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Reproducibility Summary

Scope of Reproducibility — This reproducibility paper verifies the claim by Salvador et al.
in “FairCal: Fairness Calibration for Face Verification” [1] that the FairCal and Oracle meth‐
ods are fair with respect to sensitive attributes and obtain SOTA accuracy results in
face verification when compared to FSN and FTC. The aim is to reproduce the relative
values in Tables 2, 3 and 4 of the original paper for these methods. We also provide and
empirically support an intuitive explanation of why FairCal outperforms Oracle.

Methodology — The authors provided partial code to create the results; Code to create and
preprocess embeddings was missing, but code to run the experiments on these embed‐
dings was provided. Nevertheless, we re‐implement the code from scratch, keeping the
data structure identical. Hardware used are personal laptopswithout GPUand a desktop
with an MSI GeForce GTX 1060‐3GB GPU.

Results — Compared to the data reported in the original paper, the reproduced results
vary across embedding models and evaluation metrics, where some combinations per‐
form very similarly to the original paper while other combinations deviate significantly.
Despite this, the claims of the original paper have been confirmed, which include no
loss of accuracy, fairly calibrated subgroups and predictive equality.

What was easy — Some parts of the reproduction went smoothly such as the accessibility
of the data and models and the quick execution of the experiments. Furthermore, the
paper was clear about evaluation metrics. Finally, code for the figures worked straight
out of the box.

What was difficult — The exact steps of the original implementation were unclear to us
because the provided code had few comments and its structure was not immediately
obvious. Additionally, obtaining and correctly running the ArcFace model from its
ONNX file was not successful because we never worked with ONNX and initially down‐
loaded a broken instance.

Communicationwith original authors —Wehad indirect contactwith the first authorwhopro‐
vided an example of the requiredmetadata structure and clarified that all unmentioned
hyperparameters were kept at their default values.
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1 Introduction

Fairness of intelligent systems is a hot topic and the methods developed with fairness
guarantees should be thoroughly tested for reproducibility to verify their performance
and generalizability. One instance in which fairness could be of life‐impacting impor‐
tance is face verification by police forces in arresting criminals, as a false arrest can
be a traumatic experience. For recidivism estimation, face verification should also be
unbiased to minority groups like Asians in the United States.
Salvador et al. introduce FairCal, a post‐training approach that increases the fairness
of face calibration models [1]. To support the improvement of this method, we aim to
reproduce the findings of the authors. We illustrate the difference in fairness between
different models in Figure 1. The next section describes what we aim to reproduce com‐
prehensively.

Figure 1. Illustration of how to inspect improved fairness measured by the FPRs evaluated on eth‐
nicity pairs in the RFWdataset. Bias between subgroups is reducedwith post‐processingmethods
Fair Template Comparison (FTC) [2], Fair ScoreNormalization (FSN) [3], Faircal andOracle. (Lines
close together mean ethnicities have similar False Positive rates; they are treated similarly.)

2 Scope of reproducibility

Salvador et al. introduce two fairness calibrationmethods, FairCal and Oracle, and com‐
pare them to state‐of‐the‐art fairness calibration models. The authors test their method
with three face‐embedding methods: Facenet (VGGFace2), Facenet (Webface) [4] and
ArcFace [5]. They evaluate on two datasets BFW [6] and RFW [7, 8, 9, 10] according to
threemetrics: (i) accuracyusing truepositive rate (TPR) at fixed false positive rates (FPR),
(ii) fairness calibration using the mean and deviation of the Kolmogorov‐Smirnov cali‐
bration (KS) error [11], and (iii) deviation across subgroups (predictive equality) using
FPR deviation across subgroups for fixed global FPR.
This paper aims to prove the following claims, adapted from the original claims by Sal‐
vador et al. [1]:

• FairCal obtains state‐of‐the‐art accuracy compared to previous calibration meth‐
ods on both datasets for all metrics and embeddings. Oracle achieves accuracy
slightly lower than FairCal.

• FairCal and Oracle respectively obtain the second lowest and lowest KS mean and
deviation.

• FairCal and Oracle obtain low deviation across subgroup FPR for a fixed global
threshold for all datasets and models. When compared to Oracle, FairCal obtains
a significantly lower deviation. Both methods can be outperformed slightly on
0.1% global FPR.
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3 Methodology

To verify the claims that weremade in Section 2, we start with the provided open‐source
implementation on the Github page of the authors [12].
The first step, image preprocessing and embedding, is not included in this repository
and not described in detail in the paper, requiring a re‐implementation. We start with a
Python PyTorch implementation of MTCNN [4, 13] to detect and crop faces from the
datasets. Each image is resized to square 400 pixel dimensions to accelerate the de‐
tection using batching. Pairs for which at least one of the faces does not get detected,
are dropped from the datasets. The filtered images are then embedded using Facenet
(trained on VGGFace2 and Webface) and ArcFace, which are described in detail below.
To start the experiments the code needs an undocumented csv file which we were able
to recreate with help of the authors. With this, it becomes possible to run the experi‐
ments through the original code, however, we re‐implement all code from scratch. This
re‐implementation enables us to significantly decrease the runtime for important func‐
tions, like clustering embeddings for FairCal, from a shared total of hours to minutes.

3.1 Embedding model descriptions
The paper uses 4 pre‐trainedmodels to create image embeddings. MTCNN for face crop‐
ping, and three methods for the embeddings from these cropped images: Facenet (VG‐
GFace2), Facenet (Webface) and ArcFace.

MTCNN — AMulti Task Convolutional Neural Network (MTCNN) uses three convolutional
networks to detect faces and facial landmarks in a cascaded fashion [13]. We use a
Python implementation of the MTCNN that uses the PyTorch library, obtained from [4].
The MTCNN architecture and parameters for the networks should be identical to the
original MATLAB implementation by Zhang et al. All hyperparameters are kept at their
default values.

Facenet (VGGFace2) and Facenet (Webface) — The Facenet models are Convolutional Neural
Networks (CNNs) that create 512 dimensional embeddings of input images containing
aligned faces. These networks are based on an Inception v1 architecture [14] and can be
retrieved from the same Pyorch library as the MTCNN [4]. The models were trained on
the VGGFace2 dataset [15] and the Webface dataset [16] as indicated by the parenthesis.

ArcFace — The ArcFace model is another CNN that creates 512‐dimensional embeddings
of aligned faces. The specific ArcFace model used is based on a ResNet100 architec‐
ture [17] and can be retrieved from the ONNX model repository1 [5]. The model has
been trained on the MS‐Celeb‐1M dataset [18].
Due to implementation complications and computational constraints, we were unable
to create and use appropriate embeddings with this model. See Table 2 in section 4 for
the large discrepancy between our results and those obtained by Salvador et al.

3.2 Fairness calibrator descriptions
To prove the improved fairness of the new FairCal and Oracle methods they are com‐
pared to a baseline and two state‐of‐the‐art approaches that need training: FTC and FSN.
Since FSN performed best in the original paper and FTC requires long neural network
training, we chose to exclude FTC in combination with Arcface in the comparisons.

1Specifically, through an amazon cloud storage link.
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Baseline — The baseline method for face verification systems is to determine a thresh‐
old cosine similarity. To compare different methods on their fairness with KS calibra‐
tion error, models should output probabilities. Thus, the similarities between faces are
mapped to probabilities of a match using post‐hoc beta calibration [19].

Fair Template Comparison (FTC) — TheFair TemplateComparison (FTC)methoduses a small
Neural Network to estimate the similarity between embeddings [2]. The layer sizes of
the original model have been scaled by a factor 4 to accommodate the 512‐dimensional
embeddings. Salvador et al. do not mention one of the layers, but do include this layer
in their code. The FTCmethod uses a novel penalty score for individual fairness, which
is used as a loss function when training the network. The output scores of this ap‐
proach are not calibrated probabilities, and beta calibration is used tomeasure fairness‐
calibration. In this paper, we train the network for 50 epochs on the full training split
with shuffling. From the validation results in section 4 we conclude this causes FTC to
overfit.

Fair Score Normalization (FSN) — Terhörst et al. later proposed Fair Score Normalization
(FSN) [3]. This method uses unsupervised clusters obtained by K‐means clustering and
a predefined global FPR to create group‐specific shifts to the cosine similarities of image
embeddings. Again, the output scores are mapped to probabilities using beta calibra‐
tion.

FairCal — FairCal proposed by Salvador et al. is a similar post‐training calibrationmethod
to FSN that instead does the beta calibration on each K‐means cluster separately [1]. The
calibrated scores are turned into output probabilities by taking the cluster‐size‐weighted
average.

Oracle — Oracle is a supervised variant of FairCal that uses the sensitive attributes to cre‐
ate clusters [1]. In itself, it should represent a gold standard of fairness baselines. Oracle
is not applicable in real situationswhere the sensitive attributes are not knownor cannot
be used for inference.

3.3 Dataset descriptions
The original paper uses two datasets for the main results. The Biased Faces in the Wild
(BFW) [6] and the Racial Faces in theWild (RFW) [7, 8, 9, 10] datasets. These datasets are
designed to asses fairness of visual systems and were based on images from the larger
VGGFace2 [15] andMS‐Celeb‐1M [18] datasets respectively. Models trained on one of the
latter datasets are not evaluated on the respective former dataset. Both datasets consist
of four different racial subsets: African, Asian, Caucasian and Indian.2 The BFWdataset
also contains splits based on gender annotations.
ThepreprocessingwithMTCNNremoves 234 and 77 faces from theBFWandRFWdatasets
respectively. This causes 21,495 and 94 image pairs to be respectively unusable.3
A summary of these statistics is provided in Table 1 on the next page.

3.4 Hyperparameters
Most of the hyperparameters were kept at their default values, or the authors clarified
their adjustments appropriately.

2The BFW dataset uses the respective class names Black, Asian, White and Indian.
3A face may be identified by the MTCNN without being used if it is only paired with images where the

MTCNN fails to identify the other face from the pair. The RFW dataset has 40,530 out of 40,607 identified
faces, but 63 of these are not used due to their pairing.
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Table 1. Overview of the used fairness evaluation datasets.

Dataset Based on Used imgs Used pairs Subgroups Inter‐group
pairings Folds URL

BFW VGGFace2 19,766 902,403 Race, gender 3 5 link
RFW MS‐Celeb‐1M 40,467 23,906 Race 7 10 link

The most important hyperparameter is the number of clusters,K, in the K‐means clus‐
tering algorithm. The original paper provides code for a manual search across different
cluster sizes K and the results are shown in Figures 4 to 14 of [1]. The chosen value for
the results in the paper and this reproducibility isK = 100.

3.5 Experimental setup and code
The results are obtained using 5‐fold cross‐validation. The BFW contains five folds and
is split as expected: one fold is left out as validation data while the other four are used
for training. The RFW contains ten folds and results are obtained using cross‐validation
on the first five folds. It is not entirely clear how the remaining (train and validation)
folds are used. Either (i) the last five folds were always included in the training split,
which provides more training data while not validating on all data, (ii) the last five folds
were combinedwith the first five folds, which expands the folds and includes all data for
training and validating, or (iii) the last folds were excluded from all experiments, which
discards a significant part of the data. All three approaches were tested and compared,
yet none gave any significant differences in validation results. For the results in section 4,
approach (i) is used as it includes all data and validates on the same data as presented
in the code of the original paper.
When running the K‐means algorithm, the embeddings of each image occurring at least
once in a fold were included for clustering. It is therefore possible that embeddings are
clustered in multiple ‘runs’ of the K‐means algorithm for different folds, just as images
are reused across folds. Each ‘run’ of the K‐means algorithm clusters the data ten times
and returns the result with theminimal remaining inertia, as per the default parameters
of the scikit‐learn implementation [20].
Code for this paper is available on GitHub and the Software Heritage Archive.

3.6 Computational requirements
All methods in this paper can run in their entirety on a CPU, including preprocessing.
The preprocessing can optionally be accelerated by utilising a GPU. Our timing mea‐
surements were obtained using an Intel i5 core CPU with 16GB RAM and a MSI GeForce
GTX 1060‐3GB GPU.
The face identification and cropping takes around 50 minutes with CPU on the RFW
dataset. The smaller BFW dataset completes in approximately 20 minutes. A GPU can
complete this in 10 minutes each.
Creating the embeddings takes approximately a minute per 10,000 images with a GPU.
Creating the ArcFace embeddings takes approximately 4.5 hours for the BFW images,
we only managed to run this on a CPU.
The experiments in their original state took multiple hours, but refactoring the code
into only the strictly necessary components and caching temporary results significantly
improved the run‐time to a few minutes. The most intensive part of the experiments is
creating the K‐means clusters for FairCal, which takes 100 seconds per fold. Doing the
FairCal calibration finishes near instantly and does not form a bottleneck.
Lastly, training the FTC models is computationally expensive and takes 12 seconds and
2 minutes per epoch for RFW and BFW respectively.
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Table 2. Global accuracy measured by TPR at several FPR thresholds, comparing the original re‐
sults (Sal.) with ours. (Higher is better.)

Approach → Baseline FTC FSN FairCal Oracle
By → Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff.

Dataset Feature TPR @ ↓

RFW

FaceNet
(VGGFace2)

0.1% FPR 18.42 21.52 +3.10 6.86 21.52 +14.66 23.01 27.26 +4.25 23.55 28.34 +4.79 21.40 26.84 +5.44
1.0% FPR 34.88 40.15 +5.27 23.66 40.15 +16.49 40.21 44.93 +4.72 41.88 48.90 +7.02 41.83 47.98 +6.15

FaceNet
(WebFace)

0.1% FPR 11.18 13.00 +1.82 4.65 13.00 +8.35 17.33 15.24 ‐2.09 20.64 21.05 +0.41 16.71 19.18 +2.47
1.0% FPR 26.04 26.58 +0.54 18.40 26.58 +8.18 32.80 32.92 +0.12 33.13 35.38 +2.25 31.60 33.08 +1.48

BFW

FaceNet
(WebFace)

0.1% FPR 33.61 27.59 ‐6.02 13.60 0.12 ‐13.48 47.11 35.02 ‐12.09 46.74 34.96 ‐11.78 45.13 32.83 ‐12.30
1.0% FPR 58.87 51.61 ‐7.26 43.09 1.18 ‐41.91 68.92 57.57 ‐11.35 69.21 57.56 ‐11.65 67.56 55.78 ‐11.78

ArcFace 0.1% FPR 86.27 17.36 ‐68.91 82.09 N/A N/A 86.19 19.23 ‐66.96 86.28 19.58 ‐66.70 86.41 17.78 ‐68.63
1.0% FPR 90.11 31.65 ‐58.46 88.24 N/A N/A 90.06 32.70 ‐57.36 90.14 32.86 ‐57.28 90.40 33.25 ‐57.15

4 Results

The accuracy improvement of FairCal and Oracle on the RFWdataset are proportionally
equal compared to the original results. There is less accuracy improvement on the BFW
dataset relative to the original results.
We observe that the initial baseline is usually fairer than the original paper suggests and
that FairCal and Oracle result in an equal fairness increase.

4.1 Results reproducing original paper
We separately confirm the results across the three claims described in section 2.

Accuracy — The first claim is that the TPR of FairCal is the best when compared to previ‐
ous methods, with Oracle close behind. Our results in Table 2 highlight that this is the
case independent of embeddings and global FPR. However, our results, including the
baseline, also differ significantly from the results of Salvador et al. This is consistent
across embeddings, which implies that the embeddings are significantly different. The
results for ArcFace differ so significantly we infer our implementation to be wrong and
refer to subsection 5.2 for possible explanations. Finally, the results of FTC on the BFW
dataset are significantly different from the expected values. We suspect that this error
comes from overfitting on the relatively small dataset in combination with many image
pairs. This may also be the case for the RFW dataset, but it does not show in the results.
We were not able to confirm the overfitting.

KS Fairness — The second claim is that FairCal and Oracle obtain the second lowest and
lowest KS mean and deviation respectively. Our results in Table 3 confirm FairCal and
Oracle are more fairly calibrated, as can be seen by the significantly lower KSmean and
standard deviation compared to the baseline and mostly lower mean compared to FSN.
Also, the bias within groups, as can be seen by the KS STD, is significantly lower for
FairCal and Oracle, again confirming the original claims of the paper. However, it is
important to note that in some aspects the reproduced results deviate significantly from
the original.

Predictive equality — The third and last claim is that FairCal and Oracle both obtain low
FPR deviation across subgroups, but that FairCal obtains significantly better inter‐sub‐
group fairness compared to Oracle. Our results in Table 4 support the claim of low
deviation, but do not convincingly show that FairCal is better than Oracle. The biggest
difference in deviation is for 1.0% global FPR on the BFW dataset, where all measured
deviations, independent of approach, are lower. The deviation for 1.0% global FPR on
the RFW dataset with Facenet (VGGFace2) has doubled for FairCal; inspection shows
that this is due to folds 1 and 4 being outliers with low Oracle and high FairCal deviation
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Table 3. Fairness calibration measured by the mean KS across the sensitive subgroups. Showing
the Mean and Standard Deviation (STD). Comparing original results (Sal.) with ours. (Lower is
better in all cases.)

Approach → Baseline FTC FSN FairCal Oracle
By → Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff.

Dataset Feature Metric ↓

RFW

FaceNet
(VGGFace2)

Mean 6.37 6.35 ‐0.02 5.69 6.76 +1.07 1.43 2.33 +0.90 1.37 1.57 +0.20 1.18 1.48 +0.30
STD 3.77 3.24 ‐0.53 2.95 3.61 +0.66 0.40 0.92 +0.52 0.34 0.51 +0.17 0.33 0.45 +0.12

FaceNet
(WebFace)

Mean 5.55 5.45 ‐0.10 4.73 12.46 +7.73 2.49 2.23 ‐0.26 1.75 1.78 +0.03 1.35 1.82 +0.47
STD 2.91 2.90 ‐0.01 2.28 4.82 +2.54 0.91 0.82 ‐0.09 0.45 0.60 +0.15 0.43 0.39 ‐0.04

BFW FaceNet
(WebFace)

Mean 6.77 4.11 ‐2.66 6.64 52.73 +46.09 2.76 2.95 +0.19 3.09 3.29 +0.20 2.23 1.82 ‐0.41
STD 4.03 2.90 ‐1.13 3.27 3.08 ‐0.19 1.60 2.27 +0.67 1.55 1.55 +0.00 1.40 0.84 ‐0.56

Table 4. Predictive equality: For two choices of global FPR compare the deviations measured in
subgroup FPRs in terms of Standard Deviation (STD). Comparing original results (Sal.) with ours.
(Lower is better.)

Approach → Baseline FTC FSN FairCal Oracle
By → Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff.

Dataset Feature STD @ ↓

RFW

FaceNet
(VGGFace2)

0.1% FPR 0.10 0.17 +0.07 0.11 0.17 +0.06 0.11 0.17 +0.06 0.10 0.18 +0.08 0.12 0.21 +0.09
1.0% FPR 0.74 0.75 +0.01 0.66 0.75 +0.09 0.46 0.56 +0.10 0.32 0.60 +0.28 0.45 0.53 +0.08

FaceNet
(WebFace)

0.1% FPR 0.16 0.19 +0.03 0.14 0.19 +0.05 0.13 0.14 +0.01 0.10 0.18 +0.08 0.13 0.18 +0.05
1.0% FPR 0.79 0.87 +0.08 0.66 0.87 +0.21 0.40 0.48 +0.08 0.35 0.35 ‐0.00 0.48 0.40 ‐0.08

BFW FaceNet
(WebFace)

0.1% FPR 0.40 0.24 ‐0.16 0.32 N/A N/A 0.11 0.11 +0.00 0.11 0.13 +0.02 0.15 0.17 +0.02
1.0% FPR 3.22 1.72 ‐1.50 2.57 N/A N/A 1.05 0.72 ‐0.33 0.95 0.71 ‐0.24 0.91 0.78 ‐0.13

respectively. Excluding the outliers results in STD of 0.50 for FairCal and 0.61 for Oracle.
This provides some evidence that supports the claim that FairCal is fairer than Oracle.

4.2 Results beyond original paper
To support the result in the previous section we investigate why FairCal could be out‐
performing Oracle. With access to sensitive attributes, Oracle would be expect to per‐
form better. We hypothesised Faircal is fairer because it can calibrate for subgroups
within the ethical groups, whereas Oracle cannot take this into account. By only using
the sensitive attributes for clustering Oracle misses out on information contained in the
embeddings.

FairCal cluster inspection — To verify our hypothesis we look into the distribution of eth‐
nicities in the K‐means clusters. If faces in ethnically diverse clusters have a common
feature the hypothesis is supported. We use the cluster assignment for faces on the RFW
dataset and plot how often each ethnicity occurs in Figure 2.
We inspect a diverse and a homogeneous cluster in Figure 3. The diverse cluster in Fig‐
ure 3a has a common denominator of older‐lookingmales and the homogeneous cluster
in Figure 3b has a common denominator of Caucasian younger‐looking blond‐haired fe‐
males. This illustrates that unsupervised clustering creates subgroups for attributes that
are also sensitive like age and sex. Note that only 25 images are shown with a relative
high number of outliers compared to the full clusters.

5 Discussion

The accuracy of our reproduced Faircal and Oracle is better than the baseline, FTC and
FSN. This supports the claim that FairCal obtains significantly higher accuracy than
the baseline and other models on both datasets for all metrics and models. Since Ora‐
cle is slightly lower than FairCal, the claim that Oracle is a close second is supported.
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Figure 2. Sorted percentages of different ethnicities in the clusters on theRFWdataset. The clusters
to the left are themost diverse clusters and the clusters getmore homogeneous themore youmove
to the right. The red line displays the percentage of the largest ethnicity in the cluster

Although our results support the statement of accuracy, our implementation is signifi‐
cantly off in two cases compared to the original paper, RFW (VGGFace2) and BFW (Web‐
Face). We thoroughly compared the different implementations of the proposedmethods
looking for a difference that would explain this. We could not locate errors in our code
that could justify the differences. Since the differences are stable across embeddings
and different between embeddings, we expect the difference to originate from these or
a subset of these embeddings.
The second claim is that FairCal and Oracle obtain the lowest KS mean and deviation is
supported by themetrics in Table 3. FairCal andOracle respectively score the lowest and
second lowest; they are the best in fairness calibration. The pattern from before, where
RFW (WebFace) has the only similar results, is not present in Table 3, which highlights
that the methods perform more fair regardless of differences in accuracy.
The third and final claim is that FairCal and Oracle obtain a low deviation across sub‐
groups for all datasets and models and that FairCal is significantly lower than Oracle.
When compared to the baseline both of the methods obtain lower deviation and as ex‐
pected they are outperformed by FSN. While the claim that FairCal obtains lower devi‐
ation than Oracle is not convincingly supported by the reported measure, we provide
and support a hypothesis that aligns with this claim.

5.1 What was easy
The data and the models were generally accessible, and the execution of the experi‐
ments was swift. This allowed for thorough debugging and testing of minor changes.
Furthermore, the original paper was explicit about the way the evaluation metrics were
used and these were easy to implement. The code for the creation of the tables and fig‐
ures like the original paper was provided on GitHub and worked straight out of the box
after the appropriate information had been provided.

5.2 What was difficult
The exact steps of the original implementation were unclear to us because the provided
code had few comments and its structure was not immediately obvious.
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(a) Subset of cluster 55, this is the most diverse
cluster of all clusters. The cluster mostly consists
of older‐looking males.

(b) Subset of cluster 85, the most homogeneous
Caucasian cluster. This cluster consists of Cau‐
casian females with blonde hair.

Figure 3. Clusters generated on the RFW dataset that does not contain gender‐annotations.

Additionally, one of themost challenging parts waswhenwe discovered that the initially
used Arcface model on GitHub was incorrect. After some investigation, we discovered
that the correct model was provided as an onnx file. As authors who had never worked
with this specification before, we were required to test multiple options before running
the model. Based on our results, we still suspect that we did not manage to implement
it correctly.

5.3 Communication with original authors
Indirectly, via fellow students reproducing this paper, we had e‐mail contact with the
first author, who responded fast and provided two example files for the required meta‐
data structure and clarified that all unmentioned hyperparameters were kept at their
default values.
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6 Full comparison Tables

This appendix section is dedicated to Tables 5 and 6 that compare all metrics provided
in the original paper. Because the results agree across all metrics, we deemed standard
deviation the best metric to highlight the differences and similarities in variation.

ReScience C 9.2 (#28) – Greven, Stallinga and Seljee 2023 10

https://openreview.net/forum?id=eQe8DEWNN2W
https://openreview.net/forum?id=eQe8DEWNN2W
https://github.com/tiagosalvador/faircal
https://github.com/tiagosalvador/faircal
https://oadoi.org/10.1109/FG.2018.00020
http://arxiv.org/abs/1411.7923
http://arxiv.org/abs/1411.7923
https://doi.org/10.1007/978-3-319-46487-9_6
https://openreview.net/forum?id=AICNpd8ke-m
https://rescience.github.io/


[Re] Reproducing FairCal: Fairness Calibration for Face Verification

Table 5. Fairness calibration measured by the mean KS across the sensitive subgroups. Showing
the Mean, Average Absolute Deviation (AAD), Maximum Absolute Deviation (MAD) and Standard
Deviation (STD). Comparing original results (Sal.) with ours. (Lower is better in all cases.)

Approach → Baseline FTC FSN FairCal Oracle
By → Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff.

Dataset Feature Metric ↓

RFW

FaceNet
(VGGFace2)

Mean 6.37 6.35 ‐0.02 5.69 6.76 +1.07 1.43 2.33 +0.90 1.37 1.57 +0.20 1.18 1.48 +0.30
AAD 2.89 2.55 ‐0.34 2.32 3.01 +0.69 0.35 0.81 +0.46 0.28 0.43 +0.15 0.28 0.38 +0.10
MAD 5.73 4.95 ‐0.78 4.51 6.01 +1.50 0.57 1.37 +0.80 0.50 0.77 +0.27 0.53 0.66 +0.13
STD 3.77 3.24 ‐0.53 2.95 3.61 +0.66 0.40 0.92 +0.52 0.34 0.51 +0.17 0.33 0.45 +0.12

FaceNet
(WebFace)

Mean 5.55 5.45 ‐0.10 4.73 12.46 +7.73 2.49 2.23 ‐0.26 1.75 1.78 +0.03 1.35 1.82 +0.47
AAD 2.48 2.32 ‐0.16 1.93 4.11 +2.18 0.84 0.71 ‐0.13 0.41 0.52 +0.11 0.38 0.33 ‐0.05
MAD 4.97 4.64 ‐0.33 3.86 8.21 +4.35 1.19 1.20 +0.01 0.64 0.97 +0.33 0.66 0.55 ‐0.11
STD 2.91 2.90 ‐0.01 2.28 4.82 +2.54 0.91 0.82 ‐0.09 0.45 0.60 +0.15 0.43 0.39 ‐0.04

BFW

FaceNet
(WebFace)

Mean 6.77 4.11 ‐2.66 6.64 52.73 +46.09 2.76 2.95 +0.19 3.09 3.29 +0.20 2.23 1.82 ‐0.41
AAD 3.63 2.36 ‐1.27 2.80 2.54 ‐0.26 1.38 1.88 +0.50 1.34 1.38 +0.04 1.15 0.68 ‐0.47
MAD 5.96 6.58 +0.62 5.61 5.57 ‐0.04 2.67 5.19 +2.52 2.48 2.74 +0.26 2.63 1.83 ‐0.80
STD 4.03 2.90 ‐1.13 3.27 3.08 ‐0.19 1.60 2.27 +0.67 1.55 1.55 +0.00 1.40 0.84 ‐0.56

ArcFace

Mean 2.57 10.55 +7.98 2.95 N/A N/A 2.65 10.82 +8.17 2.49 10.33 +7.84 1.41 2.61 +1.20
AAD 1.39 2.75 +1.36 1.48 N/A N/A 1.45 2.78 +1.33 1.30 2.51 +1.21 0.59 1.34 +0.75
MAD 2.94 6.86 +3.92 3.03 N/A N/A 3.23 6.78 +3.55 2.68 5.89 +3.21 1.30 3.73 +2.43
STD 1.63 3.36 +1.73 1.74 N/A N/A 1.71 3.42 +1.71 1.52 3.11 +1.59 0.69 1.62 +0.93

Table 6. Predictive equality: For two choices of global FPR compare the deviations in subgroup
FPRs in terms of Average Absolute Deviation (AAD), Maximum Absolute Deviation (MAD), and
Standard Deviation (STD). Comparing original results (Sal.) with ours. (Lower is better in all
cases.)

Approach → Baseline FTC FSN FairCal Oracle
By → Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff. Sal. Our diff.

Thr. Dataset Feature Metric ↓

0.1% FPR

RFW

FaceNet
(VGGFace2)

AAD 0.10 0.15 +0.05 0.10 0.15 +0.05 0.10 0.16 +0.06 0.09 0.16 +0.07 0.11 0.18 +0.07
MAD 0.15 0.29 +0.14 0.15 0.29 +0.14 0.18 0.25 +0.07 0.14 0.27 +0.13 0.19 0.34 +0.15
STD 0.10 0.17 +0.07 0.11 0.17 +0.06 0.11 0.17 +0.06 0.10 0.18 +0.08 0.12 0.21 +0.09

FaceNet
(WebFace)

AAD 0.14 0.17 +0.03 0.12 0.17 +0.05 0.11 0.13 +0.02 0.09 0.17 +0.08 0.11 0.17 +0.06
MAD 0.26 0.28 +0.02 0.23 0.28 +0.05 0.23 0.21 ‐0.02 0.16 0.26 +0.10 0.20 0.27 +0.07
STD 0.16 0.19 +0.03 0.14 0.19 +0.05 0.13 0.14 +0.01 0.10 0.18 +0.08 0.13 0.18 +0.05

BFW

FaceNet
(WebFace)

AAD 0.29 0.17 ‐0.12 0.24 0.00 ‐0.24 0.09 0.08 ‐0.01 0.09 0.09 +0.00 0.12 0.13 +0.01
MAD 1.00 0.63 ‐0.37 0.74 0.00 ‐0.74 0.20 0.31 +0.11 0.20 0.37 +0.17 0.25 0.45 +0.20
STD 0.40 0.24 ‐0.16 0.32 0.00 ‐0.32 0.11 0.11 +0.00 0.11 0.13 +0.02 0.15 0.17 +0.02

ArcFace
AAD 0.12 0.07 ‐0.05 0.09 N/A N/A 0.11 0.06 ‐0.05 0.11 0.08 ‐0.03 0.12 0.09 ‐0.03
MAD 0.30 0.25 ‐0.05 0.20 N/A N/A 0.28 0.16 ‐0.12 0.31 0.25 ‐0.06 0.27 0.32 +0.05
STD 0.15 0.09 ‐0.06 0.11 N/A N/A 0.14 0.07 ‐0.07 0.15 0.10 ‐0.05 0.14 0.12 ‐0.02

1.0% FPR

RFW

FaceNet
(VGGFace2)

AAD 0.68 0.67 ‐0.01 0.60 0.67 +0.07 0.37 0.48 +0.11 0.28 0.54 +0.26 0.40 0.46 +0.06
MAD 1.02 0.94 ‐0.08 0.91 0.94 +0.03 0.68 0.82 +0.14 0.46 0.87 +0.41 0.69 0.80 +0.11
STD 0.74 0.75 +0.01 0.66 0.75 +0.09 0.46 0.56 +0.10 0.32 0.60 +0.28 0.45 0.53 +0.08

FaceNet
(WebFace)

AAD 0.67 0.74 +0.07 0.54 0.74 +0.20 0.35 0.42 +0.07 0.29 0.30 +0.01 0.41 0.36 ‐0.05
MAD 1.23 1.27 +0.04 1.05 1.27 +0.22 0.61 0.74 +0.13 0.57 0.47 ‐0.10 0.74 0.53 ‐0.21
STD 0.79 0.87 +0.08 0.66 0.87 +0.21 0.40 0.48 +0.08 0.35 0.35 ‐0.00 0.48 0.40 ‐0.08

BFW

FaceNet
(WebFace)

AAD 2.42 1.32 ‐1.10 1.94 0.00 ‐1.94 0.87 0.57 ‐0.30 0.80 0.57 ‐0.23 0.77 0.62 ‐0.15
MAD 7.48 4.08 ‐3.40 5.74 0.00 ‐5.74 2.19 1.87 ‐0.32 1.79 1.78 ‐0.01 1.71 1.84 +0.13
STD 3.22 1.72 ‐1.50 2.57 0.00 ‐2.57 1.05 0.72 ‐0.33 0.95 0.71 ‐0.24 0.91 0.78 ‐0.13

ArcFace
AAD 0.72 0.45 ‐0.27 0.54 N/A N/A 0.55 0.31 ‐0.24 0.63 0.40 ‐0.23 0.83 0.44 ‐0.39
MAD 1.51 1.30 ‐0.21 1.04 N/A N/A 1.27 0.91 ‐0.36 1.46 1.30 ‐0.16 2.08 1.59 ‐0.49
STD 0.85 0.58 ‐0.27 0.61 N/A N/A 0.68 0.41 ‐0.27 0.78 0.52 ‐0.26 1.07 0.59 ‐0.48
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