
Under review as a conference paper at ICLR 2022

TAILMIX: OVERCOMING THE LABEL SPARSITY FOR
EXTREME MULTI-LABEL CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Extreme multi-label classification (XMC) aims at finding the most relevant labels
from a huge label set at the industrial scale. The XMC problem inherently poses
two challenges: data scalability and label sparsity. This work introduces a new
augmentation method, namely TailMix, to address the label sparsity issue, i.e.,
the long-tail labels in XMC have few positive instances. TailMix utilizes the con-
text vector generated from the label attention layer in a label-wise manner instead
of using the existing Mixup methods in a sample-wise manner. In this process,
TailMix selectively chooses two context vectors and augments the most plausible
positive instances to improve the accuracy for long-tail labels. Despite the sim-
plicity of TailMix, extensive experimental results show that TailMix consistently
improves the baseline models without TailMix and other Mixup-based methods on
three benchmark datasets. Notably, TailMix is effective for improving the perfor-
mance for long-tail labels on PSP@k and PSN@k, which are the common metrics
that reflect the propensity of labels.

1 INTRODUCTION

Extreme multi-label classification (XMC) aims at finding the most relevant multiple labels from an
enormously large label set. Essentially, XMC deals with a text classification problem at the industrial
scale, where the number of labels can be the order of millions or more. It is closely related to various
real-world applications, e.g., finding a few relevant products from the catalog on the online store,
categorizing an article into tens of thousands of topic categories in Wikipedia, and annotating few
keywords for items to millions of advertisement keywords in E-commerce.

Despite the increasing popularity, the XMC problem faces two challenging issues: data scalability
and label sparsity. Because the number of instances and labels are vast, it is difficult to handle expen-
sive computational cost in the limited resource. Moreover, the enormous label space is aggravated
by the label sparsity. As reported in (Chang et al., 2020), 98% of the labels in the Wiki-500k dataset
are long-tail labels with less than 100 positive instances, indicating the extreme label imbalance
problem.

Many existing studies have been proposed for addressing these issues. Existing work can be cate-
gorized into three directions: sparse linear models, partition-based models, and embedding-based
models. Among them, the partition-based approach is commonly used in many existing models, e.g.,
Parabel (Prabhu et al., 2018b), eXtremeText (Wydmuch et al., 2018), AttentionXML (You et al.,
2019), XR-Linear (Yu et al., 2020) and X-Transformer (Chang et al., 2020), because it is effective
for reducing the output space of labels. Specifically, it divides the label space into clusters in which
the number of labels is much small. Based on the label clusters, each instance is first mapped to a few
label clusters via a matching algorithm, and then the subset of labels within the cluster is only used
for classification. The partitioning-based approach is computationally effective by reducing unnec-
essary costs for searching enormous labels. However, because it neglects to consider the imbalance
problem for long-tail labels, it still shows low accuracies for long-tail labels.

In this work, we mainly tackle the label sparsity problem using a data augmentation technique.
Specifically, we are inspired by Mixup (Zhang et al., 2018), which is known as a successful augmen-
tation strategy to improve the generalization and robustness of the baseline model. Although several
Mixup methods, e.g., wordMix (Guo et al., 2019) and SSMix (Yoon et al., 2021), are proposed for the
text classification problem, they have not yet been carefully considered the label sparsity of XMC.

1

Under review as a conference paper at ICLR 2022

In contrast, we propose a novel Mixup-based method for overcoming long-tailed sparsity, namely
TailMix. Our TailMix generates new instances at the label attention layer for tail labels by carefully
selecting context vectors based on the label sparsity and semantics. For that, we utilize a label prox-
imity graph to find neighbors for the long-tail label and compare the similarity at the label attention
context vector to find the most relevant neighbors. In this way, we can reduce the cost of finding
semantically similar instances for long-tail labels and generate a context-aware representation for
each label.

In summary, the key contributions of this work are as follows.

• We propose TailMix to address the label sparsity by selectively augmenting the instances
with long-tailed labels.

• Unlike previous Mixup methods using a sample-wise combination, TailMix is designed
to combine label-wise context vectors induced from the models with label-wise attention
layer, which is beneficial for handling the selective augmentation for long-tail labels.

• We show that the representative partition-based model, AttentionXML (You et al., 2019)
with different encoder architectures, i.e., Bi-LSTM and RoBERTa, can be improved by
equipping TailMix on three benchmark datasets.

2 RELATED WORK

2.1 EXTREME MULTI-LABEL CLASSIFICATION (XMC)

Sparse linear models. Because linear one-verse-reset (OVR) models learn a classifier for each
label separately, the computational cost increases linearly by the number of labels. To resolve the
scalability issue, DisMEC (Babbar & Schölkopf, 2017), ProXML (Babbar & Schölkopf, 2019),
PDSparse (Yen et al., 2016), and PPDSparse (Yen et al., 2017) enforce sparsity using L1 penalty
term to reduce the number of model parameters, DisMEC and PPDSparse utilize parallelism to
achieve scalability. Besides, Parabel (Prabhu et al., 2018b) and SLICE (Jain et al., 2019) employ
negative sampling to balance the number of positive and negative samples. In general, the OVR
methods can be used as the building block for other XMC approaches.

Partition-based models. Because the number of output labels is enormous, the sparse linear mod-
els can be combined with different partitioning techniques. A hierarchical tree of labels is built
by a recursive partitioning strategy to reduce training and prediction complexity. Parabel (Prabhu
et al., 2018b) uses a balanced 2-means label tree using label features. FastXML (Prabhu & Varma,
2014) learns a binary classifier for each level by recursively partitioning a parent’s instance fea-
ture space based on nDCG, and PfastreXML (Jain et al., 2016) is optimized by propensity scored
nDCG with FastXML. SwiftXML (Prabhu et al., 2018a) splits a tree into two child nodes, where
two hyperplanes for instances and label features are stored separately. CRAFTML (Siblini et al.,
2018) builds a random forest exploiting tree randomization by projecting instance and label spaces
using random projection matrices. Recently, AttentionXML (You et al., 2019) utilizes Bi-LSTM
and attention mechanism and builds probabilistic label trees (PLTs) for feature vectors. To improve
AttentionXML, X-Transformer (Chang et al., 2020) utilizes the transformer with three steps: 1)
semantic label indexing, 2) deep neural matching, and 3) ensemble ranking.

Embedding-based models. These models project high-dimensional label space into low-
dimensional space and use an approximate nearest neighbor (ANN) search to reduce the label space
size. SLEEC (Bhatia et al., 2015) learns embedding vectors to capture non-linear label correla-
tions by preserving pair-wise distance between two label vectors. During prediction, ANN search is
used in low-dimensional embedding space. AnnexML (Tagami, 2017) constructs a k-nearest neigh-
bor graph (kNNG) in the embedding space to retain a graph structure in label vector space. DE-
FRAG (Jalan & Kar, 2019) agglomerates sparse input features to reduce dimensionality to improve
efficiency. ExMLDS (Gupta et al., 2019) learns embedding space using skip-gram negative sampling
(SGNS), inspired by distributional semantics.

2

Under review as a conference paper at ICLR 2022

…

…
…

…

…
…

…
…

𝐜𝟏, 𝒄𝟐, … , 𝐜𝑳

Mixup

…
…

…
…

Word
Token

Encoder
(Bi-LSTM/RoBERTa)

Label
Attention

Layer

Mixup
Module

Encoder

Fully
Connected

Layer

Output
Layer

𝒘𝟏, 𝒘𝟐, … ,𝒘𝒕 𝐜𝟏, 𝒄′𝟐, … , 𝐜𝑳

(a) Overall model architecture

…
…

…
…

…
…

…

…

…𝝀 + (𝟏 − 𝝀)

Label
Proximity

Graph

𝐜𝟏

𝐜𝟐

𝐜𝑳

𝐜𝟏If 𝐜𝟐 is a tail label,
find its neighbor

𝐜′𝟐

𝐜𝑳

Mixup on
tail label

Label
Attention

Layer

𝐜$, 𝒄%, … , 𝐜&

(b) TailMix module

Figure 1: TailMix: (a) The operation is performed on the label attention layer. (b) The context vec-
tors cl corresponding to ground-truth labels are mixed with their neighbor context vector which is
sampled based on co-occurrence and similarity.

2.2 MIXUP AS DATA AUGMENTATION

Mixup (Zhang et al., 2018) was originally introduced in computer vision, which interpolates two in-
puts and targets linearly. Specifically, the synthesized sample is generated from two samples (xi,yi)
and (xj ,yj) as follows:

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj .
(1)

Here, xi and xj are input vectors, and yi and yj are their corresponding binary label vectors. λ is a
mixing ratio sampled from the beta distribution parameterized with hyperparameter α.

For NLP tasks, Mixup is operated on the word embedding layer (Yoon et al., 2021; Guo et al.,
2019) or any hidden layers (Sun et al., 2020; Guo et al., 2019). Let Ei = [ei1, ei2, ..., eiT] is the
word embedding matrix, where T is a sequence length. Then, the Mixup is operated on the word
embedding layer as follows:

Ẽ = λEi + (1− λ)Ej

= λ[ei1, ei2, . . . , eiT] + (1− λ)[ej1, ej2, ..., ejT]
(2)

where two word-level embedding vectors eik and ejk (1 ≤ k ≤ T) are combined with the ratio λ
and (1−λ). That is, two embedding vectors are linearly interpolated at the same position. Although
it can generate a new sample, the Mixup result does not reflect the semantic information for each
target label, especially for tail labels.

3 TAILMIX: PROPOSED METHOD

3.1 MODEL ARCHITECTURE

The overall model architecture using TailMix is based on AttentionXML (You et al., 2019) and
LaRoBERTa (Zhang et al., 2020). AttentionXML is one of the representative partition-based mod-
els using a shallow and wide probabilistic label tree (PLT) and multi-label attention mechanism, and
LaRoBERTa is an extension of RoBERTa (Liu et al., 2019) with a label-wise attention layer follow-
ing after its encoder. The process of our model consists of three steps. We first obtain label-wise
context vectors by passing through the encoder and the label-wise attention layer. Then, the context
vectors are independently used for predicting the corresponding labels. In this process, we conduct
our proposed augmentation method to synthesize new instances. Lastly, our model is trained with
Mixup-based augmented instances.

Figure 1a depicts the model architecture of our model using TailMix. Specifically, the model consists
of six layers: word representation layer, feature encoder layer, multi-label attention layer, Mixup

3

Under review as a conference paper at ICLR 2022

layer, fully connected layer, and output layer. Firstly, our model takes raw tokenized text with length
T as input. Each token is represented by a dense vector using a word embedding, i.e., [h1, . . . ,hT].
In this work, we utilize two encoders, Bi-LSTM (You et al., 2019) and RoBERTa (Liu et al., 2019),
where Bi-LSTM is used as the encoder in AttentionXML and RoBERTa is recently used as a popular
pre-trained language model.

An attention mechanism is used to represent different contexts for a given instance. Specifically,
the label-wise attention layer computes a linear combination of hidden vectors from the encoder for
each label. The output vector is capable of capturing the salient parts of the input text for each label.
The context vector is obtained as follows:

αij =
exp(h>i wj)∑T
k=1 exp(h>k wj)

, cj =

T∑
k=1

αkjhk, (3)

where wj is the weight vector for the j-th label and αij is the normalized coefficient of hi. Finally,
cj is computed by a weighted sum of hidden vectors [h1, . . . ,hT] with length T .

As the core part, we perform the Mixup layer, where context vectors and the corresponding labels
are used as input and output. In the next section, we explain how to generate a new instance using
context vectors in detail. Lastly, one or two fully connected layers and one output layer are used for
label predictions. For each label, our model is trained by the binary cross-entropy loss function as
used in the existing study (You et al., 2019).

3.2 LONG-TAIL LABEL MIXUP STRATEGY

We present a novel data augmentation strategy, namely TailMix, which synthesizes a new training
sample by applying Mixup for context vectors of long-tail labels. TailMix is different from the
existing Mixup methods from two perspectives.

Firstly, we generate the Mixup-based samples in a label-wise manner instead of generating a new
sample in a sample-wise manner. By using the multi-label attention layer, we can generate context
vectors for each label. Since the context vector can be interpreted as different representations for
a given sample, we can effectively utilize context vectors instead of using input samples to choose
samples with similar semantics. For that, SSMix (Yoon et al., 2021) combines two samples by pre-
serving the salient part of samples so that it can effectively capture the semantics of two input sam-
ples. However, it requires an expensive computational cost to check the saliency for each sample. In
contrast, we reduce the computational cost by reusing the context vectors, which are the byproducts
of model training.

Secondly, we selectively synthesize new samples using context vectors for long-tail labels while
existing Mixup methods combine two random samples and the corresponding labels. For that, we
introduce probabilistic sampling using inverse propensity scores (IPS) to eliminate the bias of top-
head labels. Besides, we choose semantically similar two context vectors using similarity measures
such as Euclidean distance. We empirically observe that Mixup between similar contexts is more
effective than Mixup between randomly picked samples. Motivated the partition-based method for
reducing the cost for calculating similarity, we introduce the label proximity graph to narrow down
the candidates for Mixup by co-occurrence.

The overall process of TailMix is depicted in Figure 1b. It consists of two steps: target context
vector selection and similar semantic context vector selection. Given a sample, we perform a convex
combination of two context vectors and the corresponding labels as follows:

c̃ = λci + (1− λ)cj , where i, j ∈ [1, . . . , L]

ỹ = λyi + (1− λ)yj , where i, j ∈ [1, . . . , L]
(4)

Here, L is the number of labels in the dataset. ci and cj are context vectors for a given sample.
Besides, yi and yj are the corresponding one-hot label vectors for ci and cj . In this process, we
selectively choose a target vector ci and cj for alleviating the label sparsity.

Target context vector selection. We first introduce the inverse propensity score (IPS) (Jain et al.,
2016) for probabilistic sampling. Since the IPS is inversely proportional to raw frequency for labels,

4

Under review as a conference paper at ICLR 2022

0 1 2 3 4 5 6 7
log. # of samples/label

2

4

6

8

10

1/
p l

EURLex-4K

0 2 4 6 8 10
log. # of samples/label

0

2

4

6

8

10

1/
p l

Wiki10-31K

0 2 4 6 8 10 12
log. # of samples/label

1

5

9

13

1/
p l

AmazonCat-13K

Figure 2: Distributions of the inverse propensity score 1/pl on three benchmark datasets.

it is useful for measuring the bias of labels. Specifically, IPS, sl for label l is computed as follows:

sl =

(
1

1 + Ce−A log (Nl+B)

)−1
, where C = (logN − 1)(B + 1)A, (5)

where A and B are empirically observed values from real-world datasets (A = 0.55, B = 1.5), Nl

is the number of positive instances with label l, and N is the number of training samples.

We then convert IPS as the probability probil = softmax({sl}l∈Yi
) using the softmax function

where Yi is a set of labels for i-th instance. Figure 2 shows the IPS of labels on three benchmark
datasets, i.e., EURLex-4K, Wiki10-31K, and AmazonCat-13K. It is found that long-tail labels have
a higher probability than top-head labels. To eliminate the label bias, we sample the label in a
probabilistic manner; if the label is sparser, it is more likely to be selected as the target context
vector.

Similar semantic context vector selection. Once the target context vector is chosen, we then deter-
mine another context vector that shares high semantic similarity. Since the random selection hinders
the improvement gains for long-tail labels, we synthesize a new sample with high similarity for the
target context vector. For that, we choose another context vector that has the smallest Euclidean
distance from the target context vector.

However, computing the similarity for all L labels in XMC is expensive since it has extremely large
labels. For that, we utilize a label proximity graph to narrow down the candidates for Mixup. We use
context vectors of the selected candidates and then pick samples based on the semantic similarity on
the target context vector. A proximity label graph is built with L nodes and the edges between them.
Each node represents a distinct label within a dataset, and each edge represents the co-occurrence of
labels within an instance. For each sample x, it is assigned a label yn ∈ {0, 1}. If yi and yj are both
assigned 1 within a sample, the edge eij between node i and j becomes 1, otherwise 0. That is, the
nodes, i.e., labels, are considered as the neighbors if two labels are shared by some instances. The
adjacency matrix A ∈ RL×L represents the proximity label graph.

A = Binary(YT ×Y), (6)
where Y ∈ RN×L is target label matrix, N and L are number of samples and labels respectively.
Binary(·) is the operation to binarize the given input.

Among the labels that are adjacent to the target, we then calculate Euclidean distance on the context
vector and select the M closest samples. Those M samples are finally used to create M synthetic
samples with Mixup by interpolating between context vectors c and corresponding labels y. As a
result, we can generate new samples for tail labels that are semantically similar to the original tail
label, providing different but similar data samples for the models and helping the model predict tail
labels better.dataset

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use three XMC benchmark datasets: Eurlex-4K (Mencía & Fürnkranz, 2008), Wiki10-
31K (Zubiaga, 2012), and AmazonCat-13K (McAuley & Leskovec, 2013), where the suffixes refer

5

Under review as a conference paper at ICLR 2022

Dataset Ntrain Ntest L Llps Lspl |D|
EURLex-4K 15,449 3,865 3,956 5.3 20.79 1248.58
Wiki10-31K 14,146 6,616 30,938 18.64 8.52 2484.3

AmazonCat-13K 1,186,239 306,782 13,330 5.04 448.57 246.61

Table 1: Detailed data statistics on three benchmark datasets. Ntrain and Ntest refer to the number
of examples in the training and test sets. L is the number of distinct labels within the datasets. Llps

and Lspl refers to the average number of labels per sample and the average number of samples per
label respectively. |D| refers to the average number of tokens within the datasets.

to the number of labels for each dataset. For data pre-processing, we follow the instructions in the
public source code of AttentionXML (You et al., 2019). Table 1 reports detailed statistics of each
dataset.

Baseline models. We adopt two baseline models in our experiments: AttentionXML (You et al.,
2019) and LaRoBERTa (Zhang et al., 2020). AttentionXML is a Bi-LSTM based model, followed by
a label-wise attention layer, and its embedding layer use pre-trained GloVe (Pennington et al., 2014)
vectors. Likewise, LaRoBERTa is a transformer-based model with label-wise attention. We use pre-
trained RoBERTa (Liu et al., 2019) from HuggingFace (Wolf et al., 2019). We train AttentionXML
and LaRoBERTa using TailMix and measure the performance using an ensemble on the predictions
of models using TailMix.

Evaluation metrics. We choose P@k (precision at k) as our evaluation metric, which is widely used
in XMC task. For evaluating tail label performance, we use PSP@k (propensity-scored precision)
and PSN@k (propensity-scored nDCG@k).

P@k =
1

k

∑
l∈rankk(ŷ)

yl, PSP@k =
1

k

∑
l∈rankk(ŷ)

yl

pl
(7)

PSDCG@k =
∑

1∈rankk(ŷ)

yl

pl log (l + 1)
, PSN@k =

PSDCG@k∑k
l=1

1
log (l+1)

, (8)

where pl is propensity score shown in Eq. 5, y ∈ {0, 1}L is the ground-truth binary vector, and
rankk(ŷ) is a function which returns the k largest index of prediction ŷ ranked in descending order.
The performance on tail labels can be examined using propensity-scored metrics.

Comparing XMC methods. We compare our proposed method with other competitive XMC meth-
ods, including embedding-based (AnnexML, SLEEC), partition-based (Parabel, Bonsai), sparse lin-
ear (XT) and deep neural networks (XML-CNN, AttentionXML, LaRoBERTa).

Comparing Mixup variants. We also compare our proposed method to other Mixup methods.
WordMix (Guo et al., 2019) performs interpolation on random word embeddings without consid-
ering any word orders or their semantics. HiddenMix (Verma et al., 2019) performs Mixup on a
randomly picked hidden layer from the model. TMix (Chen et al., 2020) considers the difference in
interpretation power of BERT layers and evaluates the effect of choosing specific layers for Mixup.
SSMix (Yoon et al., 2021) considers the order of word sequences on the word embedding layer and
synthesizes the sample using saliency to keep the token information related to the target labels.

Hyperparameter. For all datasets, we follow the hyperparameter settings of AttentionXML (You
et al., 2019). Specifically, we set the drop rate of the embedding layer as 0.5, the size of the Bi-LSTM
layer as 256, and the size of two fully connected layers as 256 and 128. Then, the model is optimized
by AdamW (Loshchilov & Hutter, 2019) with the learning rate of 1e-3 with weight decay of 1e-2.
In LaRoBERTa (Zhang et al., 2020), we follow the same parameters for fully connected layers, and
the learning rate is set to 1e-5 with a weight decay of 1e-2. For TailMix, we set α varying from 0.2
to 0.6 and report the best model for each dataset.

4.2 EXPERIMENTAL RESULTS

Table 2 compares the proposed TailMix with other competitive methods by P@k, PSP@k, and
PSN@k over three benchmark datasets. Following previous works on XMC, we focus on top

6

Under review as a conference paper at ICLR 2022

EURLex-4K

Method P PSP PSN
@1 @3 @5 @1 @3 @5 @1 @3 @5

AnnexML∗ 79.26 64.30 52.33 34.25 39.83 42.76 34.25 38.35 40.30
SLEEC∗ 63.40 50.35 41.28 24.10 27.20 29.09 24.10 26.37 27.62
XT∗ 78.97 65.64 54.44 33.52 40.35 44.02 33.52 38.50 41.09
Parabel∗ 82.25 68.71 57.53 36.44 44.08 48.46 36.44 41.99 44.91
Bonsai∗ 82.96 69.76 58.31 37.08 45.13 49.57 37.08 42.94 46.10
XML-CNN† 75.32 60.14 49.21 32.41 36.95 39.45 - - -
AttentionXML 83.88 71.77 60.50 42.88 49.90 52.78 42.88 47.97 49.97
LaRoBERTa 83.18 70.42 58.50 38.52 46.76 50.61 38.52 44.51 47.13

AttentionXML+TailMix 84.11 71.93 60.48 43.64 51.11 53.69 43.64 49.11 50.94
AttentionXML+TailMix ‡ 85.80 73.70 61.99 43.63 51.65 54.59 43.63 49.48 51.53
LaRoBERTa+TailMix 84.14 71.54 59.27 42.69 49.21 51.33 42.69 47.46 49.10
LaRoBERTa+TailMix ‡ 85.02 72.40 60.18 42.41 49.41 52.38 42.41 47.50 49.55

Wiki10-31K

Method P PSP PSN
@1 @3 @5 @1 @3 @5 @1 @3 @5

AnnexML∗ 86.49 74.27 64.20 11.90 12.76 13.58 11.90 12.53 13.10
SLEEC∗ 85.88 72.98 62.70 11.14 11.86 12.40 11.14 11.68 12.06
XT∗ 86.15 75.18 65.41 11.87 13.08 13.89 11.87 12.78 13.36
Parabel∗ 84.17 72.46 63.37 11.68 12.73 13.69 11.68 12.47 13.14
Bonsai∗ 84.69 73.69 64.39 11.78 13.27 14.28 11.78 12.89 13.61
XML-CNN† 81.42 66.23 56.11 9.39 10.00 10.20 - - -
AttentionXML 84.95 77.13 67.53 13.00 15.35 16.45 13.00 14.77 15.59
LaRoBERTa 80.00 67.18 57.38 10.77 11.99 12.15 10.77 11.71 11.87

AttentionXML+TailMix 84.05 76.87 67.91 13.47 17.09 18.44 13.47 16.22 17.26
AttentionXML+TailMix ‡ 85.17 78.12 68.66 13.00 16.03 17.43 13.00 15.29 16.33
LaRoBERTa+TailMix 82.91 72.82 62.73 11.35 13.39 13.81 11.35 12.91 13.28
LaRoBERTa+TailMix ‡ 81.91 71.48 62.06 10.29 12.45 12.98 10.29 11.97 12.41

AmazonCat-13K

Method P PSP PSN
@1 @3 @5 @1 @3 @5 @1 @3 @5

AnnexML∗ 93.54 78.37 63.30 49.04 61.13 69.64 49.04 58.83 65.47
SLEEC∗ 90.53 76.33 61.52 46.75 58.46 65.96 46.75 55.19 60.08
XT∗ 92.59 78.24 63.58 49.61 62.22 70.24 49.61 59.71 66.04
Parabel∗ 93.03 79.16 64.52 50.93 64.00 72.08 50.93 60.37 65.68
Bonsai∗ 92.98 79.13 64.46 51.30 64.60 72.48 - - -
XML-CNN† 93.26 77.06 61.40 52.42 62.83 67.10 - - -
AttentionXML 95.22 81.10 65.86 51.29 65.21 72.88 51.29 61.37 66.47
LaRoBERTa 91.11 75.05 60.50 52.40 61.57 65.59 52.40 59.09 61.81

AttentionXML+TailMix 95.23 80.95 65.70 51.48 65.44 72.62 51.48 61.62 66.42
AttentionXML+TailMix ‡ 95.53 81.56 66.28 51.34 65.63 73.36 51.34 61.70 66.85
LaRoBERTa+TailMix 91.44 75.62 60.86 54.98 63.60 67.12 54.98 61.28 63.68
LaRoBERTa+TailMix ‡ 91.61 75.67 60.89 53.66 62.86 66.87 53.66 60.37 63.09

Table 2: Performance comparison TailMix between other competitive XMC methods. *, † indicate
the results reported in XMC repository (Bhatia et al., 2016) and its publication, respectively. ‡ is
marked as ensemble of baseline and a model trained with TailMix.

predictions by showing P (precision), PSP (propensity-scored precision) and PSN (propensity-
scored NDCG) by varying k at 1, 3, 5.

For PSP and PSN , our method (AttentionXML + TailMix and LaRoBERTa + TailMix) outper-
forms all other methods at all k on EURLex-4K and Wiki10-31K datasets. On these datasets, apply-
ing TailMix to AttentionXML or RoBERTa always improves the performance of tail labels. How-
ever, it does not show consistent results in AmazonCat-13K. We conjecture that this is because

7

Under review as a conference paper at ICLR 2022

EURLex-4K

P PSP PSN TimeMethod
@1 @3 @5 @1 @3 @5 @1 @3 @5 (h)

A
tte

nt
io

nX
M

L wordMix 84.68 71.49 59.59 43.02 48.95 51.62 43.02 47.32 49.14 1.91
hiddenMix 85.25 72.15 60.30 44.41 49.83 52.43 44.41 48.37 50.11 1.40
SSMix 85.07 73.01 60.88 43.99 51.09 53.56 43.99 49.12 50.88 4.58
TailMix 84.11 71.93 60.48 43.64 51.11 53.69 43.64 49.11 50.94 1.59

L
aR

oB
E

R
Ta wordMix 82.61 70.89 58.94 37.79 47.07 50.98 37.79 44.52 47.22 19.13

TMix 80.80 69.40 57.60 36.78 45.52 49.12 36.78 43.14 45.64 16.67
SSMix 82.69 70.15 58.64 38.04 45.88 50.06 38.04 43.73 46.54 22.64
TailMix 84.14 71.54 59.27 42.69 49.21 51.53 42.69 47.46 49.10 1.80

Wiki10-31K

P PSP PSN TimeMethod
@1 @3 @5 @1 @3 @5 @1 @3 @5 (h)

A
tte

nt
io

nX
M

L wordMix 84.84 76.90 67.76 14.46 16.32 17.35 14.46 15.86 16.62 1.02
hiddenMix 85.29 77.04 67.79 14.04 15.96 17.02 14.04 15.49 16.26 2.35
SSMix 85.14 77.31 67.76 13.30 15.74 16.91 13.30 15.14 16.01 7.86
TailMix 84.05 76.87 67.91 13.47 17.09 18.44 13.47 16.22 17.26 1.98

L
aR

oB
E

R
Ta wordMix 81.50 62.56 53.19 9.54 9.70 9.30 9.54 9.28 9.33 17.22

TMix 80.76 70.09 60.50 9.08 11.22 12.02 9.08 10.73 11.35 17.59
SSMix 80.77 68.88 57.91 9.09 10.73 10.86 9.09 10.39 10.54 20.80
TailMix 82.91 72.82 62.73 11.35 13.39 13.81 11.35 12.91 13.28 2.52

AmazonCat-13K

P PSP PSN TimeMethod
@1 @3 @5 @1 @3 @5 @1 @3 @5 (h)

A
tte

nt
io

nX
M

L wordMix 94.48 79.81 64.59 51.31 64.38 71.00 51.31 60.70 65.22 13.64
hiddenMix 95.00 80.93 65.62 51.19 63.97 71.58 51.19 60.45 65.46 30.16
SSMix 95.41 81.51 66.34 50.96 65.38 73.72 50.96 61.39 66.91 100.42
TailMix 95.23 80.95 65.70 51.48 65.44 72.62 51.48 61.62 66.42 49.09

L
aR

oB
E

R
Ta wordMix 91.03 75.17 60.43 53.91 62.72 66.35 53.91 60.35 62.82 80.75

TMix 91.32 75.30 60.81 55.11 65.65 67.17 55.11 61.35 63.76 166.37
SSMix 91.23 75.53 60.83 54.44 63.34 67.05 54.44 60.94 63.47 270.28
TailMix 91.44 75.62 60.86 54.98 63.60 67.12 54.98 61.28 63.68 117.48

Table 3: Performance comparison on EURLex-4K, Wiki10-31K, and AmazonCat-13K dataset with
different Mixup methods. Each Mixup methods are applied on two different model architectures:
AttentionXML (You et al., 2019) and LaRoBERTa (Zhang et al., 2020).

AmazonCat-13K dataset has a high Lspl, average number of samples per label. The average number
of samples per label of AmazonCat-13K is 448.57 (20.79 for Eurlex-4K and 8.52 for Wiki10-31K),
and the gains from applying TailMix could have been reduced since high Lspl could mean that even
tail labels have enough number of samples. Even for P , except for P@1 on Wiki10-31K, our sug-
gested method outperforms all other methods. Although we focus on augmenting the tail labels, not
only it boosts the performance on tail labels but also boosts performance on head labels. Specifically,
when compared with original AttentionXML, our suggested method shows improvement of 3.42%,
3.12% for PSP@5 and PSN@5 on EURLex-4K and shows 12.10% and 10.71% improvement on
Wiki10-31K.

Table 3 shows the performance results of various Mixup methods applied on AttentionXML and
LaRoBERTa. We compare our method with wordMix (Guo et al., 2019), hiddenMix (Verma et al.,
2019), TMix (Chen et al., 2020), and SSMix (Yoon et al., 2021). Note that the outcomes for each
model are based on a single model trained using only different Mixup methods. The results on
Table 3 exhibit similar trends from Table 2. TailMix shows the best or the second-best performance

8

Under review as a conference paper at ICLR 2022

EURLex-4K

Module P PSP PSN Time
Sim LPG @1 @3 @5 @1 @3 @5 @1 @3 @5 (h)

− − 85.51 72.54 60.41 42.26 49.37 52.26 42.26 47.45 49.45 0.92
− + 85.23 72.71 60.65 41.79 49.53 52.68 41.79 47.40 49.58 1.38
+ − 84.71 72.04 60.50 41.11 48.76 52.49 41.11 46.70 49.24 3.03

TailMix (Ours) 84.11 71.93 60.48 43.64 51.11 53.69 43.64 49.11 50.94 1.59

Wiki10-31K

Module P PSP PSN Time
Sim LPG @1 @3 @5 @1 @3 @5 @1 @3 @5 (h)

− − 84.16 75.46 65.98 12.04 14.97 16.17 12.04 14.26 15.18 0.91
− + 84.01 75.83 66.34 12.41 15.28 16.51 12.41 14.49 15.51 1.01
+ − 84.58 76.31 66.96 12.62 15.83 17.06 12.62 15.06 16.00 3.06

TailMix (Ours) 84.05 76.87 67.91 13.47 17.09 18.44 13.47 16.22 17.26 1.98

Table 4: Results of different sample selection strategies running on AttentionXML. Sim, LPG refer
to the "similarity" and "label proximity graph" module, respectively. "−" means that the module is
omitted, and "+" refers that the following module was used in the model.

among various Mixup methods in most experiments on PSP and PSN , and improvements were
both found on EURLex-4K and Wiki10-31K with LaRoBERTa.

The first two methods for each AttentionXML and LaRoBERTa (wordMix (Guo et al., 2019), hid-
denMix (Verma et al., 2019), TMix (Chen et al., 2020)) are methods which does not consider the
semantics of input while conducting Mixup, therefore requires short training time. Both SSMix and
TailMix consider the semantics for Mixup. However, TailMix shows comparable or shorter train-
ing time when compared with the methods that do not use semantic information for Mixup. For
EURLex-4K and Wiki10-31K, TailMix is 10.63 and 6.83 times faster than wordMix.

To examine the effectiveness of individual modules in our suggested method, we also conduct an
ablation study on the Eurlex-4K and Wiki10-31K datasets. We compare the results on TailMix with
(+) and without (−) certain modules: similarity-based selection (Sim) and co-occurrence-based
selection (LPG). Here, we used the AttentionXML model and did not employ the ensemble method
on evaluation.

Table 4 shows that both PSP@k and PSN@k decrease when any one of the modules are not used.
When both similarity and co-occurrence are not used, and all labels are randomly chosen, it has the
shortest training time but shows worse performance when compared to our suggested method. When
no similarity measure is used but randomly chosen from co-occurring labels, we observe -10.47%
and -10.13% drop in performance with PSP@5 and PSN@5 on Wiki10-31K, and -1.88% and
-2.67% drop on EURLex-4K dataset. On (+Sim,−LPG), the performance on PSP and PSN
decreases, and the training time also substantially increases when compared to the case when both
modules are used since it needs to calculate similarity on all L labels. We can observe that narrowing
down the candidates for Mixup by co-occurrence not only reduces the training time but also gives
performance gain to the model.

5 CONCLUSION

In this work, we have proposed a novel Mixup method for mitigating the long-tail label problem
in XMC, namely TailMix. Unlike previous work, our method operates the interpolation in a label-
wise manner. Besides, we combine two context vectors to synthesize a new sample in which the
inverse propensity scores of labels and the label proximity graph are used for selectively choosing
two context vectors. Experimental results show that two baseline models using TailMix consistently
improve long-tail labels’ performance over three benchmark datasets.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Rohit Babbar and Bernhard Schölkopf. DiSMEC: Distributed sparse machines for extreme multi-
label classification. In WSDM, 2017.

Rohit Babbar and Bernhard Schölkopf. Data scarcity, robustness and extreme multi-label classifica-
tion. Mach. Learn., 108(8-9):1329–1351, 2019.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classification
repository: Multi-label datasets and code, 2016.

Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local em-
beddings for extreme multi-label classification. In NeurIPS, 2015.

Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit S. Dhillon. Taming pre-
trained transformers for extreme multi-label text classification. In SIGKDD, 2020.

Jiaao Chen, Zichao Yang, and Diyi Yang. MixText: Linguistically-informed interpolation of hidden
space for semi-supervised text classification. In ACL, 2020.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Augmenting data with mixup for sentence classifi-
cation: An empirical study. arXiv preprint arXiv:1905.08941, 2019.

Vivek Gupta, Rahul Wadbude, Nagarajan Natarajan, Harish Karnick, Prateek Jain, and Piyush Rai.
Distributional semantics meets multi-label learning. In AAAI, 2019.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label loss functions for recom-
mendation, tagging, ranking amp; other missing label applications. In SIGKDD, 2016.

Himanshu Jain, Venkatesh Balasubramanian, Bhanu Chunduri, and Manik Varma. Slice: Scalable
linear extreme classifiers trained on 100 million labels for related searches. In WSDM, 2019.

Ankit Jalan and Purushottam Kar. Accelerating extreme classification via adaptive feature agglom-
eration. In IJCAI, pp. 2600–2606. ijcai.org, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pre-
training approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Julian J. McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating di-
mensions with review text. In RecSys, 2013.

Eneldo Loza Mencía and Johannes Fürnkranz. Efficient pairwise multilabel classification for large-
scale problems in the legal domain. In ECML/PKDD, 2008.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vectors for word
representation. In EMNLP, 2014.

Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for extreme
multi-label learning. In SIGKDD, 2014.

Yashoteja Prabhu, Shilpa Gopinath, Kunal Dahiya, Anil Kag, Shrutendra Harsola, Rahul Agrawal,
and Manik Varma. Extreme multi-label learning with label features for warm-start tagging, rank-
ing recommendation. In WSDM, 2018a.

Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik Varma. Parabel: Par-
titioned label trees for extreme classification with application to dynamic search advertising. In
WWW, 2018b.

Wissam Siblini, Frank Meyer, and Pascale Kuntz. CRAFTML, an efficient clustering-based random
forest for extreme multi-label learning. In ICML, 2018.

Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu, and Lifang He. Mixup-
transformer: Dynamic data augmentation for nlp tasks. In COLING, 2020.

10

Under review as a conference paper at ICLR 2022

Yukihiro Tagami. Annexml: Approximate nearest neighbor search for extreme multi-label classifi-
cation. In SIGKDD, 2017.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
In ICML, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s trans-
formers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, and Krzysztof Dem-
bczynski. A no-regret generalization of hierarchical softmax to extreme multi-label classification.
In NeurIPS, 2018.

Ian En-Hsu Yen, Xiangru Huang, Pradeep Ravikumar, Kai Zhong, and Inderjit S. Dhillon. Pd-sparse
: A primal and dual sparse approach to extreme multiclass and multilabel classification. In ICML,
2016.

Ian En-Hsu Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit S. Dhillon, and Eric P. Xing.
PPDsparse: A parallel primal-dual sparse method for extreme classification. In SIGKDD, 2017.

Soyoung Yoon, Gyuwan Kim, and Kyumin Park. Ssmix: Saliency-based span mixup for text classi-
fication. In ACL/IJCNLP, 2021.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and Shanfeng Zhu. Atten-
tionXML: Label tree-based attention-aware deep model for high-performance extreme multi-label
text classification. In NeurIPS, 2019.

Hsiang-Fu Yu, Kai Zhong, and Inderjit S. Dhillon. PECOS: prediction for enormous and correlated
output spaces. arXiv preprint arXiv:2010.05878, 2020.

Danqing Zhang, Tao Li, Haiyang Zhang, and Bing Yin. On data augmentation for extreme multi-
label classification. arXiv preprint arXiv:2009.10778, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In ICLR, 2018.

Arkaitz Zubiaga. Enhancing navigation on wikipedia with social tags. arXiv preprint
arXiv:1202.5469, 2012.

11

Under review as a conference paper at ICLR 2022

A ALGORITHM

Algorithm 1 presents the procedure of training model with TailMix.

Algorithm 1: Training of TailMix

Input : Training batch (XB,YB); Maximum # of targets M ; Label Proximity Graph A;
Context encoder model f(·; θ); Classifier (FC layers) g(·;ω)

C← f(XB; θ) ; // Get context vectors for each label

for i← 1 to |XB| do
Li ← Nonzero(YB

i) ; // Get ground-truth labels

Li ← Choose(Li, {sl}l∈Yi ,min(|Li|,M)) ; // Select tail labels using IPS

for l ∈ Li do
T ← Nonzero(Al) ; // Get neighbor label index set
dist← Euclidean(Cil, {Cij}j∈T) ; // Calculate distance on neighbors
t← Argmin(dist) ; // Get the most similar context vector
λil ← Beta(α, α) ; // Sample the mixing ratio
Cil ← λilCil + (1− λil)Cit ; // Perform Mixup on context vectors

YB
il ← λil ; // Perform Mixup on the first label

YB
it ← 1− λil ; // Perform Mixup on the second label

ŶB ← g(C;ω) ; // Predict using the synthesized context vector

loss← BCE(YB, ŶB) ; // Calculate BCE Loss
AdamW (loss; θ, ω) ; // Update the model

12

	Introduction
	Related work
	Extreme multi-label classification (XMC)
	Mixup as data augmentation

	TailMix: proposed method
	Model architecture
	Long-tail label mixup strategy

	Experiments
	Experimental setup
	Experimental results

	Conclusion
	Algorithm

