
Iterative polynomial approximation algorithms for
inverse graph filters

Cheng Cheng, Qiyu Sun, Cong Zheng

Abstract—Chebyshev interpolation polynomials exhibit the ex-
ponential approximation property to analytic functions on a cube.
Based on the Chebyshev interpolation polynomial approximation,
we propose iterative polynomial approximation algorithms to
implement the inverse filter with a polynomial graph filter of
commutative graph shifts in a distributed manner. The proposed
algorithms exhibit exponential convergence properties, and they
can be implemented on distributed networks in which agents
are equipped with a data processing subsystem for limited
data storage and computation power, and with a one-hop
communication subsystem for direct data exchange only with
their adjacent agents. Our simulations show that the proposed
polynomial approximation algorithms may converge faster than
the Chebyshev polynomial approximation algorithm and the
conventional gradient descent algorithm do.

Keywords: Graph inverse filter, polynomial approximation
algorithm, distributed implementation, graph signal process-
ing.

I. Introduction
Graphs are widely used to model the complicated topologi-

cal structure of networks, such as (wireless) sensor networks,
smart grids and social networks [1], [10], [13], [25], [26], [27],
[30], [32]. Many data sets on a network can be represented
by signals x = (xi)i∈V residing on the graph G = (V,E),
where xi represents the real/complex/vector-valued data at the
vertex/agent i ∈ V , a vertex in V may represent an agent
of the network, and an edge in E between vertices could
indicate that the corresponding agents have a peer-to-peer
communication link between them. Graph signal processing
paves an innovative way to extract valuable insights from
datasets residing on the complicated networks, [7], [8], [22],
[23], [36].

The filtering procedure for signals on a network is a linear
transformation

x 7−→ y = Hx, (I.1)
which maps a graph signal x to another graph signal y = Hx,
and H = (H(i, j))i,j∈V is known as a graph filter. An graph
shift is an elementary graph filter, and we say that a matrix
S = (S(i, j))i,j∈V on the graph G = (V,E) if S(i, j) 6= 0
only if either j = i or (i, j) ∈ E. In [13], the notion of
multiple commutative graph shifts S1, . . . ,Sd are introduced,

SkSk′ = Sk′Sk, 1 ≤ k, k′ ≤ d, (I.2)

and some multiple commutative graph shifts on circu-
lant/Cayley graphs and on Cartesian product graphs are con-
structed with physical interpretation. An important property
for commutative graph shifts S1, . . . ,Sd is that they can be
upper-triangularized simultaneously,

Ŝk = UHSkU, 1 ≤ k ≤ d, (I.3)

where U is a unitary matrix and Ŝk = (Ŝk(i, j))1≤i,j≤N , 1 ≤
k ≤ d, are upper triangular matrices. As Ŝk(i, i), 1 ≤ i ≤ N ,
are eigenvalues of Sk, 1 ≤ k ≤ d, we call the set

Λ =
{
λλλi =

(
Ŝ1(i, i), ..., Ŝd(i, i)

)
, 1 ≤ i ≤ N

}
(I.4)

as the joint spectrum of S1, . . . ,Sd [13]. For the case that
graph shifts S1, . . . ,Sd are symmetric, all Ŝk(i, i), 1 ≤ i ≤
N, 1 ≤ k ≤ d are real-valued and the joint spectrum of graph
shifts S1, . . . ,Sd is contained in some cube,

Λ ⊂ [µµµ,ννν] := [µ1, ν1]× · · · × [µd, νd] ⊂ Rd, (I.5)

where for each 1 ≤ k ≤ d, [µk, νk] is the (minimal) interval
to contain the spectrum of the graph shift Sk.

A popular family of graph filters is polynomial filters of
commutative graph shifts S1, . . . ,Sd,

H = h(S1, . . . ,Sd) =

L1∑
l1=0

· · ·
Ld∑
ld=0

hl1,...,ldS
l1
1 · · ·S

ld
d , (I.6)

where h is a multivariate polynomial in variables t1, · · · , td,

h(t1, . . . , td) =

L1∑
l1=0

· · ·
Ld∑
ld=0

hl1,...,ldt
l1
1 . . . t

ld
d

[6], [9], [13], [16], [18], [21], [28], [31], [34]. The consider-
ation of polynomial filters of multiple graph shifts is mainly
motivated by signal processing of time-varying data sets on a
sensor network over a period of time, which carry different
correlation characteristics for spatial-temporal directions.

Inverse filtering procedure associated with a polynomial
filter of graph shifts is a versatile tool, offering a wide
applications across denoising, signal reconstruction, graph
semi-supervised learning and many other applications [2], [3],
[5], [6], [9], [16], [17], [21], [24], [29], [31]. Its importance
lies in its ability to recover original signals from observed
data, enabling a deeper understanding of underlying network
structures and dynamics. In this paper, we consider distributed
implementation of inverse filtering procedure on simple graphs
(i.e., unweighted undirected graphs containing no loops or
multiple edges) of large order N ≥ 1.

Given a polynomial filter H of graph shifts, one of the main
challenges in the corresponding inverse filtering procedure

y 7−→ x = H−1y (I.7)

is on its distributed implementation, as the inverse filter H−1

is usually not a polynomial filter of small degree even if H
is. The first two authors of this paper proposed the following
exponentially convergent quasi-Newton method with arbitrary
initial x(0),

e(m) = Hx(m−1)−y and x(m) = x(m−1)−Ge(m), m ≥ 1
(I.8)

to fulfill the inverse filtering procedure, where the polynomial
approximation filter G to the inverse H−1 is so chosen that
the spectral radius of I −GH is strictly less than 1 [5], [6],
[13]. An important problem is how to select the polynomial
approximation filter G appropriately for the fast convergence
of the quasi-Newton method (I.8). The above problem has
been well studied when H is a polynomial filter of the graph
Laplacian (and a single graph shift in general) [3], [6], [15],
[16], [29], [31]. For a polynomial filter H of multiple graph
shifts, optimal/Chebyshev polynomial approximation filters
are introduced in [13]. In Section II, we show the exponential
approximation property of Chebyshev interpolation polynomi-
als to analytic functions on a cube, and then we introduce
the Chebyshev interpolation polynomial filter to approximate
the inverse filter H−1 and the corresponding quasi-Newton
method algorithm (III.2) to implement the inverse filtering
procedure (I.7). In Section III, we show the corresponding
Chebyshev interpolation polynomial algorithm is of exponen-
tial convergence and can be applied to implement the inverse
filtering procedure (I.7) associated with a polynomial filter
on distributed networks, see Theorem III.1 and Algorithms
III.1. Numerical experiments in Section IV indicate that the
proposed Chebyshev interpolation polynomial approximation
algorithm have better performance than Chebyshev polynomial
approximation algorithm (CPA), the gradient descent algo-
rithm with optimal step size (OGDA) and the autoregressive
moving-average model (ARMA) do [3], [13], [15], [16], [17],
[29], [31], [34].

Notation: Bold lower cases and capitals are used to
represent the column vectors and matrices respectively. Define
‖x‖2 = (

∑
i∈V |xi|2)1/2 and ‖x‖∞ = supi∈V {|xi|} for a

graph signal x = (xi)i∈V and ‖A‖2 = sup‖x‖2=1 ‖Ax‖2
for a graph filter A. Denote the transpose, the Hermitian
and Frobenius norm of a matrix A by AT , AH and ‖A‖F
respectively.

II. CHEBYSHEV INTERPOLATING POLYNOMIALS

Let [µµµ,ννν] = [µ1, ν1]× · · · × [µd, νd] be a cube in Rd and h
be a multivariate polynomial that does not vanish on the cube
[µµµ,ννν], i.e.,

h(t) 6= 0 for all t ∈ [µµµ,ννν]. (II.1)

Write tj;µµµ,ννν = (tj1;µ1,ν1 , . . . , tjd;µd,νd), 0 ≤ jk ≤M, 1 ≤ k ≤
d, be rescaled Chebyshev points in the cube [µµµ,ννν], and the
Lagrange basis at rescaled Chebyshev points be defined by

`M (t, tj;µµµ,ννν) =

d∏
k=1

∏
0≤ik≤M,ik 6=jk

tk − tik;µk,νk

tjk;µk,νk − tik;µk,νk

,

where

tjk;µk,νk =
νk + µk

2
+
νk − µk

2
cos

(jk + 1/2)π

M + 1
.

TABLE I: Shown are the maximal approximation errors
of Jacobi polynomial approximations, Chebyshev polynomial
approximation and Chebyshev interpolation polynomial ap-
proximation to 1/h1 on [0, 2] with the polynomial degree
0 ≤M ≤ 4.

(α, β)

M
0 1 2 3 4

Cheby. Poly. 1.0463 0.5837 0.2924 0.1467 0.0728
(1/2, 1/2) 0.7014 0.5904 0.3897 0.2505 0.1517
ChebyInt 0.7500 0.4497 0.2342 0.1186 0.0595

For a polynomial h satisfying (II.1), an excellent method of
approximating the reciprocal 1/h on the cube [µµµ,ννν] is the
Chebyshev interpolation polynomial

CM (t) =
∑

‖j‖∞≤M

1

h(tj;µµµ,ννν)
`M (t, tj;µµµ,ννν), (II.2)

which is the unique polynomial of the form
∑
‖n‖∞≤M dnt

n

for some dn, ‖n‖∞ ≤M , satisfying the interpolation property

CM (tj;µµµ,ννν) =
1

h(tj;µµµ,ννν)
for all ‖j‖∞ ≤M. (II.3)

Recall that the Lebesgue constant for the above polynomial
interpolation at rescaled Chebyshev points is of the order
(ln(M + 2))d [4]. This together with the exponential con-
vergence of Chebyshev polynomial approximation, see [33,
Theorem 8.2] and [35, Theorem 2.2], implies that

b̃M := sup
t∈[µµµ,ννν]

|1− h(t)CM (t)| ≤ D1r
M
1 , M ≥ 0, (II.4)

for some positive constants D1 ∈ (0,∞) and r1 ∈ (0, 1).
Presented at the bottom row of Table I is the maximal

approximation error b̃M , 0 ≤M ≤ 4, of the Chebyshev inter-
polation polynomial CM on [0, 2], ChebyInt for abbreviation,
to the reciprocal of the univariate function

h1(t) = (9/4− t)(3 + t), t ∈ [0, 2] (II.5)
in [13, Eqn. (5.4)]. We observe that the Chebyshev inter-
polation polynomial approximation outperforms the Jacobi
polynomial approximations with α = β = 1/2 in [37] and
the Chebyshev polynomial approximation.

III. CHEBYSHEV INTERPOLATION APPROXIMATION
ALGORITHM

Let h be a multivariate polynomial satisfying (II.1), and
CM ,M ≥ 0, be the Chebyshev interpolation polynomial
approximation to 1/h in (II.2). Set H = h(S1, . . . ,Sd) and
CM = CM (S1, . . . ,Sd),M ≥ 0. By the spectral assumption
(I.5), the spectral radii of I − CMH are bounded by b̃M in
(II.4) respectively, i.e.,

ρ(I−CMH) ≤ b̃M , M ≥ 0. (III.1)
Therefore with appropriate selection of the polynomial degree
M , we obtain the exponential convergence of the following
iterative polynomial approximation algorithm for inverse fil-
tering, {

e(m) = Hx(m−1) − y
x(m) = x(m−1) −CMe(m), m ≥ 1

(III.2)

with arbitrary initials x(0), where the input y is obtained via
the filtering procedure (I.1).

Theorem III.1. Let S1, . . . ,Sd be commutative graph shifts
satisfying (I.5), h be a multivariate polynomial satisfying
(II.1), and let b̃M be given in (II.4). If b̃M < 1, then for
any input y, the sequence x(m),m ≥ 0, in the iterative
algorithm (III.2) converges to the output H−1y of the inverse
filtering procedure (I.7) exponentially. In particular, for any
r ∈ (ρ(I−CMH), 1) there exists a positive constant C such
that

‖x(m) −H−1y‖2 ≤ C‖x(0) −H−1y‖2rm, m ≥ 0. (III.3)

Proof. As S1, . . . ,Sd are commutative graph shifts, 1/h is
analytic on the joint spectrum [µµµ,ννν], we have

x(m) −H−1y = (I−CMH)m(x(0) −H−1y),

−
∞∑

n=m+1

(I−CMH)nCMy) (III.4)

from the iterative algorithm (III.2). By the spectral assumption
(I.5) on commutative graph shifts S1, . . . ,Sd, the spectral radii
of I−CMH is bounded by b̃M in (II.4), i.e.,

ρ(I−CMH) ≤ b̃M . (III.5)

By Gelfand’s formula on spectral radius, there exists a positive
constant C for any r ∈ (ρ(I−CMH), 1) such that

‖(I−CMH)m‖2 ≤ Crm, n ≥ 1. (III.6)

From (III.4) and (III.6), it follows that

‖x(m) −H−1y‖2 ≤ ‖(I−CMH)m‖2‖x(0) −H−1y‖2
≤ Crm‖x(0) −H−1y‖2,m ≥ 0.

This proves the exponential convergence of x(m),m ≥ 0.

We call the iterative polynomial approximation algorithm
(III.2) as Chebyshev interpolation polynomial approximation
algorithm, CIPA for abbreviation. We remark that in each
iteration in CIPA contains essentially two filtering procedures
associated with polynomial filters CM and H, and hence it
can be implemented at the vertex level with one-hop commu-
nication, see Algorithm III.1. Therefore the CIPA algorithms
can be implemented on a distributed network with each agent
equipped with limited storage and data processing ability,
and one-hop communication subsystem. More importantly, the
memory, computational cost and communication expense for
each agent of the network are independent on the size of the
whole network.

IV. NUMERICAL EXPERIMENTS

Circulant graphs are widely used in image processing [11],
[12], [13], [19], [20]. Our numerical results show that the CIPA
have impressive performances to implement the inverse filter-
ing procedure than the Chebyshev polynomial approximation
algorithm in [13] and the gradient descent method in [29] do.
Some Tikhonov regularization problem can be converted to

Algorithm III.1 The CIPA algorithm to implement the inverse
filtering procedure y 7−→ H−1y at a vertex i ∈ V .

Inputs: Polynomial coefficients of polynomial filters H and
CM , entries Sk(i, j), j ∈ Ni in the i-th row of the shifts
Sk, 1 ≤ k ≤ d, the value y(i) of the input signal y =
(y(i))i∈V at the vertex i, and number m of iteration.
Initialization: Initial e(0)(i) = y(i), x(0)(i) = 0 and n = 0.
Iteration: Use the iteration in [13, Algorithm 4] except
replacing G̃L by CM , and the output is x(n)(i).
Output: The approximated value x(i) ≈ x(m)(i) is the
output signal H−1y = (x(i))i∈V at the vertex i.

an inverse filtering procedure [13], [14], we also demonstrate
the denoising performance of the polynomial approximation
algorithms to the walking dog dataset.

A. Polynomial approximation algorithms
Let N ≥ 1 and we say that a = b mod N if (a − b)/N

is an integer. The circulant graph C(N,Q) generated by
Q = {q1, . . . , qL} is a simple graph with the vertex set
VN = {0, 1, . . . , N − 1} and the edge set EN (Q) = {(i, i ±
q mod N), i ∈ VN , q ∈ Q}, where ql, 1 ≤ l ≤ L, are
integers contained in [1, N/2). Let Q0 = {1, 2, 5} and the
polynomial filters be H1 = h1(Lsym

C(N,Q0)
), the input signal x

have i.i.d. entries randomly selected in [−1, 1], and the input
signal y = H1x, where h1(t) = (9/4 − t)(3 + t) in (II.5),
and Lsym

C(N,Q0)
is the symmetric normalized Laplacian on the

circulant graph C(N,Q0). Shown in Table II are averages of
the relative iteration error

E(m) =
‖x(m) − x‖2
‖x‖2

, m ≥ 1,

over 1000 trials to implement the inverse filtering procedure
y 7−→ H−11 y via CPA (the Chebyshev polynomial approxi-
mation algorithm in [13]), the JPA(1/2, 1/2) (Jacobi polyno-
mial approximation with appropriate selection of parameters
α = 1/2 and β = 1/2 in [37]), CIPA with zero initial
x(0) = 0, the gradient descent method with optimal step size
in [29] and autoregressive moving average method in [16],
OGDA and ARMA for abbreviation, where x(m),m ≥ 1,
are the output of the polynomial approximation algorithm
at m-th iteration and M is the degree of polynomials the
polynomial approximation. We observe that CIPA have the
best performances on the implementation of inverse filtering
procedure than the JPA(1/2, 1/2) in [37], CPA in [13] does,
and CIPA has much better performance than than the gradient
descent method does.

B. Denoising dancing dog dataset

In the second simulation, we consider applying polynomial
approximation algorithms to denoise the walking dog dataset
W of size 442854 = 2502 × 59 × 3 [14]. Let T be the line
graph with 59 vertices and W = (V,E) be the undirected
graph with 2502 vertices and edges constructed by the 5 near-
est neighboring algorithm. The walking dog data is modelled

TABLE II: Average relative iteration errors E(m) to imple-
ment the inverse filtering y 7−→ H−11 y on the circulant graph
C(1000, Q0) via polynomial approximation algorithms with
polynomial degree M = 1, the gradient descent algorithm
with optimal step size and ARMA, where we take zero as the
initial.

Alg.
Iter. m 1 2 3 4 5

CPA 0.4494 0.2191 0.1103 0.0566 0.0295
JPA(1/2, 1/2) 0.2056 0.0769 0.0390 0.0213 0.0119
CIPA 0.2994 0.1010 0.0349 0.0122 0.0043
OGDA 0.2350 0.0856 0.0349 0.0147 0.0063
ARMA 0.3259 0.2583 0.1423 0.1098 0.0718

as a time-varying signal W(t, i) ∈ R3, t ∈ {1, . . . , 59}, i ∈ V
on the product graph T ×W . Consider the scenario that the
known dataset is the noisy walking dog dataset

W̃ = W + ληηη (IV.1)

corrupted by some random noises ληηη, where ηηη has its compo-
nents ηηη(t, i), t ∈ {1, . . . , 59}, i ∈ V being independently and
randomly selected with a normal Gaussian distribution, and the
normalization factor λ = 0.2‖W‖F (E‖ηηη‖2F)−1/2 = 29.1398
is so chosen that the Frobenius norm λ‖ηηη‖F of the additive
noise is about 20% of the norm ‖W‖F of the walking dog
dataset.

A conventional denoising procedure is the Tikhonov denois-
ing approach in each coordinate dimension ([13], [14]). Then
the denoised walking dog dataset is given by

ŵ := arg min
z
‖z− w̃‖22 + γ1z

TS1z + γ2z
TS2z, (IV.2)

where w̃ is the vectorization of the noisy dog dataset W̃,
S1 = I ⊗ Lsym

W , S2 = Lsym
T ⊗ I, Lsym

W and Lsym
T are

symmetrically normalized Laplacian matrices on the graph
W and T respectively, and penalty constants γ1, γ2 ≥ 0 are
used to balance the fidelity and regularization in the vertex
and temporal domains. Shown in the top row of Figure 1 are
the snapshots of the original walking dog dataset, the noisy
walking dog dataset and the denoised walking dog dataset
at time t = 1, where the penalty constants γ1 = γ2 = 1
are used. We observe that the proposed iterative polynomial
approximation algorithms can effectively denoise the walking
dog dataset. From the top right and top middle plots of Figure
1, we see that the denoised dog dataset reveals the shape of the
dog, while the noisy walking dog dataset obscures the gesture
of the two front legs.

Denote the output of the m-th iteration of the proposed
algorithms by ŵ(m) and define the output signal-to-noise ratio
of the proposed algorithms at m-th iteration by

SNR(m) = −20 log10

‖ŵ(m) −w‖2
‖w‖2

, m ≥ 1.

Comparing with CIPA, OGDA in [29] has a slower conver-
gence rate, see the bottom left plot of Figure 1. Our exper-
iments also indicate that the OGDA may achieve a similar
denoising performance after 20 iterations to that CIPA do after
3 iterations. Plotted in the bottom middle of Figure 1 are the
average output signal-to-noise ratios max(SNR(3),−5) of the

Fig. 1: Plotted on the top left, top middle and top right are
the snapshots of the original walking dog dataset, the noisy
dataset and the denoised dataset at the time t = 1, where the
input SNR is 13.9734 and the output SNR is 18.9654. Plotted
on the bottom from the left to the right are average output
signal-to-noise ratios max(SNR(m),−5) at m-th iteration of
OGDA, ARMA and CIPA on denoising the walking dog
dataset through Tikhonov denoising approach in (IV.2) with
respect to different penalty constants γ1, γ2 ∈ [0, 2], where
m = 3.
ARMA model proposed in [16] with respect to the penalty
constants γ1, γ2 ∈ [0, 2] over 20 trials on the random noise ηηη
in (IV.1). It shows that the ARMA model may fail to denoise
the walking dog dataset for penalty constants γ1, γ2 not close
to zero. Recall that the requirement for convergence of the
ARMA model in [16] is that the spectrum of T := γ1S1+γ2S2

is contained in (−1, 1). Observe that the spectrum of T is
contained in [0, 2(γ1 + γ2)] from the spectral properties of S1

and S2. Then a possible explanation for why the ARMA model
did not perform well is that it does not meet the requirement
for the convergence of the ARMA method when γ1, γ2 are not
close to zero.

Acknowledgement: This work is partially supported by
National Key RD Program of China (No. 2024YFA1013703),
National Nature Science Foundation of China (12171490),
Guangdong Basic and Applied Basic Research Foundation
(2022A1515011060), and Fundamental Research Funds for the
Central Universities, Sun Yat-sen University (24lgqb019).

REFERENCES

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 18-42, 2017.

[2] S. Chen, A. Sandryhaila, and J. Kovačević, “Distributed algorithm for
graph signal inpainting,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, Apr.
2015, pp. 3731-3735.

[3] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovačević, “Signal re-
covery on graphs: variation minimization,” IEEE Trans. Signal Process.,
vol. 63, no. 17, pp. 4609-4624, Sept. 2015.

[4] W. Cheney and W. Light, A Course in Approximation Theory, American
Mathematical Society, 2009.

[5] C. Cheng, N. Emirov, and Q. Sun, “Preconditioned gradient descent
algorithm for inverse filtering on spatially distributed networks,” IEEE
Signal Process. Lett., vol. 27, pp. 1834-1838, Oct. 2020.

[6] C. Cheng, J. Jiang, N. Emirov, and Q. Sun, “Iterative Chebyshev
polynomial algorithm for signal denoising on graphs,” in Proceeding
13th Int. Conf. on SampTA, Bordeaux, France, Jul. 2019, pp. 1-5.

[7] C. Cheng, Y. Jiang, and Q. Sun, “Spatially distributed sampling and
reconstruction,” Appl. Comput. Harmon. Anal., vol. 47, no. 1, pp. 109-
148, July 2019.

[8] C. Chong and S. Kumar, “Sensor networks: evolution, opportunities, and
challenges,” Proc. IEEE, vol. 91, pp. 1247-1256, Aug. 2003.

[9] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2320-2333,
May 2019.

[10] X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard, “Graph
signal processing for machine learning: A review and new perspectives,”
IEEE Signal Process. Mag., vol. 37, no. 6, pp. 117-127, 2020.

[11] V. N. Ekambaram, G. C. Fanti, B. Ayazifar, and K. Ramchandran,
“Circulant structures and graph signal processing,” in Proc. IEEE Int.
Conf. Image Process., 2013, pp. 834-838.

[12] V. N. Ekambaram, G. C. Fanti, B. Ayazifar, and K. Ramchandran,
“Multiresolution graph signal processing via circulant structures,” in
Proc. IEEE Digital Signal Process./Signal Process. Educ. Meeting
(DSP/SPE), 2013, pp. 112-117.

[13] N. Emirov, C. Cheng, J. Jiang, and Q. Sun, “Polynomial graph filter
of multiple shifts and distributed implementation of inverse filtering,”
Sampl. Theory Signal Process. Data Anal., vol. 20, Article No. 2, 2022.

[14] F. Grassi, A. Loukas, N. Perraudin and B. Ricaud, “A time-vertex signal
processing framework: scalable processing and meaningful representa-
tions for time-series on graphs,” IEEE Trans. Signal Process., vol. 66,
no. 3, pp. 817-829, Feb. 2018.

[15] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, “Forecasting time series
with VARMA recursions on graphs,” IEEE Trans. Signal Process., vol.
67, no. 18, pp. 4870-4885, Sept. 2019.

[16] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” IEEE Trans. Signal Process., vol. 65, no. 2, pp.
274-288, Jan. 2017.

[17] J. Jiang, C. Cheng, and Q. Sun, “Nonsubsampled graph filter banks:
Theory and distributed algorithms,” IEEE Trans. Signal Process., vol.
67, no. 15, pp. 3938-3953, Aug. 2019.

[18] J. Jiang, D. B. Tay, Q. Sun, and S. Ouyang, “Design of nonsubsampled
graph filter banks via lifting schemes,” IEEE Signal Process. Lett., vol.
27, pp. 441-445, Feb. 2020.

[19] M. S. Kotzagiannidis and P. L. Dragotti, “Sampling and reconstruction
of sparse signals on circulant graphs – an introduction to graph-FRI,”
Appl. Comput. Harmon. Anal., vol. 47, no. 3, pp. 539-565, Nov. 2019.

[20] M. S. Kotzagiannidis and P. L. Dragotti, “Splines and wavelets on
circulant graphs,” Appl. Comput. Harmon. Anal., vol. 47, no. 2, pp.
481-515, Sept. 2019.

[21] K. Lu, A. Ortega, D. Mukherjee, and Y. Chen, “Efficient rate-distortion
approximation and transform type selection using Laplacian operators,”
in 2018 Picture Coding Symposium (PCS), San Francisco, CA, June
2018, pp. 76-80.

[22] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network
localization techniques,” Comput. Netw., vol. 51, no. 10, pp. 2529-2553,
July 2007.

[23] N. Motee and Q. Sun, “Sparsity and spatial localization measures for
spatially distributed systems,” SIAM J. Control Optim., vol. 55, no. 1,
pp. 200-235, Jan. 2017.

[24] M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, “Graph signal
denoising via trilateral filter on graph spectral domain,” IEEE Trans.
Signal Inf. Process. Netw., vol. 2, no. 2, pp. 137-148, June 2016.

[25] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” Proc. IEEE, vol. 106, no. 5, pp. 808-828, May 2018.

[26] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs: Frequency analysis,” IEEE Trans. Signal Process., vol. 62, no.
12, pp. 3042-3054, June 2014.

[27] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644-1656,
Apr. 2013.

[28] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4117-4131, Aug. 2017.

[29] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, “Infinite impulse response
graph filters in wireless sensor networks,” IEEE Signal Process. Lett.,
vol. 22, no. 8, pp. 1113-1117, Aug. 2015.

[30] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular

domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May
2013.

[31] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, “Dis-
tributed signal processing via Chebyshev polynomial approximation,”
IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 4, pp. 736-751, Dec.
2018.

[32] L. Stanković, M. Daković, and E. Sejdić, “Introduction to graph signal
processing,” In Vertex-Frequency Analysis of Graph Signals, Springer,
pp. 3-108, 2019.

[33] L. N. Trefethen, Approximation Theory and Approximation Practice,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2013.

[34] W. Waheed and D. B. H. Tay, “Graph polynomial filter for signal
denoising,” IET Signal Process., vol. 12, no. 3, pp. 301-309, Apr. 2018.

[35] S. Wang, “On Error bounds for orthogonal polynomial expansions and
Gauss-type quadrature,” SIAM J. Numer. Anal., vol. 50, no. 3, pp. 1240-
1263, 2012.

[36] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Comput. Netw., vol. 52, no. 12, pp. 2292-2330, Aug. 2008.

[37] C. Zheng, C. Cheng, and Q. Sun, “Wiener filters on graphs and
distributed implementations”, Digit. Signal Process., vol. 162, Article
No. 105156, 2025.

