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ABSTRACT

A clean training dataset, which consists of only normal data, is crucial for detect-
ing anomalous data. However, the clean dataset is challenging to produce in prac-
tice. Here, a heterogeneous loss function with aggressive rejection is proposed,
which strengthens robustness against contamination. Aggressive rejection con-
strains training on the potential anomalies which is the intersection of normal and
abnormal distributions. Heterogeneous loss function applies a mini-batch stochas-
tic choice of an asymptotic polynomial to a generalized robust loss function, which
dynamically optimizes the gradient for the intersection further. Through the pro-
posed method, mean square error based models can outperform various robust loss
functions and generate comparable performance with robust models for contami-
nated data.

1 INTRODUCTION

Identifying outliers or abnormalities in data is known as anomaly detection (AD) (Chandola et al.,
2009). AD assumes that a model is trained on a clean dataset that consists of only normal data
so that the output contains normal features. Autoencoder (AE) (Hinton et al., 2006; Bergmann
et al., 2018) is a representative model whose output is generated by an encoder and a decoder. The
encoder converts the input into a latent vector, which is then reconstructed by the decoder as the
original one. Due to the clean dataset, the output of AE takes on normal features. As a result,
the reconstruction error (the difference between input and output) should be close to zero for normal
input, whereas high for abnormal input. However, it is challenging to produce clean datasets because
of the ambiguity between normal and abnormal data. Moreover, the ground truth depends on the
individual. Contaminated data is produced when training data are labeled as normal, although data
include both normal and abnormal. It is essential to make the model robust to contamination because
it impairs performance.

To address contamination, a few anomalies were postulated and excluded from the training
data (Beggel et al., 2019). However, it is challenging to access and eliminate overall anomalies
due to the normal-like ones. Both classification and regression have related methods for the prob-
lem. Classification approaches utilized ground truth (Xu et al., 2019; Pleiss et al., 2020) or combined
cross-entropy loss function and mean absolute error (MAE) (Englesson & Azizpour, 2021; Zhang
& Sabuncu, 2018). In the case of regression, robust loss functions were used, such as pseudo-Huber
loss (Huber, 1992). The classification approaches, which rely on ground truth or cross-entropy
loss, cannot be extended to the field of AD. AD can utilize the regression approaches, but they are
ineffective since the training data still contains anomalies enough to interrupt the assumption.

In this paper, a novel robust loss function, heterogeneous loss function with aggressive rejection, is
proposed to make detectors robust against contaminated data. Aggressive rejection removes a large
amount of data to handle the anomalies as much as possible. Heterogeneous loss function is based
on a general and adaptive robust loss function (GA) (Barron, 2019) that generalizes loss function
from mean square error (MSE) to Welsch loss (Dennis Jr & Welsch, 1978). The proposed loss
function dynamically adjusts the gradient to utilize the normal samples as much as possible while
impacting less for abnormal samples.
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The experiments showed that heterogeneous loss function with aggressive rejection outperformed
the existing robust loss functions and models. In addition, the heterogeneous loss function can be
extended to MSE-based AD models, as demonstrated in section 5.3.

2 RELATED WORK

In the field of AD, deep learning has improved performance significantly. Initially, reconstruction
error based models such as AE, variational autoencoder (VAE) (Kingma & Welling, 2013), and ad-
versarial autoencoder (AAE) (Makhzani et al., 2015) were used. Since AD assumes a clean dataset,
the normal input results in a low reconstruction error, whereas the anomaly results in a high recon-
struction error. Memory-augmented autoencoder (MemAE) (Gong et al., 2019) added a memory
module to convert the input latent vector to the most relevant latent vector in memory. Deep support
vector data description (DSVDD) (Ruff et al., 2018) makes the latent vector of the training data close
to the center vector. The score function is measured by the distance between the center vector and
the input latent vector. The performance of AD has been increased by using contrastive loss (Tack
et al., 2020; Reiss & Hoshen, 2021), outlier exposure (Hendrycks et al., 2018), and a few ground
truths (Ruff et al., 2019). These methods are sensitive to contaminated data due to the assumption.

Contaminated data is produced by difficulty or mistake in labeling. The contaminated data makes
AD models difficult to detect anomalies by training both normal and abnormal features. The prob-
lem has already been addressed in the field of classification and regression. For classification, the
mislabeled data are prevented by removing them during or after training or robust loss function.
Pleiss et al. (2020) identified the mislabeled data based on the entire predictive results generated
in the training process. Englesson & Azizpour (2021) and Zhang & Sabuncu (2018) proposed a
loss function that combines MAE, a slow but noise robust loss function, and the opposite cross-
entropy loss function. For regression, loss functions such as pseudo-Huber (Huber, 1992), Geman-
McClure (Ganan & McClure, 1985), and Cauchy (Black & Anandan, 1996) were employed to re-
duce the influence of the outliers. A general robust loss function (Barron, 2019) was proposed,
generalizing various robust loss functions. The classification methods require ground truth or cross-
entropy, and the regression methods still have anomalies in training data. Thus, they are not appro-
priate for solving the contamination problem.

The previous approaches designed robust models or loss functions with data refinement. Robust
variational autoencoder with attention based feature adaptation (RVAE-ABFA) (Gao et al., 2020) is
based on deep autoencoding gaussian mixture model (DAGMM) (Zong et al., 2018). They achieved
robustness by replacing AE with VAE and adjusting the weight between latent vector and recon-
struction error via attention based feature adaption. The strategies for data refinement eliminate
samples identified as anomalies (Yoon et al., 2021; Görnitz et al., 2014; Xia et al., 2015). Iterative
training set refinement (ITSR) (Beggel et al., 2019) applied one-class support vector machine (OC-
SVM) (Schölkopf et al., 1999) to a latent vector of AAE for refinement during training. Normality-
calibrated autoencoder (NCAE) (Yu et al., 2021) generated high-confident normal samples in the
low entropy space and utilized them for predicting anomalies. Latent outlier exposure (LOE) (Qiu
et al., 2022) defined normal and abnormal loss functions. The normal loss function is used for the
data discriminated as normal, and the abnormal loss function, such as the reciprocal of the normal
loss function, is used for others. They assumed that high differences between normal and abnormal
loss functions are anomalies, and 10% of data are treated as anomalies. Pseudo-Huber loss was
employed by Liznerski et al. (2020). Since AD takes a clean dataset or a few contaminated data, the
refinement strategies set a contamination ratio around 10%, which keeps the normal samples and
only removes the high-confident anomalies.

3 MOTIVATION

The previous robust loss functions try to inhibit training on anomalies. For instance, pseudo-Huber
loss (Liznerski et al., 2020) reduces the gradient of high loss, while maintaining the same gradient
to MSE for low loss. LOE (Qiu et al., 2022) assumes 10% anomalies in datasets, and trains to
maximize the difference between normal and potential anomalies. However, pseudo-Huber loss does
not eliminate the potential anomalies and LOE assumes a low contamination ratio. The assumption
of a 10% contamination ratio, as shown in Figure 1a, which depicts the distribution of anomaly
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Figure 1: (a) Observation of anomaly scores on 10% contaminated train data. (b) Motivation of
aggressive rejection. AE is trained on MNIST dataset (LeCun et al., 2010). The samples over the
0.9-quantile contain more anomalies than normal, but 6.7% of the total data still contain anomalies.
Although the samples that are over 0.5-quantile are more normal than the 0.9-quantile case, its
anomaly ratio is about 0.034 (3.4%).

scores cannot handle the entire anomalies due to the similar feature between normal and abnormal.
However, more anomalies can be managed with a 50% contamination ratio as seen in Figure 1b.
Therefore, we introduce a rejection method that assumes 50% of data are potential anomalies, and
a heterogeneous loss function to address the problem that eliminates numerous normal samples
through gradient adjustment based on anomaly score.

4 PROPOSED METHOD

In this section, heterogeneous loss function and aggressive rejection are described. The ambiguous
data which intersects the normal and abnormal distributions are rejected. In addition, various loss
functions are used for each normal and abnormal sample.

4.1 REJECTION

Aggressive Rejection. The previous approaches roughly set 10% contamination ratio (Beggel et al.,
2019; Qiu et al., 2022), thus they cannot handle all the anomalies since abnormal distribution over-
laps normal distribution as Figure 1a. Moreover, the assumption of contamination ratio limits the
performance when the contamination ratio is over 10%. Figure 1b shows that the anomaly ratio de-
creases as more data are removed. Based on this concept, aggressive rejection removes the anomalies
at the expense of a significant amount of normal samples. The formulation of aggressive rejection is
given as follows:

L(xi, wi) = wiLMSE(xi)

wi =

{
0 if si > sq
1 otherwise

LMSE(xi) = ||xi − f(xi)||2

(1)

where xi is the training data, wi is the weight for aggressive rejection, si is the i-th anomaly score,
sq is its q-quantile, and f(·) is a model such as AE. Aggressive rejection removes the data in which
an anomaly score (defined for each model, e.g., reconstruction error) is higher than sq . Since q
increases monotonically at 0.5 in Figure 1b, q is set to 0.5. The experiments on the q setting can be
seen in Appendix A.

Soft Rejection. Although aggressive rejection removes the potential anomalies, it also removes a
large amount of normal data, which causes performance degradation, especially on a clean dataset.
To address this problem, the rejection weight wi is adjusted partially by a hyperparameter ts. As
in equation 2, wi depends on ts, where ts = [0, 1]. “Hard rejection” in which ts = 0 excludes the
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rejection target completely, whereas “soft rejection” in which ts = (0, 1] is trained partially. It is im-
portant to set an appropriate value because a low ts lowers performance on a clean dataset, whereas
a high one reduces robustness. Models achieve minimal loss on a clean dataset and robustness on a
contaminated dataset when ts is set to 0.1. (see Appendix B).

wi =

{
ts if si > sq
1 otherwise

(2)

4.2 HETEROGENEOUS LOSS

LOE (Qiu et al., 2022) contains a few normal in the potential anomalies due to the 10% contamina-
tion ratio. However, aggressive rejection contains a lot of normal samples because it treats half of
the data as potential anomalies. It causes problems for both clean and contaminated datasets.

To address the problem, a new loss function should satisfy two conditions. First, it should consider
the anomaly score. The number of normal samples increases as the anomaly score decreases, as
shown in Figure 1a. Because there are more normal samples than abnormal samples in low anomaly
scores, the loss function should encourage models to be trained well. Second, the loss function
should not minimize the abnormal loss function, which is the reciprocal of the normal loss function
like LOE, whereas it still produces fast convergence for normal and slow convergence for abnormal.
The training is considerably disrupted when the reciprocal of the normal loss function is minimized.
As a result, the robust loss function with a lower gradient than MSE should be used as the abnormal
loss function. To satisfy these conditions, a novel loss function named heterogeneous loss function
is proposed, which adjusts the gradient based on the anomaly score for each potential anomaly.
Samples with a high anomaly score use a loss function that is close to MSE, whereas samples with
a low anomaly score use a loss function that is close to a robust loss function.

Heterogeneous loss is based on GA loss, a generalized loss function that covers from MSE to Welsch
loss by a parameter α = [−∞,∞] as in equation equation 3 (the formulation is rewritten slightly
since the reconstruction error is used as input). c is the point where various loss functions have
similar gradients.

LGA(x
2, α, c) =


0.5x2/c2 if α = 2√
x2/c2 + 1− 1 if α = 1

|α−2|
α ((x

2/c2

|α−2| + 1)α/2 − 1) otherwise
(3)

Then, modified z-score (Rousseeuw & Croux, 1993) is utilized to project the anomaly score to
gradient parameter α. The formulation of the modified z-score is given as follows:

zi =
0.6745(xi − x̂)

MADi

MADi = mediani∈1,...,N (|xi − x̂|)
x̂ = mediani∈1,...,N (xi)

(4)

The modified z-score is robust against outliers since it is based on the median. In addition, the
modified z-score generates a normal distribution and has a relative distance. The modified z-score
z is normalized by a maximum between 3.5 and max(|z|), where 3.5 is the outlier threshold. When
m is defined only by max(|z|), the normalized score ranges from 0 to 1, even if the variance is low.
3.5 is used instead of the low max(|z|) to make the normalized z close to zero when the variance
is low. As the boundary value, 3.5 is utilized to increase the convergence. The normalized z is
converted to α by the equation 5, where si is the anomaly score, zi is the modified z-score, and
αr is the parameter for the lowest gradient loss. The minimum of zi is matched to MSE (normal
loss function), and the maximum of zi is closed to the robust loss function, GA loss with α = αr.
Thus, α ranges from αr to 2. Since α determines the lower boundary of the gradient in the loss
function, it is critical to use proper values. In this paper, α is set to 1.5, the median between MSE
and pseudo-Huber (see Appendix C). z is applied in the form of a quadratic function because the
anomaly ratio increases as a quadratic function (see Figure 1b).

αi =

{
2− (2− αr) ∗ (zi/m)2 if zi > 0

2 otherwise

m = max(3.5,max(|z|))
(5)
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Figure 2: (a) Heterogeneous loss function with soft rejection. It shows loss functions on varying
α when ts = 0.1. (b) example of heterogeneous loss function with soft rejection when ts = 0.1,
αr = 1 and c =

√
0.5.

Figure 2 illustrates the heterogeneous loss function with soft rejection when ts = 0.1 and c =
√
0.5.

The gradient in Figure 2a decreases as the α gets smaller. Figure 2b is an example of heterogeneous
loss function with ts = 0.1 and αr = 1. The potential anomalies use the loss function between MSE
and pseudo-Huber loss as in the gray area of Figure 2b. The lowest abnormality, where z is close to
0 (0.5-quantile), uses MSE with soft rejection, whereas the largest abnormality, which is at the tail
of the z distribution, uses pseudo-Huber loss with soft rejection.

Algorithm 1 summarizes heterogeneous loss function with aggressive rejection. The samples are
discriminated as potential anomalies when the anomaly score of model s is larger than sq , which is
q-quantile of s. For the normal samples, wi is set to 1, whereas the others are set to ts. The anomaly
score in the mini-batch determines the gradient parameters α. The anomaly score is converted to α
based on the modified z-score and input αr. Finally, the model parameters are updated with the loss
generated by multiplying soft rejection weight w and loss function LGA.

Algorithm 1 Training with heterogeneous loss function and aggressive rejection
Input: Sample X , model f , hyperparamter q, ts, αr, c

1: foreach Epoch do
2: foreach Mini-batch x ⊆ X do
3: s = ||x− f(x)||22
4: sq = q-quantile of s

5: w =

{
ts if si > sq
1 otherwise

▷ Equation 2

6: z = Modified z-score(s) ▷ Equation 4
7: m = max(3.5,max(|z|))

8: α =

{
2− (2− αr) ∗ (zi/m)2 if zi > 0

2 otherwise
▷ Equation 5

9: L = w ∗ LGA(s,α, c) ▷ Equation 3
10: Update model parameters with L
11: end for
12: end for

5 EVALUATION

This section compares existing robust models and loss functions to heterogeneous loss function with
aggressive rejection. Three fundamental image datasets-MNIST (LeCun et al., 2010), FashionM-
NIST (F-MNIST) (Xiao et al., 2017), and CIFAR-10 (Krizhevsky, 2009)-are used to evaluate the
methods. MNIST and F-MNIST consist of 10 classes and 28×28 gray scale images. CIFAR-10
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Table 1: AUROC of various robust loss functions

MNIST F-MNIST CIFAR-10
Model Loss 0% 20% 0% 20% 0% 20%

AE

MSE 0.931 0.796 0.891 0.783 0.561 0.540
pseudo-Huber 0.913 0.783 0.882 0.793 0.564 0.544
GA 0.912 0.779 0.879 0.783 0.561 0.541
LOE 0.913 0.784 0.881 0.789 0.563 0.542
Hetero 0.928 0.849 0.887 0.830 0.564 0.558

MemAE

MSE 0.933 0.770 0.898 0.776 0.570 0.547
pseudo-Huber 0.930 0.815 0.892 0.775 0.572 0.549
GA 0.929 0.813 0.892 0.770 0.570 0.546
LOE 0.926 0.819 0.891 0.775 0.572 0.548
Hetero 0.932 0.855 0.898 0.836 0.578 0.555

DSVDD

MSE 0.928 0.826 0.916 0.806 0.605 0.566
pseudo-Huber 0.931 0.826 0.917 0.842 0.596 0.567
GA 0.931 0.817 0.917 0.829 0.601 0.567
LOE 0.930 0.847 0.918 0.852 0.606 0.568
Hetero 0.927 0.870 0.906 0.854 0.601 0.575

is made up of 32×32 color images with 10 classes. For general applicability, the experiments on
tabular datasets (Rayana, 2016; Dua & Graff, 2017) are reported in Appendix F.

5.1 DATASETS AND SETUPS

One vs. rest setup which set one class as normal and the other classes as abnormal was used in the
experiments. For normal data, training data is twice as much as test data, and 10% of the original
training data was used as validation. γct/(1 − γct) ∗ N number of abnormal data were added,
where γct was the contamination ratio and N was the number of normal data. 30% of the test data
consisted of anomalies. The results without the constraint (using the entire training and test data)
are reported in Appendix E. The model with the lowest validation loss was taken as the test model.
The validation loss for the proposed method is measured by aggressive and hard rejection. The Area
Under Receiver Operating Characteristic (AUROC) is used as a metric. The experiments set each
class as normal and measured the average AUROC with three different seeds.

5.2 COMPARISON METHOD

ITSR (Beggel et al., 2019), RVAE-ABFA (Gao et al., 2020), and NCAE (Yu et al., 2021) are em-
ployed as the robust models. ITSR utilized OC-SVM and AAE for refinement. RVAE-ABFA devel-
oped DAGMM (Zong et al., 2018) by adopting VAE and attention based feature adaption. NCAE
utilizes normal samples generated from generative adversarial model (Goodfellow et al., 2020) to re-
fine the dataset. The loss functions are evaluated based on three conventional models-AE (Bergmann
et al., 2018), MemAE (Gong et al., 2019), and DSVDD (Ruff et al., 2018). AE is employed since it
is a conventional model. DSVDD utilizes MSE but is different from reconstruction error. MemAE
is compared due to the additional loss function for memory augmented loss. MSE is substituted by
pseudo-Huber (Liznerski et al., 2020), GA loss (Barron, 2019), and LOE (Qiu et al., 2022). GA
loss was used to demonstrate how much GA loss affects robustness since it utilizes negative log-
likelihood to determine α while the proposed loss function utilizes z distribution. Heterogeneous
loss function with aggressive rejection is denoted as Hetero. The details of experiments such as
neural network architectures and batch size are described in Appendix D.

5.3 EVALUATION WITH ROBUST LOSS FUNCTION

The robust loss functions are used to evaluate the robustness of Hetero loss. Table 1 shows the
AUROC on clean datasets (γct = 0) and contaminated datasets (γct = 0.2) (the highest AUROC
is in bold). The comparison methods on clean datasets show minimum AUROC loss compared to
MSE except for AE on MNIST. Hetero loss on clean datasets shows comparable performance to
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Figure 3: Evaluation with various loss functions depending on contamination ratio. Three models
are evaluated on (a) MNIST, (b) F-MNIST, and (c) CIFAR-10.

MSE within 0.01. The performance of AE with pseudo-Huber, GA, and LOE does not significantly
improve robustness. However, AE with hetero loss achieves over 0.045 robustness. When DSVDD
on F-MNIST is trained with robust loss functions, it shows the most effective results. LOE gener-
ates a similar performance to Hetero by minimizing the abnormal loss function. Since CIFAR-10 is
a hard dataset compared to MNIST or F-MNIST, the AUROC on the clean dataset is low. There-
fore, robustness has not improved significantly. Hetero loss surpasses 0.002 0.084 more robustness
compared to the overall robust loss functions on 20% contaminated data.

Figure 3 visualizes the AUROC of robust loss functions depending on contamination ratio γct. Het-
ero loss achieves the most robustness in the case of AE and MemAE. In the case of DSVDD on
F-MNIST, LOE outperforms hetero when the contamination ratio is under 10%, but hetero loss
outperforms LOE when the contamination ratio is over 20%. According to Qiu et al. (2022), LOE
performs best when the assumed γct is equal to the actual γct. LOE achieves robustness by minimiz-
ing the abnormal loss function, but the γct = 0.1 assumption limits the robustness. Since DSVDD is
not a reconstruction error based model, MSE and GA loss show robustness on CIFAR-10 when the
contamination ratio is under 15%. However, hetero loss outperforms the other loss functions when
the contamination ratio is 20% and shows a large difference as the contamination ratio increases.

Pseudo-Huber and GA shows insufficient robustness because they simply mitigate the effects of
large losses rather than assuming the anomalies and avoiding the training of anomalies. LOE as-
sumes the 10% contamination ratio and minimizing the abnormal loss function, which improves
the robustness, but loses the performance on clean dataset. It can exceed the hetero loss in some
cases like CIFAR-10 with DSVDD, but it can also cause a significant performance decline on clean
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Table 2: AUROC of various robust AD models

MNIST F-MNIST CIFAR-10
Model 0% 20% 0% 20% 0% 20%

ITSR 0.936 0.801 0.878 0.763 0.565 0.535
RVAE-ABFA 0.953 0.887 0.932 0.843 0.593 0.554
NCAE 0.818 0.760 0.836 0.765 0.567 0.551
AE 0.931 0.796 0.891 0.783 0.561 0.540
AE + Hetero 0.928 0.849 0.887 0.830 0.564 0.558
MemAE 0.933 0.770 0.898 0.776 0.570 0.547
MemAE + Hetero 0.932 0.855 0.898 0.836 0.578 0.555
DSVDD 0.928 0.826 0.916 0.806 0.605 0.566
DSVDD + Hetero 0.927 0.870 0.906 0.854 0.601 0.575
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Figure 4: Comparison with robust models. The models are trained on three datasets-(a) MNIST, (b)
F-MNIST, and (c) CIFAR-10.

datasets such as AE on MNIST. Moreover, when the contamination ratio is above 10%, LOE per-
forms worse. Hetero loss outperforms the other robust loss functions by handling a lot of anomalies
through aggressive rejection and a mini-batch distribution based gradient adjustment. The experi-
ment demonstrates that hetero loss can be used with a various MSE-based AD models to generate
high robustness on contaminated datasets and minimal AUROC loss on clean datasets.

5.4 EVALUATION WITH ROBUST MODELS

The standard models with Hetero loss are compared to robust models. The AUROC of comparison
on different contamination ratios is shown in Table 2. NCAE has a low decrease in the AUROC
of contamination datasets compared to clean datasets but lacks performance. ITSR and RVAE-
ABFA perform more robustness than AE and MemAE. However, hetero loss function improves the
robustness of AE and MemAE by about 0.05 compared to ITSR. DSVDD with Hetero loss shows
comparable results toward RVAE-ABFA, which shows the most robust results on MNIST. Although
RVAE-ABFA shows the highest AUROC compare to the other methods on F-MNIST, DSVDD with
hetero loss shows 0.012 higher robustness. Hetero loss achieves the highest robustness on CIFAR-
10. It demonstrates that models with hetero loss can achieve comparable results to robust models.

Figure 4 illustrates the robustness of models on varying contamination ratios. On MNIST dataset,
RVAE-ABFA has the most robustness, but hetero exhibits the most comparable outcomes. When
the contamination ratio is above 20% on F-MNIST dataset, DSVDD with hetero loss outperforms
RVAE-ABFA. In the case of CIFAR-10, DSVDD outperforms the RVAE-ABFA, and hetero makes
MemAE comparable to RVAE-ABFA. Compared to the existing robust models, Hetero loss achieves
high robustness without increasing inference time or modifying the architecture.
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Table 3: Ablation Study of Hetero loss

AE MemAE DSVDD
Loss q ts 0% 20% 0% 20% 0% 20%

MSE 1 1 0.931 0.796 0.933 0.770 0.928 0.826
MSE 0.5 0 0.816 0.818 0.799 0.804 0.883 0.871
MSE 0.5 0.1 0.933 0.841 0.936 0.840 0.921 0.870
Hetero 1 1 0.917 0.833 0.937 0.853 0.931 0.836
Hetero 0.5 0.1 0.928 0.849 0.932 0.855 0.927 0.870
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Figure 5: Ablation Study of Hetero loss on MNIST dataset-(a) AE, (b) MemAE, and (c) DSVDD.

5.5 ABLATION STUDY

In this experiment, each component was removed to measure its effect. The performance on MNIST
with clean and contaminated datasets is shown in Table 3 and Figure 5. q and ts are the key compo-
nents that determine the effect of soft or hard rejection. The loss function and values are denoted as
L(q, ts), where L is the loss function, q is the q-quantile, and ts is the degree of rejection.

Effect of aggressive rejection. Hard rejection-MSE(0.5,0) is more robust than the standard loss-
MSE(1,1) on the contaminated data. However, hard rejection on a clean dataset shows significant
performance degradation of AE (0.115), MemAE (0.134), and DSVDD (0.045). Since it excludes
many normal samples, it has an adverse effect under clean datasets. Soft rejection-MSE(0.5,0.1)
complements the decline. It shows comparable AUROC to MSE on clean datasets. Since the normal
samples in the exclusion are used for training in part, soft rejection improves robustness for AE,
MemAE, and DSVDD by 0.045, 0.07, and 0.044, respectively.

Effect of heterogeneous loss. Heterogeneous loss function without aggressive rejection is referred
to as Hetero(1,1). It performs better than the baseline MSE loss and demonstrates greater robustness
than MemAE with MSE(0.5,0.1). Moreover, Hetero(0.5, 0.1), hetero loss with aggressive rejection,
shows 0.008 and 0.15 improvements for AE and MemAE compared to MSE(0.5, 0.1). The exper-
iment demonstrates that the difference between normal and abnormal data can be produced by the
gradient adaptation based on the mini-batch distribution.

6 CONCLUSION

In this paper, heterogeneous loss function with aggressive rejection is introduced. Numerous normal
data are involved in the rejection target to handle the overall anomalies and excluded partially via soft
rejection. In addition, the mini-batch distribution is transformed into the gradient of general robust
loss to suppress the convergence of suspicious outliers. The loss function outperforms the previous
robust loss function and shows comparable results to robust models. The experiments proved that
the MSE-based models could strengthen robustness against contaminated data by the proposed loss
function. In the future, we will utilize the minimization of abnormal loss function to promote the
difference between normal and abnormal samples. To complement the minimization, we will apply
the dynamic q function based on the abnormality in distribution.
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A QUANTILE IN AGGRESSIVE REJECTION

Table 4 and Figure 6 show the effect of q-quantile on MNIST dataset. Since hetero loss is based on
the z-score and is optimum when q = 0.5, MSE with soft rejection (ts = 0.1) is employed instead
of hetero loss. 0.25-quantile performs better than 0.75-quantile except for AE. Although q = 0.25
includes more anomalies in the exclusion, 0.5-quantile rejection performs the best. The tendency is
maintained even the contamination ratio increases (see Figure 6). It indicates that over-elimination
is not always ensured robustness.

Table 4: Effect of q-quantile on 20% contaminated MNIST dataset.

q AE MemAE DSVDD
0.75 0.836 0.822 0.846
0.5 0.841 0.840 0.870
0.25 0.828 0.836 0.848
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Figure 6: Ablation Study of Hetero loss on MNIST dataset-(a) AE, (b) MemAE, and (c) DSVDD.
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B STUDIES OF SOFT REJECTION

Sensitivity Figure 5 illustrates the sensitivity of MSE and hetero loss with soft rejection. As ts
increases, their performance decreases inversely. However, hetero loss reduces the sensitivity of ts.
When ts = 1, the soft rejection becomes a non-robust loss function MSE. Therefore, soft rejection
becomes less effective as ts increases. In contrast to MSE, hetero loss which is still robust due to
gradient adaptation exhibits less difference between ts = 0.1 and ts = 0.5 on 20% contaminated
data.
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Figure 7: Sensitivity of hetero loss and soft rejection. AE is trained with MSE and hetero loss on
MNIST. It describes AUROC for each contamination ratio on varying ts.

Optimizing AE, MemAE, and DSVDD with hetero loss are trained on clean MNIST (γct = 0) to
optimize the ts. Except for ts, the parameters are utilized as previously (q = 0.5, αr = 1.5 and
c =

√
0.5). The dashed line means the standard model with only MSE. AUROC is saturated from

0.05 for AE and 0.1 for MemAE. DSVDD is unstable but similar to MSE when ts is 0.1. As a result,
ts is set to 0.1 generally, considering minimum performance loss and lowest value.
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Figure 8: Minimum ts to ensure the AUROC of MSE for each model. Figure shows average AUROC
of (a) AE, (b) MemAE and (c) DSVDD.
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C OPTIMIZING A PARAMETER OF HETEROGENEOUS LOSS

A variety of robust loss functions can be used as the lowest gradient loss function in hetero loss. The
pseudo-Huber (α = 1), Cauchy (α = 0), and Geman-McClure (α = −2) are the representative loss
functions. Figure 9 illustrates the effect of αr in hetero loss. The loss function should enhance ro-
bustness on contaminated data while minimizing performance degradation on a clean dataset. When
α is adjusted below 1, hetero loss degrades on the clean dataset. α = 1 shows insufficient perfor-
mance on the clean dataset, whereas α = 2 shows lower robustness. Therefore, the intermediate
point α = 1.5 is used since it achieves comparable performance on clean and contaminated data.
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(a) Loss function with aggressive rejection.
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(b) Loss function without aggressive rejection.

Figure 9: Figure shows robustness on varying αr. (a) and (b) show robustness for each lowest
gradient loss function with or without aggressive rejection (ts = 0.1).
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D DETAILS ON EXPERIMENTS

Setup Batch size and epochs are set to 100 and 300, respectively, except for ITSR, NCAE, and
DSVDD. ITSR refines data for every 10 epochs after the first 100 epochs and is trained on refined
data with 100 epochs. NCAE uses 150 epochs and DSVDD uses 150 epochs for pre-training and
100 epochs for the rest. The parameters are updated by Adam optimizer (Kingma & Ba, 2014) with
0.0001 learning rate and 10−6 weight decay. As mentioned before, the parameter q, αr, and c in
Hetero loss are set to 0.5, 1.5, and

√
0.5.

AE/MemAE/ITSR The architectures of AE are based on the report in Gong et al. (2019). On
MNIST and FashionMNIST datasets, the encoder consist of three convolution modules that consists
of convolution, batch normalization (Ioffe & Szegedy, 2015), and leaky ReLU activation (Xu et al.,
2015) with 16-32-64 filters that kernel and stride size are 3 and 2. On CIFAR-10 dataset, the encoder
consists of four convolution modules, 64-128-128-256 filters that kernel and stride size are 3 and 2.

DSVDD/RVAE-ABFA/NCAE The architectures of autoencoder in DSVDD, RVAE-ABFA, and
NCAE are based on the report in Ruff et al. (2018). On MNIST and FashionMNIST datasets, the
encoder consists of two convolutions (8×5×5-filters and 4×5×5-filters) and a final fully-connected
layers of 32 units. The batch normalization, leaky ReLU, and (2×2)-max-pooling are followed by
the convolutions. On CIFAR-10 dataset, the encoder consists of three convolutions (32×5×5-filters,
64×5×5-filters, and 128×5×5-filters) and a final fully-connected layer of 128 units (except for RVAE-
ABFA). RVAE-ABFA uses only 32 dimensions due to the computation error. For RVAE-ABFA, the
encoder has an additional fully-connected layer for mean and variance of the latent distribution. The
bias of layers in DSVDD and NCAE is eliminated due to the trivial solutions as reported in Ruff
et al. (2018).

The decoder is symmetric to the encoder, in which convolution is substituted by deconvolutions,
and max-pooling is substituted by up-sampling. The last deconvolution has no additional operations
such as batch normalization.
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E OVERALL DATA RESULTS

The results on MNIST and F-MNIST with overall data can be seen in Table 5. All normal data
in training data are used. 90% of them are used for training and the remainder for validation. As
mentioned previously, γct/(1 − γct) ∗ N number of anomalies are added, where γct is the con-
tamination ratio and N is the number of normal data. The evaluation makes use of all 10,000 test
data. For NCAE, both the reported results by Yu et al. (2021) and the results reproduced using the
author’s code are shown in the table. The loss function with the highest AUROC is underlined, and
the highest AUROC in the comparison is in bold on every dataset.

With the exception of MemAE on MNIST, the existing robust loss functions are insufficient to
improve the robustness of AE and MemAE. Comparing DSVDD with hetero loss to MSE, the ro-
bustness is increased by 0.043 and 0.048 on each dataset. In the case of DSVDD, LOE decreases
performance on clean MNIST and exhibits robustness values that are higher than hetero loss on F-
MNIST. RVAE-ABFA and reproduced NCAE achieve greater robustness than in section 5.4 with the
entire MNIST data usage. RVAE-ABFA exhibits the best robustness on MNIST (0.918), whereas
NCAE, according to reports, exhibits the highest AUROC (0.889) on the 20% contaminated F-
MNIST. Among AE, MemeAE, and DSVDD with robust loss functions, DSVDD with hetero loss
generally performs best. DSVDD with hetero loss has a large difference (0.06) for MNIST and a
low difference (0.028) for F-MNIST when compared to RVAE-ABFA and NCAE, which have the
best performance on contaminated data. Since LOE performs better on F-MNIST, the minimization
of the abnormal loss function can improve hetero loss when it does not impair the proposed loss
function.

Table 5: AUROC with the entire data usage.

MNIST F-MNIST
Model Loss 0% 20% 0% 20%

ITSR - 0.939 0.789 0.882 0.754
RVAE-ABFA - 0.951 0.918 0.925 0.832
NCAE reproduced - 0.871 0.829 0.806 0.720
NCAE as reported - 0.940 0.898 0.915 0.889

AE

MSE 0.913 0.789 0.889 0.767
pseudo-Huber 0.911 0.779 0.884 0.773
GA 0.916 0.783 0.883 0.777
LOE 0.910 0.788 0.883 0.778
Hetero 0.919 0.844 0.897 0.818

MemAE

MSE 0.855 0.725 0.895 0.773
pseudo-Huber 0.913 0.760 0.897 0.785
GA 0.900 0.773 0.894 0.784
LOE 0.910 0.798 0.896 0.783
Hetero 0.906 0.829 0.905 0.828

DSVDD

MSE 0.921 0.815 0.920 0.814
pseudo-Huber 0.804 0.788 0.918 0.812
GA 0.800 0.788 0.916 0.815
LOE 0.821 0.837 0.916 0.870
Hetero 0.905 0.858 0.921 0.861
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F OUTLIER DETECTION DATASETS

F.1 SETUPS

Table 6: Information of ODDS. It shows dimension, the number of data (N) and anomalies (A) for
each dataset.

Dataset Dimension N A (%)
Arrhythmia 274 452 66 (15%)
Thyroid 36 3772 93 (2.5%)
KDDCUP 120 494,021 97,278 (20%)
KDDCUP-rev 120 121,597 24,319 (20%)

Four tabular datasets are used for general applicability. The information about the datasets is shown
in Table 6. The following provides configuration details.

Arrhythmia Arrhythmia dataset can be obtained from Rayana (2016). Minority classes (3, 4, 5,
7, 8, 9, 14, and 15) are defined as abnormal class, whereas the others are defined as normal class.
Three fully connected layers with 128-64-32 units are employed for autoencoder architecture. The
layers except for the final layer in encoder and decoder are followed by batch normalization and
leaky ReLU activation. The batch size is set to 64.

Thyroid Thyroid dataset also can be obtained from Rayana (2016). There are three classes and a
minority class (hyperfunction) is defined as an abnormal class. The architecture for Thyroid has a
similar architecture that was used on Arrhythmia dataset but has 32-16-4 units. The batch size is set
to 512.

KDDCUP KDDCUP99 10 percent dataset is taken from Dua & Graff (2017). Originally, there were
41 dimensions, where 34 of which were continuous and the rest were categorical. Since the categor-
ical features are transformed by one-hot encoding, the final dimensions become 120. Although 20%
of the data is labeled as “normal”, the “normal” class is defined as anomalies since the “normal”
class is the minority class. The architecture for KDDCUP has three fully connected layers (32-16-8
units) with batch normalization and ReLU activation. The batch size is set to 4096, and AE and
MemAE are trained with 100 epochs.

KDDCUP-Rev KDDCUP-Rev is the reverse version of KDDCUP. “normal” class is defined as
normal and the others are defined as anomalies. The dataset contains all of the normal samples, and
anomalies are randomly sampled with a 4:1 ratio of normal to abnormal samples. The configurations
of KDDCUP-Rev were the same as those of KDDCUP.

Half of the normal samples are used for training. Artificial anomalies for contaminated training data
are constructed by adding zero-mean Gaussian noise to test anomalies, as in Shenkar & Wolf (2021)
and Qiu et al. (2022) since the datasets have a few anomalies. The standard deviations are derived
from test anomalies. The last trained models are used in the evaluation. MSE, pseudo-Huber, GA
loss, and LOE are employed to evaluate hetero loss. The rest of the configurations such as learning
rate are the same as those used on image datasets.

F.2 EVALUATION

Figure 10 reports the average AUROC with 10 different seeds on each dataset. Although hetero
loss is less robust than the other losses on the Arrhythmia and KDDCUP datasets, it outperforms
when the contamination ratio is greater than 20%. In the case of Thyroid dataset, AE and DSVDD
had a similar tendency to Arrhythmia and KDDCUP. Regardless of the contamination ratio, MemAE
delivers the best performance. Hetero loss resulted in the best performance on KDDCUP-Rev except
for DSVDD with a 30% contamination ratio. With a low contamination ratio, heterogeneous loss
has a comparable AUROC to other robust losses, which describes that the loss can effectively make
a difference in training speed between normal and abnormal. With a high contamination ratio, hetero
loss achieves significant improvements through aggressive rejection which half of the training data
handled as potential anomalies. The experiments show that hetero loss can be employed broadly and
in other domains.
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(a) Arrhythmia
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(d) KDDCUP-Rev
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Figure 10: Evaluation with various loss functions depending on contamination ratio. Three models
are evaluated on (a) Arrhythmia, (b) Thyroid, (c) KDDCUP, and (d) KDDCUP-Rev.
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