adversarial robustness in machine
learning, particularly in classification tasks. In contrast, our focus is on the robustness of concept
erasing in generative models.
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Figure 3: Visualization of intrinsic vulnerability of fine-tuned models. More visualization examples
are provided in Appendix A.1

3 Robust Concept Erasing
3.1 Preliminary

Diffusion models, trained on vast amounts of unfiltered Internet data [28], often acquire the capability
to generate content that may include offensive images and copyrighted artworks. To mitigate these
unintended consequences, the framework of concept erasing has been introduced in [9, 17]. In
particular, this framework aims to fine-tune the diffusion model to disable its generation ability for
concepts deemed undesirable or inappropriate. Concretely, existing methods update model parameter
✓ to override the prediction of the text prompt c (associated with the erased concept) to a new target y:

min
✓

Lerase(✓) = Ext,c,t

h
k✏✓(xt, c, t)� yk22

i
. (1)

where ✏✓ is the denoising network, and xt is the noisy image input at time step t. In this way, the
probability of generating undesirable concepts are reduced in the denoising process. We explain how
existing methods can be substantiated in the above framework.

• For the ESD (Erasing Stable Diffusion) [9], it uses the target value
y = ✏✓⇤(xt, cnull, t)� ⌘[✏✓⇤(xt, c, t)� ✏✓⇤(xt, cnull, t)], (2)

where cnull is the null text for unconditioned generation and ✓⇤ is the parameter for an
non-erased diffusion model. Using the terminology from classifier-free guidance generation,
this target value guides the generation in the opposite direction of the erased concept.

• Another famous method is AC (Ablating Concept) [17], which uses the target value from
the prediction of text prompt c⇤ for an anchor concept:

y = stop_gradient(✏✓(xt, c
⇤, t)). (3)

This anchor concept is semantically similar to the erased concept but is removed with the
target concept. For example, to erase "Grumpy Cat", c could be “A cute little Grumpy Cat”
and c⇤ is “A cute little cat”.

3.2 Vulnerability of Concept Erasing

Although existing concept erasing methods are effective on normal prompts, they are vulnerable to
adversarial prompts [34, 6]. We provide such examples in Fig. 1 and Fig. 8. A critical question arises:
why do these fine-tuning-based erasing methods fail to be robust when faced adversarial prompts? In
this section, we explore the underlying reasons for this weakness by analyzing the model’s internal
hidden states, specifically focusing on how concepts emerge and dissipate within the diffusion model.

We believe that concept generation in the produced images is primarily controlled by certain pa-
rameters in the denoising network that interact with the inputs to yield concept-related feature
representations and final images. We realize that it is challenging to provide a complete depiction of
this process, but it is possible to identify such concept-related feature representations and trace their
behaviors to get some insights. For a denoising network consists of many ResNet blocks (e.g., 22 in
SD-v1.4), we trace the outputs of blocks (post-activation). Provided text prompts c containing the
concept to be erased, we measure the change of hidden states by:

⇢`,i = Ext,c

h��z⇤`,i(xt, c, t)� z`,i(xt, c, t)
��
1

i
, (4)
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where z⇤`,i and z`,i denote the outputs of the `-th block and i-th channel in the original model and
erased model (e.g., by ESD) respectively. A large value of ⇢ indicates that such a channel is modified
a lot by the erasing method and more correlated with concept generation. For each block, we identify
and focus on the channels with the most largest values of ⇢ as concept-related hidden states. An
example is provided in Fig. 3, where we demonstrate the erasing of the concept “tench". More
examples are provided in Appendix A.1.

Fig. 3 reveals the following mechanism: concept-erasing methods like ESD can effectively deactivate
the hidden states related to concept generation, successfully removing the undesired concept from the
generated image under normal prompts. However, when an adversarial perturbation is introduced to
the input prompt, the model’s generation pathways for these hidden states are reactivated, causing the
undesired concept to reemerge. This observation implies that the internal pathways for generating
concept-related hidden states stay intact, even though they are temporarily inactive. We believe this
drawback is inherent to fine-tuning methods, which merely update parameters to change the denoising
network’s output, but do not sever internal pathways of concept-related hidden states.

Our observation also leads to an interesting question: could we directly remove the identified channels
(set the value of channels to zero) to prevent the reactivation of concept-related hidden states? We
have experimented with this and found that while this approach is effective for some adversarial
prompts, it simultaneously impairs the model’s ability to generate non-targeted concepts. Detailed
results of this approach are provided in Appendix A.1. We believe this failure stems, in part, from the
polysemantic nature of channels [1, 22]. As output units, they may be responsible for a mixture of
multiple concepts, not just the one we aim to remove. This prompts us to explore a more principled
strategy: selectively pruning weights to disrupt the generation pathways of concept-related hidden
states, as discussed in the following section.

3.3 Pruning for Robust Concept Erasing

In this section, we introduce a parameter-pruning-based strategy to achieve robust concept erasing.
Previous studies on neural network pruning typically target the removal of “less important" connec-
tions, often identified through their minimal impact on overall model performance. Different from
them, our work innovatively integrates the erasing and pruning into a unified objective, and prune
critical parameters associated the concept for removal.

Here, let ✓⇤ 2 Rp denote the parameter of the original diffusion model. We introduce hard masks
Mhard 2 {0, 1}p, which has the same dimension as ✓⇤. The training objective remains to minimize a
concept erasing loss function for the denoising network, but the optimization variables are now the
masks:

min
Mhard2{0,1}p

Lerase = Ext,c,t

h
k✏✓⇤�Mhard(xt, c, t)� yk22

i
, (5)

where � means element-wise multiplication. The masks are applied to parameters (weights and
biases) in convolution and linear layers to selectively enable or disable the connections within these
layers. For parameters with special roles, such as those in layer normalization, masks are not applied.
The design of the target variable y is flexible and can be adapted to various existing methods, such as
ESD and AC.

By solving Eq. (5), we can achieve two goals simultaneously: 1) minimizing the loss associated with
concept erasing, effectively eliminating the concept knowledge within models, and 2) cutting off
the pathways that could potentially reactivate the concept-related hidden states, ensuring robustness
against adversarial prompts.

Practical Algorithm. Despite good properties of Eq. (5), the optimization problem involves discrete
optimization and is hard to solve. To address this challenge, we propose convert it to a continuous
optimization problem and employ gradient-based optimization algorithms such as AdamW [20]. In
particular, We parameterize the hard mask to be soft via the sigmoid function:

Msoft(m) =
1

1 + exp(�⌘ ·m)
2 [0, 1]p, (6)

where ⌘ > 0 is a fixed temperature coefficient (usually ⌘ = 10) controlling the slope of the sigmoid
function, and m 2 Rp is the trainable parameter to be optimized with same dimension as ✓⇤. Other
parameterization techniques may also be applicable, but we find that the sigmoid transformation
works well in our experiments. Then we solve the following continuous optimization problem
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Algorithm 1 Pruning for Concept Erasing
Require: concepts for erasing; diffusion model parameter ✓⇤; erasing loss Lerase

1: Initialize m0 2 Rp to be 1
2: for iteration k = 0, 1, 2, . . . ,K do
3: Msoft = 1/[1 + exp(�⌘ ·mk)]
4: mk+1  mk � ↵krmkLerase(✓⇤ �Msoft)
5: end for
6: Obtain the hard mask Mhard  I(Msoft > �)

Ensure: The pruned weight ✓⇤ �Mhard

minm Lerase(✓⇤ �Msoft) with gradient descent:
mk+1  mk � ↵krmkLerase(✓

⇤ �Msoft), (7)
where ↵k > 0 is the learning rate at iteration k. In practice, a good initialization of m0 is crucial
for stable training. Our approach is to ensure that at initialization, the model maintains its original
capability. Therefore, we initialize the trainable parameter m to be 1, ensuring that the resultant soft
mask is close to 1.

Once the training is complete, we can obtain the hard mask by discretization: Mhard  I(Msoft > �),
where � is a threshold parameter and the indicator function I is applied element-wise. There are
several ways to determine �. One simple approach is to set it as a constant. Another, more advanced
way method involves first sorting Msoft and then determining � based on a certain quantile, depending
how many parameters we aim to prune. In our experiments, we find that the first strategy works well
by setting � to 0.5. We outline the implementation in Algorithm 1.

Discussion. We provide the technical discussion here. First, some readers may express concern
that pruning parameters could alter model outputs and degrade generation quality. Our empirical
findings demonstrate that robust concept erasing can be achieved by pruning only a small fraction
(e.g., less than 0.01%) of parameters in practical applications. This minimal intervention preserves
overall model performance while effectively targeting concept-specific pathways, as evidenced by the
generation quality comparison in Appendix A.2. Second, we emphasize the importance of integrating
pruning and erasing into a single stage rather achieving them separately. Our empirical findings
illustrate that contrast to the proposed method, pruning before erasing, or pruning after erasing are
generally worse than ours, as illustrated in Appendix A.2. This is in part because the objective
mismatch of separating pruning and erasing.

4 Experiments
In this section, we present experiment results that validate the effectiveness and robustness of our
method, along with detailed analysis of its design.

4.1 Experiment Setups

Baselines: Following the literature in [27, 9, 17, 10], we choose Stable Diffusion v1.4 [26] as the
base model. We compare the proposed method with the following widely-used baselines for concept
erasing: FMN [33], ESD [9], AC [17], UCE [10], RACE [11], and SPM [21]. We integrate our
pruning method with ESD and AC, denoted P-ESD and P-AC. To ensure a fair comparison, for
P-ESD, the negative guidance scale is 3, we prune only the unconditional layers (non-cross-attention
layers) when erasing nudity and objects, and only the conditional layers (cross-attention layers) when
erasing style. The learning rate to optimize the soft mask is set to 0.1. For P-AC, in alignment with
AC’s strategy, we prune whole weights when erasing nudity and only cross-attention layer when
erasing style. The learning rate is set to 0.01. For both methods, the temperature coefficient ⌘ in
the sigmoid function is 10, and the threshold � to discretize the soft mask is set to 0.5. The training
process stops at 250 steps for P-ESD and 1000 steps for P-AC, which allows us to pruning only a
small portion (less than 0.01%) of parameters while ensuring the effectiveness of concept erasure.

Evaluation criterion: We consider the task of concept erasing in three scenarios: erasing nudity,
artist styles, and objects, which are also used in prior work. To evaluate the performance, we use
the erased model to generate images on test prompts containing the target concept text prompts and
then ask a classifier to tell whether a concept exists on the generated images. Thus, we introduce
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Table 1: Concept erasure rate for erasing nudity. A larger number means a better erasing.
UCE RACE SPM AC P-AC ESD P-ESD

Normal Prompts 0.80 0.83 0.47 0.60 0.63 0.80 0.95
Adversarial Prompts:
UnlearnDiff 0.14 0.49 0.08 0.17 0.36 0.40 0.86
P4D 0.13 0.50 0.08 0.26 0.42 0.39 0.82

Table 2: Concept erasure rate for erasing style.
UCE RACE SPM AC P-AC ESD P-ESD

Normal Prompts 0.28 0.56 0.36 0.82 0.80 0.84 1.00
Adversarial Prompts:
UnlearnDiff 0.04 0.20 0.12 0.42 0.62 0.52 0.90
P4D 0.06 0.18 0.10 0.46 0.62 0.56 0.86

the criterion called Concept Erasure Rate (CER), which indicates the rate at which the diffusion
model successfully erases a specified concept from its generated images. A higher rates means better
performance in achieving concept erasure.

Attack methods: In all three scenarios, we implement two recently proposed attack methods: P4D [6]
and UnlearnDiff [34], which use a local search method to find an adversarial prompt for concept
regeneration. The prepended prompt perturbation is set as 5 tokens for erasing nudity, and 3 tokens
for erasing style and object. For each prompt, we conduct 10 attacks on samples drawn from 10
timesteps, selected at intervals of 5 steps across 50 diffusion steps. Details of attack configuration is
provided in Appendix A.3.

4.2 Erasing Nudity

We evaluate models on erasing nudity using the same test prompts as [34], derived from the “sexual"
category of the I2P dataset [27] with nudity scores above 0.75. NudeNet [2] is then used to detect
nudity in the generated images.

We report the average concept erase rate over these test prompts in Tab. 1. Quite interestingly, we
find that our method not only improves the concept erasing rate on normal test prompts but also
the adversarial prompts. Note that the concept erasing on adversarial prompts are challenging: the
performance of all methods we tested dropped on adversarial prompts compared to that with normal
test prompts. Nevertheless, we find that our P-ESD is still robust among baselines. Specifically, the
concept erasure rates on adversarial prompts improves by over 30% compared to existing methods.
These results demonstrate that our proposed method serves as an effective strategy for enhancing the
robustness of concept erasing in the nudity task.

4.3 Erasing Style

In this section, we consider to remove the artist style, a more abstract concept. Following [34],
we choose to examine the effectiveness of various methods in erasing the "Van Gogh" style from
diffusion model. There are 50 test prompts. The success of concept erasing is evaluated using a style
classifier to check if the “Van Gogh" style is among the top-3 predictions for images generated by the
model after concept erasing has been applied.

We report the results in Tab. 2. Among the fine-tuning-based methods, ESD emerges as the most
effective aimed at erasing style. However, it is still inferior to our proposed P-ESD method, which
outperforms ESD by over 30% when tested against adversarial prompts.

4.4 Erasing Objects

In this section, we focus on removing various objects, including “tench," “church," and “garbage
truck". For each object class, we use 50 test prompts from [34], generated by ChatGPT.

The results are presented in Tab. 3. Among baselines, UCE outperforms both FMN and ESD. However,
by integrating pruning into ESD, P-ESD exhibits enhanced performance over ESD on adversarial
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Table 3: Concept erasing rate for erasing objects.

Tench Church Garbage Truck

FMN UCE SPM ESD P-ESD FMN UCE SPM ESD P-ESD FMN UCE SPM ESD P-ESD

Normal Prompts 0.64 1.00 0.94 1.00 1.00 0.48 0.94 0.54 0.86 0.88 0.54 0.98 0.92 0.98 1.00
Adversarial Prompts:
UnlearnDiff 0.12 0.96 0.42 0.78 0.92 0.12 0.74 0.08 0.58 0.64 0.08 0.84 0.64 0.90 0.86
P4D 0.14 0.92 0.56 0.86 0.98 0.16 0.64 0.10 0.64 0.68 0.04 0.88 0.56 0.82 0.94

Figure 4: Sensitivity score comparison between ESD and P-ESD. The sensitivity scores are averaged
on concept-related hidden states from each layer.

prompts and competes favorably with UCE. This suggests that our pruning-based approach offers
greater robustness than fine-tuning when optimizing the same erasing objective.

4.5 Analysis of the Proposed Method

In addition to evaluating the concept erasing rate on adversarial prompts, we aim to explore the
model’s internal robustness. To do this, we assess the sensitivity score of concept-related hidden
states identified using Eq. (4). This score is based on the magnitude of activation value changes
when exposed to normal prompts, c, versus adversarial prompts, cadv. Intuitively, we expect the
concept-related hidden states to remain stable with a low sensitivity score under adversarial attacks,
such that they would not easily reactivate. Specifically, for each feature z`,i located at the `-th layer
and i-th channel in the erased model, we define its sensitivity score at denoising timestep t as:

�`,i = Ext,c

⇥
kz`,i(xt, c, t)� z`,i(xt, cadv, t)k1

⇤
, (8)

A large value of � implies that the activation of the hidden state is significantly affected by the prompt
change, thus indicating its vulnerability to input variations.

In Fig. 4, we compare the sensitivity scores of fine-tuning-based and pruning-based erasing methods,
namely ESD and P-ESD. These scores are computed over five timesteps, selected at intervals of 10
steps across a total of 50 diffusion steps. We find that P-ESD consistently reduces the sensitivity
score throughout the denoising process, suggesting greater internal robustness compared to ESD.

5 Conclusion

In this paper, we develop a new pruning strategy to address the robustness issue in existing con-
cept erasing frameworks. Our method selectively prunes parameters critical to targeted concepts,
demonstrating superior performance over existing approaches. This work aims to mitigate risks
associated with deploying diffusion models in real-world scenarios where adversarial prompts may
be encountered. Future research will explore extending these techniques to improve robustness in
other model types beyond diffusion models.
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concept editing in diffusion models. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 5111–5120, 2024.

[11] Chao Gong, Kai Chen, Zhipeng Wei, Jingjing Chen, and Yu-Gang Jiang. Reliable and efficient
concept erasure of text-to-image diffusion models. In Proceedings of the European Conference on
Computer Vision, 2024.

[12] Shupeng Gui, Haotao Wang, Haichuan Yang, Chen Yu, Zhangyang Wang, and Ji Liu. Model
compression with adversarial robustness: A unified optimization framework. Advances in Neural
Information Processing Systems, 32, 2019.

[13] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[14] Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay
Sharma, and Sijia Liu. Model sparsity can simplify machine unlearning. In Annual Conference on
Neural Information Processing Systems, 2023.

[15] Artur Jordao and Hélio Pedrini. On the effect of pruning on adversarial robustness. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1–11, 2021.

[16] Ehud D Karnin. A simple procedure for pruning back-propagation trained neural networks.
IEEE transactions on neural networks, 1(2):239–242, 1990.

[17] Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan
Zhu. Ablating concepts in text-to-image diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 22691–22702, 2023.

9



[18] Guihong Li, Hsiang Hsu, Radu Marculescu, et al. Machine unlearning for image-to-image
generative models. arXiv preprint arXiv:2402.00351, 2024.

[19] Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, PRANAY SHARMA,
Sijia Liu, et al. Model sparsity can simplify machine unlearning. Advances in Neural Information
Processing Systems, 36, 2024.

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[21] Mengyao Lyu, Yuhong Yang, Haiwen Hong, Hui Chen, Xuan Jin, Yuan He, Hui Xue, Jungong
Han, and Guiguang Ding. One-dimensional adapter to rule them all: Concepts diffusion models
and erasing applications. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7559–7568, 2024.

[22] Simon C Marshall and Jan H Kirchner. Understanding polysemanticity in neural networks
through coding theory. arXiv preprint arXiv:2401.17975, 2024.

[23] Pamela Mishkin, Lama Ahmad, Miles Brundage, Gretchen Krueger, and Girish Sastry. Dall· e
2 preview-risks and limitations. Noudettu, 28:2022, 2022.

[24] Javier Rando, Daniel Paleka, David Lindner, Lennart Heim, and Florian Tramèr. Red-teaming
the stable diffusion safety filter. arXiv preprint arXiv:2210.04610, 2022.

[25] Reddit. Tutorial: How to remove the safety filter in 5 seconds, 2023.

[26] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[27] Patrick Schramowski, Manuel Brack, Björn Deiseroth, and Kristian Kersting. Safe latent
diffusion: Mitigating inappropriate degeneration in diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22522–22531, 2023.

[28] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b:
An open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

[29] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet
effective machine unlearning. IEEE Transactions on Neural Networks and Learning Systems,
2023.

[30] Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu.
Pruning from scratch. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 12273–12280, 2020.

[31] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
Advances in Neural Information Processing Systems, 34:16913–16925, 2021.

[32] Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang, Aojun
Zhou, Kaisheng Ma, Yanzhi Wang, and Xue Lin. Adversarial robustness vs. model compression,
or both? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
111–120, 2019.

[33] Eric Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-not:
Learning to forget in text-to-image diffusion models. arXiv preprint arXiv:2303.17591, 2023.

[34] Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding,
and Sijia Liu. To generate or not? safety-driven unlearned diffusion models are still easy to
generate unsafe images... for now. In Proceedings of the European conference on computer vision,
2024.

10



A Appendix

A.1 Vulnerability of Concept Erasing

Concept-related channels visualization. We provide additional visualization results of concept-
related channels in Fig. 9, Fig. 10, Fig. 11, and Fig. 12, which are deactivated in the fine-tuned
model (by ESD) but reactivated by adversarial prompts. The results indicate the internal pathways
for concept-related hidden states are temporarily inactive in fine-tuned models. In those figures, the
identified channels are rescaled to the same size as the generated images and overlap with them.
Redder regions in the figure indicate higher activation.

Results on zeroing out concept-related channels. We also evaluate the erasing performance
by directly zeroing out the identified concept-related channels. As indicated in Fig. 5, the fine-
tuned model (by ESD) is vulnerable to adversarial prompts and regenerate the target concepts (the
third column). However, after we directly zeroing out the identified concept-related channels, the
adversarial prompts no longer succeed (the fourth column, ESD + ZC). Despite the improvement
in erasing robustness, this method could compromise the generation quality, as evidenced by the
noticeable degradation in generation quality. This effect might arise from the polysematic nature of
channels [1, 22], where the identified channels might contribute to a mixture of multiple concepts
rather than being exclusively tied to a single target concept. Therefore, we provide a safer and more
automatic approach, to prune within the parameter space. This allows us to achieve both a high rate
of concept erasure and good generation quality.

Tench with a hook in its 
mouth.

jrwars ! tench with a hook in 
its mouth.

Original SD ESD ESD ESD + ZC

church surrounded by 
autumn foliage

managmoorotti church
surrounded by autumn foliage

church surrounded by 
autumn foliage

managmoorotti church
surrounded by autumn foliage

Tench with a hook in its 
mouth.

jrwars ! tench with a hook in 
its mouth.

(a) (b) (c) (d)

Figure 5: (a-c) The vulnerability of edited SD by fine-tuning when erasing “church" (the first row)
and “tench" (the second row). (d) The results from directly zeroing out concept-related channels.

A.2 Additional Experiment Results

On the generation quality on non-concept content. To assess the impact on image generation
quality on non-concept contents, we evaluated the fidelity (FID) score using 30K prompts from the
COCO dataset. We compared the FID scores between ESD, and P-ESD with the results presented in
Tab. 4. Notably, P-ESD maintains generation quality comparable to, or even better than, the ESD
method. The results indicate that compared with fine-tuning-based erasing, pruning-based method
does not compromise quality while enhancing erasure performance.

Comparison of different pruning stages. We analyze which pruning approach best enhances
concept erasing, comparing three methods for removing nudity:
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Table 4: FID comparison on COCO-30k prompts between ESD and P-ESD. The original stable
diffusion model’s FID score is 14.64.

Nudity Style Tench Church Garbage Truck

ESD 14.32 15.01 13.72 16.07 17.75
P-ESD 13.60 15.08 13.23 16.72 14.09
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Figure 6: Comparison of different pruning strategies. The pruning ratio is also shown in the bar. Even
though its pruning ratio is smaller, P-ESD is more effective than Post-Prune and Pre-Prune.

• Pre-Prune: Following [19], we globally prune 10% of pre-trained weights by magnitude
before erasing. During erasing, pruned weights are fixed while remaining weights are
fine-tuned using ESD.

• P-ESD (Our method): Pruning occurs during the erasing process, optimizing the model for
the erasing objective. The final pruning ratio is 0.0012%.

• Post-Prune: Standard ESD erasing followed by global magnitude-based pruning of 10% of
the model.

In Fig. 6, we compare three pruning strategies against ESD without pruning. All methods improve
on test and adversarial prompts, highlighting the role of neural network sparsity in robust concept
erasing. P-ESD stands out as the most effective strategy, with the least pruned weights. This could be
due to the fact that pruning aware of the erasing objective could achieve localized robustness for the
erased concept, while generic pruning aimed at merely increasing the network’s sparsity may lead to
a widespread reduction in neuron sensitivity.

Hyper-parameter analysis. The temperature ⌘ determines the steepness of the sigmoid function
used in discrete optimization. In Tab. 5, we analyze the impact of ⌘ on concept erasing rate under
UnlearnDiff attack and generation quality (FID). As the table indicates, ⌘=10 gives a good trade-off
between erasing effectiveness and generation quality. When ⌘ is larger, such as 15, the sigmoid
function becomes steeper, which may make optimization more challenging and negatively affecting
generation quality. Conversely, a smaller ⌘ value, such as 5, leads to slower convergence and less
effective erasing. At ⌘ = 10, the soft masks tend to concentrate around 0 and 1, which reduces the
need for fine-tuning the threshold �, allowing us to empirically set it at 0.5.

Table 5: Hyper-parameter analysis.
⌘=5 ⌘=10 ⌘=15

Concept Erasing Rate 0.59 0.86 0.89
FID 12.75 13.60 14.06

Analysis on pruned weights. To analysis which parameters are mostly pruned. In Fig. 7, we illustrate
the percentage of pruned weight of relative to the total pruned weights in each layer, when pruning
the unconditional layers for erasing tench (the left figure) and the conditional layers for erasing style
(the right figure). It is observed that when pruning the unconditional layers, the majority of pruned
weights are in the attention layers, including the input/output projection layers and feedforward layer.
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When pruning conditional layers, the mostly pruned weights are found in the cross-attention value
matrix, this is because value matrix of cross attention layer plays a crucial role in determining which
parts of the texture information are been leveraged to generate the visual content.
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Figure 7: Percentage of pruned weights for each type of layer.
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Figure 8: Visualization examples. The black boxes in the first two rows are added by the authors
to hide NSFW content for publication. The symbol 3 represents successful concept erasure, and 7
indicates a failure in concept erasure.

Case visualization. In Fig. 8, we present concrete examples of attack results which our method
remains robust to the attack. We can observe that our method is robust towards adversarial attacks
while maintaining generation quality.
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A.3 Additional Experiment Details

Our experiments are conducted on four V100-32G GPUs. The machine is equipped with 48 Intel-
Xeon-Gold-6226 CPUs. For experiments on P-ESD and P-AC, we run the experiments using random
seed as 42.

For the evaluation of adversarial attacks, both methods utilize prepended prompt perturbations.
Specifically, 5 tokens are used for erasing nudity, and 3 tokens are used for erasing style and object.
For each prompt, we perform 10 attacks on samples drawn from 10 timesteps, chosen at 5-step
intervals across the 50 diffusion steps. The prepended prompt perturbations are optimized over 40
iterations using the Adam optimizer, with a learning rate of 0.01 and a weight decay of 0.1 at each step.
For the evaluation of the concept erasing rate, we generated images using the LMSDiscreteScheduler
as the sampling scheduler. The parameters for this scheduler include a beta start of 0.00085, a beta
end of 0.012, and a beta schedule set to "scaled_linear." The sampling was performed with 50 steps.
The FID scores are calculated using clean-fid1.

Original SD ESD

allenge dzshaft church in a 
desert landscape

ESD

church in a desert landscape.

church surrounded by 
autumn foliage

managmoorotti church
surrounded by autumn foliage

church surrounded by 
autumn foliage

church in a desert landscape.

church candles on an altar. magic stauoscarchurch candles 
on an altar.

church candles on an altar.

Figure 9: Visualization of concept-related hidden states in the original stable diffusion (SD) and the
edited SD when erasing church. They are from the 1017th channel output by the first group of layers
(Resnet-0) in the second upsampling block (UpBlock-1) of the network.

1https://github.com/GaParmar/clean-fid
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van gogh
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Vincent van Gogh
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Rooftops in Paris by 
Vincent van Gogh

The Church at Auvers by 
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Figure 10: Visualization of concept-related hidden states in the original stable diffusion (SD) and the
edited SD when erasing Van Gogh. They are from the 1134th channel output by the first group of
layers (Resnet-0) in the fourth downsampling block (DownBlock-3) of the network.
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Figure 11: Visualization of concept-related hidden states in the original stable diffusion (SD) and the
edited SD when erasing nudity. They are from the 607th channel output by the first group of layers
(Resnet-0) in the middle block of the network.
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Figure 12: Visualization of concept-related hidden states in the original stable diffusion (SD) and the
edited SD when erasing tench. They are from the 298th channel output by the first group of layers
(Resnet-0) in the second upsampling block (UpBlock-1) of the network.
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