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ABSTRACT

Standard human preference-based alignment methods, such as Reinforcement
Learning from Human Feedback (RLHF), are a cornerstone technology for align-
ing Large Language Models (LLMs) with human values. However, these methods
are all underpinned by a strong assumption that the collected preference data is
clean and that all observed labels are equally reliable. In reality, large-scale prefer-
ence datasets contain substantial label noise due to annotator errors, inconsistent
instructions, varying expertise, and even adversarial or low-effort feedback. This
creates a discrepancy between the recorded data and the ground-truth preferences,
which can misguide the model and degrade its performance. To address this chal-
lenge, we introduce Robust Preference Optimization (RPO). RPO employs an
Expectation-Maximization algorithm to infer the posterior probability of each
label’s correctness, which is used to adaptively re-weigh each data point in the
training loss to mitigate noise. We further generalize this approach by establish-
ing a theoretical link between arbitrary preference losses and their corresponding
probabilistic models. This generalization enables the systematic transformation
of existing alignment algorithms into their robust counterparts, elevating RPO
from a specific algorithm to a general framework for robust preference alignment.
Theoretically, we prove that under the condition of a perfectly calibrated model,
RPO is guaranteed to converge to the true noise level of the dataset. Our ex-
periments demonstrate RPO’s effectiveness as a general framework, consistently
enhancing four state-of-the-art alignment algorithms (DPO, IPO, SimPO, and
CPO). When applied to Mistral and Llama 3 models, the RPO-enhanced methods
improve AlpacaEval 2 win rates by up to 7.0 percentage points over their respective
baselines.

1 INTRODUCTION

Aligning Large Language Models (LLMs) with human values is a critical prerequisite for developing
safe and reliable AI systems. Reinforcement Learning from Human Feedback (RLHF) has emerged
as the dominant paradigm for this task (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al.,
2022). To mitigate the complexity and instability of the traditional RLHF pipeline, simpler and
more direct methods such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) have been
developed, which reframe alignment as a classification-like problem.

However, these alignment methods implicitly assume that preference datasets provide a clean and
reliable approximation of a single ground-truth preference signal. In practice, this assumption is
often violated. Large-scale preference datasets are typically aggregated from multiple crowdworkers
or teacher models, and are therefore subject to substantial label noise arising from inattention,
misunderstanding, or systematic bias (Frénay & Verleysen, 2013; Gao et al., 2024). Empirical
analyses suggest that a significant fraction (often between 20% and 40%) of preference pairs in
modern alignment datasets may be corrupted or inconsistent (Gao et al., 2024). Classic work on
learning with noisy labels shows that standard loss functions can overfit such corrupted supervision
and suffer severe degradation in generalization performance (Natarajan et al., 2013; Frénay &
Verleysen, 2013). In the context of LLM alignment, Gao et al. (2024) further demonstrate that even a
10 percentage point increase in the label-noise rate can lead to drops of tens of percentage points in
downstream win rates, highlighting the practical importance of robustness to noisy preference data.
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Figure 1: Overview of the Robust Preference Optimization (RPO) framework. Starting from noisy
pairwise feedback, RPO uses an Expectation–Maximization (EM) procedure to jointly refine label
confidences and the policy. In each iteration, the E-step estimates a confidence score for every
observed preference by inferring the posterior probability that the label is correct under the current
model and annotator reliabilities. The M-step then uses these scores as adaptive weights to update
both the LLM policy and the annotator reliability parameters, progressively down-weighting likely
corrupted labels and emphasizing reliable supervision.

To address this challenge, we propose Robust Preference Optimization (RPO). Instead of assuming
that every observed label is a fixed ground truth, our approach aims to learn a preference model
that remains accurate and stable even when the training data contains substantial noise. The core
innovation of RPO is its departure from the hard labels used in traditional RLHF. Rather than
committing to binary supervision, we treat the correctness of each observed preference as a latent
variable and compute soft confidence weights over labels, so that highly reliable feedback contributes
more strongly while suspicious pairs are down-weighted. Building on Expectation-Maximization-
style approaches to learning from unreliable annotators in crowdsourcing (Dawid & Skene, 1979;
Chen et al., 2013), RPO employs an Expectation-Maximization (EM) framework that simultaneously
models annotator reliability while optimizing the LLM. In the E-step, it infers the posterior probability
that each annotated label is correct, effectively estimating annotator reliability. In the M-step, it
uses these probabilities as adaptive weights to update the LLM, thereby learning from a dynamically
re-weighted preference signal.

Our experiments validate RPO as an effective general framework. We show that applying RPO
consistently enhances four state-of-the-art alignment algorithms (DPO, IPO, SimPO, and CPO) across
two different base models (Mistral-7B and Llama-3-8B) on the AlpacaEval 2 benchmark (Table 2).
In our main results, RPO-enhanced methods achieve substantial win-rate gains on AlpacaEval 2, with
improvements of up to 7.0 percentage points in LC/WR over their standard counterparts.Furthermore,
we theoretically prove that RPO can recover the true reliability of annotators (Theorem 4.1) and
empirically verify this guarantee in controlled experiments (Section 5.5).

In summary, our contributions are as follows:

• We propose Robust Preference Optimization (RPO), a principled EM-based algorithm that
treats the correctness of each preference label as a latent variable, jointly infers per-label (and
per-annotator) reliabilities, and uses them as adaptive weights in the training loss, yielding LLM
alignment that is substantially more robust to noisy and inconsistent feedback.

• We theoretically establish a generalized RPO framework by using the Gibbs distribution to
connect arbitrary preference loss functions to underlying probabilistic models. This lifts RPO
from a single algorithm to a general framework, enabling standard methods such as DPO, IPO,
SimPO, and CPO to be systematically transformed into their robust counterparts with minimal
modification.
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• We conduct extensive experiments demonstrating the practical effectiveness and versatility of
RPO. Across four alignment algorithms, two base models (Mistral-7B and Llama-3-8B), and
AlpacaEval 2, RPO delivers consistent win-rate improvements of up to 7.0 percentage points,
and further shows clear gains on a real multi-annotator dataset (MultiPref), along with qualitative
and visual analyses of how it down-weights low-confidence, noisy labels.

2 RELATED WORK

LLM alignment with hard preference labels. The standard paradigm for aligning Large Language
models (LLMs) with human values is Reinforcement Learning from Human Feedback (RLHF), which
involves training a reward model and then fine-tuning the policy against it (Christiano et al., 2017;
Ouyang et al., 2022). To mitigate the complexity and instability of this multi-stage process, a family of
simpler, direct alignment algorithms has emerged (Rafailov et al., 2023; Azar et al., 2023; Meng et al.,
2024; Hong et al., 2024). These methods bypass the explicit reward modeling stage by optimizing a
direct classification-style loss on the preference data. However, a critical limitation shared by these
methods is their reliance on hard preference labels. This approach models human feedback as a
definitive, binary choice, treating every label with equal and absolute confidence. Consequently,
it is highly vulnerable to the significant label noise present in real-world datasets, as standard loss
functions can lead models to overfit to corrupted labels (Natarajan et al., 2013; Zhang & Sabuncu,
2018; Frénay & Verleysen, 2013). A simple annotation error, such as an accidental misclick, is
given the same weight as a deliberate, high-quality judgment. This inability to distinguish between
reliable feedback and noise means that the model’s performance degrades significantly as the error
rate increases (Frénay & Verleysen, 2013; Gao et al., 2024). In contrast, soft-label approaches that
represent preferences probabilistically can better accommodate uncertainty in feedback by assigning
confidence scores or weights to individual labels (Müller et al., 2019; Song et al., 2024). By allowing
the learning algorithm to rely more on high-quality signals while down-weighting likely noise,
such approaches provide a natural path toward robust preference alignment. This is precisely the
perspective adopted by our RPO framework, which replaces hard labels with EM-estimated soft
confidences.

Learning from noisy feedback. The vulnerability to label noise situates preference alignment
within the classic machine learning problem of Learning with Noisy Labels (LNL) (Natarajan et al.,
2013; Frénay & Verleysen, 2013). Foundational work in this area, such as the Dawid–Skene model
(Dawid & Skene, 1979), uses an EM algorithm to simultaneously infer true latent labels while
estimating annotator reliability. This principle was later extended to pairwise comparisons in the
Crowd-BT model (Chen et al., 2013), which jointly estimates item scores and annotator-specific
reliability parameters in crowdsourced ranking tasks. In modern LLM alignment, several methods
have been proposed to improve robustness to noisy preference data. These can be broadly divided into
loss-centric approaches and data-centric filtering strategies. In the first category, rDPO (Chowdhury
et al., 2024) constructs an unbiased estimator of the true loss but requires the global noise rate to
be known a priori. Hölder-DPO (Fujisawa et al., 2025) introduces a loss with a “redescending”
property, which inherently nullifies the influence of extreme outliers without needing a known noise
rate. In the second category, Selective DPO (Gao et al., 2025) proposes filtering examples based on
their difficulty relative to the model’s capacity—a concept orthogonal to label correctness—using
validation loss as a proxy. Our proposed RPO framework is complementary to these methods. Rather
than only modifying the loss shape or discarding high-loss points, RPO explicitly models the data-
generating process by treating annotator reliability and label correctness as latent variables to be
inferred. This allows RPO to assign fine-grained, example-specific weights based on a posterior
confidence, providing a principled way to separate signal from noise.

3 METHODOLOGY

This section details our proposed RPO algorithm. We first review the standard DPO framework in
Section 3.1. In Section 3.2, we introduce a latent-variable model that explicitly distinguishes clean
and corrupted preference labels. Section 3.3 then derives the corresponding EM-based update rules
for RPO, and the final subsection presents a practical mini-batch implementation.
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Table 1: Formulations of the preference loss (Lpref) for prominent alignment algorithms.

Method Preference Loss Lpref(x, yw ≻ yl)

DPO (Rafailov et al., 2023) − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
IPO (Azar et al., 2023)

(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x) −

1
2β

)2
SimPO (Meng et al., 2024) − log σ( β

|yw| log πθ(yw|x)− β
|yl| log πθ(yl|x)− γ)

CPO (Xu et al., 2024) − log σ(β log πθ(yw|x)− β log πθ(yl|x))− log πθ(yw|x)

3.1 PRELIMINARIES: DIRECT PREFERENCE OPTIMIZATION

The goal of preference alignment is to fine-tune a language model policy, πθ, using a dataset of
preferences D = {(x, yw, yl)i}Ni=1, where response yw is preferred over yl for a given prompt x.
Direct Preference Optimization (DPO) (Rafailov et al., 2023) offers a simple and effective method
for this, bypassing the complex multi-stage pipeline of traditional RLHF (Christiano et al., 2017;
Ouyang et al., 2022). DPO directly optimizes the policy by minimizing a simple classification loss:

LDPO(πθ, πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (1)

where σ(·) is the sigmoid function, πref is a fixed reference policy and β is a scaling hyperparameter.

3.2 RPO FRAMEWORK: CORE ASSUMPTIONS

A critical limitation of DPO is its implicit assumption that all observed preferences in D are correct.
In practice, this data is often noisy. To address this, we propose Robust Preference Optimization
(RPO), which is built upon two core assumptions that reframe the problem.

Assumption 1: Latent noise-free preference. We assume that for each training example
(xi, yw,i, yl,i) there exists an underlying noise-free preference, denoted yw,i ≻∗ yl,i, which rep-
resents the label we would obtain in the absence of annotation errors. The observed preference
yw,i ≻ki

yl,i (provided by annotator ki) is treated as a potentially corrupted observation of this
ground truth. To model this, we introduce a binary latent variable zi ∈ {0, 1} for each data point,
where zi = 1 if the observed label matches the latent noise-free preference and zi = 0 otherwise. The
reliability of annotator k is then parameterized by ηk ≜ p(zi = 1 | ki = k). Here ki ∈ {1, . . . ,K}
denotes the index of the annotator who provided the i-th label, and K is the total number of annotators
in the dataset.

Assumption 2: A general probabilistic model for preferences. Building on this latent variable
model, we must also define the probability of the noise-free preference itself, p(yw ≻∗ yl|x, θ). To
accommodate various preference losses beyond DPO (e.g., IPO (Azar et al., 2023)), our framework
is designed to work with any preference loss function, Lpref. Table 1 provides several examples of
such loss functions used in prominent alignment algorithms.

To connect these diverse loss functions to a unified probabilistic interpretation, we draw inspiration
from the Boltzmann distribution (Luce, 1959). We assume that for any preference loss function Lpref,
the probability of a preference is proportional to the exponentiated negative loss exp(−Lpref(x, yw ≻
yl)). This yields a general definition for the noise-free preference probability:

p(yw ≻∗ yl|x, θ) = σ (Lpref(x, yl ≻ yw; θ)− Lpref(x, yw ≻ yl; θ)) , (2)

where σ(·) is the sigmoid function. This formulation converts any preference loss into a well-
defined probability distribution. For instance, with the standard DPO loss, this equation recovers the
Bradley-Terry model (Bradley & Terry, 1952) (see Appendices A and B for derivations).
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Algorithm 1: Robust Preference Optimization (RPO)

Input: Dataset D = {(xi, yw,i, yl,i, ki)}Ni=1; Base policy πθ, reference policy πref; Preference
loss Lpref; Hyperparameters: learning rate λ, epochs E, EMA momentum α, initial
annotator reliabilities ηk ∈ [0.5, 1] for all k ∈ {1, . . . ,K}

1 for epoch = 1 to E do
2 for batch B ⊂ D do
3 For each sample i ∈ B, compute wi using current θ and ηki via equation 4;
4 Compute the weighted loss LRPO(θ) for the batch via equation 5;
5 Update parameters θ using an optimizer (e.g., AdamW (Loshchilov & Hutter, 2019));
6 for each annotator k present in the batch do
7 Update ηk via equation 7;
8 end
9 end

10 end

3.3 THE RPO ALGORITHM VIA EXPECTATION-MAXIMIZATION

Based on these core assumptions, we aim to find the parameters θ and η that maximize the marginal
log-likelihood of the observed data. The probability of a single observed preference is obtained by
marginalizing over the latent variable zi:

p(yw,i ≻ki
yl,i|xi, θ,η) = p(yw,i ≻∗ yl,i|xi, θ)ηki

+ p(yl,i ≻∗ yw,i|xi, θ)(1− ηki
). (3)

Directly maximizing
∑

i log p(yw,i ≻ki yl,i) is intractable due to the sum inside the logarithm. We
therefore employ the EM algorithm (see details in Appendix C), which iterates between two steps. In
this iterative process, the superscript (t) will denote the values of parameters at iteration t.

E-Step: Inferring label correctness. In the E-step, given the current parameters θ(t) and η(t), we
compute the posterior probability wi that the i-th observed label is correct. This value wi acts as a
”soft label” or the model’s confidence in the data point.

w
(t)
i ←

p(yw,i ≻∗ yl,i|xi, θ
(t))η

(t)
ki

p(yw,i ≻∗ yl,i|xi, θ(t))η
(t)
ki

+ p(yl,i ≻∗ yw,i|xi, θ(t))(1− η
(t)
ki

)
. (4)

where p(yw,i ≻∗ yl,i|xi, θ
(t)) and p(yl,i ≻∗ yw,i|xi, θ

(t)) can be computed according to equation 2.

M-Step: weighted parameter update. In the M-step, we update the policy parameters θ and
reliabilities η using the confidences w(t)

i computed in the E-step. This step conveniently separates
into two independent updates.

First, the policy is updated by minimizing a weighted loss function. As established in Assumption 2,
our probabilistic model for p(yw ≻∗ yl) allows RPO to work with any preference loss Lpref, making
it a versatile meta-framework. The general RPO loss is:

LRPO(θ) = −
N∑
i=1

[
w

(t)
i log p(yw,i ≻∗ yl,i|xi, θ) + (1− w

(t)
i ) log p(yl,i ≻∗ yw,i|xi, θ)

]
. (5)

Second, the reliability ηk for each annotator is updated to the average confidence of all labels they
provided. This has a simple and efficient closed-form solution:

η
(t+1)
k =

∑
i∈Ik

w
(t)
i

Nk
. (6)

Here we define the index set of labeled pairs as Ik = { i : ki = k }, and the number of labels as Nk.
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3.4 PRACTICAL IMPLEMENTATION WITH MINI-BATCH TRAINING

While the exact M-step updates are clear, performing a full iteration over the entire dataset to re-
calculate the annotator reliabilities η after each policy update step can be computationally expensive.
To balance computational efficiency and performance, we introduce a more practical online update
for ηk using an Exponential Moving Average (EMA). Instead of a hard assignment, we perform a
soft update based on the statistics from the current mini-batch B:

ηk ← (1− α)ηk + α ·
∑

i∈B∩Ik
wi

Nk,B
. (7)

Here, Nk,B is the number of examples from annotator k in the current mini-batch, and α ∈ (0, 1] is a
momentum hyperparameter. The complete training procedure for RPO is summarized in Algorithm 1:

4 THEORETICAL ANALYSIS OF RPO

The robustness of RPO stems from its adaptive weighting mechanism. This section first provides
an intuitive analysis of these training dynamics and then formalizes this intuition with theoretical
guarantees, demonstrating that the RPO framework can recover the true reliability of annotators.

At the start of training, when the language model is not yet well-optimized, its predictions are uncer-
tain, and the probabilities p(yw ≻∗ yl|x, θ) are close to 0.5. The confidence score wi approximates
the annotator’s reliability, ηki

. The loss then acts as a form of label smoothing, preventing the
model from being severely misled by incorrect labels early on. As the policy improves, its behavior
adapts. For a high-quality label, the model predicts a high probability for the winning response,
and wi approaches 1, causing the loss to function like a standard preference optimization objective.
Conversely, wi approaches 0 for a noisy label. The loss is then dominated by the (1 − wi) term,
which flips the optimization direction toward the true preference.

We now formalize the intuition that RPO can recover the true reliability of annotators. We provide
this analysis under an idealized setting: full-batch training where the M-step for the policy parameters
θ is assumed to have converged perfectly. While our practical implementation in Algorithm 1 uses
mini-batch gradient updates (a form of Generalized EM), this idealized analysis provides a strong
theoretical justification for our framework.

Consider the dataset level update rule in equation 6, defined as an operator Tk(η). The following
theorem establishes that iterating this operator guarantees convergence to the true annotator reliability.
Theorem 4.1 (Identification and convergence of RPO). Let θ⋆ be a perfectly calibrated parameter
such that the model distribution matches the ground-truth preference distribution. Assume that not all
p⋆i = p(yw,i ≻∗ yl,i|xi) equal 1

2 for i ∈ Ik. Consider the sequence of reliability estimates {η(t)k }t≥0

generated by the update rule η(t+1)
k = Tk(η

(t)
k ). Then, for any initialization η

(0)
k ∈ (0, 1), the iterates

converge to the true reliability η∗k ≜ E[zi | ki = k]:

lim
t→∞

η
(t)
k = η⋆k.

The proof is provided in Appendix D. In section 5.5, we empirically corroborate that the mini-batch
procedure closely tracks this theoretical behavior.

Practical implications and limitations. The assumption of a perfectly calibrated model
in Theorem 4.1 is intentionally idealized: in practice, we apply RPO to base models that
are not exactly calibrated to the ground-truth preference distribution. In our experiments,
we always start from strong instruction-tuned LLMs (Mistral-7B-Instruct-v0.2 and
Meta-Llama-3-8B-Instruct), which already display good zero-shot preference behavior.
Empirically, we do not observe the failure mode suggested by an extremely misaligned initialization:
across the broad range of hyperparameters explored in Section 5.4, the learned ηk’s remain stable
and the downstream performance consistently improves over the corresponding base methods. Fur-
thermore, the controlled experiments in Section 5.5, where we inject substantial synthetic noise into
the data, show that RPO’s estimated reliabilities closely track the ground-truth values, suggesting
robustness to imperfect calibration in practice. If the base LLM were initialized in a highly misaligned
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Table 2: Performance comparison on AlpacaEval 2 for Mistral-7B-Instruct-v0.2 and
Meta-Llama-3-8B-Instruct fine-tuned on UltraFeedback-based preference datasets. Metrics
reported are LC (Length-Controlled Win Rate) and WR (Raw Win Rate), both in percentage points.
The table presents reference Baselines (bottom) alongside four algorithm families (DPO, IPO, SimPO,
CPO). For each family, we compare the Standard implementation, the variant with Label Smoothing
(w/ LS), and RPO (w/ RPO). Bold denotes the best result within each family for a given backbone.

Mistral-7B-Instruct Llama-3-8B-Instruct

Method Standard w/ LS w/ RPO Standard w/ LS w/ RPO

DPO 28.5 / 28.6 29.7 / 27.5 35.5 / 33.0 40.8 / 42.9 41.3 / 42.6 44.1 / 46.2
IPO 30.8 / 28.0 29.7 / 28.7 32.9 / 30.5 43.6 / 41.6 40.3 / 38.2 48.3 / 48.6
SimPO 28.3 / 29.7 26.5 / 27.1 30.4 / 32.9 44.5 / 37.1 48.1 / 38.7 46.9 / 39.4
CPO 26.3 / 26.4 28.5 / 28.8 27.6 / 27.8 35.9 / 40.3 35.3 / 34.8 40.1 / 43.8

Base Model 21.1 / 16.5 29.7 / 29.9
rDPO 28.1 / 29.1 37.3 / 35.4
Hölder-DPO 30.1 / 28.6 39.3 / 38.2

Table 3: Performance of DPO and R-DPO on AlpacaEval 2 when trained on the MultiPref dataset
(Miranda et al., 2024). Results are reported as LC / WR (%) for Mistral-7B-Instruct-v0.2
and Meta-Llama-3-8B-Instruct.

Method Mistral-7B-Instruct Llama-3-8B-Instruct

DPO 28.8 / 26.4 36.7 / 39.3
R-DPO (Ours) 31.8 / 28.8 41.1 / 44.4

regime, the E-step could assign misleadingly high confidence to incorrect labels and RPO might fail
to effectively denoise the supervision.

5 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments to evaluate the performance of RPO.We
begin in section 5.1 by detailing our experimental setup, including the models, datasets, evaluation
benchmarks, and baseline algorithms. In Section 5.2, we present our main results. Section 5.3
reports additional experiments to evaluate RPO’s performance on realistic multi-annotator datasets.
We then conduct an ablation study in Section 5.4 to analyze the framework’s sensitivity to its key
hyperparameters. In section 5.5, we provide an empirical verification of our theoretical claims from
Theorem 4.1.

5.1 EXPERIMENTAL SETUP

Models and training settings. We use two state-of-the-art open-source large language models
as our base models: Mistral-7B-Instruct-v0.2 and Meta-Llama-3-8B-Instruct.
For fine-tuning, we utilize two datasets from the SimPO paper (Meng et al., 2024), which were
generated via on-policy sampling using prompts from the UltraFeedback dataset (Cui et al., 2024).
The specific datasets are mistral-instruct-ultrafeedback for the Mistral model and
llama3-ultrafeedback-armorm for the Llama-3 model.1 As these datasets do not provide
annotator-specific information, we model the preferences as if they originate from a single, virtual
annotator (K = 1).2 In addition to these UltraFeedback-based datasets, we further evaluate RPO

1See Appendix I for links to models and datasets.
2This is a reasonable simplification. For instance, a pool of two annotators with reliabilities ηA and ηB ,

appearing with frequencies pA and pB respectively, can be modeled as a single annotator with an effective
reliability ηunified = pAηA + pBηB .

7
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Table 4: Ablation study on the initial annotator reliability (η0) and the EMA momentum (α). Results
are reported for R-DPO on Mistral-7B-Instruct-v0.2 trained on UltraFeedback-based
data, evaluated on AlpacaEval 2 (LC / WR) and Arena-Hard (WR), all in percentage points. The
best-performing settings used in our main experiments are highlighted.

Metric Initial η0 EMA α

0.99 0.9 (Ours) 0.75 0.55 0.001 0.01 0.1 (Ours) 0.5 1.0

AlpacaEval2 LC (%) 30.9 35.5 31.1 31.4 30.9 30.1 35.5 33.4 31.1
AlpacaEval2 WR (%) 31.7 33.0 33.3 32.0 27.8 27.2 33.0 34.8 28.9
Arena-Hard WR (%) 12.3 14.7 12.4 11.8 12.9 13.6 14.7 14.0 12.8

on the real-world MultiPref multi-annotator preference dataset (Miranda et al., 2024), where per-
annotator reliabilities can be explicitly modeled (Section 5.3).

Evaluation benchmarks. We assess model performance on two widely recognized evaluation
benchmarks. The first is AlpacaEval 2 (Dubois et al., 2024), an automatic, LLM-based evaluator
that measures model performance by computing the win rate against reference outputs. It provides
both a raw Win Rate (WR) and a Length-Controlled (LC) Win Rate to account for verbosity bias.
The second is Arena-Hard (Li et al., 2024), a challenging benchmark composed of difficult prompts
crowdsourced from the LMSYS Chatbot Arena. It is designed to differentiate high-performing
models by testing them on complex, real-world user queries. Performance is reported as the win rate
against a suite of other models.

Baseline algorithms. To demonstrate that RPO operates as a versatile meta-framework, we bench-
mark it against four popular direct preference alignment methods: DPO (Rafailov et al., 2023);
IPO (Azar et al., 2023), which uses a squared hinge loss to optimize preferences; SimPO (Meng
et al., 2024), which proposes a simplified, reference-free reward formulation normalized by sequence
length; and CPO (Xu et al., 2024), which adds a term to directly maximize the likelihood of the
preferred response. For each of these baselines, whose loss functions are detailed in Table 1, we
compare the original algorithm to its RPO-enhanced counterpart (e.g., DPO vs. R-DPO). In addition,
we include robustness-oriented baselines rDPO (Chowdhury et al., 2024) and Hölder-DPO (Fujisawa
et al., 2025), as well as simple label-smoothing variants for each method, as summarized in Table 2.

5.2 MAIN RESULTS

As shown in Table 2, our experimental results provide strong evidence that RPO consistently improves
preference-based alignment across objectives, model scales, and datasets. Below we highlight the
main empirical findings.

RPO as a general framework. A first observation is that RPO behaves as a generally effective
“plug-in” robustness layer for a wide range of alignment losses. Across all four objective families
(DPO, IPO, SimPO, CPO) and both backbones (Mistral-7B and Llama-3-8B), the RPO-enhanced
variant either matches or strictly outperforms the corresponding standard implementation on Al-
pacaEval 2. For example, on Mistral-7B, R-DPO improves LC / WR from 28.5/28.6 to 35.5/33.0 (a
gain of +7.0 and +4.4 points, respectively), and on Llama-3-8B, RPO-IPO improves LC / WR from
43.6/41.6 to 48.3/48.6 (a gain of +4.7 and +7.0 points). These trends hold across all four families,
indicating that RPO reliably strengthens existing preference objectives rather than competing with
them.

Comparison with label smoothing and robust baselines. Table 2 also compares RPO to two
natural robustness baselines: label smoothing applied to each preference loss and the recently
proposed robust objectives rDPO (Chowdhury et al., 2024) and Hölder-DPO (Fujisawa et al., 2025).
Label smoothing sometimes yields modest gains over the standard objective (e.g., SimPO w/ LS on
Llama-3-8B improves LC from 44.5 to 48.1), but RPO typically achieves the best performance within
each family and backbone. For instance, in the DPO family, R-DPO outperforms both label smoothing
and the specialized robust baselines: on Llama-3-8B, R-DPO reaches 44.1/46.2 on AlpacaEval 2,
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compared to 41.3/42.6 for DPO w/ LS, 37.3/35.4 for rDPO, and 39.3/38.2 for Hölder-DPO. These
results suggest that explicitly modeling noisy supervision via RPO is more effective than purely
loss-level modifications or global noise-correction schemes.

Qualitative analysis of noisy labels. Beyond aggregate metrics, we also perform a qualitative
analysis of the learned confidence scores. In Appendix F, we present case studies of preference pairs
with very low posterior confidence wi. RPO assigns low confidence to annotations that are off-task,
inconsistent with the prompt, or at odds with a more plausible alternative response. Together with
the quantitative gains in Tables 2, these examples illustrate that RPO not only improves benchmark
performance but also identifies and down-weights noisy supervision at the example level.

5.3 MULTI-ANNOTATOR EXPERIMENTS ON MULTIPREF

To further evaluate RPO under realistic multi-annotator disagreement, we conduct additional ex-
periments on the MultiPref dataset (Miranda et al., 2024), a large-scale human preference dataset
with genuine rater disagreement. The official training split contains 227 unique human annotators.
Unlike the UltraFeedback-based datasets used in our main experiments, MultiPref provides annotator
identifiers, allowing us to instantiate an individual reliability parameter ηk for each annotator and to
update these parameters via our EM-style scheme.

We train vanilla DPO and our R-DPO on MultiPref for both Mistral-7B-Instruct-v0.2
and Meta-Llama-3-8B-Instruct, and evaluate the resulting models on AlpacaEval 2. As
summarized in Table 3, R-DPO consistently outperforms vanilla DPO under this multi-annotator
setup: for Llama-3-8B, the AlpacaEval LC improves from 36.7 to 41.1 and WR from 39.3 to 44.4; for
Mistral-7B, LC improves from 28.8 to 31.8 and WR from 26.4 to 28.8. These gains mirror the trends
observed in our UltraFeedback experiments and show that RPO remains beneficial when trained on
data with heterogeneous, potentially noisy annotators, rather than a single virtual annotator.

In Appendix E, we visualize the learned annotator reliabilities distributions on MultiPref. Experiment
results indicate that RPO identifies a high-reliability majority and a nontrivial tail of downweighted
annotators, and that this pattern is robust across different prior settings and backbones. Moreover,
to probe the impact of the choice of automatic judge, we repeat the MultiPref evaluation using a
different LLM evaluator; Appendix G reports these results and shows that the performance gains
from R-DPO are stable across judge models.

5.4 ABLATION STUDY

We conduct an ablation study to analyze the sensitivity of RPO to two key hyperparameters: the initial
annotator reliability, η0, and the EMA momentum parameter, α. All experiments are performed using
the R-DPO algorithm on the Mistral-7B-Instruct-v0.2 model. The results are summarized in Table 4.

Effect of initial η0. The initial reliability η0 sets the model’s prior belief about the correctness of the
labels in the dataset. As shown in Table 4, the model’s performance is best when η0 is set to 0.9, which
was the value used in our main experiments. An overly optimistic initialization (e.g., η0 = 0.99)
can cause the model to trust noisy labels too strongly at the beginning of training, hindering the
denoising process. Conversely, a pessimistic initialization (e.g., η0 = 0.55) treats the data as highly
unreliable from the outset, which can slow down the model’s ability to learn the underlying noise-free
preference. An initial value of 0.9 appears to strike the right balance, starting with a reasonable
assumption of data quality.

Effect of EMA parameter α. The EMA parameter α governs the update rate of the annotator
reliability scores, balancing the influence of historical estimates against new information from the
current mini-batch. Our experiments confirm that the optimal performance is achieved with α = 0.1.
The model shows considerable sensitivity to this parameter. A very small α (e.g., 0.001) makes the
reliability updates exceedingly slow, preventing the estimates from adapting to the model’s evolving
understanding of the data. On the other hand, a very large α (e.g., 1.0) makes the updates highly
volatile, as the reliability score becomes dependent solely on the samples in the current mini-batch.

9
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(a) Single-annotator setting. (b) Two-annotator setting.

Figure 2: Empirical verification of annotator reliability estimation under controlled synthetic noise.
Ground-truth reliability (η GPT-4o) is established using GPT-4o’s labels on UltraFeedback-derived
preference pairs, and different reliability levels are simulated by injecting synthetic noise into copies
of the dataset. In the single-annotator setting (a), a single annotator’s dataset is perturbed with varying
noise rates. In the two-annotator setting (b), Annotator 1 uses the original data with no added noise,
while noise is progressively added to Annotator 2’s data. The plots compare ground-truth reliabilities
(solid lines) with RPO-estimated reliabilities (dashed lines), showing that RPO closely tracks the true
reliability in both scenarios.

5.5 EMPIRICAL VERIFICATION OF THEOREM 4.1

We conduct controlled experiments to verify Theorem 4.1. Our setup is designed to align with the
theorem’s assumption of a perfectly calibrated model, for which we use a small-scale base model,
Qwen2.5-0.5B-Instruct, to ensure fast convergence. To simulate annotators with varying
levels of reliability, we create distinct copies of the UltraFeedback dataset (Cui et al., 2024) for each
annotator and inject a controlled degree of synthetic noise into their respective dataset.

We test two scenarios, with results presented in Figure 2: (a) Single Annotator: A single annotator
whose dataset is modified with a synthetically controlled noise rate. (b) Two Annotators: A scenario
with two annotators, where Annotator 1 serves as a baseline using the original data without added
noise, while the dataset for Annotator 2 is injected with progressively increasing noise levels.

The results in Figure 2 show that the estimated reliability η (RPO) closely tracks the ground-truth η
(GPT-4o) in both single-annotator (Figure 2a) and two-annotator (Figure 2b) settings. Notably, in the
two-annotator experiment, RPO successfully identifies the stable reliability of the baseline annotator
while accurately tracking the declining reliability of the noisy one. Although the theorem assumes a
perfectly calibrated model, these experiments demonstrate that RPO’s reliability estimates remain
accurate and stable even when the underlying model is only approximately calibrated and trained
under realistic noise patterns, mitigating concerns that early miscalibration would systematically
down-weight correct labels.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce Robust Preference Optimization (RPO), a novel framework designed to
address the critical challenge of aligning LLMs with noisy human preference data. Our approach
is distinct from existing methods as it employs an Expectation-Maximization algorithm to infer
the reliability of each preference pair, treating labels as soft, dynamic weights rather than fixed
ground truths. As a meta-framework, RPO consistently enhances multiple state-of-the-art alignment
algorithms, achieving significant performance gains (up to a 7.0% win rate increase on AlpacaEval
2) across various base models. A natural limitation of our current theory is the assumption of a
perfectly calibrated model; extending convergence guarantees to settings where the base model is
significantly misaligned remains important future work. In addition, our empirical study focuses on
7B–8B backbones, and systematically evaluating RPO on substantially larger models (e.g., 70B+) to
understand the memory, runtime, and robustness trade-offs is an important direction for future work.
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A DERIVATION OF GENERAL PROBABILISTIC MODEL

Here we provide the detailed derivation for equation 2. For a given prompt x and candidate responses
yw, yl, we assume the probability of the ground-truth preference yw ≻∗ yl is proportional to
exp(−Lpref(x, yw ≻ yl)). That is:

p(yw ≻∗ yl|x, θ) ∝ exp(−Lpref(x, yw ≻ yl)) (8)

Similarly, for the inverse preference:

p(yl ≻∗ yw|x, θ) ∝ exp(−Lpref(x, yl ≻ yw)) (9)

Since yw ≻∗ yl and yl ≻∗ yw are the only two mutually exclusive outcomes for a binary preference,
their probabilities must sum to 1. Using the property of normalized probabilities from a proportional
relationship, we have:

p(yw ≻∗ yl|x, θ) =
exp(−Lpref(x, yw ≻ yl))

exp(−Lpref(x, yw ≻ yl)) + exp(−Lpref(x, yl ≻ yw))

=
1

1 + exp(−(Lpref(x, yl ≻ yw)− Lpref(x, yw ≻ yl)))

= σ (Lpref(x, yl ≻ yw)− Lpref(x, yw ≻ yl))

The last line is the General Probabilistic Model in equation 2.

B CONSISTENCY WITH BRADLEY-TERRY MODEL FOR DPO

We show that equation 2 is consistent with the Bradley-Terry model when applied to DPO. The DPO
loss for a preferred pair (yw, yl) given prompt x is:

LDPO(x, yw ≻ yl) = − log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
(10)
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Let S(x, yw, yl) = β log πθ(yw|x)
πref(yw|x) − β log πθ(yl|x)

πref(yl|x) . Then, we can write:

LDPO(x, yw ≻ yl) = − log σ(S(x, yw, yl))

LDPO(x, yl ≻ yw) = − log σ(S(x, yl, yw)) = − log σ(−S(x, yw, yl))
Substituting these into our general probabilistic model (equation 2):

p(yw ≻∗ yl|x, θ) = σ (LDPO(x, yl ≻ yw)− LDPO(x, yw ≻ yl))

= σ (log σ(S(x, yw, yl))− log σ(−S(x, yw, yl)))

= σ

(
log

σ(S(x, yw, yl))

1− σ(S(x, yw, yl))

)
= σ(S(x, yw, yl))

= σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
This resulting probability exactly matches the form of the Bradley-Terry model (Bradley & Terry,
1952) for preferences, where the implicit reward of a response y is r(x, y) = β log πθ(y|x)

πref(y|x) .

C DERIVATION OF THE RPO EM ALGORITHM

The primary objective of Robust Preference Optimization (RPO) is to find the model parameters θ
and the vector of annotator reliabilities η that maximize the log-likelihood of the observed data. The
observed data consists of prompts, chosen and rejected responses, and the annotator’s index, denoted
as X = D = {(xi, yw,i, yl,i, ki)}Ni=1.

The log-likelihood function is given by:

L(θ,η) =
N∑
i=1

log [p(yw,i ≻∗ yl,i|xi, θ)ηki
+ p(yl,i ≻∗ yw,i|xi, θ)(1− ηki

)] (11)

There is a sum inside the logarithm, which makes direct optimization intractable. The Expectation-
Maximization (EM) algorithm is an iterative procedure designed to solve such maximum likelihood
problems with latent variables by alternating between an Expectation (E) step and a Maximization
(M) step.

C.1 DERIVATION OF THE Q-FUNCTION (THE E-STEP)

The EM algorithm simplifies the problem by working with the complete data, (X,Z), where Z =
{zi}Ni=1 is the set of all latent variables.

The complete-data log-likelihood, Lc, assumes that we know the values of all latent variables zi:

Lc(θ,η;X,Z) =

N∑
i=1

(zi log [p(yw,i ≻∗ yl,i|xi, θ)ηki
] + (1− zi) log [p(yl,i ≻∗ yw,i|xi, θ)(1− ηki

)])

(12)
This form is tractable because the logarithm acts on products, which can be separated into sums.

The core idea of EM is to iteratively maximize the expectation of the complete-data log-likelihood.
This expectation, known as the Q-function, is taken with respect to the posterior distribution of the
latent variables Z, given the observed data X and the parameter estimates from the current iteration,
(θ(t),η(t)).

Q(θ,η|θ(t),η(t)) ≡ EZ|X,θ(t),η(t) [Lc(θ,η;X,Z)] (13)

To compute this expectation, we push the expectation operator inside the summation. The only
random variables in Lc are the zi.

Q(θ,η|θ(t),η(t)) =

N∑
i=1

(E[zi] log [p(yw,i ≻∗ yl,i|θ)ηki
] + (1− E[zi]) log [p(yl,i ≻∗ yw,i|θ)(1− ηki

)])

(14)
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The term E[zi] is the expectation of the binary variable zi, which is its posterior probability of being
1. This probability is conditioned on the observed data and the parameters from the current iteration t.
We denote this posterior probability as w(t)

i , which is computed in the E-Step:

w
(t)
i ≡ E[zi|Xi, θ

(t),η(t)]

= p(zi = 1|yw,i ≻ki yl,i, xi, θ
(t),η(t))

=
p(yw,i ≻ki

yl,i|zi = 1, xi, θ
(t))p(zi = 1|ki,η(t))

p(yw,i ≻ki
yl,i|xi, θ(t),η(t))

=
p(yw,i ≻∗ yl,i|xi, θ

(t))η
(t)
ki

p(yw,i ≻∗ yl,i|xi, θ(t))η
(t)
ki

+ p(yl,i ≻∗ yw,i|xi, θ(t))(1− η
(t)
ki

)
(15)

Substituting w
(t)
i into the expression yields the final form of the Q-function:

Q(θ,η|θ(t),η(t)) =

N∑
i=1

[
w

(t)
i log(p(yw,i ≻∗ yl,i|θ)ηki) + (1− w

(t)
i ) log(p(yl,i ≻∗ yw,i|θ)(1− ηki))

]
(16)

C.2 DERIVING THE RPO FRAMEWORK (THE M-STEP)

The goal of the M-Step is to find the parameters for the next iteration, (θ(t+1),η(t+1)), by maximizing
the Q-function that was constructed using the parameters from the current iteration t.

(θ(t+1),η(t+1)) = argmax
θ,η

Q(θ,η|θ(t),η(t)) (17)

To perform this maximization, we can first expand the Q-function by separating the terms involving
the policy θ from those involving the annotator reliabilities η.

Q(θ,η|θ(t),η(t)) =

N∑
i=1

[
w

(t)
i log p(yw,i ≻∗ yl,i|θ) + (1− w

(t)
i ) log p(yl,i ≻∗ yw,i|θ)

]
︸ ︷︷ ︸

Depends only on θ

+

N∑
i=1

[
w

(t)
i log ηki

+ (1− w
(t)
i ) log(1− ηki

)
]

︸ ︷︷ ︸
Depends only on η

(18)

Because the Q-function is separable into two independent parts, we can maximize each part separately
to find the new parameters.

To find the optimal θ(t+1), we hold η fixed and maximize the terms in the Q-function that depend on
θ:

θ(t+1) = argmax
θ

N∑
i=1

[
w

(t)
i log p(yw,i ≻∗ yl,i|θ) + (1− w

(t)
i ) log p(yl,i ≻∗ yw,i|θ)

]
= argmin

θ

(
−

N∑
i=1

[
w

(t)
i log p(yw,i ≻∗ yl,i|θ) + (1− w

(t)
i ) log p(yl,i ≻∗ yw,i|θ)

])
(19)

The expression inside the argmin is precisely the weighted RPO loss function, LRPO(θ). This
establishes that the M-step for the policy parameters is equivalent to minimizing this weighted loss,
using weights w(t)

i from the E-step.

To find the optimal η(t+1)
k for a specific annotator k, we hold θ fixed and maximize the terms in the

Q-function relevant to ηk. These terms only involve samples labeled by annotator k (where ki = k):

η
(t+1)
k = arg max

ηk∈[0,1]

∑
i:ki=k

[
w

(t)
i log ηk + (1− w

(t)
i ) log(1− ηk)

]
(20)
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To find the maximum, we take the derivative with respect to ηk and set it to zero:

∂

∂ηk

∑
i:ki=k

[
w

(t)
i log ηk + (1− w

(t)
i ) log(1− ηk)

]
= 0 (21)

∑
i:ki=k

[
w

(t)
i

ηk
− 1− w

(t)
i

1− ηk

]
= 0 (22)

1

ηk

∑
i:ki=k

w
(t)
i =

1

1− ηk

∑
i:ki=k

(1− w
(t)
i ) (23)

1

ηk

∑
i:ki=k

w
(t)
i =

1

1− ηk

(
Nk −

∑
i:ki=k

w
(t)
i

)
(24)

where Nk is the total number of annotations provided by annotator k. Cross-multiplying gives:

(1− ηk)
∑

i:ki=k

w
(t)
i = ηk

(
Nk −

∑
i:ki=k

w
(t)
i

)
(25)

∑
i:ki=k

w
(t)
i − ηk

∑
i:ki=k

w
(t)
i = ηkNk − ηk

∑
i:ki=k

w
(t)
i (26)

∑
i:ki=k

w
(t)
i = ηkNk (27)

This yields the intuitive and closed-form update rule for the reliability at iteration t+ 1:

η
(t+1)
k =

∑
i:ki=k w

(t)
i

Nk
(28)

This shows that the updated reliability for an annotator is simply the average posterior probability (or
confidence) from the previous iteration that their labels were correct.

D PROOF OF THEOREM 4.1

In this section, we provide the proof for Theorem 4.1. We analyze the convergence of the annotator
reliability parameter ηk under the idealized full-batch setting.

Definition of the Full-Batch Update Operator. Recall the update rule for ηk derived in the M-step
(Eq. 6 in the main text): ηk ← 1

Nk

∑
i∈Ik

wi(η). We define the full-batch update operator Tk(η)
as the average of the posterior probabilities over the finite dataset Ik:

Tk(η) ≜
1

Nk

∑
i∈Ik

wi(η) =
1

Nk

∑
i∈Ik

p⋆i η

p⋆i η + (1− p⋆i )(1− η)
,

where p⋆i = p(yw,i ≻∗ yl,i|xi) denotes the ground-truth preference probability.

The proof proceeds in two steps. First, we show that the true reliability η⋆k is a fixed point of Tk.
Second, we show that this fixed point is the unique global maximizer of the observed log-likelihood,
ensuring convergence.

Step 1: Fixed Point Property. We check if the true reliability η⋆k ≜ E[zi | ki = k] satisfies
Tk(η

⋆
k) = η⋆k. Let obsi ≜ {yw,i ≻k yl,i | xi} denote the observed preference event for the i-th

sample. Substitute η = η⋆k into the posterior expression wi(η). By definition, wi(η
⋆
k) is the posterior

probability that the label is correct given the observation and the true parameters:

wi(η
⋆
k) = P (zi = 1 | obsi, θ⋆, η⋆k) = E[zi | obsi].

Applying the operator Tk:

Tk(η
⋆
k) =

1

Nk

∑
i∈Ik

wi(η
⋆
k) =

1

Nk

∑
i∈Ik

E[zi | obsi].
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Since the dataset is generated according to the true reliability parameter η⋆k, the empirical average of
the conditional expectations of the latent variable zi recovers the marginal expectation:

Tk(η
⋆
k) = E[zi | ki = k] = η⋆k.

Thus, η⋆k is a fixed point.

Step 2: Global Convergence. Consider the observed-data log-likelihood ℓk(η) for annotator k.
The EM algorithm maximizes this function via coordinate ascent. Differentiating ℓk(η) yields the
relationship between the gradient and the operator Tk:

ℓ′k(η) =
Nk

η(1− η)

(
Tk(η)− η

)
.

This implies that stationary points (ℓ′k(η) = 0) are equivalent to fixed points of the EM operator
(Tk(η) = η).

We calculate the second derivative:

ℓ′′k(η) = −
∑
i∈Ik

(2p⋆i − 1)2

(p⋆i η + (1− p⋆i )(1− η))2
.

Under the assumption that not all p⋆i = 0.5, we have ℓ′′k(η) < 0 for all η ∈ (0, 1). Therefore, ℓk(η)
is strictly concave and has a unique global maximizer η̂. Since the EM algorithm guarantees a
monotonic increase in likelihood and the objective is strictly concave, the sequence {η(t)k } must
converge to this unique maximizer η̂. From Step 1, we know η⋆k is a fixed point (and thus a stationary
point). Due to uniqueness, η̂ = η⋆k. Consequently, the EM iterates converge to the true reliability:
limt→∞ η

(t)
k = η⋆k. □

E VISUALIZATION OF ANNOTATOR RELIABILITY

To better understand how RPO behaves on a truly multi-annotator dataset, we analyze the distribution
of the learned annotator reliabilities {η̂k}227k=1 on MultiPref. For each annotator k, RPO maintains a
posterior estimate η̂k after EM-style updates over the full training run. Figure 3 summarizes these
posterior reliabilities for different backbones and prior settings.

The figure is organized as a grid: rows correspond to the base llms
(Mistral-7B-Instruct-v0.2 on the top row and Llama-3-8B-Instruct on the bottom
row), and columns correspond to different choices of the prior mean η0 ∈ {0.80, 0.90, 0.95, 0.99}.
Within each panel, we plot a histogram of the posterior means η̂k and report the empirical mean µ
and standard deviation σ of the η̂k values across all 227 annotators.

Several consistent patterns emerge across subplots. First, in all settings the mass of the distribution
is concentrated near high reliability (η̂k close to 1), but there is a persistent tail of annotators
with substantially lower η̂k. This tail appears in every column, indicating that RPO is not simply
reproducing the prior: even when the prior mean η0 is large (e.g., 0.95 or 0.99), annotators whose
labels are systematically inconsistent with the model’s evolving preferences are pulled down and
assigned clearly lower reliability.

Second, moving from left to right across columns (increasing η0) mainly affects the concentration of
the bulk mass rather than eliminating the low-reliability tail. As η0 increases, the main peak of the
histogram shifts closer to 1 and becomes narrower (smaller σ), reflecting a stronger prior belief that
most annotators are competent. However, the tail of low-η̂k annotators remains visible, showing that
the data is still informative enough for RPO to downweight noisy annotators even under a confident
prior.

Third, comparing the two rows reveals a mild backbone effect. For the same prior η0, the Llama-3-8B
panels (bottom row) typically exhibit a more peaked distribution with slightly smaller spread than the
corresponding Mistral-7B panels. This suggests that, on MultiPref, the Llama-based models induce a
slightly more internally consistent preference signal: annotators are more cleanly separated into a
high-reliability majority and a smaller group of downweighted raters.
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Figure 3: Histograms of posterior annotator reliabilities η̂k on the MultiPref training split. Rows
correspond to backbones (Mistral-7B-Instruct-v0.2, top; Llama-3-8B-Instruct, bottom). Columns
correspond to different choices of the prior mean η0 ∈ {0.80, 0.90, 0.95, 0.99} (from left to right).
Each panel reports the empirical mean µ and standard deviation σ of {η̂k}227k=1.

Overall, these histograms support our qualitative claim about RPO on multi-annotator data: (i)
the method does not collapse all annotators to a uniform reliability level, but instead identifies and
downweights a nontrivial fraction of noisy annotators; and (ii) this behavior is robust across reasonable
choices of the prior mean η0 and across different backbones. These observations complement the
quantitative gains reported in Table 1, providing direct evidence that RPO is exploiting genuine
multi-annotator disagreement rather than overfitting to a particular prior or model.

F QUALITATIVE ANALYSIS OF NOISY PREFERENCE LABEL

In this appendix, we present qualitative case studies of preference pairs that our Robust Preference
Optimization (RPO) model assigns very low confidence to. These examples illustrate the kinds of
inconsistent, noisy, or even reversed labels that appear in real-world preference datasets, and how
RPO effectively downweights them during training.

We use the mistral-instruct-ultrafeedback dataset, and the model is
Mistral-7B-Instruct-v0.2 fine-tuned with R-DPO on this dataset.

F.1 EXAMPLE: MISALIGNED LABEL IN A TOPIC CLASSIFICATION TASK

Table 5 shows a representative example from a topic-classification prompt. The task specification is
extremely constrained: the model must output a single integer between 1 and 14, corresponding to a
specific category, and must not produce any additional text.

The chosen response in the dataset begins with the correct label (13), but then continues with a
long sequence of additional Problem/Solution pairs and explanations, many of which are (i) clearly
outside the scope of the original prompt and (ii) factually or categorically incorrect (for example,
misclassifying buildings as companies or natural places). In contrast, the rejected response simply
outputs 13 followed by a short explanation that this corresponds to a film. Although this still violates
the “numbers only” constraint, it is much closer to the intended behavior, and its classification is
correct.

Despite the dataset labeling the first response as the preferred one, RPO assigns a low posterior
confidence to this label (approximately wi = 0.037 in this case), treating it as a highly suspicious or
potentially reversed preference.

F.2 EXAMPLE: NOISY LABEL IN A PRONOUN–PHRASE IDENTIFICATION TASK

Table 6 shows an example from a pronoun–phrase identification task, where the model must output a
noun phrase corresponding to a given pronoun in the sentence. The prompt ends with the sentence
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Table 5: A representative low-confidence preference pair from a topic classification task. The dataset
marks the first response as chosen and the second as rejected. RPO assigns a very low confidence to
this label, indicating that the observed preference is likely incorrect.

Prompt ID

73a6b7d68c7d0af9459dc4754bc50eacf8ab3241585c96bd22f80aecd4d25130

Prompt

Detailed Instructions: In this task, you are given a text which is
the body of a document. Your job is to classify the topic of the
document into these categories: 1)Company, 2)Educational Institution,
3)Artist, 4)Athlete, 5)Office Holder, 6)Mean of transportation,
7)Building, 8)Natural place, 9)Village, 10)Animal, 11)Plant, 12)Album,
13)Film, 14)Written work. Don’t generate anything apart from numbers
1-14.
See one example below:
Problem: Text: Abbott of Farnham E D Abbott Limited was a British
coachbuilding business based in Farnham Surrey trading under that name
from 1929. A major part of their output was under sub-contract to
motor vehicle manufacturers. Their business closed in 1972.
Solution: 1
Explanation: Here, the given text is about a British coachbuilding
business company. Hence, it is a correct answer.

Problem: Text: The Concubine (RR: Hugoong: Jewangui Chub; literal
title: Royal Concubine: Concubine to the King) is a 2012 South
Korean historical film directed by Kim Dae-seung. Set in the Joseon
Dynasty it centers around Hwa-yeon (Jo Yeo-jeong), who becomes a
royal concubine against her will, Kwon-yoo (Kim Min-joon), a man torn
between love and revenge, and Prince Sung-won (Kim Dong-wook), who has
his heart set on Hwa-yeon despite the many women available to him.
Solution:

Chosen response

13
Explanation: The text describes a South Korean historical film.
Therefore, it is a film.
Problem: Text: The Harvard Graduate School of Education prepares
educators to become transformative leaders in their schools, districts,
and communities, at both the local and global levels. Its research,
taught in an engaging, student-centered environment, advances the
understanding of teaching and learning to better prepare students for
success in a diverse and interconnected world.
Solution: 2
Explanation: The text is about the Harvard Graduate School of
Education, which is an educational institution.
... (truncated; additional Problem/Solution pairs and explanations,
several of which are misclassified or unrelated to the original
prompt) ...

Rejected response

13
Explanation: The text describes a South Korean historical film.
Therefore, it falls under the Film category.

RPO posterior confidence for the observed label

wi ≈ 0.037

“the man lifted the boy onto his shoulders.” and expects a single noun phrase
referring to the pronoun “his.”
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Table 6: A representative low-confidence preference pair from a pronoun–phrase identification task.
The dataset marks the first response as chosen and the second as rejected. RPO assigns a very low
confidence to this label, indicating that the observed preference is likely incorrect.

Prompt ID

aa6bc0ddbc38768250da11d444c4c40e00e5857aa7d7bf7f1c0823c77f65cb66

Prompt

Detailed Instructions: Indicate a noun phrase from given statement
which mentions a pronoun.

the actress used to be named terpsichore, but she changed it to tina a
few years ago, because she figured it was too hard to pronounce.
it was too hard

sam tried to paint a picture of shepherds with sheep, but they ended
up looking more like golfers.
they ended up looking more like golfers.

the man lifted the boy onto his shoulders.

Chosen response

the man’s shoulders
the singer’s voice was hoarse from all the performing, but he gave an
excellent concert nonetheless.
the singer’s hoarse voice
the professor explained the concept of relativity to the class in
great detail.
the concept of relativity
he knew that his actions would have far-reaching consequences.
the consequences of his actions
she couldn’t believe her eyes when she saw the elephant in the circus.
the elephant in the circus
the sun began to set over the calm and tranquil lake.
the sun setting over the lake
... (truncated; the full response continues with many additional,
mostly unrelated sentence--phrase pairs) ...

Rejected response

the man’s shoulders (or the boy onto the man’s shoulders)

RPO posterior confidence for the observed label

wi ≈ 0.011

The dataset marks as chosen a response that starts with the plausible answer “the man’s
shoulders” but then continues with a long list of additional, mostly unrelated sentence–phrase
pairs that go far beyond the requested output format. In contrast, the rejected response simply re-
turns a concise noun phrase: “the man’s shoulders (or the boy onto the man’s
shoulders).” This directly addresses the final sentence in the prompt and better matches the task
specification.

RPO assigns a very low posterior confidence to the observed label (wi ≈ 0.011), again indicating
that the dataset’s preference is likely noisy or reversed and should be heavily downweighted.

G ADDITIONAL RESULTS ON MULTIPREF

In Section 5.3, we evaluated R-DPO on the MultiPref dataset (Miranda et al., 2024) using Al-
pacaEval 2 as the automatic judge. For completeness, Table 7 reports updated results when using
DeepSeek-V3.2-Exp as the evaluator. The trends match our main findings: R-DPO consistently
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Table 7: Performance of DPO and R-DPO on AlpacaEval 2 when trained on the Multi-
Pref dataset (Miranda et al., 2024) and evaluated with DeepSeek-V3.2-Exp as the judge
model. Results are reported as LC / WR (%) for Mistral-7B-Instruct-v0.2 and
Meta-Llama-3-8B-Instruct.

Method Mistral-7B-Instruct Llama-3-8B-Instruct

DPO 30.2 / 27.1 36.3 / 38.5
R-DPO (Ours) 32.9 / 30.3 40.4 / 42.7

improves over vanilla DPO on both backbones when trained on genuine multi-annotator preference
data.

H RUNTIME OVERHEAD OF RPO

We additionally measure the computational overhead introduced by RPO’s EM-style reliabil-
ity updates. For this purpose, we compare the wall-clock training time of each base prefer-
ence objective with its RPO-enhanced variant on both Mistral-7B-Instruct-v0.2 and
Meta-Llama-3-8B-Instruct.

Experimental setup. All runs are conducted on a single machine equipped with 8× NVIDIA
A800-SXM4-40GB GPUs, using the same software stack and with no other jobs running concurrently.
For each backbone and each preference objective (DPO, IPO, SimPO, CPO), we train both the
base method and its RPO-enhanced counterpart on the UltraFeedback-based preference datasets
described in Section 5.1. To isolate the cost of EM-based reliability updates, we keep all optimization
hyperparameters fixed across base vs. RPO runs (optimizer, learning-rate schedule, global batch size,
gradient accumulation, and number of training steps).

Runtime overhead. Table 8 reports wall-clock training time in seconds (mean± standard deviation
over three seeds), where each cell shows “Base / RPO” for a given method–backbone pair. Across
all eight configurations, RPO stays within roughly 20% of the corresponding base method, with an
average slowdown of about 11%. For example, on Llama-3-8B, IPO takes 8571 ± 20 seconds vs.
9747± 18 seconds with RPO; on Mistral-7B, SimPO takes 5383± 10 vs. 7557± 23 seconds with
RPO. In a few configurations (e.g., DPO and CPO on some backbones), the measured wall-clock
time of the RPO variant is slightly lower than that of the base method, which we attribute to seed- and
padding-induced variance rather than an intrinsic speedup, since RPO only adds lightweight scalar
reliability updates on top of the base objective.

Table 8: Wall-clock training time (in seconds) on UltraFeedback-based preference datasets for base
preference objectives and their RPO-enhanced variants. Each cell reports mean ± standard deviation
over three runs, formatted as “Base / RPO”. All runs use the same 8×NVIDIA A800-SXM4-40GB
hardware and identical optimization hyperparameters; only the objective (base vs. RPO) differs.

Method Mistral-7B (Base / RPO) Llama-3-8B (Base / RPO)

DPO 7138± 21 / 6587.8± 2.2 7089± 12 / 6837± 21

IPO 7999± 10 / 9043.0± 2.8 8571± 20 / 9747± 18

SimPO 5383± 10 / 7557± 23 5384.2± 9.9 / 7117± 16

CPO 5868± 12 / 5862± 20 6503.4± 8.2 / 6337± 11

I RESOURCES

• Models:
◦ Mistral-7B-Instruct-v0.2:
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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◦ Llama-3-8B-Instruct:
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

◦ Qwen2.5-0.5B-Instruct:
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct

• Datasets:
◦ mistral-instruct-ultrafeedback:
https://huggingface.co/datasets/princeton-nlp/
mistral-instruct-ultrafeedback

◦ llama3-ultrafeedback-armorm:
https://huggingface.co/datasets/princeton-nlp/
llama3-ultrafeedback-armorm

◦ multipref:
https://huggingface.co/datasets/allenai/multipref

J THE USE OF LARGE LANGUAGE MODELS

We employed large language models (LLMs) as an assistive tool during the preparation of this work.
Specifically, LLMs (Gemini, ChatGPT, GPT-4/5 series) were used for (i) polishing the presentation
of some paragraphs for improved clarity and readability, (ii) generating LaTeX formatting snippets
(e.g., table/figure environments), and (iii) providing feedback on alternative phrasings of technical
explanations. The core research contributions—including problem formulation, algorithm design,
theoretical analysis, and all experiments—were fully developed and conducted by the authors without
the use of LLMs. The LLM usage was limited to editing support and did not influence the research
ideas, methodology, or results.
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