

000 001 002 003 004 005 ROBUST PREFERENCE OPTIMIZATION: A GENERAL 006 FRAMEWORK FOR ROBUST LLM ALIGNMENT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

ABSTRACT

033 Standard human preference-based alignment methods, such as Reinforcement
034 Learning from Human Feedback (RLHF), are a cornerstone technology for aligning
035 Large Language Models (LLMs) with human values. However, these methods
036 are all underpinned by a **strong assumption that the collected preference data is**
037 **clean and that all observed labels are equally reliable.** In reality, **large-scale preference**
038 **datasets contain substantial label noise due to annotator errors, inconsistent**
039 **instructions, varying expertise, and even adversarial or low-effort feedback.** This
040 creates a discrepancy between the recorded data and the ground-truth preferences,
041 which can misguide the model and degrade its performance. To address this chal-
042 lenge, we introduce **Robust Preference Optimization (RPO).** RPO employs an
043 Expectation-Maximization algorithm to infer the posterior probability of each
044 label's correctness, which is used to adaptively re-weigh each data point in the
045 training loss to mitigate noise. We further generalize this approach by establish-
046 ing a theoretical link between arbitrary preference losses and their corresponding
047 probabilistic models. This generalization enables the systematic transformation
048 of existing alignment algorithms into their robust counterparts, elevating RPO
049 from a specific algorithm to a general framework for robust preference alignment.
050 Theoretically, we prove that under the condition of a perfectly calibrated model,
051 RPO is guaranteed to converge to the true noise level of the dataset. Our ex-
052 periments demonstrate RPO's effectiveness as a general framework, consistently
053 enhancing four state-of-the-art alignment algorithms (DPO, IPO, SimPO, and
CPO). When applied to Mistral and Llama 3 models, the RPO-enhanced methods
improve AlpacaEval 2 win rates by up to 7.0 percentage points over their respective
baselines.

034 035 1 INTRODUCTION 036 037

038 Aligning Large Language Models (LLMs) with human values is a critical prerequisite for developing
039 safe and reliable AI systems. Reinforcement Learning from Human Feedback (RLHF) has emerged
040 as the dominant paradigm for this task (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al.,
041 2022). To mitigate the complexity and instability of the traditional RLHF pipeline, simpler and
042 more direct methods such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) have been
043 developed, which reframe alignment as a classification-like problem.

044 However, these alignment methods implicitly assume that preference datasets provide a clean and
045 reliable approximation of a single ground-truth preference signal. In practice, this assumption is
046 often violated. Large-scale preference datasets are typically aggregated from multiple crowdworkers
047 or teacher models, and are therefore subject to substantial label noise arising from inattention,
048 misunderstanding, or systematic bias (Frénay & Verleysen, 2013; Gao et al., 2024). Empirical
049 analyses suggest that a significant fraction (often between 20% and 40%) of preference pairs in
050 modern alignment datasets may be corrupted or inconsistent (Gao et al., 2024). Classic work on
051 learning with noisy labels shows that standard loss functions can overfit such corrupted supervision
052 and suffer severe degradation in generalization performance (Natarajan et al., 2013; Frénay &
053 Verleysen, 2013). In the context of LLM alignment, Gao et al. (2024) further demonstrate that even a
10 percentage point increase in the label-noise rate can lead to drops of tens of percentage points in
downstream win rates, highlighting the practical importance of robustness to noisy preference data.

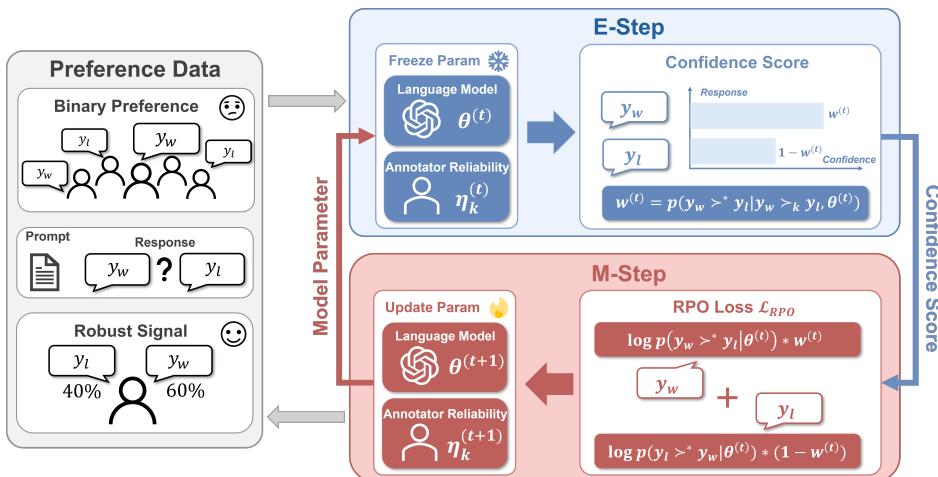


Figure 1: Overview of the Robust Preference Optimization (RPO) framework. Starting from noisy pairwise feedback, RPO uses an Expectation–Maximization (EM) procedure to jointly refine label confidences and the policy. In each iteration, the E-step estimates a confidence score for every observed preference by inferring the posterior probability that the label is correct under the current model and annotator reliabilities. The M-step then uses these scores as adaptive weights to update both the LLM policy and the annotator reliability parameters, progressively down-weighting likely corrupted labels and emphasizing reliable supervision.

To address this challenge, we propose Robust Preference Optimization (RPO). Instead of assuming that every observed label is a fixed ground truth, our approach aims to learn a preference model that remains accurate and stable even when the training data contains substantial noise. The core innovation of RPO is its departure from the hard labels used in traditional RLHF. Rather than committing to binary supervision, we treat the correctness of each observed preference as a latent variable and compute soft confidence weights over labels, so that highly reliable feedback contributes more strongly while suspicious pairs are down-weighted. Building on Expectation-Maximization-style approaches to learning from unreliable annotators in crowdsourcing (Dawid & Skene, 1979; Chen et al., 2013), RPO employs an Expectation-Maximization (EM) framework that simultaneously models annotator reliability while optimizing the LLM. In the E-step, it infers the posterior probability that each annotated label is correct, effectively estimating annotator reliability. In the M-step, it uses these probabilities as adaptive weights to update the LLM, thereby learning from a dynamically re-weighted preference signal.

Our experiments validate RPO as an effective general framework. We show that applying RPO consistently enhances four state-of-the-art alignment algorithms (DPO, IPO, SimPO, and CPO) across two different base models (Mistral-7B and Llama-3-8B) on the AlpacaEval 2 benchmark (Table 2). In our main results, RPO-enhanced methods achieve substantial win-rate gains on AlpacaEval 2, with improvements of up to 7.0 percentage points in LC/WR over their standard counterparts. Furthermore, we theoretically prove that RPO can recover the true reliability of annotators (Theorem 4.1) and empirically verify this guarantee in controlled experiments (Section 5.5).

In summary, our contributions are as follows:

- We propose Robust Preference Optimization (RPO), a principled EM-based algorithm that treats the correctness of each preference label as a latent variable, jointly infers per-label (and per-annotator) reliabilities, and uses them as adaptive weights in the training loss, yielding LLM alignment that is substantially more robust to noisy and inconsistent feedback.
- We theoretically establish a generalized RPO framework by using the Gibbs distribution to connect arbitrary preference loss functions to underlying probabilistic models. This lifts RPO from a single algorithm to a general framework, enabling standard methods such as DPO, IPO, SimPO, and CPO to be systematically transformed into their robust counterparts with minimal modification.

108

- We conduct extensive experiments demonstrating the practical effectiveness and versatility of
109 RPO. Across four alignment algorithms, two base models (Mistral-7B and Llama-3-8B), and
110 AlpacaEval 2, RPO delivers consistent win-rate improvements of up to 7.0 percentage points,
111 and further shows clear gains on a real multi-annotator dataset (MultiPref), along with qualitative
112 and visual analyses of how it down-weights low-confidence, noisy labels.

113

114

2 RELATED WORK

115

116

LLM alignment with hard preference labels. The standard paradigm for aligning Large Language
117 models (LLMs) with human values is Reinforcement Learning from Human Feedback (RLHF), which
118 involves training a reward model and then fine-tuning the policy against it (Christiano et al., 2017;
119 Ouyang et al., 2022). To mitigate the complexity and instability of this multi-stage process, a family of
120 simpler, direct alignment algorithms has emerged (Rafailov et al., 2023; Azar et al., 2023; Meng et al.,
121 2024; Hong et al., 2024). These methods bypass the explicit reward modeling stage by optimizing a
122 direct classification-style loss on the preference data. However, a critical limitation shared by these
123 methods is their reliance on hard preference labels. This approach models human feedback as a
124 definitive, binary choice, treating every label with equal and absolute confidence. Consequently,
125 it is highly vulnerable to the significant label noise present in real-world datasets, as standard loss
126 functions can lead models to overfit to corrupted labels (Natarajan et al., 2013; Zhang & Sabuncu,
127 2018; Frénay & Verleysen, 2013). A simple annotation error, such as an accidental misclick, is
128 given the same weight as a deliberate, high-quality judgment. This inability to distinguish between
129 reliable feedback and noise means that the model’s performance degrades significantly as the error
130 rate increases (Frénay & Verleysen, 2013; Gao et al., 2024). In contrast, soft-label approaches that
131 represent preferences probabilistically can better accommodate uncertainty in feedback by assigning
132 confidence scores or weights to individual labels (Müller et al., 2019; Song et al., 2024). By allowing
133 the learning algorithm to rely more on high-quality signals while down-weighting likely noise,
134 such approaches provide a natural path toward robust preference alignment. This is precisely the
135 perspective adopted by our RPO framework, which replaces hard labels with EM-estimated soft
136 confidences.

137

Learning from noisy feedback. The vulnerability to label noise situates preference alignment
138 within the classic machine learning problem of Learning with Noisy Labels (LNL) (Natarajan et al.,
139 2013; Frénay & Verleysen, 2013). Foundational work in this area, such as the Dawid–Skene model
140 (Dawid & Skene, 1979), uses an EM algorithm to simultaneously infer true latent labels while
141 estimating annotator reliability. This principle was later extended to pairwise comparisons in the
142 Crowd-BT model (Chen et al., 2013), which jointly estimates item scores and annotator-specific
143 reliability parameters in crowdsourced ranking tasks. In modern LLM alignment, several methods
144 have been proposed to improve robustness to noisy preference data. These can be broadly divided into
145 loss-centric approaches and data-centric filtering strategies. In the first category, rDPO (Chowdhury
146 et al., 2024) constructs an unbiased estimator of the true loss but requires the global noise rate to
147 be known a priori. Hölder-DPO (Fujisawa et al., 2025) introduces a loss with a “redescending”
148 property, which inherently nullifies the influence of extreme outliers without needing a known noise
149 rate. In the second category, Selective DPO (Gao et al., 2025) proposes filtering examples based on
150 their difficulty relative to the model’s capacity—a concept orthogonal to label correctness—using
151 validation loss as a proxy. Our proposed RPO framework is complementary to these methods. Rather
152 than only modifying the loss shape or discarding high-loss points, RPO explicitly models the data-
153 generating process by treating annotator reliability and label correctness as latent variables to be
154 inferred. This allows RPO to assign fine-grained, example-specific weights based on a posterior
155 confidence, providing a principled way to separate signal from noise.

156

3 METHODOLOGY

157

158

This section details our proposed RPO algorithm. We first review the standard DPO framework in
159 Section 3.1. In Section 3.2, we introduce a latent-variable model that explicitly distinguishes clean
160 and corrupted preference labels. Section 3.3 then derives the corresponding EM-based update rules
161 for RPO, and the final subsection presents a practical mini-batch implementation.

162 Table 1: Formulations of the preference loss ($\mathcal{L}_{\text{pref}}$) for prominent alignment algorithms.
163

164 Method	165 Preference Loss $\mathcal{L}_{\text{pref}}(x, y_w \succ y_l)$
166 DPO (Rafailov et al., 2023)	167 $-\log \sigma \left(\beta \log \frac{\pi_\theta(y_w x)}{\pi_{\text{ref}}(y_w x)} - \beta \log \frac{\pi_\theta(y_l x)}{\pi_{\text{ref}}(y_l x)} \right)$
168 IPO (Azar et al., 2023)	169 $\left(\log \frac{\pi_\theta(y_w x)}{\pi_{\text{ref}}(y_w x)} - \log \frac{\pi_\theta(y_l x)}{\pi_{\text{ref}}(y_l x)} - \frac{1}{2\beta} \right)^2$
170 SimPO (Meng et al., 2024)	171 $-\log \sigma \left(\frac{\beta}{ y_w } \log \pi_\theta(y_w x) - \frac{\beta}{ y_l } \log \pi_\theta(y_l x) - \gamma \right)$
172 CPO (Xu et al., 2024)	173 $-\log \sigma \left(\beta \log \pi_\theta(y_w x) - \beta \log \pi_\theta(y_l x) \right) - \log \pi_\theta(y_w x)$

174 3.1 PRELIMINARIES: DIRECT PREFERENCE OPTIMIZATION
175

176 The goal of preference alignment is to fine-tune a language model policy, π_θ , using a dataset of
177 preferences $\mathcal{D} = \{(x, y_w, y_l)_i\}_{i=1}^N$, where response y_w is preferred over y_l for a given prompt x .
178 Direct Preference Optimization (DPO) (Rafailov et al., 2023) offers a simple and effective method
179 for this, bypassing the complex multi-stage pipeline of traditional RLHF (Christiano et al., 2017;
180 Ouyang et al., 2022). DPO directly optimizes the policy by minimizing a simple classification loss:

$$181 \mathcal{L}_{\text{DPO}}(\pi_\theta, \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right], \quad (1)$$

184 where $\sigma(\cdot)$ is the sigmoid function, π_{ref} is a fixed reference policy and β is a scaling hyperparameter.
185

186 3.2 RPO FRAMEWORK: CORE ASSUMPTIONS
187

188 A critical limitation of DPO is its implicit assumption that all observed preferences in \mathcal{D} are correct.
189 In practice, this data is often noisy. To address this, we propose Robust Preference Optimization
190 (RPO), which is built upon two core assumptions that reframe the problem.
191

192 **Assumption 1: Latent noise-free preference.** We assume that for each training example
193 $(x_i, y_{w,i}, y_{l,i})$ there exists an underlying noise-free preference, denoted $y_{w,i} \succ^* y_{l,i}$, which rep-
194 presents the label we would obtain in the absence of annotation errors. The observed preference
195 $y_{w,i} \succ_{k_i} y_{l,i}$ (provided by annotator k_i) is treated as a potentially corrupted observation of this
196 ground truth. To model this, we introduce a binary latent variable $z_i \in \{0, 1\}$ for each data point,
197 where $z_i = 1$ if the observed label matches the latent noise-free preference and $z_i = 0$ otherwise. The
198 reliability of annotator k is then parameterized by $\eta_k \triangleq p(z_i = 1 | k_i = k)$. Here $k_i \in \{1, \dots, K\}$
199 denotes the index of the annotator who provided the i -th label, and K is the total number of annotators
200 in the dataset.
201

202 **Assumption 2: A general probabilistic model for preferences.** Building on this latent variable
203 model, we must also define the probability of the **noise-free** preference itself, $p(y_w \succ^* y_l | x, \theta)$. To
204 accommodate various preference losses beyond DPO (e.g., IPO (Azar et al., 2023)), our framework
205 is designed to work with any preference loss function, $\mathcal{L}_{\text{pref}}$. Table 1 provides several examples of
206 such loss functions used in prominent alignment algorithms.
207

208 To connect these diverse loss functions to a unified probabilistic interpretation, we draw inspiration
209 from the Boltzmann distribution (Luce, 1959). We assume that for any preference loss function $\mathcal{L}_{\text{pref}}$,
210 the probability of a preference is proportional to the exponentiated negative loss $\exp(-\mathcal{L}_{\text{pref}}(x, y_w \succ
211 y_l))$. This yields a general definition for the **noise-free** preference probability:
212

$$212 p(y_w \succ^* y_l | x, \theta) = \sigma(\mathcal{L}_{\text{pref}}(x, y_l \succ y_w; \theta) - \mathcal{L}_{\text{pref}}(x, y_w \succ y_l; \theta)), \quad (2)$$

213 where $\sigma(\cdot)$ is the sigmoid function. This formulation converts any preference loss into a well-
214 defined probability distribution. For instance, with the standard DPO loss, this equation recovers the
215 Bradley-Terry model (Bradley & Terry, 1952) (see Appendices A and B for derivations).

216

Algorithm 1: Robust Preference Optimization (RPO)

217

Input: Dataset $\mathcal{D} = \{(x_i, y_{w,i}, y_{l,i}, k_i)\}_{i=1}^N$; Base policy π_θ , reference policy π_{ref} ; Preference loss $\mathcal{L}_{\text{pref}}$; Hyperparameters: learning rate λ , epochs E , EMA momentum α , initial annotator reliabilities $\eta_k \in [0.5, 1]$ for all $k \in \{1, \dots, K\}$

218

```

1 for epoch = 1 to E do
2   for batch  $\mathcal{B} \subset \mathcal{D}$  do
3     For each sample  $i \in \mathcal{B}$ , compute  $w_i$  using current  $\theta$  and  $\eta_{k_i}$  via equation 4;
4     Compute the weighted loss  $\mathcal{L}_{\text{RPO}}(\theta)$  for the batch via equation 5;
5     Update parameters  $\theta$  using an optimizer (e.g., AdamW (Loshchilov & Hutter, 2019));
6     for each annotator  $k$  present in the batch do
7       | Update  $\eta_k$  via equation 7;
8     end
9   end
10 end

```

221

222

223

224

225

226

227

228

229

230

231

232

3.3 THE RPO ALGORITHM VIA EXPECTATION-MAXIMIZATION

233

Based on these core assumptions, we aim to find the parameters θ and η that maximize the marginal log-likelihood of the observed data. The probability of a single observed preference is obtained by marginalizing over the latent variable z_i :

234

235

236

237

238

239

240

Directly maximizing $\sum_i \log p(y_{w,i} \succ_{k_i} y_{l,i} | x_i, \theta, \eta)$ is intractable due to the sum inside the logarithm. We therefore employ the EM algorithm (see details in Appendix C), which iterates between two steps. In this iterative process, the superscript (t) will denote the values of parameters at iteration t .

241

242

243

244

E-Step: Inferring label correctness. In the E-step, given the current parameters $\theta^{(t)}$ and $\eta^{(t)}$, we compute the posterior probability w_i that the i -th observed label is correct. This value w_i acts as a “soft label” or the model’s confidence in the data point.

245

246

247

248

249

250

$$w_i^{(t)} \leftarrow \frac{p(y_{w,i} \succ^* y_{l,i} | x_i, \theta^{(t)}) \eta_{k_i}^{(t)}}{p(y_{w,i} \succ^* y_{l,i} | x_i, \theta^{(t)}) \eta_{k_i}^{(t)} + p(y_{l,i} \succ^* y_{w,i} | x_i, \theta^{(t)}) (1 - \eta_{k_i}^{(t)})}. \quad (4)$$

251

252

where $p(y_{w,i} \succ^* y_{l,i} | x_i, \theta^{(t)})$ and $p(y_{l,i} \succ^* y_{w,i} | x_i, \theta^{(t)})$ can be computed according to equation 2.

253

254

255

256

M-Step: weighted parameter update. In the M-step, we update the policy parameters θ and reliabilities η using the confidences $w_i^{(t)}$ computed in the E-step. This step conveniently separates into two independent updates.

257

258

259

First, the policy is updated by minimizing a weighted loss function. As established in Assumption 2, our probabilistic model for $p(y_w \succ^* y_l)$ allows RPO to work with any preference loss $\mathcal{L}_{\text{pref}}$, making it a versatile meta-framework. The general RPO loss is:

260

261

262

263

$$\mathcal{L}_{\text{RPO}}(\theta) = - \sum_{i=1}^N \left[w_i^{(t)} \log p(y_{w,i} \succ^* y_{l,i} | x_i, \theta) + (1 - w_i^{(t)}) \log p(y_{l,i} \succ^* y_{w,i} | x_i, \theta) \right]. \quad (5)$$

264

265

Second, the reliability η_k for each annotator is updated to the average confidence of all labels they provided. This has a simple and efficient closed-form solution:

266

267

268

269

$$\eta_k^{(t+1)} = \frac{\sum_{i \in \mathcal{I}_k} w_i^{(t)}}{N_k}. \quad (6)$$

Here we define the index set of labeled pairs as $\mathcal{I}_k = \{i : k_i = k\}$, and the number of labels as N_k .

270 3.4 PRACTICAL IMPLEMENTATION WITH MINI-BATCH TRAINING
271

272 While the exact M-step updates are clear, performing a full iteration over the entire dataset to re-
273 calculate the annotator reliabilities η after each policy update step can be computationally expensive.
274 To balance computational efficiency and performance, we introduce a more practical online update
275 for η_k using an Exponential Moving Average (EMA). Instead of a hard assignment, we perform a
276 soft update based on the statistics from the current mini-batch \mathcal{B} :

$$277 \quad 278 \quad \eta_k \leftarrow (1 - \alpha)\eta_k + \alpha \cdot \frac{\sum_{i \in \mathcal{B} \cap \mathcal{I}_k} w_i}{N_{k, \mathcal{B}}}. \quad (7)$$

280 Here, $N_{k, \mathcal{B}}$ is the number of examples from annotator k in the current mini-batch, and $\alpha \in (0, 1]$ is a
281 momentum hyperparameter. The complete training procedure for RPO is summarized in Algorithm 1:
282

283 4 THEORETICAL ANALYSIS OF RPO
284

285 The robustness of RPO stems from its adaptive weighting mechanism. This section first provides
286 an intuitive analysis of these training dynamics and then formalizes this intuition with theoretical
287 guarantees, demonstrating that the RPO framework can recover the true reliability of annotators.

288 At the start of training, when the language model is not yet well-optimized, its predictions are uncer-
289 tain, and the probabilities $p(y_w \succ^* y_l | x, \theta)$ are close to 0.5. The confidence score w_i approximates
290 the annotator's reliability, η_{k_i} . The loss then acts as a form of label smoothing, preventing the
291 model from being severely misled by incorrect labels early on. As the policy improves, its behavior
292 adapts. For a high-quality label, the model predicts a high probability for the winning response,
293 and w_i approaches 1, causing the loss to function like a standard preference optimization objective.
294 Conversely, w_i approaches 0 for a noisy label. The loss is then dominated by the $(1 - w_i)$ term,
295 which flips the optimization direction toward the true preference.

296 We now formalize the intuition that RPO can recover the true reliability of annotators. We provide
297 this analysis under an idealized setting: full-batch training where the M-step for the policy parameters
298 θ is assumed to have converged perfectly. While our practical implementation in Algorithm 1 uses
299 mini-batch gradient updates (a form of Generalized EM), this idealized analysis provides a strong
300 theoretical justification for our framework.

301 Consider the dataset level update rule in equation 6, defined as an operator $T_k(\eta)$. The following
302 theorem establishes that iterating this operator guarantees convergence to the true annotator reliability.

303 **Theorem 4.1** (Identification and convergence of RPO). *Let θ^* be a perfectly calibrated parameter
304 such that the model distribution matches the ground-truth preference distribution. Assume that not all
305 $p_i^* = p(y_{w,i} \succ^* y_{l,i} | x_i)$ equal $\frac{1}{2}$ for $i \in \mathcal{I}_k$. Consider the sequence of reliability estimates $\{\eta_k^{(t)}\}_{t \geq 0}$
306 generated by the update rule $\eta_k^{(t+1)} = T_k(\eta_k^{(t)})$. Then, for any initialization $\eta_k^{(0)} \in (0, 1)$, the iterates
307 converge to the true reliability $\eta_k^* \triangleq \mathbb{E}[z_i | k_i = k]$:*

$$309 \quad 310 \quad \lim_{t \rightarrow \infty} \eta_k^{(t)} = \eta_k^*.$$

311 The proof is provided in Appendix D. In section 5.5, we empirically corroborate that the mini-batch
312 procedure closely tracks this theoretical behavior.
313

314 **Practical implications and limitations.** The assumption of a perfectly calibrated model
315 in Theorem 4.1 is intentionally idealized: in practice, we apply RPO to base models that
316 are not exactly calibrated to the ground-truth preference distribution. In our experiments,
317 we always start from strong instruction-tuned LLMs (Mistral-7B-Instruct-v0.2 and
318 Meta-Llama-3-8B-Instruct), which already display good zero-shot preference behavior.
319 Empirically, we do not observe the failure mode suggested by an extremely misaligned initialization:
320 across the broad range of hyperparameters explored in Section 5.4, the learned η_k 's remain stable
321 and the downstream performance consistently improves over the corresponding base methods. Fur-
322 thermore, the controlled experiments in Section 5.5, where we inject substantial synthetic noise into
323 the data, show that RPO's estimated reliabilities closely track the ground-truth values, suggesting
robustness to imperfect calibration in practice. If the base LLM were initialized in a highly misaligned

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823<br

378 Table 4: Ablation study on the initial annotator reliability (η_0) and the EMA momentum (α). Results
 379 are reported for R-DPO on **Mistral-7B-Instruct-v0.2** trained on **UltraFeedback-based**
 380 **data**, evaluated on **AlpacaEval 2 (LC / WR)** and **Arena-Hard (WR)**, all in percentage points. The
 381 best-performing settings used in our main experiments are highlighted.

Metric	Initial η_0				EMA α				
	0.99	0.9 (Ours)	0.75	0.55	0.001	0.01	0.1 (Ours)	0.5	1.0
AlpacaEval2 LC (%)	30.9	35.5	31.1	31.4	30.9	30.1	35.5	33.4	31.1
AlpacaEval2 WR (%)	31.7	33.0	33.3	32.0	27.8	27.2	33.0	34.8	28.9
Arena-Hard WR (%)	12.3	14.7	12.4	11.8	12.9	13.6	14.7	14.0	12.8

389 on the real-world MultiPref multi-annotator preference dataset (Miranda et al., 2024), where per-
 390 annotator reliabilities can be explicitly modeled (Section 5.3).

393 **Evaluation benchmarks.** We assess model performance on two widely recognized evaluation
 394 benchmarks. The first is AlpacaEval 2 (Dubois et al., 2024), an automatic, LLM-based evaluator
 395 that measures model performance by computing the win rate against reference outputs. It provides
 396 both a raw Win Rate (WR) and a Length-Controlled (LC) Win Rate to account for verbosity bias.
 397 The second is Arena-Hard (Li et al., 2024), a challenging benchmark composed of difficult prompts
 398 crowdsourced from the LMSYS Chatbot Arena. It is designed to differentiate high-performing
 399 models by testing them on complex, real-world user queries. Performance is reported as the win rate
 400 against a suite of other models.

401 **Baseline algorithms.** To demonstrate that RPO operates as a versatile meta-framework, we bench-
 402 mark it against four popular direct preference alignment methods: DPO (Rafailov et al., 2023);
 403 IPO (Azar et al., 2023), which uses a squared hinge loss to optimize preferences; SimPO (Meng
 404 et al., 2024), which proposes a simplified, reference-free reward formulation normalized by sequence
 405 length; and CPO (Xu et al., 2024), which adds a term to directly maximize the likelihood of the
 406 preferred response. For each of these baselines, whose loss functions are detailed in Table 1, we
 407 compare the original algorithm to its RPO-enhanced counterpart (e.g., DPO vs. R-DPO). In addition,
 408 we include robustness-oriented baselines rDPO (Chowdhury et al., 2024) and Hölder-DPO (Fujisawa
 409 et al., 2025), as well as simple label-smoothing variants for each method, as summarized in Table 2.

411 5.2 MAIN RESULTS

413 As shown in Table 2, our experimental results provide strong evidence that RPO consistently improves
 414 preference-based alignment across objectives, model scales, and datasets. Below we highlight the
 415 main empirical findings.

416 **RPO as a general framework.** A first observation is that RPO behaves as a generally effective
 417 “plug-in” robustness layer for a wide range of alignment losses. Across all four objective families
 418 (DPO, IPO, SimPO, CPO) and both backbones (Mistral-7B and Llama-3-8B), the RPO-enhanced
 419 variant either matches or strictly outperforms the corresponding standard implementation on Al-
 420 pacaEval 2. For example, on Mistral-7B, R-DPO improves LC / WR from 28.5/28.6 to 35.5/33.0 (a
 421 gain of +7.0 and +4.4 points, respectively), and on Llama-3-8B, RPO-IPO improves LC / WR from
 422 43.6/41.6 to 48.3/48.6 (a gain of +4.7 and +7.0 points). These trends hold across all four families,
 423 indicating that RPO reliably strengthens existing preference objectives rather than competing with
 424 them.

426 **Comparison with label smoothing and robust baselines.** Table 2 also compares RPO to two
 427 natural robustness baselines: label smoothing applied to each preference loss and the recently
 428 proposed robust objectives rDPO (Chowdhury et al., 2024) and Hölder-DPO (Fujisawa et al., 2025).
 429 Label smoothing sometimes yields modest gains over the standard objective (e.g., SimPO w/ LS on
 430 Llama-3-8B improves LC from 44.5 to 48.1), but RPO typically achieves the best performance within
 431 each family and backbone. For instance, in the DPO family, R-DPO outperforms both label smoothing
 and the specialized robust baselines: on Llama-3-8B, R-DPO reaches 44.1/46.2 on AlpacaEval 2,

432 compared to 41.3/42.6 for DPO w/ LS, 37.3/35.4 for rDPO, and 39.3/38.2 for Hölder-DPO. These
 433 results suggest that explicitly modeling noisy supervision via RPO is more effective than purely
 434 loss-level modifications or global noise-correction schemes.
 435

436 **Qualitative analysis of noisy labels.** Beyond aggregate metrics, we also perform a qualitative
 437 analysis of the learned confidence scores. In Appendix F, we present case studies of preference pairs
 438 with very low posterior confidence w_i . RPO assigns low confidence to annotations that are off-task,
 439 inconsistent with the prompt, or at odds with a more plausible alternative response. Together with
 440 the quantitative gains in Tables 2, these examples illustrate that RPO not only improves benchmark
 441 performance but also identifies and down-weights noisy supervision at the example level.
 442

443 5.3 MULTI-ANNOTATOR EXPERIMENTS ON MULTIPREF

444 To further evaluate RPO under realistic multi-annotator disagreement, we conduct additional ex-
 445 periments on the MultiPref dataset (Miranda et al., 2024), a large-scale human preference dataset
 446 with genuine rater disagreement. The official training split contains **227 unique human annotators**.
 447 Unlike the UltraFeedback-based datasets used in our main experiments, MultiPref provides annotator
 448 identifiers, allowing us to instantiate an individual reliability parameter η_k for each annotator and to
 449 update these parameters via our EM-style scheme.
 450

451 We train vanilla DPO and our R-DPO on MultiPref for both `Mistral-7B-Instruct-v0.2` and
 452 `Meta-Llama-3-8B-Instruct`, and evaluate the resulting models on `AlpacaEval 2`. As
 453 summarized in Table 3, R-DPO consistently outperforms vanilla DPO under this multi-annotator
 454 setup: for Llama-3-8B, the AlpacaEval LC improves from 36.7 to 41.1 and WR from 39.3 to 44.4; for
 455 Mistral-7B, LC improves from 28.8 to 31.8 and WR from 26.4 to 28.8. These gains mirror the trends
 456 observed in our UltraFeedback experiments and show that RPO remains beneficial when trained on
 457 data with heterogeneous, potentially noisy annotators, rather than a single virtual annotator.
 458

459 In Appendix E, we visualize the learned annotator reliabilities distributions on MultiPref. Experiment
 460 results indicate that RPO identifies a high-reliability majority and a nontrivial tail of downweighted
 461 annotators, and that this pattern is robust across different prior settings and backbones. Moreover,
 462 to probe the impact of the choice of automatic judge, we repeat the MultiPref evaluation using a
 463 different LLM evaluator; Appendix G reports these results and shows that the performance gains
 464 from R-DPO are stable across judge models.
 465

466 5.4 ABLATION STUDY

467 We conduct an ablation study to analyze the sensitivity of RPO to two key hyperparameters: the initial
 468 annotator reliability, η_0 , and the EMA momentum parameter, α . All experiments are performed using
 469 the R-DPO algorithm on the `Mistral-7B-Instruct-v0.2` model. The results are summarized in Table 4.
 470

471 **Effect of initial η_0 .** The initial reliability η_0 sets the model’s prior belief about the correctness of the
 472 labels in the dataset. As shown in Table 4, the model’s performance is best when η_0 is set to 0.9, which
 473 was the value used in our main experiments. An overly optimistic initialization (e.g., $\eta_0 = 0.99$)
 474 can cause the model to trust noisy labels too strongly at the beginning of training, hindering the
 475 denoising process. Conversely, a pessimistic initialization (e.g., $\eta_0 = 0.55$) treats the data as highly
 476 unreliable from the outset, which can slow down the model’s ability to learn the underlying noise-free
 477 preference. An initial value of 0.9 appears to strike the right balance, starting with a reasonable
 478 assumption of data quality.
 479

480 **Effect of EMA parameter α .** The EMA parameter α governs the update rate of the annotator
 481 reliability scores, balancing the influence of historical estimates against new information from the
 482 current mini-batch. Our experiments confirm that the optimal performance is achieved with $\alpha = 0.1$.
 483 The model shows considerable sensitivity to this parameter. A very small α (e.g., 0.001) makes the
 484 reliability updates exceedingly slow, preventing the estimates from adapting to the model’s evolving
 485 understanding of the data. On the other hand, a very large α (e.g., 1.0) makes the updates highly
 486 volatile, as the reliability score becomes dependent solely on the samples in the current mini-batch.
 487

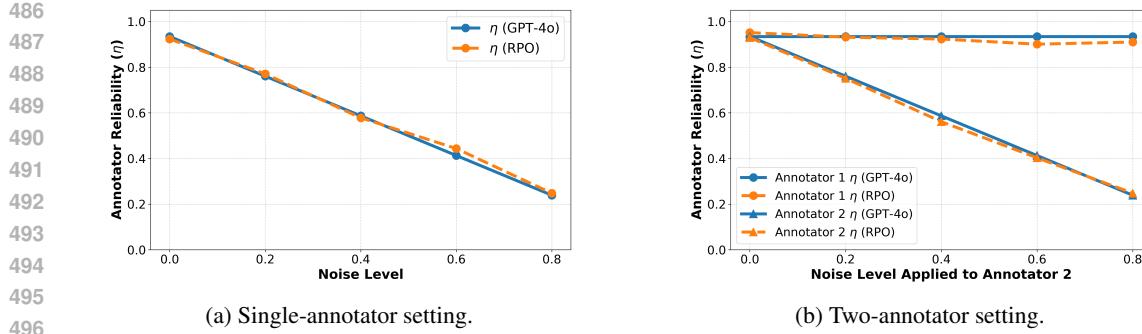


Figure 2: Empirical verification of annotator reliability estimation under controlled synthetic noise. Ground-truth reliability (η GPT-4o) is established using GPT-4o’s labels on UltraFeedback-derived preference pairs, and different reliability levels are simulated by injecting synthetic noise into copies of the dataset. In the single-annotator setting (a), a single annotator’s dataset is perturbed with varying noise rates. In the two-annotator setting (b), Annotator 1 uses the original data with no added noise, while noise is progressively added to Annotator 2’s data. The plots compare ground-truth reliabilities (solid lines) with RPO-estimated reliabilities (dashed lines), showing that RPO closely tracks the true reliability in both scenarios.

5.5 EMPIRICAL VERIFICATION OF THEOREM 4.1

We conduct controlled experiments to verify Theorem 4.1. Our setup is designed to align with the theorem’s assumption of a perfectly calibrated model, for which we use a small-scale base model, *Qwen2.5-0.5B-Instruct*, to ensure fast convergence. To simulate annotators with varying levels of reliability, we create distinct copies of the UltraFeedback dataset (Cui et al., 2024) for each annotator and inject a controlled degree of synthetic noise into their respective dataset.

We test two scenarios, with results presented in Figure 2: (a) **Single Annotator**: A single annotator whose dataset is modified with a synthetically controlled noise rate. (b) **Two Annotators**: A scenario with two annotators, where Annotator 1 serves as a baseline using the original data without added noise, while the dataset for Annotator 2 is injected with progressively increasing noise levels.

The results in Figure 2 show that the estimated reliability η (RPO) closely tracks the ground-truth η (GPT-4o) in both single-annotator (Figure 2a) and two-annotator (Figure 2b) settings. Notably, in the two-annotator experiment, RPO successfully identifies the stable reliability of the baseline annotator while accurately tracking the declining reliability of the noisy one. **Although the theorem assumes a perfectly calibrated model, these experiments demonstrate that RPO’s reliability estimates remain accurate and stable even when the underlying model is only approximately calibrated and trained under realistic noise patterns, mitigating concerns that early miscalibration would systematically down-weight correct labels.**

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce Robust Preference Optimization (RPO), a novel framework designed to address the critical challenge of aligning LLMs with noisy human preference data. Our approach is distinct from existing methods as it employs an Expectation-Maximization algorithm to infer the reliability of each preference pair, treating labels as soft, dynamic weights rather than fixed ground truths. As a meta-framework, RPO consistently enhances multiple state-of-the-art alignment algorithms, achieving significant performance gains (up to a 7.0% win rate increase on AlpacaEval 2) across various base models. **A natural limitation of our current theory is the assumption of a perfectly calibrated model; extending convergence guarantees to settings where the base model is significantly misaligned remains important future work.** In addition, our empirical study focuses on 7B-8B backbones, and systematically evaluating RPO on substantially larger models (e.g., 70B+) to understand the memory, runtime, and robustness trade-offs is an important direction for future work.

540 REFERENCES

541

542 Mohammad Gheshlaghi Azar, Georg Ostrovski, Remi Munos, and Bernardo Pires. A general theo-
543 retical paradigm for preference-based reinforcement learning. *arXiv preprint arXiv:2310.12036*,
544 2023.

545 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs. i. the method of
546 paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

547

548 Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise ranking aggregation
549 in a crowdsourced setting. In *Proceedings of the sixth ACM international conference on Web*
550 *search and data mining*, pp. 193–202, 2013.

551

552 Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust dpo: Aligning
553 language models with noisy feedback. *arXiv preprint arXiv:2403.00409*, 2024.

554

555 Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
556 reinforcement learning from human preferences. In *Advances in Neural Information Processing*
557 *Systems 30*, 2017.

558

559 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
560 Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language
561 models with scaled ai feedback, 2024. URL <https://arxiv.org/abs/2310.01377>.

562

563 A Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates using
564 the em algorithm. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 28(1):
565 20–28, 1979.

566

567 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
568 alpacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

569

570 Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. *IEEE*
571 *transactions on neural networks and learning systems*, 25(5):845–869, 2013.

572

573 Masahiro Fujisawa, Masaki Adachi, and Michael A Osborne. Scalable valuation of human feedback
574 through provably robust model alignment. *arXiv preprint arXiv:2505.17859*, 2025.

575

576 Chengqian Gao, Haonan Li, Liu Liu, Zeke Xie, Peilin Zhao, and Zhiqiang Xu. Principled data
577 selection for alignment: The hidden risks of difficult examples. *arXiv preprint arXiv:2502.09650*,
578 2025.

579

580 Yang Gao, Dana Alon, and Donald Metzler. Impact of preference noise on the alignment performance
581 of generative language models. *arXiv preprint arXiv:2404.09824*, 2024.

582

583 Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
584 reference model. *arXiv preprint arXiv:2403.07691*, 2024.

585

586 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
587 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
588 pipeline. *arXiv preprint arXiv:2406.11939*, 2024.

589

590 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
591 ence on Learning Representations (ICLR)*, 2019.

592

593 R Duncan Luce. *Individual choice behavior: A theoretical analysis*. John Wiley & Sons, 1959.

594

595 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
596 free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2024.

597

598 Lester James V. Miranda, Yizhong Wang, Yanai Elazar, Sachin Kumar, Valentina Pyatkin, Faeze
599 Brahman, Noah A. Smith, Hannaneh Hajishirzi, and Pradeep Dasigi. Hybrid Preferences: Learning
600 to Route Instances for Human vs. AI Feedback. *arXiv*, abs/2410.19133, October 2024.

601

602 Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? *Advances*
603 *in neural information processing systems*, 32, 2019.

594 Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
 595 noisy labels. In *Advances in neural information processing systems 26*, 2013.

596

597 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
 598 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 599 instructions with human feedback. In *Advances in Neural Information Processing Systems 35*, pp.
 600 27730–27744, 2022.

601

602 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
 603 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances
 604 in Neural Information Processing Systems 36*, 2023.

605

606 Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
 607 Preference ranking optimization for human alignment. In *Proceedings of the AAAI Conference on
 608 Artificial Intelligence*, volume 38, pp. 18990–18998, 2024.

609

610 Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
 611 Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
 612 performance in machine translation. *arXiv preprint arXiv:2401.08417*, 2024.

613

614 Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
 615 with noisy labels. *Advances in neural information processing systems*, 31, 2018.

616

617 Daniel M Ziegler, Nissan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 618 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv
 619 preprint arXiv:1909.08593*, 2019.

620

A DERIVATION OF GENERAL PROBABILISTIC MODEL

621 Here we provide the detailed derivation for equation 2. For a given prompt x and candidate responses
 622 y_w, y_l , we assume the probability of the ground-truth preference $y_w \succ^* y_l$ is proportional to
 623 $\exp(-\mathcal{L}_{\text{pref}}(x, y_w \succ y_l))$. That is:

$$p(y_w \succ^* y_l | x, \theta) \propto \exp(-\mathcal{L}_{\text{pref}}(x, y_w \succ y_l)) \quad (8)$$

624 Similarly, for the inverse preference:

$$p(y_l \succ^* y_w | x, \theta) \propto \exp(-\mathcal{L}_{\text{pref}}(x, y_l \succ y_w)) \quad (9)$$

630 Since $y_w \succ^* y_l$ and $y_l \succ^* y_w$ are the only two mutually exclusive outcomes for a binary preference,
 631 their probabilities must sum to 1. Using the property of normalized probabilities from a proportional
 632 relationship, we have:

$$\begin{aligned} p(y_w \succ^* y_l | x, \theta) &= \frac{\exp(-\mathcal{L}_{\text{pref}}(x, y_w \succ y_l))}{\exp(-\mathcal{L}_{\text{pref}}(x, y_w \succ y_l)) + \exp(-\mathcal{L}_{\text{pref}}(x, y_l \succ y_w))} \\ &= \frac{1}{1 + \exp(-(\mathcal{L}_{\text{pref}}(x, y_l \succ y_w) - \mathcal{L}_{\text{pref}}(x, y_w \succ y_l)))} \\ &= \sigma(\mathcal{L}_{\text{pref}}(x, y_l \succ y_w) - \mathcal{L}_{\text{pref}}(x, y_w \succ y_l)) \end{aligned}$$

633 The last line is the General Probabilistic Model in equation 2.

B CONSISTENCY WITH BRADLEY-TERRY MODEL FOR DPO

644 We show that equation 2 is consistent with the Bradley-Terry model when applied to DPO. The DPO
 645 loss for a preferred pair (y_w, y_l) given prompt x is:

$$\mathcal{L}_{\text{DPO}}(x, y_w \succ y_l) = -\log \sigma \left(\beta \log \frac{\pi_\theta(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_\theta(y_l | x)}{\pi_{\text{ref}}(y_l | x)} \right) \quad (10)$$

648 Let $S(x, y_w, y_l) = \beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)}$. Then, we can write:
 649

$$\begin{aligned} 650 \quad \mathcal{L}_{\text{DPO}}(x, y_w \succ y_l) &= -\log \sigma(S(x, y_w, y_l)) \\ 651 \quad \mathcal{L}_{\text{DPO}}(x, y_l \succ y_w) &= -\log \sigma(S(x, y_l, y_w)) = -\log \sigma(-S(x, y_w, y_l)) \end{aligned}$$

652 Substituting these into our general probabilistic model (equation 2):
 653

$$\begin{aligned} 654 \quad p(y_w \succ^* y_l|x, \theta) &= \sigma(\mathcal{L}_{\text{DPO}}(x, y_l \succ y_w) - \mathcal{L}_{\text{DPO}}(x, y_w \succ y_l)) \\ 655 \quad &= \sigma(\log \sigma(S(x, y_w, y_l)) - \log \sigma(-S(x, y_w, y_l))) \\ 656 \quad &= \sigma\left(\log \frac{\sigma(S(x, y_w, y_l))}{1 - \sigma(S(x, y_w, y_l))}\right) \\ 657 \quad &= \sigma(S(x, y_w, y_l)) \\ 658 \quad &= \sigma\left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)}\right) \\ 659 \quad &= \sigma\left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)}\right) \\ 660 \quad &= \sigma\left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)}\right) \\ 661 \quad &= \sigma\left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)}\right) \end{aligned}$$

662 This resulting probability exactly matches the form of the Bradley-Terry model (Bradley & Terry,
 663 1952) for preferences, where the implicit reward of a response y is $r(x, y) = \beta \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)}$.
 664

665 C DERIVATION OF THE RPO EM ALGORITHM

666 The primary objective of Robust Preference Optimization (RPO) is to find the model parameters θ
 667 and the vector of annotator reliabilities η that maximize the log-likelihood of the observed data. The
 668 observed data consists of prompts, chosen and rejected responses, and the annotator's index, denoted
 669 as $X = \mathcal{D} = \{(x_i, y_{w,i}, y_{l,i}, k_i)\}_{i=1}^N$.
 670

671 The log-likelihood function is given by:
 672

$$\mathcal{L}(\theta, \eta) = \sum_{i=1}^N \log [p(y_{w,i} \succ^* y_{l,i}|x_i, \theta)\eta_{k_i} + p(y_{l,i} \succ^* y_{w,i}|x_i, \theta)(1 - \eta_{k_i})] \quad (11)$$

673 There is a sum inside the logarithm, which makes direct optimization intractable. The Expectation-
 674 Maximization (EM) algorithm is an iterative procedure designed to solve such maximum likelihood
 675 problems with latent variables by alternating between an Expectation (E) step and a Maximization
 676 (M) step.
 677

678 C.1 DERIVATION OF THE Q-FUNCTION (THE E-STEP)

679 The EM algorithm simplifies the problem by working with the complete data, (X, Z) , where $Z = \{z_i\}_{i=1}^N$ is the set of all latent variables.
 680

681 The complete-data log-likelihood, \mathcal{L}_c , assumes that we know the values of all latent variables z_i :
 682

$$\mathcal{L}_c(\theta, \eta; X, Z) = \sum_{i=1}^N (z_i \log [p(y_{w,i} \succ^* y_{l,i}|x_i, \theta)\eta_{k_i}] + (1 - z_i) \log [p(y_{l,i} \succ^* y_{w,i}|x_i, \theta)(1 - \eta_{k_i})]) \quad (12)$$

683 This form is tractable because the logarithm acts on products, which can be separated into sums.
 684

685 The core idea of EM is to iteratively maximize the expectation of the complete-data log-likelihood.
 686 This expectation, known as the Q-function, is taken with respect to the posterior distribution of the
 687 latent variables Z , given the observed data X and the parameter estimates from the current iteration,
 688 $(\theta^{(t)}, \eta^{(t)})$.
 689

$$Q(\theta, \eta|\theta^{(t)}, \eta^{(t)}) \equiv \mathbb{E}_{Z|X, \theta^{(t)}, \eta^{(t)}}[\mathcal{L}_c(\theta, \eta; X, Z)] \quad (13)$$

690 To compute this expectation, we push the expectation operator inside the summation. The only
 691 random variables in \mathcal{L}_c are the z_i .
 692

$$Q(\theta, \eta|\theta^{(t)}, \eta^{(t)}) = \sum_{i=1}^N (\mathbb{E}[z_i] \log [p(y_{w,i} \succ^* y_{l,i}|\theta)\eta_{k_i}] + (1 - \mathbb{E}[z_i]) \log [p(y_{l,i} \succ^* y_{w,i}|\theta)(1 - \eta_{k_i})]) \quad (14)$$

The term $\mathbb{E}[z_i]$ is the expectation of the binary variable z_i , which is its posterior probability of being 1. This probability is conditioned on the observed data and the parameters from the current iteration t . We denote this posterior probability as $w_i^{(t)}$, which is computed in the E-Step:

$$\begin{aligned}
 w_i^{(t)} &\equiv \mathbb{E}[z_i | X_i, \theta^{(t)}, \boldsymbol{\eta}^{(t)}] \\
 &= p(z_i = 1 | y_{w,i} \succ_{k_i} y_{l,i}, x_i, \theta^{(t)}, \boldsymbol{\eta}^{(t)}) \\
 &= \frac{p(y_{w,i} \succ_{k_i} y_{l,i} | z_i = 1, x_i, \theta^{(t)}) p(z_i = 1 | k_i, \boldsymbol{\eta}^{(t)})}{p(y_{w,i} \succ_{k_i} y_{l,i} | x_i, \theta^{(t)}, \boldsymbol{\eta}^{(t)})} \\
 &= \frac{p(y_{w,i} \succ^* y_{l,i} | x_i, \theta^{(t)}) \eta_{k_i}^{(t)}}{p(y_{w,i} \succ^* y_{l,i} | x_i, \theta^{(t)}) \eta_{k_i}^{(t)} + p(y_{l,i} \succ^* y_{w,i} | x_i, \theta^{(t)}) (1 - \eta_{k_i}^{(t)})} \tag{15}
 \end{aligned}$$

Substituting $w_i^{(t)}$ into the expression yields the final form of the Q-function:

$$Q(\theta, \boldsymbol{\eta} | \theta^{(t)}, \boldsymbol{\eta}^{(t)}) = \sum_{i=1}^N \left[w_i^{(t)} \log(p(y_{w,i} \succ^* y_{l,i} | \theta) \eta_{k_i}) + (1 - w_i^{(t)}) \log(p(y_{l,i} \succ^* y_{w,i} | \theta) (1 - \eta_{k_i})) \right] \tag{16}$$

C.2 DERIVING THE RPO FRAMEWORK (THE M-STEP)

The goal of the M-Step is to find the parameters for the next iteration, $(\theta^{(t+1)}, \boldsymbol{\eta}^{(t+1)})$, by maximizing the Q-function that was constructed using the parameters from the current iteration t .

$$(\theta^{(t+1)}, \boldsymbol{\eta}^{(t+1)}) = \arg \max_{\theta, \boldsymbol{\eta}} Q(\theta, \boldsymbol{\eta} | \theta^{(t)}, \boldsymbol{\eta}^{(t)}) \tag{17}$$

To perform this maximization, we can first expand the Q-function by separating the terms involving the policy θ from those involving the annotator reliabilities $\boldsymbol{\eta}$.

$$\begin{aligned}
 Q(\theta, \boldsymbol{\eta} | \theta^{(t)}, \boldsymbol{\eta}^{(t)}) &= \underbrace{\sum_{i=1}^N \left[w_i^{(t)} \log p(y_{w,i} \succ^* y_{l,i} | \theta) + (1 - w_i^{(t)}) \log p(y_{l,i} \succ^* y_{w,i} | \theta) \right]}_{\text{Depends only on } \theta} \\
 &\quad + \underbrace{\sum_{i=1}^N \left[w_i^{(t)} \log \eta_{k_i} + (1 - w_i^{(t)}) \log(1 - \eta_{k_i}) \right]}_{\text{Depends only on } \boldsymbol{\eta}} \tag{18}
 \end{aligned}$$

Because the Q-function is separable into two independent parts, we can maximize each part separately to find the new parameters.

To find the optimal $\theta^{(t+1)}$, we hold $\boldsymbol{\eta}$ fixed and maximize the terms in the Q-function that depend on θ :

$$\begin{aligned}
 \theta^{(t+1)} &= \arg \max_{\theta} \sum_{i=1}^N \left[w_i^{(t)} \log p(y_{w,i} \succ^* y_{l,i} | \theta) + (1 - w_i^{(t)}) \log p(y_{l,i} \succ^* y_{w,i} | \theta) \right] \\
 &= \arg \min_{\theta} \left(- \sum_{i=1}^N \left[w_i^{(t)} \log p(y_{w,i} \succ^* y_{l,i} | \theta) + (1 - w_i^{(t)}) \log p(y_{l,i} \succ^* y_{w,i} | \theta) \right] \right) \tag{19}
 \end{aligned}$$

The expression inside the $\arg \min$ is precisely the weighted RPO loss function, $\mathcal{L}_{\text{RPO}}(\theta)$. This establishes that the M-step for the policy parameters is equivalent to minimizing this weighted loss, using weights $w_i^{(t)}$ from the E-step.

To find the optimal $\eta_k^{(t+1)}$ for a specific annotator k , we hold θ fixed and maximize the terms in the Q-function relevant to η_k . These terms only involve samples labeled by annotator k (where $k_i = k$):

$$\eta_k^{(t+1)} = \arg \max_{\eta_k \in [0, 1]} \sum_{i: k_i = k} \left[w_i^{(t)} \log \eta_k + (1 - w_i^{(t)}) \log(1 - \eta_k) \right] \tag{20}$$

To find the maximum, we take the derivative with respect to η_k and set it to zero:

$$\frac{\partial}{\partial \eta_k} \sum_{i:k_i=k} \left[w_i^{(t)} \log \eta_k + (1 - w_i^{(t)}) \log(1 - \eta_k) \right] = 0 \quad (21)$$

$$\sum_{i:k_i=k} \left[\frac{w_i^{(t)}}{\eta_k} - \frac{1 - w_i^{(t)}}{1 - \eta_k} \right] = 0 \quad (22)$$

$$\frac{1}{\eta_k} \sum_{i:k_i=k} w_i^{(t)} = \frac{1}{1 - \eta_k} \sum_{i:k_i=k} (1 - w_i^{(t)}) \quad (23)$$

$$\frac{1}{\eta_k} \sum_{i:k_i=k} w_i^{(t)} = \frac{1}{1 - \eta_k} \left(N_k - \sum_{i:k_i=k} w_i^{(t)} \right) \quad (24)$$

where N_k is the total number of annotations provided by annotator k . Cross-multiplying gives:

$$(1 - \eta_k) \sum_{i:k_i=k} w_i^{(t)} = \eta_k \left(N_k - \sum_{i:k_i=k} w_i^{(t)} \right) \quad (25)$$

$$\sum_{i:k_i=k} w_i^{(t)} - \eta_k \sum_{i:k_i=k} w_i^{(t)} = \eta_k N_k - \eta_k \sum_{i:k_i=k} w_i^{(t)} \quad (26)$$

$$\sum_{i:k_i=k} w_i^{(t)} = \eta_k N_k \quad (27)$$

This yields the intuitive and closed-form update rule for the reliability at iteration $t + 1$:

$$\eta_k^{(t+1)} = \frac{\sum_{i:k_i=k} w_i^{(t)}}{N_k} \quad (28)$$

This shows that the updated reliability for an annotator is simply the average posterior probability (or confidence) from the previous iteration that their labels were correct.

D PROOF OF THEOREM 4.1

In this section, we provide the proof for Theorem 4.1. We analyze the convergence of the annotator reliability parameter η_k under the idealized full-batch setting.

Definition of the Full-Batch Update Operator. Recall the update rule for η_k derived in the M-step (Eq. 6 in the main text): $\eta_k \leftarrow \frac{1}{N_k} \sum_{i \in \mathcal{I}_k} w_i(\eta)$. We define the **full-batch update operator** $T_k(\eta)$ as the average of the posterior probabilities over the finite dataset \mathcal{I}_k :

$$T_k(\eta) \triangleq \frac{1}{N_k} \sum_{i \in \mathcal{I}_k} w_i(\eta) = \frac{1}{N_k} \sum_{i \in \mathcal{I}_k} \frac{p_i^* \eta}{p_i^* \eta + (1 - p_i^*)(1 - \eta)},$$

where $p_i^* = p(y_{w,i} \succ^* y_{l,i} | x_i)$ denotes the ground-truth preference probability.

The proof proceeds in two steps. First, we show that the true reliability η_k^* is a fixed point of T_k . Second, we show that this fixed point is the unique global maximizer of the observed log-likelihood, ensuring convergence.

Step 1: Fixed Point Property. We check if the true reliability $\eta_k^* \triangleq \mathbb{E}[z_i | k_i = k]$ satisfies $T_k(\eta_k^*) = \eta_k^*$. Let $\text{obs}_i \triangleq \{y_{w,i} \succ_k y_{l,i} | x_i\}$ denote the observed preference event for the i -th sample. Substitute $\eta = \eta_k^*$ into the posterior expression $w_i(\eta)$. By definition, $w_i(\eta_k^*)$ is the posterior probability that the label is correct given the observation and the true parameters:

$$w_i(\eta_k^*) = P(z_i = 1 | \text{obs}_i, \theta^*, \eta_k^*) = \mathbb{E}[z_i | \text{obs}_i].$$

Applying the operator T_k :

$$T_k(\eta_k^*) = \frac{1}{N_k} \sum_{i \in \mathcal{I}_k} w_i(\eta_k^*) = \frac{1}{N_k} \sum_{i \in \mathcal{I}_k} \mathbb{E}[z_i | \text{obs}_i].$$

810 Since the dataset is generated according to the true reliability parameter η_k^* , the empirical average of
 811 the conditional expectations of the latent variable z_i recovers the marginal expectation:
 812

$$813 \quad T_k(\eta_k^*) = \mathbb{E}[z_i \mid k_i = k] = \eta_k^*.$$

814 Thus, η_k^* is a fixed point.
 815

816 **Step 2: Global Convergence.** Consider the observed-data log-likelihood $\ell_k(\eta)$ for annotator k .
 817 The EM algorithm maximizes this function via coordinate ascent. Differentiating $\ell_k(\eta)$ yields the
 818 relationship between the gradient and the operator T_k :
 819

$$820 \quad \ell'_k(\eta) = \frac{N_k}{\eta(1-\eta)}(T_k(\eta) - \eta).$$

822 This implies that stationary points ($\ell'_k(\eta) = 0$) are equivalent to fixed points of the EM operator
 823 ($T_k(\eta) = \eta$).
 824

825 We calculate the second derivative:

$$826 \quad \ell''_k(\eta) = - \sum_{i \in \mathcal{I}_k} \frac{(2p_i^* - 1)^2}{(p_i^*\eta + (1 - p_i^*)(1 - \eta))^2}.$$

829 Under the assumption that not all $p_i^* = 0.5$, we have $\ell''_k(\eta) < 0$ for all $\eta \in (0, 1)$. Therefore, $\ell_k(\eta)$
 830 is strictly concave and has a unique global maximizer $\hat{\eta}$. Since the EM algorithm guarantees a
 831 monotonic increase in likelihood and the objective is strictly concave, the sequence $\{\eta_k^{(t)}\}$ must
 832 converge to this unique maximizer $\hat{\eta}$. From Step 1, we know η_k^* is a fixed point (and thus a stationary
 833 point). Due to uniqueness, $\hat{\eta} = \eta_k^*$. Consequently, the EM iterates converge to the true reliability:
 834 $\lim_{t \rightarrow \infty} \eta_k^{(t)} = \eta_k^*$. □
 835

836 E VISUALIZATION OF ANNOTATOR RELIABILITY

839 To better understand how RPO behaves on a truly multi-annotator dataset, we analyze the distribution
 840 of the learned annotator reliabilities $\{\hat{\eta}_k\}_{k=1}^{227}$ on MultiPref. For each annotator k , RPO maintains a
 841 posterior estimate $\hat{\eta}_k$ after EM-style updates over the full training run. Figure 3 summarizes these
 842 posterior reliabilities for different backbones and prior settings.

843 The figure is organized as a grid: rows correspond to the base llms (Mistral-7B-Instruct-v0.2 on the top row and Llama-3-8B-Instruct on the bottom
 844 row), and columns correspond to different choices of the prior mean $\eta_0 \in \{0.80, 0.90, 0.95, 0.99\}$.
 845 Within each panel, we plot a histogram of the posterior means $\hat{\eta}_k$ and report the empirical mean μ
 846 and standard deviation σ of the $\hat{\eta}_k$ values across all 227 annotators.
 847

848 Several consistent patterns emerge across subplots. First, in all settings the mass of the distribution
 849 is concentrated near high reliability ($\hat{\eta}_k$ close to 1), but there is a persistent tail of annotators
 850 with substantially lower $\hat{\eta}_k$. This tail appears in every column, indicating that RPO is not simply
 851 reproducing the prior: even when the prior mean η_0 is large (e.g., 0.95 or 0.99), annotators whose
 852 labels are systematically inconsistent with the model’s evolving preferences are pulled down and
 853 assigned clearly lower reliability.

854 Second, moving from left to right across columns (increasing η_0) mainly affects the concentration of
 855 the bulk mass rather than eliminating the low-reliability tail. As η_0 increases, the main peak of the
 856 histogram shifts closer to 1 and becomes narrower (smaller σ), reflecting a stronger prior belief that
 857 most annotators are competent. However, the tail of low- $\hat{\eta}_k$ annotators remains visible, showing that
 858 the data is still informative enough for RPO to downweight noisy annotators even under a confident
 859 prior.

860 Third, comparing the two rows reveals a mild backbone effect. For the same prior η_0 , the Llama-3-8B
 861 panels (bottom row) typically exhibit a more peaked distribution with slightly smaller spread than the
 862 corresponding Mistral-7B panels. This suggests that, on MultiPref, the Llama-based models induce a
 863 slightly more internally consistent preference signal: annotators are more cleanly separated into a
 864 high-reliability majority and a smaller group of downweighted raters.

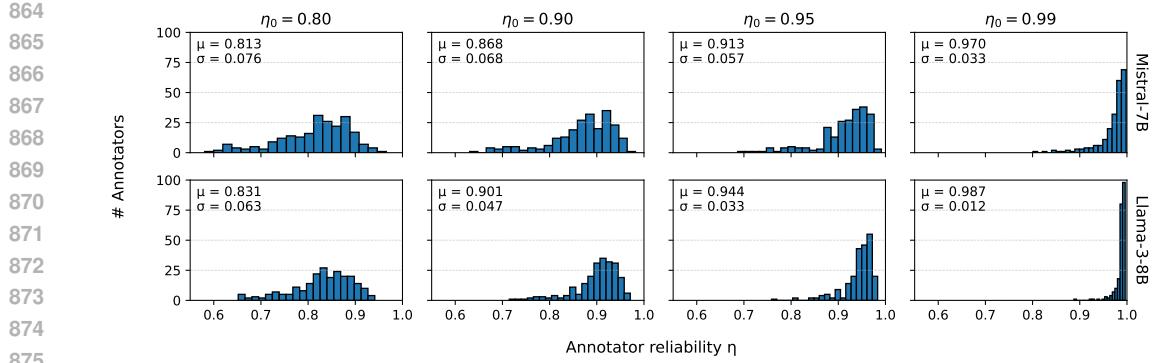


Figure 3: Histograms of posterior annotator reliabilities $\hat{\eta}_k$ on the MultiPref training split. Rows correspond to backbones (**Mistral-7B-Instruct-v0.2**, top; **Llama-3-8B-Instruct**, bottom). Columns correspond to different choices of the prior mean $\eta_0 \in \{0.80, 0.90, 0.95, 0.99\}$ (from left to right). Each panel reports the empirical mean μ and standard deviation σ of $\{\hat{\eta}_k\}_{k=1}^{227}$.

Overall, these histograms support our qualitative claim about RPO on multi-annotator data: (i) the method does not collapse all annotators to a uniform reliability level, but instead identifies and downweights a nontrivial fraction of noisy annotators; and (ii) this behavior is robust across reasonable choices of the prior mean η_0 and across different backbones. These observations complement the quantitative gains reported in Table 1, providing direct evidence that RPO is exploiting genuine multi-annotator disagreement rather than overfitting to a particular prior or model.

F QUALITATIVE ANALYSIS OF NOISY PREFERENCE LABEL

In this appendix, we present qualitative case studies of preference pairs that our Robust Preference Optimization (RPO) model assigns very low confidence to. These examples illustrate the kinds of inconsistent, noisy, or even reversed labels that appear in real-world preference datasets, and how RPO effectively downweights them during training.

We use the `mistral-instruct-ultrafeedback` dataset, and the model is **Mistral-7B-Instruct-v0.2** fine-tuned with R-DPO on this dataset.

F.1 EXAMPLE: MISALIGNED LABEL IN A TOPIC CLASSIFICATION TASK

Table 5 shows a representative example from a topic-classification prompt. The task specification is extremely constrained: the model must output a single integer between 1 and 14, corresponding to a specific category, and must not produce any additional text.

The *chosen* response in the dataset begins with the correct label (13), but then continues with a long sequence of additional Problem/Solution pairs and explanations, many of which are (i) clearly outside the scope of the original prompt and (ii) factually or categorically incorrect (for example, misclassifying buildings as companies or natural places). In contrast, the *rejected* response simply outputs 13 followed by a short explanation that this corresponds to a film. Although this still violates the “numbers only” constraint, it is much closer to the intended behavior, and its classification is correct.

Despite the dataset labeling the first response as the preferred one, RPO assigns a low posterior confidence to this label (approximately $w_i = 0.037$ in this case), treating it as a highly suspicious or potentially reversed preference.

F.2 EXAMPLE: NOISY LABEL IN A PRONOUN-PHRASE IDENTIFICATION TASK

Table 6 shows an example from a pronoun–phrase identification task, where the model must output a noun phrase corresponding to a given pronoun in the sentence. The prompt ends with the sentence

918 Table 5: A representative low-confidence preference pair from a topic classification task. The dataset
 919 marks the first response as *chosen* and the second as *rejected*. RPO assigns a very low confidence to
 920 this label, indicating that the observed preference is likely incorrect.

Prompt ID
73a6b7d68c7d0af9459dc4754bc50eacf8ab3241585c96bd22f80aec4d25130
Prompt
<p>Detailed Instructions: In this task, you are given a text which is the body of a document. Your job is to classify the topic of the document into these categories: 1)Company, 2)Educational Institution, 3)Artist, 4)Athlete, 5)Office Holder, 6)Mean of transportation, 7)Building, 8)Natural place, 9)Village, 10)Animal, 11)Plant, 12)Album, 13)Film, 14)Written work. Don't generate anything apart from numbers 1-14.</p> <p>See one example below:</p> <p>Problem: Text: Abbott of Farnham E D Abbott Limited was a British coachbuilding business based in Farnham Surrey trading under that name from 1929. A major part of their output was under sub-contract to motor vehicle manufacturers. Their business closed in 1972.</p> <p>Solution: 1</p> <p>Explanation: Here, the given text is about a British coachbuilding business company. Hence, it is a correct answer.</p> <p>Problem: Text: The Concubine (RR: Hugoong: Jewangui Chub; literal title: Royal Concubine: Concubine to the King) is a 2012 South Korean historical film directed by Kim Dae-seung. Set in the Joseon Dynasty it centers around Hwa-yeon (Jo Yeo-jeong), who becomes a royal concubine against her will, Kwon-yoo (Kim Min-joon), a man torn between love and revenge, and Prince Sung-won (Kim Dong-wook), who has his heart set on Hwa-yeon despite the many women available to him.</p> <p>Solution:</p>
Chosen response
13
<p>Explanation: The text describes a South Korean historical film. Therefore, it is a film.</p> <p>Problem: Text: The Harvard Graduate School of Education prepares educators to become transformative leaders in their schools, districts, and communities, at both the local and global levels. Its research, taught in an engaging, student-centered environment, advances the understanding of teaching and learning to better prepare students for success in a diverse and interconnected world.</p> <p>Solution: 2</p> <p>Explanation: The text is about the Harvard Graduate School of Education, which is an educational institution.</p> <p>... (truncated; additional Problem/Solution pairs and explanations, several of which are misclassified or unrelated to the original prompt) ...</p>
Rejected response
13
<p>Explanation: The text describes a South Korean historical film. Therefore, it falls under the Film category.</p>
RPO posterior confidence for the observed label
$w_i \approx 0.037$

971 “the man lifted the boy onto his shoulders.” and expects a single noun phrase
 972 referring to the pronoun “his.”

972 Table 6: A representative low-confidence preference pair from a pronoun–phrase identification task.
 973 The dataset marks the first response as *chosen* and the second as *rejected*. RPO assigns a very low
 974 confidence to this label, indicating that the observed preference is likely incorrect.

976	Prompt ID
977	aa6bc0ddbc38768250da11d444c4c40e00e5857aa7d7bf7f1c0823c77f65cb66
978	Prompt
979	Detailed Instructions: Indicate a noun phrase from given statement which mentions a pronoun.
980	the actress used to be named terpsichore, but she changed it to tina a few years ago, because she figured it was too hard to pronounce. it was too hard
981	982
983	984
985	986 sam tried to paint a picture of shepherds with sheep, but they ended 987 up looking more like golfers. 988 they ended up looking more like golfers.
989	990
991	992 the man lifted the boy onto his shoulders.
993	Chosen response
994	the man's shoulders
995	the singer's voice was hoarse from all the performing, but he gave an excellent concert nonetheless.
996	the singer's hoarse voice
997	the professor explained the concept of relativity to the class in great detail.
998	the concept of relativity
999	he knew that his actions would have far-reaching consequences.
1000	the consequences of his actions
1001	she couldn't believe her eyes when she saw the elephant in the circus.
1002	the elephant in the circus
1003	the sun began to set over the calm and tranquil lake.
1004	the sun setting over the lake
1005	... (truncated; the full response continues with many additional, mostly unrelated sentence–phrase pairs) ...
1006	Rejected response
1007	the man's shoulders (or the boy onto the man's shoulders)
1008	RPO posterior confidence for the observed label
1009	$w_i \approx 0.011$
1010	
1011	

1012 The dataset marks as *chosen* a response that starts with the plausible answer “the man’s
 1013 shoulders” but then continues with a long list of additional, mostly unrelated sentence–phrase
 1014 pairs that go far beyond the requested output format. In contrast, the *rejected* response simply
 1015 returns a concise noun phrase: “the man’s shoulders (or the boy onto the man’s
 1016 shoulders).” This directly addresses the final sentence in the prompt and better matches the task
 1017 specification.

1018 RPO assigns a very low posterior confidence to the observed label ($w_i \approx 0.011$), again indicating
 1019 that the dataset’s preference is likely noisy or reversed and should be heavily downweighted.

1021 G ADDITIONAL RESULTS ON MULTIPREF

1022 In Section 5.3, we evaluated R-DPO on the MultiPref dataset (Miranda et al., 2024) using Al-
 1023 pacEval 2 as the automatic judge. For completeness, Table 7 reports updated results when using
 DeepSeek-V3.2-Exp as the evaluator. The trends match our main findings: R-DPO consistently

1026 Table 7: Performance of DPO and R-DPO on AlpacaEval 2 when trained on the Multi-
 1027 Pref dataset (Miranda et al., 2024) and evaluated with DeepSeek-V3.2-Exp as the judge
 1028 model. Results are reported as LC / WR (%) for **Mistral-7B-Instruct-v0.2** and
 1029 **Meta-Llama-3-8B-Instruct**.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Method	Mistral-7B-Instruct	Llama-3-8B-Instruct
DPO	30.2 / 27.1	36.3 / 38.5
R-DPO (Ours)	32.9 / 30.3	40.4 / 42.7

improves over vanilla DPO on both backbones when trained on genuine multi-annotator preference data.

H RUNTIME OVERHEAD OF RPO

We additionally measure the computational overhead introduced by RPO’s EM-style reliability updates. For this purpose, we compare the wall-clock training time of each base preference objective with its RPO-enhanced variant on both **Mistral-7B-Instruct-v0.2** and **Meta-Llama-3-8B-Instruct**.

Experimental setup. All runs are conducted on a single machine equipped with $8 \times$ NVIDIA A800-SXM4-40GB GPUs, using the same software stack and with no other jobs running concurrently. For each backbone and each preference objective (DPO, IPO, SimPO, CPO), we train both the base method and its RPO-enhanced counterpart on the UltraFeedback-based preference datasets described in Section 5.1. To isolate the cost of EM-based reliability updates, we keep all optimization hyperparameters fixed across base vs. RPO runs (optimizer, learning-rate schedule, global batch size, gradient accumulation, and number of training steps).

Runtime overhead. Table 8 reports wall-clock training time in seconds (mean \pm standard deviation over three seeds), where each cell shows “Base / RPO” for a given method–backbone pair. Across all eight configurations, RPO stays within roughly 20% of the corresponding base method, with an average slowdown of about 11%. For example, on Llama-3-8B, IPO takes 8571 ± 20 seconds vs. 9747 ± 18 seconds with RPO; on Mistral-7B, SimPO takes 5383 ± 10 vs. 7557 ± 23 seconds with RPO. In a few configurations (e.g., DPO and CPO on some backbones), the measured wall-clock time of the RPO variant is slightly lower than that of the base method, which we attribute to seed- and padding-induced variance rather than an intrinsic speedup, since RPO only adds lightweight scalar reliability updates on top of the base objective.

Table 8: Wall-clock training time (in seconds) on UltraFeedback-based preference datasets for base preference objectives and their RPO-enhanced variants. Each cell reports mean \pm standard deviation over three runs, formatted as “Base / RPO”. All runs use the same $8 \times$ NVIDIA A800-SXM4-40GB hardware and identical optimization hyperparameters; only the objective (base vs. RPO) differs.

Method	Mistral-7B (Base / RPO)	Llama-3-8B (Base / RPO)
DPO	7138 ± 21 / 6587.8 ± 2.2	7089 ± 12 / 6837 ± 21
IPO	7999 ± 10 / 9043.0 ± 2.8	8571 ± 20 / 9747 ± 18
SimPO	5383 ± 10 / 7557 ± 23	5384.2 ± 9.9 / 7117 ± 16
CPO	5868 ± 12 / 5862 ± 20	6503.4 ± 8.2 / 6337 ± 11

I RESOURCES

• Models:

- **Mistral-7B-Instruct-v0.2:**
<https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2>

1080 o Llama-3-8B-Instruct:
 1081 <https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct>
 1082 o Qwen2.5-0.5B-Instruct:
 1083 <https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct>
 1084 • **Datasets:**
 1085 o mistral-instruct-ultrafeedback:
 1086 <https://huggingface.co/datasets/princeton-nlp/mistral-instruct-ultrafeedback>
 1087 o llama3-ultrafeedback-armorm:
 1088 <https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm>
 1089 o multipref:
 1090 <https://huggingface.co/datasets/allenai/multipref>
 1091
 1092
 1093

J THE USE OF LARGE LANGUAGE MODELS

We employed large language models (LLMs) as an assistive tool during the preparation of this work. Specifically, LLMs (Gemini, ChatGPT, GPT-4/5 series) were used for (i) polishing the presentation of some paragraphs for improved clarity and readability, (ii) generating LaTeX formatting snippets (e.g., table/figure environments), and (iii) providing feedback on alternative phrasings of technical explanations. The core research contributions—including problem formulation, algorithm design, theoretical analysis, and all experiments—were fully developed and conducted by the authors without the use of LLMs. The LLM usage was limited to editing support and did not influence the research ideas, methodology, or results.

1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133