

EFFICIENT DEGRADATION-AGNOSTIC IMAGE RESTORATION VIA CHANNEL-WISE FUNCTIONAL DECOMPOSITION AND MANIFOLD REGULARIZATION

Anonymous authors

Paper under double-blind review

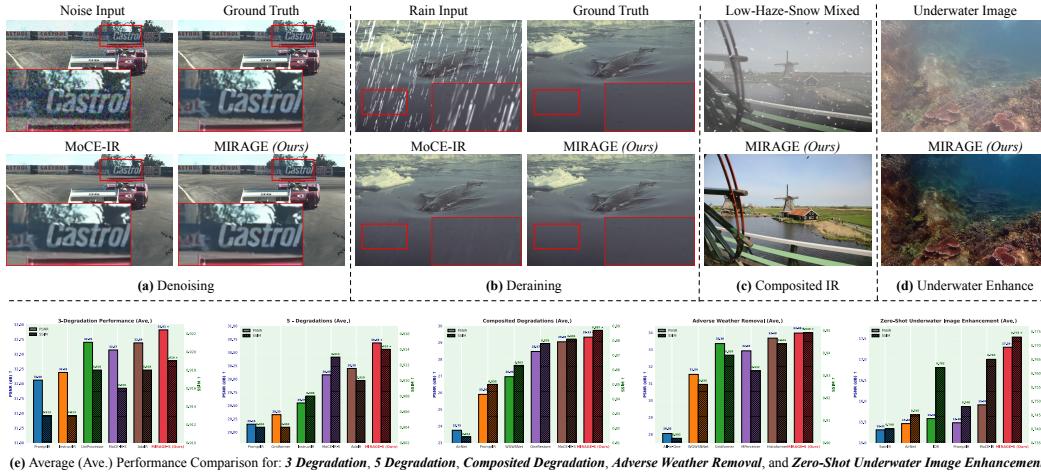


Figure 1: (a)-(d): Visual comparison for Denoising, Deraining, Composed Degradations (low-light, haze, and snow), and underwater image enhancement. (e): The average PSNR and SSIM comparison across 4 challenging all-in-one and 1 zero-shot settings (Please zoom in for a better view).

ABSTRACT

Degradation-agnostic image restoration aims to handle diverse corruptions with one unified model, but faces fundamental challenges in balancing efficiency and performance across different degradation types. Existing approaches either sacrifice efficiency for versatility or fail to capture the distinct representational requirements of various degradations. We present MIRAGE, an efficient framework that addresses these challenges through two key innovations. First, we propose a channel-wise functional decomposition that systematically repurposes channel redundancy in attention mechanisms by assigning CNN, attention, and MLP branches to handle local textures, global context, and channel statistics, respectively. This principled decomposition enables degradation-agnostic learning while achieving superior efficiency-performance trade-offs. Second, we introduce manifold regularization that performs cross-layer contrastive alignment in Symmetric Positive Definite (SPD) space, which empirically improves feature consistency and generalization across degradation types. Extensive experiments across five degradation settings demonstrate that MIRAGE achieves state-of-the-art performance with remarkable efficiency, outperforming existing methods in both single and mixed degradation scenarios while showing strong zero-shot generalization to unseen domains.

1 INTRODUCTION

Image Restoration (IR) aims to recover clean images from inputs degraded by diverse real-world corruptions such as noise, blur, haze, rain, and low-light conditions (Zamir et al., 2022; Li et al., 2023a; Ren et al., 2024; Potlapalli et al., 2024). A central challenge is *degradation-agnostic restoration*: developing a single model that can generalize across heterogeneous degradations. Despite recent

054 progress, existing approaches often face an efficiency–performance dilemma. On the one hand,
 055 heavyweight designs based on prompts, instructions, or large vision–language models provide
 056 versatility but incur substantial computational cost (Potlapalli et al., 2024; Zamfir et al., 2025; Jiang
 057 et al., 2025). On the other hand, lightweight solutions improve efficiency at the expense of restoration
 058 quality (Li et al., 2022; Tang et al., 2025b). Achieving both robustness and efficiency within a unified
 059 framework remains an open problem.

060 This difficulty can be better understood from two complementary perspectives. First, different degra-
 061 dation types impose fundamentally different representational requirements: additive corruptions (e.g.,
 062 noise, rain) primarily affect local textures, multiplicative distortions (e.g., haze, low-light) require
 063 global context modeling, and kernel-based degradations (e.g., blur) call for multi-scale structural
 064 reasoning. At the same time, basic architectural modules exhibit distinct inductive biases: convolutional
 065 filters excel at local texture modeling, attention mechanisms capture long-range dependencies,
 066 and MLPs enhance channel statistics. This motivates the insight that *an effective restoration model*
 067 *should systematically align distinct modules with complementary representational functions*. Second,
 068 recent studies reveal substantial redundancy in attention-based models, particularly along the channel
 069 dimension (Venkataraman et al., 2024; Dong et al., 2021). Many channels encode overlapping
 070 information, suggesting that this redundancy could be *repurposed* rather than discarded. Leveraging
 071 this observation allows for architectures that remain compact while preserving expressive capacity.
 072 *These observations highlight that unified IR benefits not only from adding new modules, but from a*
 073 *principled reorganization of existing capacity based on redundancy patterns and complementary in-*
 074 *ductive biases. This perspective motivates our design philosophy in MIRAGE, where representational*
 075 *roles are explicitly aligned with structural evidence rather than heuristic module stacking.*

076 Building on these insights, we present MIRAGE, an efficient framework for degradation-agnostic
 077 image restoration. MIRAGE introduces two components. (i) *Channel-wise functional decomposition*,
 078 where the input feature map is partitioned along the channel dimension and processed by three
 079 specialized branches: convolution for local textures, attention for global context, and MLP for
 080 channel statistics. This structured decomposition repurposes redundant capacity into complementary
 081 roles, yielding both interpretability and strong efficiency–performance trade-offs. (ii) *Manifold*
 082 *regularization*, a cross-layer contrastive strategy that leverages natural feature pairs within the model.
 083 Inspired by deeply supervised networks (Lee et al., 2015), we hypothesize that natural contrastive
 084 pairs exist between shallow and latent representations. Shallow features preserve fine spatial details
 085 but are sensitive to noise, while latent features are more abstract and semantically stable; aligning
 086 them encourages more robust shared representations. Importantly, rather than computing contrastive
 087 loss in Euclidean space, which may distort similarity when comparing structured representations,
 088 we operate in the Symmetric Positive Definite (SPD) manifold space. This formulation provides a
 089 more faithful alignment of representations, leading to improved generalization across degradation
 090 types. *Overall, MIRAGE provides a structurally grounded view of unified IR, where representational*
 091 *capacity is allocated and aligned based on statistical evidence at both the spatial and depth levels.*

092 Extensive experiments across five degradation settings show that MIRAGE achieves state-of-the-art
 093 performance with remarkable efficiency: our model has only 6M parameters, more than five times
 094 smaller than recent prompt-based baselines, while also generalizing well to unseen scenarios such as
 095 underwater image enhancement. Both the visual and per-setting PSNR results are shown in Fig. 1.

096 Our contributions are summarized as follows:

- 097 • We propose a principled channel-wise functional decomposition strategy that aligns convolution-
 098 tion, attention, and MLP with distinct representational roles, enabling efficient and effective
 099 degradation-agnostic restoration.
- 100 • We introduce manifold regularization through cross-layer contrastive alignment between
 101 shallow and latent features. We exploit natural contrastive pairs within the model, and per-
 102 form this alignment in the SPD manifold space rather than Euclidean space, providing more
 103 faithful representation similarity and improved generalization across diverse degradations.
- 104 • We conduct comprehensive experiments across single, mixed, and unseen degradation
 105 settings, establishing MIRAGE as a strong and practical baseline for all-in-one IR.

108
109

2 RELATED WORK

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Image Restoration with Various Architectures. IR addresses the ill-posed problem of restoring high-quality images from degraded inputs and has long been a core task in computer vision with broad applications (Richardson, 1972; Banham & Katsaggelos, 1997; Xie et al., 2025; Li et al., 2023b; Zamfir et al., 2024). Early methods relied on model-based formulations with handcrafted priors, but deep learning has shifted the field toward data-driven approaches, including regression-based (Lim et al., 2017; Lai et al., 2017; Liang et al., 2021; Chen et al., 2021; Li et al., 2023a; Zhang et al., 2024) and generative pipelines (Gao et al., 2023; Wang et al., 2023b; Luo et al., 2023; Yue et al., 2023; Zhao et al., 2024). These methods employ diverse backbones: convolutional networks for local structures (Dong et al., 2015; Zhang et al., 2017b;a; Wang et al., 2018), MLPs and state space models for channel or sequential dependencies (Tu et al., 2022; Guo et al., 2024a; Zhu et al., 2024; Gu & Dao, 2023; Dao & Gu, 2024; Tang et al., 2025a), and Transformers for long-range interactions (Liang et al., 2021; Ren et al., 2023; Li et al., 2023a; Zamir et al., 2022; Dosovitskiy et al., 2020; Liu et al., 2023; Shi et al., 2025), achieving promising results. Despite these advances, most IR solutions remain degradation-specific, addressing tasks such as denoising (Zhang et al., 2019), dehazing (Wu et al., 2021), deraining (Jiang et al., 2020), or deblurring (Kong et al., 2023), motivating the need for unified frameworks that generalize across diverse degradations while remaining efficient.

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Degradation-agnostic Image Restoration. While training task-specific models for individual degradations can be effective, it is impractical to maintain separate models for each corruption. Real-world images often suffer from mixed degradations, making independent treatment infeasible, and task-specific approaches further increase computational and storage costs, amplifying their environmental footprint. To overcome these limitations, the emerging field of degradation-agnostic IR focuses on single-blind models capable of handling multiple degradation types simultaneously (Zamfir et al., 2025; Zeng et al., 2025; Zheng et al., 2024b). For example, AirNet (Li et al., 2022) achieves blind All-in-One image restoration by using contrastive learning to derive degradation representations from corrupted images, which are then leveraged to reconstruct clean images. Building on this, IDR (Zhang et al., 2023) tackles the problem by decomposing degradations into fundamental physical components and applying a two-stage meta-learning strategy. More recently, the extra learnable prompt-based paradigm (Potlapalli et al., 2024; Wang et al., 2023a; Li et al., 2023c; Tian et al., 2025) has introduced a visual prompt learning module, enabling a single model to better handle diverse degradation types by leveraging the discriminative capacity of learned visual prompts. Extending this idea, some works further model prompts from a frequency perspective (Cui et al., 2025) or propose more complex architectures with additional datasets (Dudhane et al., 2024). However, visual prompt modules often result in increased training time and decreased efficiency (Cui et al., 2025). Meanwhile, inspired by recent advances in self-supervised learning, several works (Wu et al., 2021; Chen et al., 2022c) have explored contrastive objectives to enhance low-level representations, though mainly within single-task IR scenarios. For the degradation-agnostic setting (Jiang et al., 2025; Li et al., 2022; Chen et al., 2025b; Zhang et al., 2025), the most recent DA-RCOT (Tang et al., 2025b) introduces a contrastive loss applied to residual feature space, illustrating that contrastive signals can also benefit unified IR models. In contrast, our work aims to improve the model’s ability to capture representative degradation cues within the SPD space without relying on heavy or complex prompt designs. Our goal in this work is to develop a degradation-agnostic image restorer that remains both computationally efficient and environmentally sustainable.

3 PRELIMINARY: DEGRADATION-AWARE ARCHITECTURES FOR IR

153
154

Image Degradation and Restoration. Image restoration seeks to recover a clean image \mathbf{x} from a degraded observation \mathbf{y} :

155
$$\mathbf{y} = \mathcal{D}(\mathbf{x}) + \mathbf{n}, \quad (1)$$

156
157
158
159
160
161
where $\mathcal{D}(\cdot)$ denotes a degradation operator and \mathbf{n} noise. Real-world degradations are diverse—additive (e.g., Gaussian noise, rain: $\mathbf{y} = \mathbf{x} + \mathbf{n}$), multiplicative (e.g., haze, speckle: $\mathbf{y} = \mathbf{x} \cdot \mathbf{m}$), or convolutional (e.g., blur, super-resolution: $\mathbf{y} = \mathbf{k} * \mathbf{x} + \mathbf{n}$) (He et al., 2025). These factors often co-occur and are spatially variant (Zhai et al., 2023), forming compound pipelines:

160
$$\mathbf{y} = \mathcal{D}_3(\mathcal{D}_2(\mathcal{D}_1(\mathbf{x}))) + \mathbf{n}. \quad (2)$$

161
Such complexity demands models that preserve local details while reasoning about global structures.

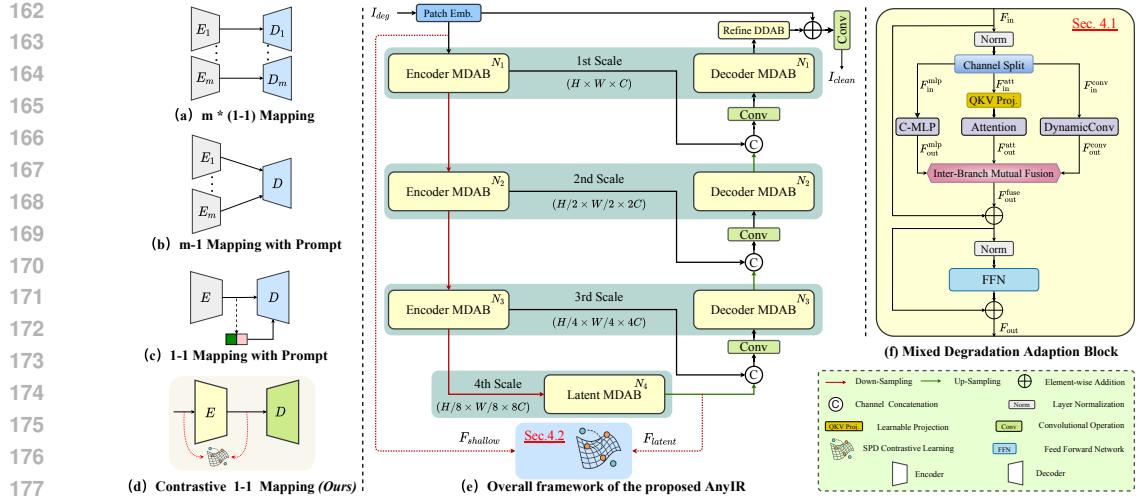


Figure 2: (a)-(c): The most adopted all-in-one image restoration encoder-decoder pipelines. (d): The toy illustration of our SPD contrastive pipeline. (e): The overall framework of the proposed MIRAGE : *i.e.*, a convolutional patch embedding, a U-shape encoder-decoder main body, an extra refined block, and the proposed SPD contrastive learning algorithm. (f): Structure of each mixed degradation adaptation block (MDAB).

Architectural Biases for Degradation Modeling. Deep networks embody distinct inductive biases: *CNNs* capture local spatial patterns: $yp = \sum_i i \in \mathcal{N}(p) w_i \cdot \mathbf{x}_i$, effective for uniform or spatially invariant degradations. *Transformers* exploit global self-attention: $yi = \sum_j \alpha_{ij} \cdot \mathbf{V}_j$, well-suited for non-uniform, structured degradations (*e.g.* haze, patterned noise). *MLPs*, especially token-mixing forms, apply flexible position-wise mappings: $\mathbf{y} = \mathbf{W}_2 \cdot \phi(\mathbf{W}_1 \cdot \mathbf{x})$, though with weak spatial priors.

Each paradigm shows strengths yet clear limitations—*CNNs* excel in local fidelity, *Transformers* in global reasoning, and *MLPs* in flexible feature interactions, but lack inductive structure. Alone, they are insufficient for complex degradations and often parameter-heavy. Their complementarity motivates unified, degradation-aware architectures that leverage all three for robust IR in the wild.

4 THE PROPOSED MIRAGE

The design of MIRAGE is guided by two empirical observations. (i) Attention features consistently exhibit low-rank channel redundancy across scales (Fig. 3), indicating that a non-trivial portion of the representational capacity can be reassigned without loss of expressiveness. (ii) Different degradations favor complementary inductive biases, *i.e.*, local texture sensitivity, global contextual aggregation, and channel-statistical modulation. These observations motivate a principled partition of feature channels into convolutional, attention, and MLP pathways, allowing each subspace to specialize in the bias it is best suited for while maintaining overall model compactness. In parallel, the depth-asymmetric covariance structures of shallow and latent representations provide a natural basis for cross-layer alignment, for which the SPD formulation offers a geometry-preserving representation.

Prior works either train a separate model per degradation (Fig. 2a), adopt multi-encoder-single-decoder designs that inflate parameters (Fig. 2b), or rely on large-scale prompt-based models with visual/textual cues (Fig. 2c). In contrast, we propose a simple yet effective mixed-backbone architecture (Fig. 2d), which already forms a strong restoration baseline (Sec. 4.1) and is further enhanced by cross-layer contrastive learning in SPD space between shallow and latent features (Sec. 4.2).

4.1 MIXED DEGRADATION ADAPTATION BLOCK FOR DEGRADATION-AGNOSTIC IR

Redundancy in MHAs Opens Opportunities for Hybrid Architectures. Redundancy has long been recognized as a fundamental limitation in multi-head self-attention (MHA), the core building block of Transformers, in both NLP and vision domains (Nguyen et al., 2022b;a; Xiao et al., 2024; Brödermann et al., 2025; Wang et al., 2022; Venkataraman et al., 2024).

216	Algorithm 1 Mixed Parallel Degradation Adaptation	
217		
218	Require: $F_{\text{in}}^{\text{att}}$, $F_{\text{in}}^{\text{conv}}$, $F_{\text{in}}^{\text{mlp}}$	▷ Input features from three branches
219	Ensure: F_{out}	▷ Final fused output
220	[Att] Attention Path	
221	1: $Q, K, V \leftarrow \text{Linear}(F_{\text{in}}^{\text{att}})$	▷ Projection to attention tokens
222	2: $F_{\text{out}}^{\text{att}} \leftarrow \text{Softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$	▷ Multi-head self-attention
223	[Conv] Dynamic Convolution Path	
224	3: $F' \leftarrow \text{Conv1x1}(\text{Norm}(F_{\text{in}}^{\text{conv}}))$	▷ Normalization and expansion
225	4: $\gamma, \beta, \alpha \leftarrow \text{Split}(F')$	▷ Gating, intermediate, convolutional paths
226	5: $\alpha' \leftarrow \text{DynamicDepthwiseConv}(\alpha)$	▷ Content-adaptive depthwise conv
227	6: $\hat{F} \leftarrow \sigma(\gamma/\tau) \cdot \text{Concat}(\beta, \alpha')$	▷ Gated local enhancement
228	7: $F_{\text{out}}^{\text{conv}} \leftarrow \text{Conv1x1}(\hat{F}) + F_{\text{in}}^{\text{conv}}$	▷ Residual projection
229	[MLP] MLP Path	
230	8: $F_{\text{out}}^{\text{mlp}} \leftarrow \text{MLP}(F_{\text{in}}^{\text{mlp}})$	▷ Channel-wise transformation brings more non-linearity
231	[Fusion] Inter-Branch Mutual Fusion	
232	9: $F_{\text{out}}^{\text{att}'} \leftarrow F_{\text{out}}^{\text{att}} + \lambda_{\text{att}} \cdot \sigma(F_{\text{out}}^{\text{conv}} + F_{\text{out}}^{\text{mlp}})$	▷ Fuse conv and MLP into attention
233	10: $F_{\text{out}}^{\text{conv}'} \leftarrow F_{\text{out}}^{\text{conv}} + \lambda_{\text{conv}} \cdot \sigma(F_{\text{out}}^{\text{att}} + F_{\text{out}}^{\text{mlp}})$	▷ Fuse attention and MLP into conv
234	11: $F_{\text{out}}^{\text{mlp}'} \leftarrow F_{\text{out}}^{\text{mlp}} + \lambda_{\text{mlp}} \cdot \sigma(F_{\text{out}}^{\text{att}'} + F_{\text{out}}^{\text{conv}'})$	▷ Fuse attention and conv into MLP
235	Output Projection	
236	12: $F_{\text{out}}^{\text{fuse}} \leftarrow \text{Project}(\text{Concat}(F_{\text{out}}^{\text{att}'}, F_{\text{out}}^{\text{conv}'}, F_{\text{out}}^{\text{mlp}'}))$	▷ Final unified representation
237	13: return $F_{\text{out}}^{\text{fuse}}$	
238		

Prior studies have shown that not all attention heads contribute equally, *i.e.*, some are specialized and crucial, while others can be pruned with negligible impact. This inherently implies redundancy in the channel dimension, as MHA outputs are concatenated along this axis. To empirically verify this redundancy in the context of IR, we analyze intermediate features from a lightweight attention-only model (details in the Appendix Aa). Specifically, we compute cumulative explained variance via PCA and normalized singular value spectra via SVD across multiple feature scales. As shown in Fig. 3(a), earlier scales (*e.g.*, 1st Scale) need far fewer principal components to retain most variance, suggesting high redundancy.

Fig. 3(b) further supports this, with a sharper singular value decay at shallower stages, indicating stronger low-rank structure in channel-wise representations. Even at the deepest stage (*e.g.*, 4th Scale), achieving 90% variance requires only 31 of 192 components ($\approx 16\%$), confirming redundancy persists throughout.

This insight motivates a departure from traditional head/channel pruning. Instead of discarding redundant capacity, we propose to *repurpose* it by splitting the channel dimension into three parts and feeding them into distinct architectural branches, *i.e.*, attention, convolution, and MLP. This hybrid formulation leverages complementary inductive biases and makes full use of available representational space, offering a principled and efficient alternative to the previous pure MSA-based designs.

Parallel Design Brings More Efficiency. As shown in Lines 1–8 of Alg. 1, we instantiate this idea through a structurally parallel design that simultaneously exploits complementary inductive biases. As illustrated in Fig. 2(f), the input feature $F_{\text{in}} \in \mathbb{R}^{h \times w \times c}$ is evenly partitioned along the channel dimension into three sub-tensors (*i.e.*, $F_{\text{in}}^{\text{att}}$, $F_{\text{in}}^{\text{conv}}$, and $F_{\text{in}}^{\text{mlp}}$), which are then processed in parallel by attention, convolution, and MLP branches. Each branch operates only on its allocated fraction of channels, substantially reducing computational cost, while its architectural heterogeneity enriches the

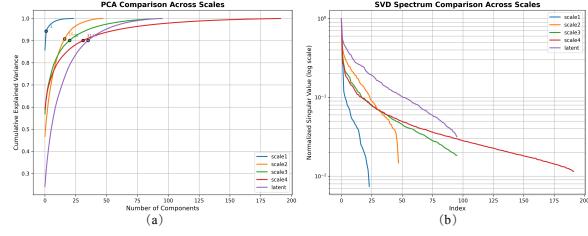


Figure 3: Channel redundancy analysis across multiple feature scales. (a) Cumulative explained variance curves from PCA applied to the channel dimension of features from 1–4 scales and one latent scale. (b) Normalized singular value spectra (in log scale) of the same features via SVD. Latent feature in both plots means the channel-wise projected 4th Scale feature.

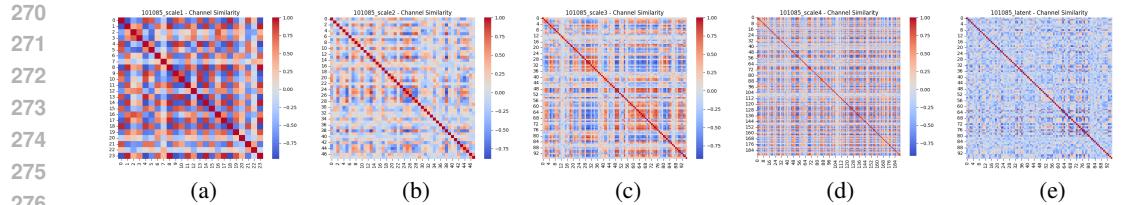


Figure 4: (a)-(d): The channel-wise similarity matrix from the 1st Scale ($H \times W \times C$) to the 4th Scale ($H/8 \times W/8 \times 8C$). (e): The channel-wise similarity matrix of (d) after channel-wise projection.

representational space. This parallel decomposition achieves a favorable balance between efficiency and expressiveness, in contrast to prior designs that rely on purely attention-based processing.

Inter-Branch Mutual Fusion Injects Expressivity Before FFN. While the parallel design improves efficiency and modularity, it reduces interaction across branches. To mitigate this, Lines 9–13 of Alg. 1 introduce an inter-branch fusion mechanism, where each branch is enhanced via gated aggregation of the rest, modulated by learnable coefficients λ . This introduces cross-path context blending, reinforcing feature complementarity before unification, forming an effective pre-FFN encoder.

Compared to the attention-only models, the fused output in Alg. 1 introduces richer interactions. This enhances the model’s ability to fit complex degradation mappings, making it more suitable for mixed or ambiguous degradations. Subsequently, layer normalization, a feed-forward network (FFN), and a residual connection are applied: $F_{\text{out}} = \text{FFN}(\text{Norm}(F_{\text{out}}^{\text{fuse}})) + F_{\text{out}}^{\text{fuse}}$. This sequence stabilizes feature distributions and further boosts expressiveness.

4.2 SHALLOW-LATENT CONTRASTIVE LEARNING VIA SPD MANIFOLD ALIGNMENT

The unified IR model requires a single backbone to process degradations that depend on fundamentally different representational levels. Shallow layers primarily encode degradation-specific, fine-grained structures, whereas deeper layers become more semantic and statistically stable. This inherent depth asymmetry introduces representation drift when multiple degradations share the same feature space, motivating a mechanism that explicitly enforces cross-stage consistency. We therefore treat shallow and latent features as complementary views of the underlying signal and align them to stabilize the shared representation space, thereby improving generalization across heterogeneous degradations.

Shallow-Latent Feature Pairs are Naturally Contrastive Pairs. Features extracted at different depths exhibit fundamentally different statistical properties. As shown in Fig. 4, shallow-stage features (e.g., Scale1) present *sparse and decorrelated channel distributions*, while deeper layers (e.g., Scale4) become *increasingly redundant and concentrated*. This trend is quantitatively supported by the effective rank ratio across scales, which increases from only 4.2% (1/24 at 1st Scale) to 16.1% (31/192 at 4th Scale). However, by compressing the deep features through a lightweight MLP, we obtain a latent representation with a notably higher rank ratio of 36.5% (35/96), indicating a more decorrelated and expressive embedding. This structural disparity between sparse, localized shallow features and compressed, semantic latent ones naturally defines a contrastive pairing without requiring augmentation. We leverage this depth-asymmetric contrast to impose consistency across stages, enabling better semantic alignment and stronger representational generalization under complex degradation conditions. *Note that this study is conducted under noise degradation; however, similar trends are consistently observed for other degradations as well.* See the appendix for more details.

SPD Manifold Space Contrastive Learning Leads to More Discriminative Representations. To enhance representation consistency across depth, we introduce a contrastive objective defined over SPD (Symmetric Positive Definite) manifold features. We note that the goal here is not to perform full Riemannian optimization along SPD geodesics. Instead, we adopt a lightweight formulation that retains the key second-order structure of covariance matrices while keeping training stable and efficient. Strict geodesic contrastive learning typically requires repeated log/exp mappings and matrix decompositions, which incur considerable overhead in large low-level vision models. Our approach strikes a practical balance by preserving essential SPD structure before projection. Specifically, in our work, given shallow features $F_{\text{shallow}} \in \mathbb{R}^{C_s \times H \times W}$ and latent features $F_{\text{latent}} \in \mathbb{R}^{C_l \times H' \times W'}$, we first reduce their channel dimensions via 1×1 convolutions. The resulting tensors are reshaped into feature matrices $X_s, X_l \in \mathbb{R}^{C \times N}$ with $N = H \times W$, and their second-order statistics are computed

324
as:

325
326
$$\mathbf{C}_s = \frac{1}{N-1}(\mathbf{X}_s - \mu_s)(\mathbf{X}_s - \mu_s)^\top + \epsilon\mathbf{I}, \quad \mathbf{C}_l = \frac{1}{N'-1}(\mathbf{X}_l - \mu_l)(\mathbf{X}_l - \mu_l)^\top + \epsilon\mathbf{I}, \quad (3)$$
327
328
329
330

331 where μ is the mean across spatial dimensions, and $\epsilon\mathbf{I}$ ensures numerical stability and positive
332 definiteness. The SPD matrices $\mathbf{C}_s, \mathbf{C}_l \in \mathbb{R}^{C \times C}$ are vectorized and projected to a contrastive
333 embedding space via shallow 1-layer MLPs:

334
335
$$z_s = \text{Norm}(W_s \cdot \text{vec}(\mathbf{C}_s)), \quad z_l = \text{Norm}(W_l \cdot \text{vec}(\mathbf{C}_l)), \quad (4)$$
336
337

338 where W_s, W_l are learnable projection layers, and $\text{Norm}(\cdot)$ denotes ℓ_2 -normalization. We then apply
339 an InfoNCE-style contrastive loss to align the shallow and latent embeddings:

340
341
$$\mathcal{L}_{\text{SPD}} = -\log \frac{\exp(\text{sim}(z_s, z_l)/\tau)}{\sum_{z'_l} \exp(\text{sim}(z_s, z'_l)/\tau)}, \quad (5)$$
342
343
344

345 where $\text{sim}(\cdot, \cdot)$ denotes cosine similarity and τ a temperature parameter. Unlike Euclidean contrastive
346 learning, which views features as flat vectors, our SPD-based method preserves second-order channel
347 dependencies, providing richer structural supervision. This regularization aligns local and semantic
348 features across depth, enhances discriminability, and *introduces no additional inference cost*.349
350

5 EXPERIMENTS

351352 We conduct experiments adhering to the protocols of prior general image restoration works (Potlapalli
353 et al., 2024; Zhang et al., 2023) under 5 settings: (a) 3 Degradations), (b) 5 Degradations), (c) Mixed
354 Degradation, (d) Adverse Weather Removal, and (e) Zero-Shot. The implementation and experimental
355 details, and dataset description are provided in the appendix.356
357

5.1 SOTA COMPARISON.

358359
360 **3 Degradations.** We evaluate our method against others listed in Tab. 1, all trained on three degradations: dehazing, deraining, and denoising. MIRAGE consistently outperforms all the comparison
361 methods, even for those with the assistance of language, multi-task, or prompts. Notably, even our
362 **6M** tiny model outperforms our baseline PromptIR by **0.71dB** on average. Our 10M small model
363 achieves the best performance across all the metrics, with **60%** fewer parameters compared MoCE-IR.
364 Compared to DA-RCOT (Tang et al., 2025b), which performs contrastive learning over residual
365 feature space, MIRAGE achieves consistently better restoration quality while using substantially
366 fewer parameters (10M vs. 50M). This highlights the efficiency and effectiveness of our SPD-based
367 cross-layer alignment despite its more compact design.368
369 **5 Degradations.** Extending the 3 tasks with deblurring and low-light enhancement (Li et al., 2022;
370 Zhang et al., 2023), we evaluate our MIRAGE’s performance in a more challenging 5-degradation
371 setting. Tab. 2 shows that MIRAGE -S surpasses PromptIR (Potlapalli et al., 2024), MoCE-IR-
372 S (Zamfir et al., 2025), AdaIR (Cui et al., 2025), and VLU-Net (Zeng et al., 2025) by **1.53dB**,
373 **0.6dB**, **0.48dB**, and **0.57dB** on average, with fewer parameters. Our tiny model (6M) also achieves a
374 second-best average PSNR against MoCE-IR (25M) and surpasses all other methods, including those
375 aided by additional modalities, multi-task learning, or pretraining.376
377 **Mixed Degradations.** To better approximate real-world conditions, we extend OneRestore (Guo
378 et al., 2024b) to cover both diverse single degradations (rain, haze, snow, low light) and composite
379 cases with multiple degradations per image, yielding eleven distinct restoration settings. As shown
380 in Tab. 3, MIRAGE consistently outperforms leading approaches including AirNet (Li et al., 2022),
381 PromptIR (Potlapalli et al., 2024), WGWSNet (Zhu et al., 2023a), WeatherDiff (Özdenizci &
382 Legenstein, 2023), OneRestore (Guo et al., 2024b), and MoCE-IR (Zamfir et al., 2025). Specifically,
383 our Tiny (6M) and Small (10M) models outperform OneRestore (Guo et al., 2024b) (6M) by **0.39**
384 **dB** and **0.86dB** on average. Compared to the recent SOTA MoCE-IR (Zamfir et al., 2025) (11M),
385 our Small model achieves **0.28dB** higher performance with fewer parameters (10M vs. 11M). These
386 results highlight the effectiveness of our method, particularly for complex mixed degradations.387
388 **Adverse Weather Removal.** Following (Valanarasu et al., 2022b; Zhu et al., 2023b), We test our
389 MIRAGE on three challenging deweathering tasks: snow removal, rain streak and fog removal, and

378 Table 1: *Comparison to state-of-the-art on three degradations.* PSNR (dB, \uparrow) and SSIM (\uparrow) metrics
379 are reported on the full RGB images. **Best** performances is highlighted. ‘-’ means unreported results.

380 381 382 383 384 385 386 387 388 389 390	Method	Venue.	Params.	Dehazing		Deraining		Denoising			Average
				SOTS	Rain100L	BSD68 $_{\sigma=15}$	BSD68 $_{\sigma=25}$	BSD68 $_{\sigma=50}$			
BRDNet (Tian et al., 2020)	NN’20	-	23.23	.895	27.42	.895	32.26	.898	29.76	.836	26.34
LPNet (Gao et al., 2019)	CVPR’19	-	20.84	.828	24.88	.784	26.47	.778	24.77	.748	21.26
FDGAN (Dong et al., 2020)	AAAI’20	-	24.71	.929	29.89	.933	30.25	.910	28.81	.868	26.43
DL (Fan et al., 2019)	TPAMI’19	2M	26.92	.931	32.62	.931	33.05	.914	30.41	.861	26.90
MPRNet (Zamir et al., 2021)	CVPR’21	16M	25.28	.955	33.57	.954	33.54	.927	30.89	.880	27.56
AirNet (Li et al., 2022)	CVPR’22	9M	27.94	.962	34.90	.967	33.92	.933	31.26	.888	28.00
NDR (Yao et al., 2024)	TIP’24	28M	25.01	.860	28.62	.848	28.72	.826	27.88	.798	26.18
PromptIR (Potlapalli et al., 2024)	NeurIPS’23	36M	30.58	.974	36.37	.972	33.98	.933	31.31	.888	28.06
MoCE-IR-S (Zamfir et al., 2025)	CVPR’25	11M	30.98	.979	38.22	.983	34.08	.933	31.42	.888	28.16
AdaIR (Cui et al., 2025)	ICLR’25	29M	31.06	.980	38.64	.983	34.12	.935	31.45	.892	28.19
MoCE-IR (Zamfir et al., 2025)	CVPR’25	25M	31.34	.979	38.57	.984	34.11	.932	31.45	.888	28.18
DA-RCOT (Tang et al., 2025b)	TPAMI’25	50M	31.26	.977	38.36	.983	33.98	.934	31.33	.890	28.10
MIRAGE -T (Ours)	2025	6M	31.81	.982	38.44	.983	34.05	.935	31.40	.892	28.14
MIRAGE -S (Ours)	2025	10M	31.86	.981	38.94	.985	34.12	.935	31.46	.891	28.19
Methods with the assistance of vision language, multi-task learning, natural language prompts, or multi-modal control											
DA-CLIP (Luo et al., 2024)	ICLR’24	125M	29.46	.963	36.28	.968	30.02	.821	24.86	.585	22.29
ArtPromptIR (Wu et al., 2024)	ACM MM’24	36M	30.83	.979	37.94	.982	34.06	.934	31.42	.891	28.14
InstructIR-3D (Conde et al., 2024)	ECCV’24	16M	30.22	.959	37.98	.978	34.15	.933	31.52	.890	28.30
UniProcessor (Duan et al., 2025)	ECCV’24	1002M	31.66	.979	38.17	.982	34.08	.935	31.42	.891	28.17
VLU-Net (Zeng et al., 2025)	CVPR’25	35M	30.71	.980	38.93	.984	34.13	.935	31.48	.892	28.23
RamIR (Tang et al., 2025a)	Applied’25	21.7M	31.29	.977	38.16	.981	34.04	.931	31.61	.891	28.19

400 Table 2: *Comparison to state-of-the-art on five degradations.* PSNR (dB, \uparrow) and SSIM (\uparrow) metrics
401 are reported on the full RGB images with (*) denoting general image restorers, others are specialized
402 all-in-one approaches. **Best** performance is highlighted.

403 404	Method	Venue	Params.	Dehazing		Deraining		Denoising		Deblurring	Low-Light	Average
				SOTS	Rain100L	BSD68 $_{\sigma=25}$	GoPro	LOLv1				
NAFNet* (Chen et al., 2022a)	ECCV’22	17M	25.23	.939	35.56	.967	31.02	.883	26.53	.808	20.49	.809
DGUNet* (Mou et al., 2022)	CVPR’22	17M	24.78	.940	36.62	.971	31.10	.883	27.25	.837	21.87	.823
SwinIR* (Liang et al., 2021)	ICCVW’21	1M	21.50	.891	30.78	.923	30.59	.868	24.52	.773	17.81	.723
Restormer* (Zamir et al., 2022)	CVPR’22	26M	24.09	.927	34.81	.962	31.49	.884	27.22	.829	20.41	.806
MambaIR* (Guo et al., 2024a)	ECCV’24	27M	25.81	.944	36.55	.971	31.41	.884	28.61	.875	22.49	.832
DL (Fan et al., 2019)	TPAMI’19	2M	20.54	.826	21.96	.762	23.09	.745	19.86	.672	19.83	.712
Transweather	CVPR’22	38M	21.32	.885	29.43	.905	29.00	.841	25.12	.757	21.21	.792
TAPE (Liu et al., 2022)	ECCV’22	1M	22.16	.861	29.67	.904	30.18	.855	24.47	.763	18.97	.621
AirNet (Li et al., 2022)	CVPR’22	9M	21.04	.884	32.98	.951	30.91	.882	24.35	.781	18.18	.735
IDR (Zhang et al., 2023)	CVPR’23	15M	25.24	.943	35.63	.965	31.60	.887	27.87	.846	21.34	.826
PromptIR (Potlapalli et al., 2024)	NeurIPS’23	36M	30.41	.972	36.17	.970	31.20	.885	27.93	.851	22.89	.829
MoCE-IR-S (Zamfir et al., 2025)	CVPR’25	11M	31.33	.978	37.21	.978	31.25	.884	28.90	.877	21.68	.851
AdaIR (Cui et al., 2025)	ICLR’25	29	30.53	.978	38.02	.981	31.35	.889	28.12	.858	23.00	.845
MoCE-IR (Zamfir et al., 2025)	CVPR’25	25M	30.48	.974	38.04	.982	31.34	.887	30.05	.899	23.00	.852
DA-RCOT (Tang et al., 2025b)	TPAMI’25	50M	30.96	.975	37.87	.980	31.23	.888	28.68	.872	23.25	.836
MIRAGE -T (Ours)	2025	6M	31.35	.979	38.24	.983	31.35	.891	27.98	.850	23.11	.854
MIRAGE -S (Ours)	2025	10M	31.45	.980	38.92	.985	31.41	.892	28.10	.858	23.59	.858
Methods with the assistance of natural language prompts or multi-task learning												
InstructIR-5D (Conde et al., 2024)	ECCV’24	16M	36.84	.973	27.10	.956	31.40	.887	29.40	.886	23.00	.836
ArtPromptIR (Wu et al., 2024)	ACM MM’24	36M	29.93	.908	22.09	.891	29.43	.843	25.61	.776	21.99	.811
VLU-Net (Zeng et al., 2025)	CVPR’25	35M	30.84	.980	38.54	.982	31.43	.891	27.46	.840	22.29	.833
RamIR (Tang et al., 2025a)	Applied’25	21.7M	31.09	.978	37.56	.979	31.44	.886	28.82	.878	22.02	.828

raindrop removal. Tab. 4 shows the comparison of our MIRAGE and other state-of-the-art methods. MIRAGE consistently outperforms existing methods across almost all datasets except PSNR for RainDrop. The performance gains over multiple weather degradations demonstrate the effectiveness of MIRAGE in handling diverse weather conditions. Especially, **0.30dB** improvement on PSNR over Histoformer (Sun et al., 2024) and **1.05dB** improvements over MPPerceiver (Ai et al., 2024).

Zero-Shot Setting. We evaluate our method’s generalization under a challenging zero-shot setting with real-world underwater images. As shown in Tab. 5, MIRAGE -S achieves 17.29 dB and 0.773 SSIM, surpassing MoCE-IR (Zamfir et al., 2025) by **+1.38dB** PSNR, while being more compact. Importantly, our model never sees underwater data during training, yet our adaptive modeling not only fits mixed degradations but also transfers robustly to unseen conditions. **Besides, we also followed**

432 Table 3: *Comparison to state-of-the-art on composited degradations.* PSNR (dB, \uparrow) and SSIM (\uparrow)
 433 are reported on the full RGB images. Our method consistently outperforms even larger models, with
 434 favorable results in composited degradation scenarios.

Method	Params.	CDD11-Single				CDD11-Double				CDD11-Triple				Avg.											
		Low (L)	Haze (H)	Rain (R)	Snow (S)	L+H	L+R	L+S	H+R	H+S	L+H+R	L+H+S													
AirNet	9M	24.83	.778	24.21	.951	26.55	.891	26.79	.919	23.23	.779	22.82	.710	.723	22.21	.868	23.29	.901	21.80	.708	22.24	.725	23.75	.814	
PromptIR	36M	26.32	.805	26.10	.969	31.56	.946	31.53	.960	24.49	.789	25.05	.771	24.51	.761	24.54	.924	23.70	.925	23.74	.752	23.33	.747	25.90	.850
WGWSNet	26M	24.39	.774	27.90	.982	33.15	.964	34.43	.973	24.27	.800	25.06	.772	24.60	.765	27.23	.955	27.65	.960	23.90	.772	23.97	.771	26.96	.863
WeatherDiff	83M	23.58	.763	21.99	.904	24.85	.885	24.80	.888	21.83	.756	22.69	.730	22.12	.707	21.25	.864	21.99	.868	21.23	.716	21.04	.698	22.49	.799
OneRestore	6M	26.48	.826	32.52	.990	33.40	.964	34.31	.973	25.79	.822	25.58	.799	25.19	.789	29.99	.957	30.21	.964	24.78	.788	24.90	.791	28.47	.878
MoCE-IR	11M	27.26	.824	32.66	.990	34.31	.970	35.91	.980	26.24	.817	26.25	.800	26.04	.793	29.93	.964	30.19	.970	25.41	.789	25.39	.790	29.05	.881
MIRAGE (ours)	6M	27.13	.830	32.39	.989	34.23	.969	35.57	.978	26.04	.823	26.21	.807	26.07	.799	29.49	.962	29.72	.967	25.17	.793	25.41	.793	28.86	.883
MIRAGE (ours)	10M	27.41	.833	33.12	.992	34.66	.971	35.98	.981	26.55	.828	26.53	.810	26.33	.803	30.32	.965	30.27	.969	25.59	.801	25.86	.799	29.33	.887

444 Table 4: Comparisons for 4-task adverse weather removal. Missing values are denoted by '-'.

Method	Venue	Snow100K-S		Snow100K-L		Outdoor-Rain		RainDrop		Average	
		PSNR	SSIM								
All-in-One (Li et al., 2020)	CVPR'20	—	—	28.33	.882	24.71	.898	31.12	.927	28.05	.902
TransWeather (Valanarasu et al., 2022a)	CVPR'22	32.51	.934	29.31	.888	28.83	.900	30.17	.916	30.20	.909
Chen et al. (Chen et al., 2022b)	CVPR'22	34.42	.947	30.22	.907	29.27	.915	31.81	.931	31.43	.925
WGWSNet (Zhu et al., 2023a)	CVPR'23	34.31	.946	30.16	.901	29.32	.921	32.38	.938	31.54	.926
WeatherDiff ₆₄ (Özdenizci & Legenstein, 2023)	TPAMI'23	35.83	.957	30.09	.904	29.64	.931	30.71	.931	31.57	.931
WeatherDiff ₁₂₈ (Özdenizci & Legenstein, 2023)	TPAMI'23	35.02	.952	29.58	.894	29.72	.922	29.66	.923	31.00	.923
AWRCP (Ye et al., 2023)	ICCV'23	36.92	.965	31.92	.934	31.39	.933	31.93	.931	33.04	.941
GridFormer (Wang et al., 2024)	IJCV'24	37.46	.964	31.71	.923	31.87	.933	32.39	.936	33.36	.939
MPceiver (Ai et al., 2024)	CVPR'24	36.23	.957	31.02	.916	31.25	.925	33.21	.929	32.93	.932
DTPM (Ye et al., 2024)	CVPR'24	37.01	.966	30.92	.917	30.99	.934	32.72	.944	32.91	.940
Histoformer (Sun et al., 2024)	ECCV'24	37.41	.966	32.16	.926	32.08	.939	33.06	.944	33.68	.944
MIRAGE -S (Ours)	2025	37.97	.973	32.33	.929	32.82	.949	32.78	.945	33.98	.949

457 Table 5: *Zero-Shot Cross-Domain Underwater Image Enhancement Results.*458 Table 6: *Complexity Analysis.* FLOPs are computed
 459 on an image of size 224×224 using a NVIDIA Tesla
 A100 (40G) GPU.

Method	PSNR (\uparrow) SSIM (\uparrow)	Method	PSNR (\uparrow) Memory (\downarrow) Params. (\downarrow) FLOPs (\downarrow)
SwinIR (Liang et al., 2021)	15.31 .740	AirNet (Li et al., 2022)	31.20 4829M 8.93M 238G
NAFNet (Chu et al., 2022)	15.42 .744	PromptIR (Potlapalli et al., 2024)	32.06 9830M 35.59M 132G
Restormer (Zamir et al., 2022)	15.46 .745	IDR (Zhang et al., 2023)	- 4905M 15.34M 98G
AirNet (Li et al., 2022)	15.46 .745	AdaIR (Cui et al., 2025)	- 9740M 28.79M 124G
IDR (Zhang et al., 2023)	15.58 .762	MoCE-IR-S (Zamfir et al., 2025)	32.51 4263M 11.48M 37G
PromptIR (Potlapalli et al., 2024)	15.48 .748	MoCE-IR (Zamfir et al., 2025)	32.73 6654M 25.35M 75G
MoCE-IR (Zamfir et al., 2025)	15.91 .765		
MIRAGE -T (Ours)	17.29 .773	MIRAGE -T (Ours)	32.77 3729M 6.21M 16G
MIRAGE -S (Ours)	32.91	MIRAGE -S (Ours)	4810M 9.68M 27G

468 the same experimental setting introduced by UniRestore Chen et al. (2025a) for the generalization
 469 ability evaluation. The results shown in Sec. C.5 indicates our method can also outperform the
 470 diffusion-based methods, further validating the effectiveness of our method. Meanwhile, the
 471 real-world evaluation presented in Tab. E shows that MIRAGE generalizes reliably to real-world,
 472 camera-captured degradations.

473 **Efficiency Comparison.** Tab. 6 compares PSNR, memory, parameters, and FLOPs. Our Tiny model
 474 (MIRAGE -T), with only 6.21M parameters and 16G FLOPs, delivers the best efficiency–performance
 475 trade-off, outperforming all prior methods, including larger models like PromptIR (Potlapalli et al.,
 476 2024) and MoCE-IR-S (Zamfir et al., 2025). It surpasses MoCE-IR-S by **+0.26 dB** while using less
 477 than half the computation, and even our Small variant (MIRAGE -S) exceeds full MoCE-IR in both
 478 PSNR (**+0.18dB**) and FLOPs (27G vs. 75G). These results confirm that our design achieves strong
 479 restoration quality without compromising efficiency.

480 **Visual Comparison.** MIRAGE effectively restores fine structural details and reliably suppresses
 481 subtle visual artifacts across diverse and unseen degradations (Fig. 1 and appendix).

482 5.2 ABLATION ANALYSIS & DISCUSSION

483 **Components ablation.** Tab. 7 shows starting from an attention-only setting (32.23 dB, 19.89M), we
 484 progressively integrate each module while reducing complexity. Removing the dynamic convolution

branch (*w/o DynamicConv*) causes a 0.56 dB drop, indicating its importance for local spatial modeling. The channel-wise MLP (*w/o C-MLP*) also plays a critical role, with a 0.38 dB performance loss. Replacing gated fusion with naive concatenation (*w/o Fusion*) leads to a further 0.20 dB drop, confirming that explicit feature integration is more effective. On the regularization side, removing contrastive learning (*w/o CL & SPD*) or replacing SPD with Euclidean alignment degrades performance by 0.14 dB and 0.24 dB, indicating that structure-agnostic contrastive learning can misguide optimization, while manifold-aware alignment provides consistent benefits. Overall, each component contributes to the final performance. Our full model offers the best balance between accuracy and efficiency with only 6.21M parameters and 32.77 dB PSNR.

Why shallow-latent Contrastive Alignment Matters.

Different degradations rely on different feature levels: denoising and deraining benefit from shallow, texture-rich features, while dehazing and low-light enhancement require deeper semantic features; deblurring needs both. This heterogeneity makes unified modeling challenging. We therefore introduce contrastive alignment between shallow and latent stages to encourage semantic coordination. When shallow features dominate (*e.g.*, denoising), alignment guides latent features to be more task-relevant; when latent features dominate (*e.g.*, dehazing), shallow features inherit semantic consistency (Bertasius et al., 2015). Fig. 5 validates that contrastive alignment improves shallow-latent correlation, validating its necessity for cross-degradation generalization.

Why Euclidean Fails and Why SPD Works? (Deraining Case Study)

Euclidean contrastive learning collapses shallow-latent alignment by enforcing indiscriminate similarity, reducing both diagonal and off-diagonal terms to trivial constants, and erasing task cues. SPD, by aligning covariance matrices on a Riemannian manifold, preserves second-order dependencies and guides updates along meaningful directions. In the deraining case (Figure 6), Euclidean CL degenerates into near-constant similarity (off-diag 0.00237, ratio 0.99), while SPD maintains diagonal dominance and non-trivial off-diagonal structure (0.0787, ratio 0.149), producing coherent patterns.

6 CONCLUSION

We presented MIRAGE, an efficient framework for degradation-agnostic image restoration that achieves a favorable balance between robustness and efficiency. Through channel-wise functional decomposition, the model repurposes redundant capacity into convolution-, attention-, and MLP-based branches, enabling complementary modeling of local textures, global context, and channel-wise statistics. To further enhance cross-degradation generalization, we introduced manifold regularization, aligning shallow and latent features in the SPD manifold space for more consistent and discriminative representations. Extensive experiments across diverse degradations, including mixed and unseen scenarios, demonstrate that MIRAGE achieves state-of-the-art performance. Inspired by the metaphor of a mirage, *i.e.*, revealing the hidden reality beneath visual distortions, our framework learns degradation-agnostic representations by balancing global, local, and channel-wise information, providing a scalable foundation for future research in degradation-agnostic IR.

Table 7: *Ablation Study* of MIRAGE -T under the 3-Degradation Setting with Tiny model.

Ablation	Params.	Results	
		PSNR (dB, \uparrow)	SSIM(\downarrow)
att-only (<i>Ours</i>)	19.89 M	32.23 (-0.54)	.912
w/o DynamicConv	9.43 M	32.21 (-0.56)	.911
w/o C-MLP	7.01 M	32.39 (-0.38)	.913
w/o Fusion (<i>i.e.</i> Cat()-Only)	5.71 M	32.57 (-0.20)	.914
w/o CL & SPD	5.80M	32.63 (-0.14)	.916
w/o SPD (CL Euclidean)	6.10M	32.53 (-0.24)	.914
MIRAGE -T (<i>Full</i>)	6.21M	32.77	.919

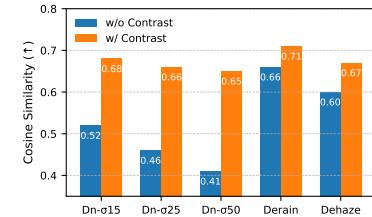


Figure 5: Shallow-latent cosine similarity across degradations. Contrastive alignment improves feature correlation.

Fig. 5 validates that contrastive alignment improves shallow-latent correlation, validating its necessity for cross-degradation generalization.

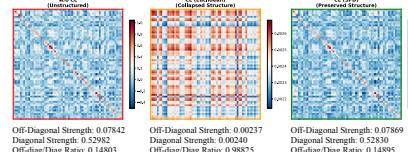


Figure 6: Shallow-latent similarity under three settings: (a) w/o CL (unstructured; off-diag 0.0784, ratio 0.148), (b) Euclidean CL (collapsed; off-diag \approx 0.0024, ratio 0.99), (c) SPD CL (preserved; off-diag 0.0787, ratio 0.149).

540 ETHICS STATEMENT
541

542 Our work focuses on general-purpose image restoration, aiming to improve efficiency and robustness
543 across diverse degradation types. The intended positive impact includes deployment in low-resource
544 or safety-critical scenarios such as mobile photography, remote sensing, medical imaging, and
545 environmental monitoring. At the same time, we recognize that improved restoration techniques
546 could be misused for deceptive content editing or large-scale surveillance. We encourage responsible
547 use of our method and provide our models and code with appropriate licenses and documentation to
548 support transparency and ethical adoption. No personally identifiable or sensitive data were used in
549 this research.

550
551 REPRODUCIBILITY STATEMENT
552

553 We aim to ensure reproducibility and transparency of our results. The MIRAGE framework is imple-
554 mented in PyTorch with standard training protocols and evaluation metrics. Detailed descriptions
555 of the architecture, training settings, datasets, and baselines are provided in the main paper and
556 supplementary material. Upon acceptance, we will release the full code, pretrained models, and
557 instructions for reproducing all reported results, including ablation studies and comparisons. Random
558 seeds and hardware details are also documented to facilitate faithful replication.

559
560 REFERENCES
561

562 Yuang Ai, Huabo Huang, Xiaoqiang Zhou, Jiehang Wang, and Ran He. Multimodal prompt
563 perceiver: Empower adaptiveness, generalizability and fidelity for all-in-one image restoration. In
564 *CVPR*, pp. 25432–25444, 2024. 8, 9

565 Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and
566 hierarchical image segmentation. *IEEE TPAMI*, 33(5):898–916, 2010. 1

567 Mark R Banham and Aggelos K Katsaggelos. Digital image restoration. *IEEE Signal Processing
568 Magazine*, 14(2):24–41, 1997. 3

569 Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani. High-for-low and low-for-high: Efficient
570 boundary detection from deep object features and its applications to high-level vision. In *ICCV*,
571 pp. 504–512, 2015. 10

572 Tim Brödermann, Christos Sakaridis, Yuqian Fu, and Luc Van Gool. Cafuser: Condition-aware
573 multimodal fusion for robust semantic perception of driving scenes. *RAL*, 2025. 4

574 Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and Dacheng Tao. Dehazenet: An end-to-end
575 system for single image haze removal. *IEEE TIP*, 25(11):5187–5198, 2016. 3

576 I Chen, Wei-Ting Chen, Yu-Wei Liu, Yuan-Chun Chiang, Sy-Yen Kuo, Ming-Hsuan Yang, et al.
577 Unirestore: Unified perceptual and task-oriented image restoration model using diffusion prior. In
578 *CVPR*, pp. 17969–17979, 2025a. 9, 6

579 Lei Chen, Qingbo Xiong, Wei Zhang, Xiaoli Liang, Zhihua Gan, Liqiang Li, and Xin He. Multi-
580 modal degradation feature learning for unified image restoration based on contrastive learning.
581 *Neurocomputing*, 616:128955, 2025b. 3

582 Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
583 In *ECCV*, pp. 17–33, 2022a. 8

584 Wei-Ting Chen, Zhi-Kai Huang, Cheng-Che Tsai, Hao-Hsiang Yang, Jian-Jiun Ding, and Sy-Yen Kuo.
585 Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive
586 regularization: Toward a unified model. In *CVPR*, pp. 17632–17641, 2022b. 9

587 Xiang Chen, Jinshan Pan, Kui Jiang, Yufeng Li, Yufeng Huang, Caihua Kong, Longgang Dai, and
588 Zhentao Fan. Unpaired deep image deraining using dual contrastive learning. In *CVPR*, pp.
589 2017–2026, 2022c. 3

594 Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
 595 implicit image function. In *CVPR*, pp. 8628–8638, 2021. 3
 596

597 Xiaojie Chu, Liangyu Chen, and Wenqing Yu. Nafssr: Stereo image super-resolution using nafnet. In
 598 *CVPRWorkshops*, pp. 1239–1248, June 2022. 9
 599

600 Marcos V Conde, Gregor Geigle, and Radu Timofte. Instructir: High-quality image restoration
 601 following human instructions. In *ECCV*, 2024. 8
 602

603 Yuning Cui, Syed Waqas Zamir, Salman Khan, Alois Knoll, Mubarak Shah, and Fahad Shahbaz
 604 Khan. AdaIR: Adaptive all-in-one image restoration via frequency mining and modulation. In
 605 *ICLR*, 2025. 3, 7, 8, 9, 2
 606

607 Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
 608 structured state space duality. In *ICML*, 2024. 3
 609

610 Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou Tang. Compression artifacts reduction by a
 611 deep convolutional network. In *ICCV*, pp. 576–584, 2015. 3
 612

613 Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
 614 attention loses rank doubly exponentially with depth. In *ICML*, pp. 2793–2803. PMLR, 2021. 2
 615

616 Yu Dong, Yihao Liu, He Zhang, Shifeng Chen, and Yu Qiao. Fd-gan: Generative adversarial networks
 617 with fusion-discriminator for single image dehazing. In *AAAI*, 2020. 8, 3
 618

619 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 620 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
 621 is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2020. 3
 622

623 Huiyu Duan, Xiongkuo Min, Sijing Wu, Wei Shen, and Guangtao Zhai. Uniprocessor: a text-induced
 624 unified low-level image processor. In *ECCV*, pp. 180–199. Springer, 2025. 8
 625

626 Akshay Dudhane, Omkar Thawakar, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan,
 627 and Ming-Hsuan Yang. Dynamic pre-training: Towards efficient and scalable all-in-one image
 628 restoration. *arXiv preprint arXiv:2404.02154*, 2024. 3
 629

630 Qingnan Fan, Dongdong Chen, Lu Yuan, Gang Hua, Nenghai Yu, and Baoquan Chen. A general
 631 decoupled learning framework for parameterized image operators. *TPAMI*, 43(1):33–47, 2019. 8
 632

633 Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dynamic scene deblurring with parameter
 634 selective sharing and nested skip connections. In *CVPR*, 2019. 8, 3
 635

636 Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu, Xiantong
 637 Zhen, and Baochang Zhang. Implicit diffusion models for continuous super-resolution. In *CVPR*,
 638 pp. 10021–10030, 2023. 3
 639

640 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
 641 preprint arXiv:2312.00752*, 2023. 3
 642

643 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
 644 baseline for image restoration with state-space model. In *ECCV*, 2024a. 3, 8
 645

646 Yu Guo, Yuan Gao, Yuxu Lu, Ryan Wen Liu, and Shengfeng He. Onerestore: A universal restoration
 647 framework for composite degradation. In *ECCV*, 2024b. 7, 1
 648

649 Chunming He, Yuqi Shen, Chengyu Fang, Fengyang Xiao, Longxiang Tang, Yulun Zhang, Wangmeng
 650 Zuo, Zhenhua Guo, and Xiu Li. Diffusion models in low-level vision: A survey. *TPAMI*, 2025. 3
 651

652 Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
 653 self-exemplars. In *CVPR*, pp. 5197–5206, 2015. 1
 654

655 Hu JiaKui, Zhengjian Yao, Jin Lujia, and Lu Yanye. Universal image restoration pre-training via
 656 degradation classification. In *ICLR*, 2025. 1
 657

648 Junjun Jiang, Zengyuan Zuo, Gang Wu, Kui Jiang, and Xianming Liu. A survey on all-in-one image
 649 restoration: Taxonomy, evaluation and future trends. *IEEE TPAMI*, 2025. 2, 3
 650

651 Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Baojin Huang, Yimin Luo, Jiayi Ma, and Junjun
 652 Jiang. Multi-scale progressive fusion network for single image deraining. In *CVPR*, pp. 8346–8355,
 653 2020. 3

654 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015. 1
 655

656 Lingshun Kong, Jiangxin Dong, Jianjun Ge, Mingqiang Li, and Jinshan Pan. Efficient frequency
 657 domain-based transformers for high-quality image deblurring. In *CVPR*, pp. 5886–5895, 2023. 3

658 Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep laplacian pyramid
 659 networks for fast and accurate super-resolution. In *CVPR*, pp. 624–632, 2017. 3
 660

661 Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised
 662 nets. In *Artificial intelligence and statistics*, pp. 562–570. Pmlr, 2015. 2

663 Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and Dan Feng. Aod-net: All-in-one dehazing
 664 network. In *ICCV*, pp. 4770–4778, 2017. 3
 665

666 Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
 667 Benchmarking single-image dehazing and beyond. *TIP*, 28(1):492–505, 2018. 1

668 Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image restoration
 669 for unknown corruption. In *CVPR*, pp. 17452–17462, 2022. 2, 3, 7, 8, 9, 1
 670

671 Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, and Dacheng Tao.
 672 An underwater image enhancement benchmark dataset and beyond. *TIP*, 29:4376–4389, 2019a. 1
 673

674 Ruoteng Li, Loong-Fah Cheong, and Robby T Tan. Heavy rain image restoration: Integrating physics
 675 model and conditional adversarial learning. In *CVPR*, pp. 1633–1642, 2019b. 1
 676

677 Ruoteng Li, Robby T Tan, and Loong-Fah Cheong. All in one bad weather removal using architectural
 678 search. In *CVPR*, pp. 3175–3185, 2020. 9

679 Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx, Rakesh Ranjan, Radu Timofte, and Luc
 680 Van Gool. Efficient and explicit modelling of image hierarchies for image restoration. In *CVPR*,
 681 pp. 18278–18289, 2023a. 1, 3

682 Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun
 683 Liu, Denis Demandolx, Rakesh Ranjan, Radu Timofte, and Luc Van Gool. LSDIR: A large scale
 684 dataset for image restoration. In *CVPRW*, pp. 1775–1787, 2023b. 3

685 Zilong Li, Yiming Lei, Chenglong Ma, Junping Zhang, and Hongming Shan. Prompt-in-prompt
 686 learning for universal image restoration. *arXiv preprint arXiv:2312.05038*, 2023c. 3
 687

688 Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. SwinIR:
 689 Image restoration using Swin transformer. In *ICCVW*, pp. 1833–1844, 2021. 3, 8, 9
 690

691 Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
 692 networks for single image super-resolution. In *CVPRW*, pp. 1132–1140, 2017. 3

693 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
 694 and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In *ECCV*,
 695 pp. 430–448. Springer, 2024. 6

696 Chang Liu, Mengyi Zhao, Bin Ren, Mengyuan Liu, Nicu Sebe, et al. Spatio-temporal graph diffusion
 697 for text-driven human motion generation. In *BMVC*, pp. 722–729, 2023. 3

698 Lin Liu, Lingxi Xie, Xiaopeng Zhang, Shanxin Yuan, Xiangyu Chen, Wengang Zhou, Houqiang Li,
 699 and Qi Tian. Tape: Task-agnostic prior embedding for image restoration. In *ECCV*, 2022. 8
 700

701 Yun-Fu Liu, Da-Wei Jaw, Shih-Chia Huang, and Jenq-Neng Hwang. Desnownet: Context-aware
 702 deep network for snow removal. *TIP*, 27(6):3064–3073, 2018. 1

702 Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Image restoration
 703 with mean-reverting stochastic differential equations. *arXiv preprint arXiv:2301.11699*, 2023. 3
 704

705 Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling
 706 vision-language models for universal image restoration. In *ICLR*, 2024. 8

707 Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li, and Lei
 708 Zhang. Waterloo exploration database: New challenges for image quality assessment models.
 709 *IEEE TIP*, 26(2):1004–1016, 2016. 1

710

711 David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
 712 natural images and its application to evaluating segmentation algorithms and measuring ecological
 713 statistics. In *ICCV*, pp. 416–423, 2001. 1

714 Chong Mou, Qian Wang, and Jian Zhang. Deep generalized unfolding networks for image restoration.
 715 In *CVPR*, pp. 17399–17410, 2022. 8

716

717 Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
 718 for dynamic scene deblurring. In *CVPR*, pp. 3883–3891, 2017. 1

719

720 Tam Minh Nguyen, Tan Minh Nguyen, Dung DD Le, Duy Khuong Nguyen, Viet-Anh Tran, Richard
 721 Baraniuk, Nhat Ho, and Stanley Osher. Improving transformers with probabilistic attention keys.
 722 In *ICML*, pp. 16595–16621. PMLR, 2022a. 4

723

724 Tan Nguyen, Tam Nguyen, Hai Do, Khai Nguyen, Vishwanath Saragadam, Minh Pham, Khuong Duy
 725 Nguyen, Nhat Ho, and Stanley Osher. Improving transformer with an admixture of attention heads.
 726 *NeurIPS*, 35:27937–27952, 2022b. 4

727

728 OpenAI. Introducing chatgpt. <https://openai.com/blog/chatgpt>, 2022. 11

729

730 OpenAI. Gpt-4 technical report, 2023. 11

731

732 Ozan Özdenizci and Robert Legenstein. Restoring vision in adverse weather conditions with patch-
 733 based denoising diffusion models. *TPAMI*, 45(8):10346–10357, 2023. 7, 9

734

735 Vaishnav Potlapalli, Syed Waqas Zamir, Salman H Khan, and Fahad Shahbaz Khan. Promptir:
 736 Prompting for all-in-one image restoration. *NeurIPS*, 36, 2024. 1, 2, 3, 7, 8, 9, 6

737

738 Rui Qian, Robby T Tan, Wenhan Yang, Jiajun Su, and Jiaying Liu. Attentive generative adversarial
 739 network for raindrop removal from a single image. In *CVPR*, pp. 2482–2491, 2018. 1

740

741 Yanyun Qu, Yizi Chen, Jingying Huang, and Yuan Xie. Enhanced pix2pix dehazing network. In
 742 *CVPR*, pp. 8160–8168, 2019. 3

743

744 Bin Ren, Yahui Liu, Yue Song, Wei Bi, Rita Cucchiara, Nicu Sebe, and Wei Wang. Masked jigsaw
 745 puzzle: A versatile position embedding for vision transformers. In *CVPR*, pp. 20382–20391, 2023.
 746 3

747

748 Bin Ren, Yawei Li, Jingyun Liang, Rakesh Ranjan, Mengyuan Liu, Rita Cucchiara, Luc V Gool,
 749 Ming-Hsuan Yang, and Nicu Sebe. Sharing key semantics in transformer makes efficient image
 750 restoration. *NeurIPS*, 37:7427–7463, 2024. 1, 2

751

752 Wenqi Ren, Si Liu, Hua Zhang, Jinshan Pan, Xiaochun Cao, and Ming-Hsuan Yang. Single image
 753 dehazing via multi-scale convolutional neural networks. In *ECCV*, pp. 154–169, 2016. 3

754

755 William Hadley Richardson. Bayesian-based iterative method of image restoration. *Journal of the
 756 Optical Society of America*, 62(1):55–59, 1972. 3

757

758 Yuan Shi, Bin Xia, Xiaoyu Jin, Xing Wang, Tianyu Zhao, Xin Xia, Xuefeng Xiao, and Wenming
 759 Yang. Vmambair: Visual state space model for image restoration. *TSCVT*, 2025. 3

760

761 Shangquan Sun, Wenqi Ren, Xinwei Gao, Rui Wang, and Xiaochun Cao. Restoring images in adverse
 762 weather conditions via histogram transformer. In *ECCV*, volume 15080, pp. 111–129, 2024. 8, 9, 1

756 Aiqiang Tang, Yan Wu, and Yuwei Zhang. Ramir: Reasoning and action prompting with mamba for
 757 all-in-one image restoration. *Applied Intelligence*, 55(4):258, 2025a. 3, 8
 758

759 Xiaole Tang, Xiang Gu, Xiaoyi He, Xin Hu, and Jian Sun. Degradation-aware residual-conditioned
 760 optimal transport for unified image restoration. *TPAMI*, 2025b. 2, 3, 7, 8
 761

762 Chunwei Tian, Yong Xu, and Wangmeng Zuo. Image denoising using deep cnn with batch renormal-
 763 ization. *Neural Networks*, 2020. 8, 3
 764

765 Xiangpeng Tian, Xiangyu Liao, Xiao Liu, Meng Li, and Chao Ren. Degradation-aware feature
 766 perturbation for all-in-one image restoration. In *CVPR*, pp. 28165–28175, 2025. 3
 767

768 Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
 769 Li. MAXIM: Multi-axis mlp for image processing. In *CVPR*, pp. 5769–5780, 2022. 3
 770

771 Jeya Maria Jose Valanarasu, Rajeev Yasarla, and Vishal M. Patel. Transweather: Transformer-based
 772 restoration of images degraded by adverse weather conditions. In *CVPR*, pp. 2343–2353, 2022a. 9,
 773 1
 774

775 Jeya Maria Jose Valanarasu, Rajeev Yasarla, and Vishal M Patel. TransWeather: Transformer-based
 776 restoration of images degraded by adverse weather conditions. In *CVPR*, pp. 2353–2363, 2022b. 7
 777

778 Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano, Fatih Porikli, and Amirhossein Habibian.
 779 Skip-attention: Improving vision transformers by paying less attention. In *ICLR*, 2024. 2, 4
 780

781 Cong Wang, Jinshan Pan, Wei Wang, Jiangxin Dong, Mengzhu Wang, Yakun Ju, and Junyang Chen.
 782 Promptrestorer: A prompting image restoration method with degradation perception. *NeurIPS*, 36:
 783 8898–8912, 2023a. 3
 784

785 Huadong Wang, Xin Shen, Mei Tu, Yimeng Zhuang, and Zhiyuan Liu. Improved transformer with
 786 multi-head dense collaboration. *TASLP*, 30:2754–2767, 2022. 4
 787

788 Tao Wang, Kaihao Zhang, Ziqian Shao, Wenhan Luo, Bjorn Stenger, Tong Lu, Tae-Kyun Kim, Wei
 789 Liu, and Hongdong Li. Gridformer: Residual dense transformer with grid structure for image
 790 restoration in adverse weather conditions. *IJCV*, 132(10):4541–4563, 2024. 9
 791

792 Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Recovering realistic texture in image
 793 super-resolution by deep spatial feature transform. In *CVPR*, pp. 606–615, 2018. 3
 794

795 Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
 796 null-space model. *ICLR*, 2023b. 3
 797

798 Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
 799 enhancement. *arXiv preprint arXiv:1808.04560*, 2018. 1
 800

801 Wei Wei, Deyu Meng, Qian Zhao, Zongben Xu, and Ying Wu. Semi-supervised transfer learning for
 802 image rain removal. In *CVPR*, pp. 3877–3886, 2019. 3
 803

804 Gang Wu, Junjun Jiang, Kui Jiang, and Xianming Liu. Harmony in diversity: Improving all-in-one
 805 image restoration via multi-task collaboration. In *Proceedings of the 32nd ACM International
 806 Conference on Multimedia*, pp. 6015–6023, 2024. 8
 807

808 Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi Qiao, Zhizhong Zhang, Yuan Xie, and
 809 Lizhuang Ma. Contrastive learning for compact single image dehazing. In *CVPR*, pp. 10551–10560,
 2021. 3
 810

811 Da Xiao, Qingye Meng, Shengping Li, and Xingyuan Yuan. Improving transformers with dynamically
 812 composable multi-head attention. In *ICML*, pp. 54300–54318. PMLR, 2024. 4
 813

814 Chengxing Xie, Xiaoming Zhang, Linze Li, Yuqian Fu, Biao Gong, Tianrui Li, and Kai Zhang. Mat:
 815 Multi-range attention transformer for efficient image super-resolution. *TCSVT*, 2025. 3
 816

817 Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Baining Guo. Learning texture transformer
 818 network for image super-resolution. In *CVPR*, pp. 5791–5800, 2020. 1

810 Mingde Yao, Ruikang Xu, Yuanshen Guan, Jie Huang, and Zhiwei Xiong. Neural degradation
 811 representation learning for all-in-one image restoration. *TIP*, 2024. 8

812

813 Rajeev Yasarla and Vishal M Patel. Uncertainty guided multi-scale residual learning-using a cycle
 814 spinning cnn for single image de-raining. In *CVPR*, pp. 8405–8414, 2019. 3

815

816 Tian Ye, Sixiang Chen, Jinbin Bai, Jun Shi, Chenghao Xue, Jingxia Jiang, Junjie Yin, Erkang Chen,
 817 and Yun Liu. Adverse weather removal with codebook priors. In *ICCV*, pp. 12619–12630, 2023. 9

818

819 Tian Ye, Sixiang Chen, Wenhao Chai, Zhaochu Xing, Jing Qin, Ge Lin, and Lei Zhu. Learning
 820 diffusion texture priors for image restoration. In *CVPR*, pp. 2524–2534, 2024. 9

821

822 Zongsheng Yue, Jianyi Wang, and Chen Change Loy. ResShift: Efficient diffusion model for image
 823 super-resolution by residual shifting. *arXiv preprint arXiv:2307.12348*, 2023. 3

824

825 Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yulun Zhang, and Radu Timofte. See more details:
 826 Efficient image super-resolution by experts mining. In *ICML*. PMLR, 2024. 3

827

828 Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yuedong Tan, Danda Pani Paudel, Yulun Zhang, and
 829 Radu Timofte. Complexity experts are task-discriminative learners for any image restoration. In
 830 *CVPR*, 2025. 2, 3, 7, 8, 9, 1

831

832 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan
 833 Yang, and Ling Shao. Multi-stage progressive image restoration. In *CVPR*, pp. 14821–14831,
 834 2021. 8

835

836 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
 837 Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In *CVPR*, pp.
 838 5728–5739, 2022. 1, 3, 8, 9

839

840 Haijin Zeng, Xiangming Wang, Yongyong Chen, Jingyong Su, and Jie Liu. Vision-language gradient
 841 descent-driven all-in-one deep unfolding networks. In *CVPR*, 2025. 3, 7, 8

842

843 Lujun Zhai, Yonghui Wang, Suxia Cui, and Yu Zhou. A comprehensive review of deep learning-based
 844 real-world image restoration. *Access*, 11:21049–21067, 2023. 3

845

846 He Zhang and Vishal M Patel. Density-aware single image de-raining using a multi-stream dense
 847 network. In *CVPR*, pp. 695–704, 2018. 3

848

849 Jinghao Zhang, Jie Huang, Mingde Yao, Zizheng Yang, Hu Yu, Man Zhou, and Feng Zhao. Ingredient-
 850 oriented multi-degradation learning for image restoration. In *CVPR*, pp. 5825–5835, 2023. 3, 7, 8,
 851 9

852

853 Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
 854 Residual learning of deep cnn for image denoising. *IEEE TIP*, 26(7):3142–3155, 2017a. 3

855

856 Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn denoiser prior for
 857 image restoration. In *CVPR*, pp. 3929–3938, 2017b. 3

858

859 Kai Zhang, Wangmeng Zuo, and Lei Zhang. FFDNet: Toward a fast and flexible solution for
 860 cnn-based image denoising. *IEEE TIP*, 27(9):4608–4622, 2018. 3

861

862 Leheng Zhang, Yawei Li, Xingyu Zhou, Xiaorui Zhao, and Shuhang Gu. Transcending the limit
 863 of local window: Advanced super-resolution transformer with adaptive token dictionary. *arXiv
 864 preprint arXiv:2401.08209*, 2024. 3

865

866 Xu Zhang, Jiaqi Ma, Guoli Wang, Qian Zhang, Huan Zhang, and Lefei Zhang. Perceive-ir: Learning
 867 to perceive degradation better for all-in-one image restoration. *TIP*, 2025. 3

868

869 Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. Residual non-local attention networks
 870 for image restoration. *arXiv preprint arXiv:1903.10082*, 2019. 3

871

872 Mengyi Zhao, Mengyuan Liu, Bin Ren, Shuling Dai, and Nicu Sebe. Denoising diffusion probabilistic
 873 models for action-conditioned 3d motion generation. In *ICASSP*, pp. 4225–4229. IEEE, 2024. 3

864 Dian Zheng, Xiao-Ming Wu, Shuzhou Yang, Jian Zhang, Jian-Fang Hu, and Wei-Shi Zheng. Selective
 865 hourglass mapping for universal image restoration based on diffusion model. In *CVPR*, pp. 25445–
 866 25455, 2024a. [6](#), [7](#)

867 Xu Zheng, Yuanhuiyi Lyu, and Lin Wang. Learning modality-agnostic representation for semantic
 868 segmentation from any modalities. In *ECCV*, pp. 146–165. Springer, 2024b. [3](#)

870 Yuqian Zhou, David Ren, Neil Emerton, Sehoon Lim, and Timothy Large. Image restoration for
 871 under-display camera. In *Proceedings of the ieee/cvf conference on computer vision and pattern
 872 recognition*, pp. 9179–9188, 2021. [7](#)

873 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
 874 mamba: Efficient visual representation learning with bidirectional state space model. *arXiv preprint
 875 arXiv:2401.09417*, 2024. [3](#)

877 Yurui Zhu, Tianyu Wang, Xueyang Fu, Xuanyu Yang, Xin Guo, Jifeng Dai, Yu Qiao, and Xiaowei
 878 Hu. Learning weather-general and weather-specific features for image restoration under multiple
 879 adverse weather conditions. In *CVPR*, pp. 21747–21758, 2023a. [7](#), [9](#), [1](#)

880 Yurui Zhu, Tianyu Wang, Xueyang Fu, Xuanyu Yang, Xin Guo, Jifeng Dai, Yu Qiao, and Xiaowei
 881 Hu. Learning weather-general and weather-specific features for image restoration under multiple
 882 adverse weather conditions. In *CVPR*, pp. 21747–21758, 2023b. [7](#)

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 A EXPERIMENTAL PROTOCOLS
919920 A.1 DATASETS
921922 **3 Degradation Datasets.** For both the All-in-One and single-task settings, we follow the evaluation
923 protocols established in prior works [Li et al. \(2022\)](#); [Potlapalli et al. \(2024\)](#); [Zamfir et al. \(2025\)](#),
924 utilizing the following datasets: For image denoising in the single-task setting, we combine the
925 BSD400 [Arbelaez et al. \(2010\)](#) and WED [Ma et al. \(2016\)](#) datasets, and corrupt the images with
926 Gaussian noise at levels $\sigma \in \{15, 25, 50\}$. BSD400 contains 400 training images, while WED
927 includes 4,744 images. We evaluate the denoising performance on BSD68 [Martin et al. \(2001\)](#) and
928 Urban100 [Huang et al. \(2015\)](#). For single-task deraining, we use Rain100L [Yang et al. \(2020\)](#),
929 which provides 200 clean/rainy image pairs for training and 100 pairs for testing. For single-task
930 dehazing, we adopt the SOTS dataset [Li et al. \(2018\)](#), consisting of 72,135 training images and 500
931 testing images. Under the All-in-One setting, we train a unified model on the combined set of the
932 aforementioned training datasets for 120 epochs and directly test it across all three restoration tasks.
933934 **5 Degradation Datasets.** The 5-degradation setting is built upon the 3-degradation setting, with
935 two additional tasks included: deblurring and low-light enhancement. For deblurring, we adopt the
936 GoPro dataset [Nah et al. \(2017\)](#), which contains 2,103 training images and 1,111 testing images.
937 For low-light enhancement, we use the LOL-v1 dataset [Wei et al. \(2018\)](#), consisting of 485 training
938 images and 15 testing images. Note that for the denoising task under the 5-degradation setting, we
939 report results using Gaussian noise with $\sigma = 25$. The training takes 130 epochs.
940941 **Composed Degradation Datasets.** Regarding the composite degradation setting, we use the
942 CDD11 dataset [Guo et al. \(2024b\)](#). CDD11 consists of 1,183 training images for: (i) 4 kinds of single-
943 degradation types: haze (H), low-light (L), rain (R), and snow (S); (ii) 5 kinds of double-degradation
944 types: low-light + haze (L+h), low-light+rain (L+R), low-light + snow (L+S), haze + rain (H+R), and
945 haze + snow (H+S). (iii) 2 kinds of Triple-degradation type: low-light + haze + rain (L+H+R), and
946 low-light + haze + snow (L+H+S). We train our method for 170 epochs (fewer than 200 epochs than
947 MoCE-IR [Zamfir et al. \(2025\)](#)), and we keep all other settings unchanged.
948949 **Adverse Weather Removal Datasets.** For the deweathering tasks, we follow the experimental setups
950 used in TransWeather [Valanarasu et al. \(2022a\)](#) and WGWSNet [Zhu et al. \(2023a\)](#), evaluating the
951 performance of our approach on multiple synthetic datasets. We assess the capability of MIRAGE
952 across three challenging tasks: snow removal, rain streak and fog removal, and raindrop removal.
953 The training set, referred to as “AllWeather”, is composed of images from the Snow100K [Liu et al. \(2018\)](#),
954 Raindrop [Qian et al. \(2018\)](#), and Outdoor-Rain [Li et al. \(2019b\)](#) datasets. For testing, we
955 evaluate our model on the following subsets: Snow100K-S (16,611 images), Snow100K-L (16,801
956 images), Outdoor-Rain (750 images), and Raindrop (249 images). Same as Histoformer [Sun et al. \(2024\)](#),
957 we train MIRAGE on “AllWeather” with 300,000 iterations.
958959 **Zero-Shot Underwater Image Enhancement Dataset.** For the zero-shot underwater image enhancement
960 setting, we follow the evaluation protocol of DCPT [JiaKui et al. \(2025\)](#) by directly applying
961 our model, trained under the 5-degradation setting, on the UIEB dataset [Li et al. \(2019a\)](#) without
962 any finetuning. UIEB consists of two subsets: 890 raw underwater images with corresponding
963 high-quality reference images, and 60 challenging underwater images. We evaluate our zero-shot
964 performance on the 890-image subset with available reference images.
965966 A.2 IMPLEMENTATION DETAILS
967968 **Implementation Details.** Our MIRAGE framework is designed to be end-to-end trainable, removing
969 the need for multi-stage optimization of individual components. The architecture adopts a robust
970 4-level encoder-decoder structure, with a varying number of Mixed Degradation Attention Blocks
971 (MDAB) at each level—specifically [3, 5, 5, 7] from highest to lowest resolution in the Tiny variant.
972 Following prior works [Potlapalli et al. \(2024\)](#); [Zamfir et al. \(2025\)](#), we train the model for 120
973 epochs with a batch size of 32 in both the 3-Degradation All-in-One and single-task settings. The
974 optimization uses a combination of L_1 and Fourier loss, optimized with Adam [Kingma & Ba \(2015\)](#)
975 (initial learning rate of 2×10^{-4} , $\beta_1 = 0.9$, $\beta_2 = 0.999$) and a cosine decay schedule. During
976 training, we apply random cropping to 128×128 patches, along with horizontal and vertical flipping
977 as data augmentation. All experiments are conducted on a single NVIDIA H200 GPU (140 GB).
978

972 Table A: The details our the tiny and small version of our MIRAGE . FLOPs are computed on an
 973 image of size 224×224 using a NVIDIA Tesla A100 (40G) GPU.
 974

	MIRAGE -T	MIRAGE -S
The Number of the MDAB crosses 4 scales	[3, 5, 5, 7]	[3, 5, 5, 7]
The Input Embedding Dimension	24	30
The FFN Expansion Factor	2	2
The Number of the Refinement Blocks	2	3
Params. (\downarrow)	6.21M	9.68 M
FLOPs (\downarrow)	16 G	27 G

982 Memory usage is approximately 42 GB for the Tiny (*i.e.*, MIRAGE -T) model and 56 GB for the
 983 Small model (*i.e.*, MIRAGE -S).

984 **Model Scaling.** We propose two scaled variants of our MIRAGE , namely Tiny (MIRAGE -T) and
 985 Small (MIRAGE -S). As detailed in Tab. A, these variants differ in terms of the number of MDAB
 986 blocks across scales, the input embedding dimension, the FFN expansion factor, and the number of
 987 refinement blocks.

989 A.3 OPTIMIZATION OBJECTIVES

991 The overall optimization objective of our approach is defined as:

$$992 \mathcal{L}_{\text{total}} = \mathcal{L}_1 + \lambda_{fre} \times \mathcal{L}_{\text{Fourier}} + \lambda_{ctrs} \times \mathcal{L}_{\text{SPD}}. \quad (\text{A})$$

994 Here, $\mathcal{L}_{\text{Fourier}}$ denotes the real-valued Fourier loss computed between the restored image and the
 995 ground-truth image, and \mathcal{L}_{SPD} represents our proposed contrastive learning objective in the SPD
 996 (Symmetric Positive Definite) space.

997 Specifically, we adopt an ℓ_1 loss that adopted in IR tasks [Potlapalli et al. \(2024\)](#); [Zamfir et al. \(2025\)](#);
 998 [Li et al. \(2022\)](#); [Cui et al. \(2025\)](#); [Ren et al. \(2024\)](#), defined as $\mathcal{L}_1 = \|\hat{x} - x\|_1$, to enforce pixel-wise
 999 similarity between the restored image \hat{x} and the ground-truth image x . $\mathcal{L}_{\text{Fourier}}$, as utilized in MoCE-
 1000 IR [Zamfir et al. \(2025\)](#); [Cui et al. \(2025\)](#), to enhance frequency-domain consistency, the real-valued
 1001 Fourier loss, is defined as:

$$1002 \mathcal{L}_{\text{Fourier}} = \|\mathcal{F}_{\text{real}}(\hat{x}) - \mathcal{F}_{\text{real}}(x)\|_1 + \|\mathcal{F}_{\text{imag}}(\hat{x}) - \mathcal{F}_{\text{imag}}(x)\|_1, \quad (\text{B})$$

1003 where \hat{x} and x denote the restored and ground-truth images, respectively. $\mathcal{F}_{\text{real}}(\cdot)$ and $\mathcal{F}_{\text{imag}}(\cdot)$
 1004 represent the real and imaginary parts of the 2D real-input FFT (*i.e.*, rfft2). The final loss is computed
 1005 as the ℓ_1 distance between the real and imaginary components of the predicted and target frequency
 1006 spectra. Same as MoCE-IR [Zamfir et al. \(2025\)](#), λ_{fre} is set to 0.1 throughout our experiments.
 1007 Meanwhile, the \mathcal{L}_{SPD} is defined as in Eq. 3-5 of our main manuscript. More ablation studies regarding
 1008 the proposed \mathcal{L}_{SPD} are provided in Sec. C.3. The temperature parameter τ of the proposed \mathcal{L}_{SPD} is set
 1009 to 0.1 throughout all the experiments.

1010 B PRELIMINARIES ON SPD-BASED FEATURE STATISTICS

1013 This section provides a brief background on the concepts involved in our cross-layer alignment
 1014 strategy. The intention is to supply intuitive context—rather than additional derivations—for second-
 1015 order feature statistics, the SPD structure, and depth-asymmetric representations used in Sec. 4.2.

1016 **Second-order feature statistics.** Raw activations capture local appearance, but the way channels vary
 1017 together often reveals more stable information about degradations. For a feature matrix $X \in \mathbb{R}^{C \times N}$,
 1018 the covariance

$$1019 \mathbf{C} = \frac{1}{N-1} (X - \mu)(X - \mu)^\top$$

1021 summarizes inter-channel relationships. Diagonal entries reflect each channel’s variability, while
 1022 off-diagonal entries describe redundancy and dependence patterns. These structures differ consistently
 1023 across layers and degradations (Fig. 4; Appendix Fig. B), making covariance a compact and
 1024 informative descriptor.

1025 **SPD property of covariance matrices.** Covariance matrices are symmetric and positive definite
 1026 by construction and therefore lie in the SPD set. This structure encodes meaningful geometric

1026
1027
1028
Table B: *Comparison to state-of-the-art for single degradations*. PSNR (dB, \uparrow) and SSIM (\uparrow) metrics
are reported on the full RGB images. **Best** performance is highlighted. Our method excels over prior
works.

(a) Dehazing			(b) Deraining			(c) Denoising on BSD68				
Method	Params.	SOTS	Method	Params.	Rain100L	Method	Params.	$\sigma=15$	$\sigma=25$	$\sigma=50$
DehazeNet	-	22.46 .851	DIDMDN	-	23.79 .773	DnCNN	-	33.89 .930	31.23 .883	27.92 .789
MSCNN	-	22.06 .908	UMR	-	32.39 .921	IRCNN	-	33.87 .929	31.18 .882	27.88 .790
AODNet	-	20.29 .877	SIRR	-	32.37 .926	FFDNet	-	33.87 .929	31.21 .882	27.96 .789
EPDN	-	22.57 .863	MSPFN	-	33.50 .948	BRDNet	-	34.10 .929	31.43 .885	28.16 .794
FDGAN	-	23.15 .921	LPNet	-	23.15 .921	AirNet	9M	34.14 .936	31.48 .893	28.23 .806
AirNet	9M	23.18 .900	AirNet	9M	34.90 .977	PromptIR	36M	34.34 .938	31.71 .897	28.49 .813
PromptIR	36M	31.31 .973	PromptIR	36M	37.04 .979	PromptIR (Reproduce)	36M	34.15 .934	31.50 .894	28.33 .807
MIRAGE (<i>Ours</i>)	6M	31.46 .977	MIRAGE (<i>ours</i>)	6M	37.47 .980	MIRAGE (<i>ours</i>)	6M	34.23 .936	31.60 .896	28.36 .808
MIRAGE (<i>Ours</i>)	10M	31.53 .980	MIRAGE (<i>Ours</i>)	10M	38.01 .982	MIRAGE (<i>Ours</i>)	10M	34.25 .937	31.65 .898	28.38 .810

1038
1039
1040
1041
information: eigenvalues represent correlation strengths, and the matrix as a whole can be interpreted
as a “shape” in channel space. Preserving this structure is important—direct Euclidean operations
may flatten or distort correlation patterns, an effect also reflected in the collapse observed with
Euclidean contrastive learning (Fig. 6).

1042
1043
1044
1045
1046
Representing SPD matrices for comparison. To compare covariance matrices within a contrastive
objective, we vectorize \mathbf{C} and apply a learnable projection. This retains second-order relationships
while mapping them to an embedding space suitable for contrastive learning. Compared to raw
feature vectors, covariance embeddings emphasize structural organization and therefore provide a
more stable alignment signal.

1047
1048
1049
1050
1051
Depth-asymmetric representations. Shallow and latent features naturally exhibit different statistical
behavior: shallow layers respond strongly to local degradations and show pronounced redundancy,
while deeper layers become more decorrelated and semantically aggregated. Their covariance
matrices reflect these differences in a consistent way across degradations, making shallow-latent
pairs complementary views of the same signal and a natural target for alignment.

1052
1053
1054
1055
1056
Intuition behind SPD-based alignment. Aligning covariance-based SPD embeddings focuses on
how channels interact, rather than on individual activation values. This yields supervision that is less
sensitive to local noise and more reflective of the underlying representation structure. Encouraging
shallow and latent features to share similar second-order statistics stabilizes the shared feature space
required for diverse degradations.

1057
1058
1059
1060
Overall, covariance provides a compact view of channel interactions, the SPD structure preserves
meaningful second-order relations, and depth-asymmetric covariance patterns naturally motivate the
alignment strategy formalized in Sec. 4.2.

C MORE METHOD DETAILS & SUPPLEMENTARY EXPERIMENTS

C.1 1 DEG. COMPARISON

1061
1062
1063
1064
1065
1066
Single-Degradation. In Tab. B, we compare our method against state-of-the-art approaches on single
1067 degradation tasks. For dehazing on SOTS dataset, we compare with DehazeNet Cai et al. (2016),
1068 MSCNN Ren et al. (2016), AODNet Li et al. (2017), EPDN Qu et al. (2019), FDGAN Dong et al.
1069 (2020), and all-in-one methods AirNet Li et al. (2022) and PromptIR Potlapalli et al. (2024). Our 6M
1070 parameter model achieves competitive performance (31.46 dB PSNR, 0.977 SSIM), while our 10M
1071 model establishes new state-of-the-art results (31.53 dB PSNR, 0.980 SSIM), outperforming the much
1072 larger PromptIR (36M parameters). For deraining on Rain100L, we evaluate against DIDMDN Zhang
1073 & Patel (2018), UMR Yasarla & Patel (2019), SIRR Wei et al. (2019), MSPFN Jiang et al. (2020),
1074 LPNet Gao et al. (2019), AirNet Li et al. (2022), and PromptIR Potlapalli et al. (2024). Our method
1075 significantly outperforms all baselines, with our 10M model achieving 38.01 dB PSNR and 0.982
1076 SSIM. For denoising on BSD68, we compare with classical methods DnCNN Zhang et al. (2017a),
1077 IRCNN Zhang et al. (2017b), FFDNet Zhang et al. (2018), BRDNet Tian et al. (2020), and recent
1078 all-in-one approaches AirNet Li et al. (2022) and PromptIR Potlapalli et al. (2024). Our method
1079 consistently outperforms all competitors across different noise levels ($\sigma=15, 25, 50$), demonstrating
superior performance with significantly fewer parameters than existing all-in-one methods.

1080 **Algorithm A** DynamicDepthwiseConv

1081 **Require:** $\alpha \in \mathbb{R}^{B \times C \times H \times W}$ ▷ Input feature map

1082 **Ensure:** $\alpha' \in \mathbb{R}^{B \times C \times H \times W}$ ▷ Output after dynamic depthwise conv

1083 **[Step 1] Generate Dynamic Kernel**

1084 1: $K \leftarrow \text{AdaptiveAvgPool2D}(\alpha)$ ▷ Global context pooling

1085 2: $K \leftarrow \text{Conv2D}(K, 1 \times 1, \text{out_ch} = C)$ ▷ Linear projection

1086 3: $K \leftarrow \text{GELU}(K)$ ▷ Non-linear activation

1087 4: $K \leftarrow \text{Conv2D}(K, 1 \times 1, \text{out_ch} = C \cdot k^2)$ ▷ Generate kernel weights

1088 5: $K \leftarrow \text{Reshape}(K, [B \cdot C, 1, k, k])$ ▷ Form depthwise filters

1089 **[Step 2] Apply Depthwise Convolution**

1090 6: $\alpha_{\text{flat}} \leftarrow \text{Reshape}(\alpha, [1, B \cdot C, H, W])$ ▷ Prepare for grouped conv

1091 7: $\alpha'_{\text{flat}} \leftarrow \text{Conv2D}(\alpha_{\text{flat}}, K, \text{groups} = B \cdot C, \text{padding} = k \div 2)$ ▷ Apply dynamic depthwise conv

1092 8: $\alpha' \leftarrow \text{Reshape}(\alpha'_{\text{flat}}, [B, C, H, W])$ ▷ Reshape back to original shape

1093 9: **return** α'

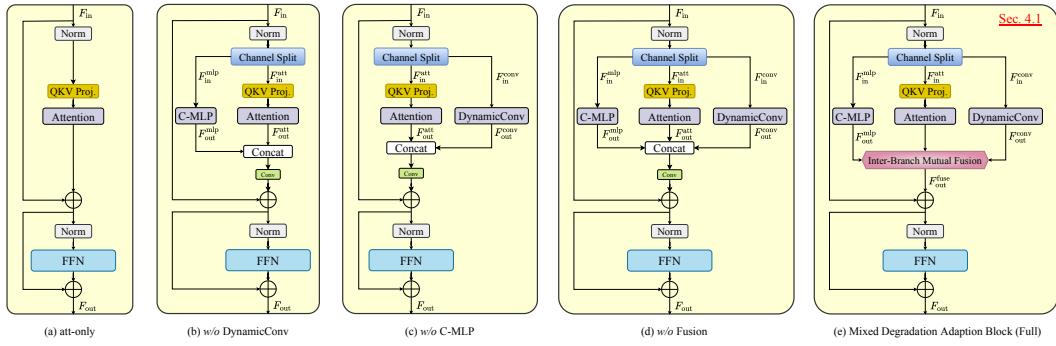


Figure A: The illustration of different designs of the proposed MDAB.

C.2 DETAILS OF THE DESIGN FOR THE PROPOSED MIXED BACKBONE.

To investigate the effectiveness of combining MLP, convolution, and attention mechanisms, we conducted an extensive design-level ablation study. The quantitative results are presented in Tab. 7 of the main manuscript. Here, we provide detailed visual illustrations of each design in Fig. A.

C-MLP. To strengthen channel-wise representation, we introduce a Channel-wise MLP module, denoted as C-MLP(). Given the input feature map $F_{\text{in}} \in \mathbb{R}^{B \times C \times H \times W}$, we first flatten the spatial dimensions to obtain a sequence $F_{\text{in}}^{\text{mlp}} \in \mathbb{R}^{B \times C \times L}$, where $L = H \times W$. The C-MLP is implemented using two 1D convolutional layers with a GELU activation in between. The GELU function introduces non-linearity, enabling the model to learn more complex and expressive channel-wise transformations. After processing, the output is reshaped back to the original spatial format, yielding $F_{\text{out}}^{\text{mlp}} \in \mathbb{R}^{B \times C \times H \times W}$.

Dynamic Depthwise Convolution. The DynamicDepthwiseConv() module is designed to capture content-adaptive local structures and is employed in Alg.1 of our main manuscript. As detailed in Alg. A, the input feature $\alpha \in \mathbb{R}^{B \times C \times H \times W}$ is first passed through a global average pooling and two 1×1 convolutions to generate a dynamic depthwise kernel for each channel and sample. The input is reshaped and convolved with the generated kernels using grouped convolution, enabling sample-specific spatial filtering. The resulting output α' maintains the original resolution while embedding adaptive local information.

C.3 DETAILS OF THE PROPOSED SPD CONTRASTIVE LEARNING.

As shown in Alg. B, our SPD-based contrastive learning aims to align shallow and latent representations by operating in the space of symmetric positive definite (SPD) matrices. Specifically, given the shallow features extracted from the convolutional patch embedding and the latent features produced by the encoder, we compute their second-order channel-wise statistics to obtain SPD representa-

1134 **Algorithm B** SPD Contrastive Learning Optimization Pseudocode

```

1135
1136 # fen: encoder
1137 # fde: decoder
1138 # patch_embedding: shallow convolutional patch embedding
1139 # refinement_conv: the refinement block and the final convolution
1140 # spd: compute SPD feature
1141 for x in loader: # load a minibatch x with n samples
1142
1143     Fshallow = patch_embedding(x) # Convolutional Patch Embedding
1144     Flatent = fen(Fshallow)
1145
1146     Cs, Cl = spd(Fshallow), spd(Flatent) # Compute SPD (Symmetric Positive Definite)
1147     manifold features
1148     zs, zl = proj_norm(Cs), proj_norm(Cl) # Projection and normalize
1149
1150     Frecon = fde(Flatent)
1151     hat{x} = refinement_conv(Frecon)
1152
1153     L = L1(x, hat{x}) +  $\lambda_{fre} \times \mathcal{L}_{Fourier}(x, \hat{x})$  +  $\lambda_{ctrs} \times \mathcal{L}_{SPD}(z_s, z_l)$  # total loss
1154
1155     L.backward() # back-propagate
1156     update(fen, fde, patch_embedding, refinement_conv) # SGD update
1157
1158 def LFourier(a, b): # Real-valued Fourier loss
1159     Please refer to Eq.B of our Appendix.
1160     return loss
1161
1162 def LSPD(a, b): # SPD Loss
1163     Please refer to Eq.5 of our main manuscript.
1164     return loss
1165
1166

```

1158 tions. These matrices are then vectorized and projected through learnable MLP layers, followed by
1159 ℓ_2 normalization to form contrastive embeddings. An InfoNCE-style loss is applied between the
1160 shallow and latent embeddings to encourage structural alignment across depth. This contrastive term
1161 complements the pixel-level and frequency-based objectives, promoting more discriminative and
1162 consistent feature learning without introducing any additional cost during inference. Importantly,
1163 by leveraging the geometry of second-order feature statistics, our approach implicitly regularizes
1164 the representation space, encouraging intra-instance compactness and inter-degradation separability.
1165 This geometrically grounded formulation bridges low-level signal priors with high-level contrastive
1166 learning, offering a principled and scalable solution to all-in-one image restoration.

1167 **C.4 ABLATION REGARDING THE OPTIMIZATION OBJECTIVES**

1168 Tab. C shows that replacing SPD-based contrastive learning with a standard
1169 Euclidean-space contrastive loss (*w/o SPD*) results in a clear performance drop,
1170 demonstrating the advantage of modeling second-order channel correlations on the SPD manifold
1171 rather than relying solely on first-order vector
1172 similarities. When the entire contrastive module
1173 is removed (*w/o CL & SPD*), performance de-
1174 grades even further, indicating that aligning shal-
1175 low and deep features is essential for effective
1176 representation learning. Moreover, removing the
1177 Fourier loss (*w/o Fourier Loss*) slightly reduces
1178 performance, suggesting that frequency-domain
1179 supervision provides additional benefits. Overall,
1180 the full model achieves the best results, confirming the effectiveness of jointly optimizing spatial,
1181 frequency, and SPD-manifold-based structural consistency. Note that throughout all the experiments,
1182 we set $\lambda_{ctrs} = 0.05$ and $\lambda_{ctrs} = 0.1$.

1183 **C.5 SHALLOW-LATENT FEATURE SIMILARITY**

1184 Besides the channel-wise similarity comparison provided in our main manuscript for denoising. We
1185 also find consistent findings in other degradation, *i.e.*, raining and hazing. The corresponding channel-

1186 Table C: *Ablation Study* of MIRAGE -T on 3
1187 Degradation Setting.

Ablation	Parms.	Results	
		PSNR (dB, \uparrow)	SSIM(\downarrow)
w/o CL & SPD	5.80M	32.63 (-0.14)	.916
w/o SPD	6.10M	32.53 (-0.24)	.914
w/o Fourier Loss	5.80M	32.70 (-0.07)	.917
MIRAGE -T (Full)	6.21M	32.77	.919

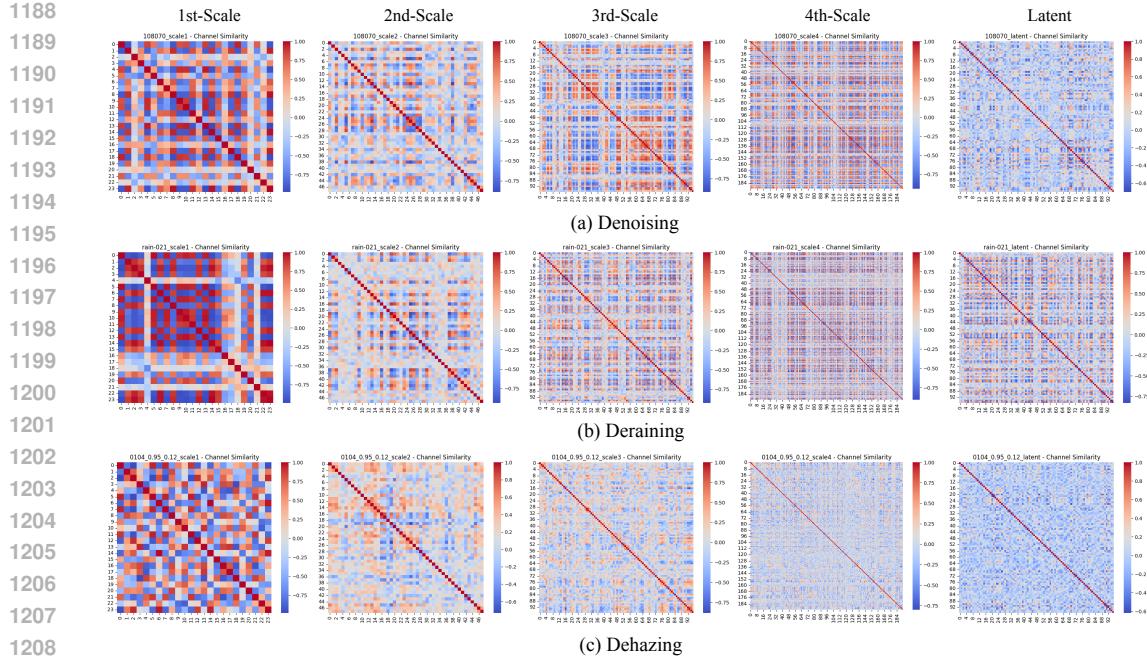


Figure B: The cross-scale channel-wise similarity matrix visualization for Denoising, Deraining, and Dehazing.

Table D: [Zero-shot unseen evaluation on the Unseen Dataset following the UniRestore PIR protocol \(Chen et al., 2025a\)](#).

Method	Rain100L	RESIDE	UNHSnow	Noise	GoPro	Average
PromptIR (Potlapalli et al., 2024)	28.17 / .9034	27.26 / .8957	22.10 / .8877	23.72 / .7269	23.93 / .8221	25.04 / .8472
DiffBIR (Lin et al., 2024)	27.25 / .8695	26.97 / .8770	20.84 / .8785	23.67 / .7661	23.49 / .8076	24.44 / .8397
DiffUIR (Zheng et al., 2024a)	28.25 / .9154	27.12 / .8820	20.74 / .8753	24.27 / .7481	23.93 / .8241	24.86 / .8490
UniRestore (Chen et al., 2025a)	30.02 / .9237	27.91 / .9043	23.44 / .8943	24.37 / .7811	25.94 / .8541	26.34 / .8715
MIRAGE (Ours)	31.43 / .9334	28.64 / .9177	23.43 / .8901	25.47 / .8010	25.32 / .8487	26.86 / .8782

wise similarity across scales is provided in Fig. B. These observations reveal several important trends: (i) Despite the diversity of degradation types, a consistent pattern emerges across scales. Specifically, from the first to the fourth scale, the overall channel-wise similarity indicates substantial redundancy among feature channels. After channel reduction, the latent features become more decorrelated, which validates the rationale for applying contrastive learning between the latent and shallow (*i.e.*, first-scale) features. (ii) Different degradation types exhibit varying degrees of channel redundancy. As illustrated in Fig. B, hazy images tend to produce more inherently independent features, whereas rain-degraded inputs show strong channel-wise redundancy even in the latent space. This suggests that degradations like haze may benefit from larger embedding dimensions to capture more expressive representations, while simpler degradations (*e.g.*, rain) can achieve effective restoration with smaller embedding sizes due to their inherently redundant structure.

These insights open up new directions for adaptive and degradation-aware model design in future research. Notably, this trend is not limited to the three representative samples shown; we observe similar patterns consistently across the dataset in a statistical sense. We plan to conduct a more comprehensive and quantitative investigation of this phenomenon in future work.

C.6 MORE GENERALIZATION EVALUATION

Unseen dataset evaluation. Tab. D shows that MIRAGE exhibits strong cross-domain generalization under the UniRestore PIR protocol, achieving the highest average performance across five unseen degradation types. MIRAGE attains top results on rain, haze, low-light/noise, and motion blur, and

1242 Table E: Zero-shot evaluation on real-world under-display camera datasets TOLED and POLED (Zhou
 1243 et al., 2021).

Method	TOLED (PSNR / SSIM / LPIPS)	POLED (PSNR / SSIM / LPIPS)
AirNet (Li et al., 2022)	14.58 / 0.609 / 0.445	7.53 / 0.350 / 0.820
PromptIR (Potlapalli et al., 2024)	16.70 / 0.688 / 0.422	13.16 / 0.583 / 0.619
DiffUIR (Zheng et al., 2024a)	29.55 / 0.887 / 0.281	15.62 / 0.424 / 0.505
MIRAGE-S (Ours)	28.01 / 0.881 / 0.293	16.93 / 0.604 / 0.500

1249 remains competitive on the highly textured UNHSnow dataset despite not relying on diffusion priors.
 1250 These results confirm that our SPD-based alignment and mixed-backbone design transfer well to real
 1251 and diverse degradations beyond the training domains.

1253 **Real-world evaluation.** To further assess generalization beyond synthetic settings, we evaluate
 1254 MIRAGE-S on the real-world TOLED and POLED under-display camera datasets (Zhou et al.,
 1255 2021). As shown in Tab. E, MIRAGE-S achieves strong performance across both benchmarks. On
 1256 POLED, which contains more severe signal attenuation and non-linear spatial artifacts, MIRAGE-S
 1257 clearly surpasses prior methods across all three metrics, indicating robust transfer to challenging
 1258 real-world degradations. On TOLED, MIRAGE-S remains competitive and delivers results close to
 1259 diffusion-based DiffUIR despite its significantly lower complexity. These findings suggest that the
 1260 proposed mixed-backbone architecture and SPD-based alignment maintain good stability under real
 1261 sensor degradations and generalize reliably across distinct UDC hardware conditions.

1262 D ADDITIONAL VISUAL RESULTS.

1264 D.1 3 DEGRADATION

1266 Fig. C presents qualitative comparisons on representative cases of denoising, deraining, and dehazing,
 1267 benchmarked against recent state-of-the-art methods. The proposed MIRAGE consistently yields
 1268 more visually faithful restorations, characterized by enhanced structural integrity, finer texture details,
 1269 and reduced artifacts. These results underscore the effectiveness of our unified framework in handling
 1270 diverse degradation types while preserving high-frequency information and geometric consistency.

1272 D.2 5 DEGRADATION

1273 For the 5-degradation setting, we provide visual comparisons for the low-light enhancement task in
 1274 Fig. D. As illustrated, the proposed MIRAGE produces noticeably cleaner outputs with improved
 1275 luminance restoration and better color consistency compared to MoCE-IR Zamfir et al. (2025),
 1276 demonstrating its robustness under challenging illumination conditions.

1278 D.3 COMPOSITED DEGRADATION

1280 Fig. E and Fig. F present visual comparisons under more challenging composite degradations, namely
 1281 *low-light + haze + snow* and *low-light + haze + rain*, respectively. As observed, our method
 1282 reconstructs significantly more scene details and preserves structural consistency, whereas MoCE-
 1283 IR Zamfir et al. (2025) tends to produce noticeable artifacts and over-smoothed regions under these
 1284 complex conditions.

1286 D.4 ZERO-SHOT UNDERWATER IMAGE ENHANCEMENT

1287 Fig. G demonstrates that even when directly applied to unseen underwater images, our method is able
 1288 to effectively enhance visibility and contrast, producing results that are noticeably clearer than the
 1289 raw input and visually closer to the reference images. This qualitative evidence further validates the
 1290 strong generalization ability of the proposed framework to unseen domains.

1292 E LIMITATIONS AND FUTURE WORK

1293 While the proposed MIRAGE achieves new state-of-the-art performance on most all-in-one image
 1294 restoration benchmarks, we observe that its deblurring performance still lags slightly behind MoCE-

Figure C: Visual comparison of MIRAGE with state-of-the-art methods considering three degradations. Zoom in for a better view.

IR [Zamfir et al. \(2025\)](#). We attribute this to the relatively compact model size of our current design, which favors efficiency over aggressive capacity. To address this, future work will explore scaling up the model size to be on par with larger architectures such as PromptIR [Potlapalli et al. \(2024\)](#), MoCE-IR [Zamfir et al. \(2025\)](#), and AdaIR [Cui et al. \(2025\)](#), aiming to further boost performance while maintaining the architectural elegance and efficiency of our design. Moreover, our current SPD-based

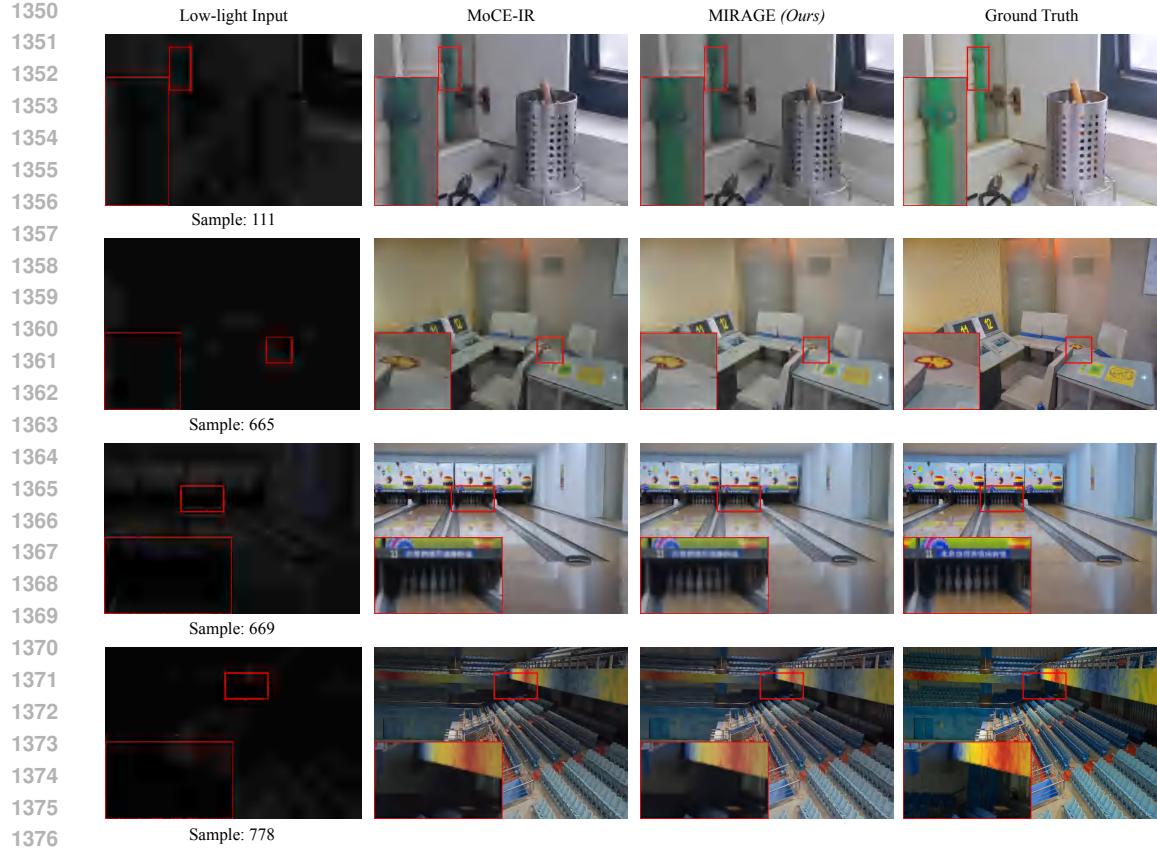


Figure D: Visual comparison of MIRAGE with state-of-the-art methods considering low-light degradation. Zoom in for a better view.

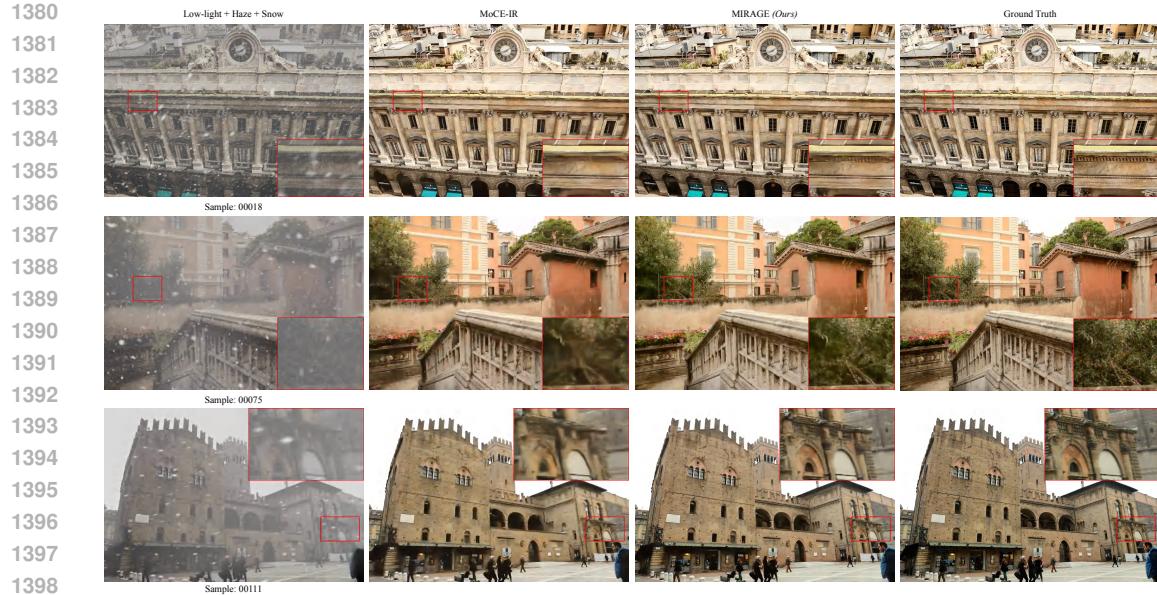


Figure E: Visual comparison of MIRAGE with state-of-the-art methods considering composited degradation (Low-light + Haze + Snow). Zoom in for a better view.

1401
 1402 contrastive learning leverages a conventional InfoNCE loss in Euclidean space after projecting SPD
 1403 features. While effective, it does not fully exploit the intrinsic geometry of the SPD manifold. As
 part of future efforts, we plan to investigate geodesic-based contrastive formulations and Riemannian-

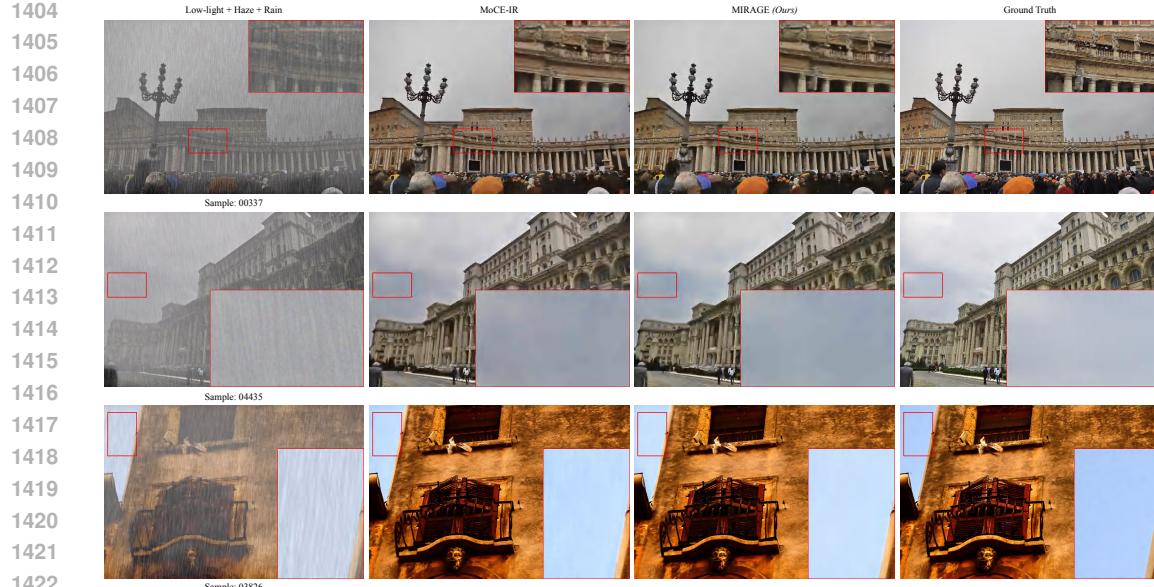


Figure F: Visual comparison of MIRAGE with state-of-the-art methods considering composited degradation (Low-light + Haze + Rain). Zoom in for a better view.

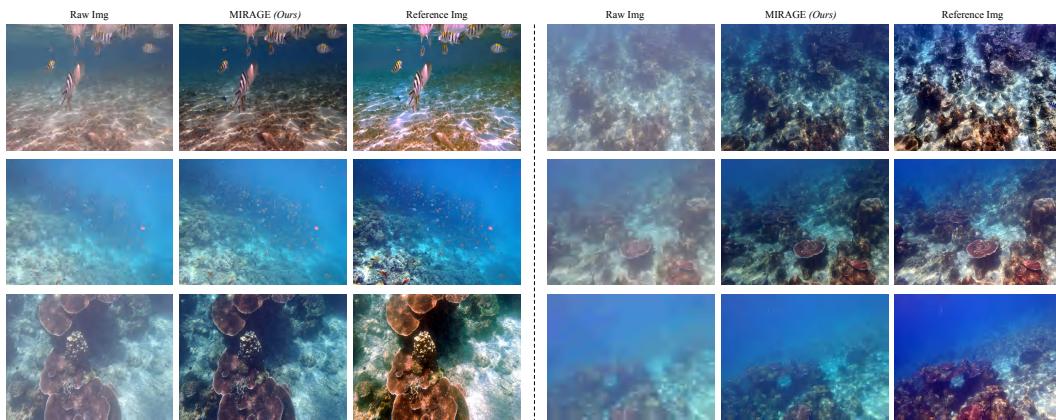


Figure G: Visual results of MIRAGE for Underwater Image Enhancement. Zoom in for a better view.

aware optimization strategies, which may offer a more principled and theoretically grounded way to align structured representations across semantic scales. Additionally, different degradations may favor different proportions of convolution, attention, and MLP capacity. Learning such ratios dynamically is an interesting direction and could further adapt MIRAGE to degradation-specific characteristics. We view this as a promising avenue for future research.

F BROADER IMPACT

Image restoration (IR) is a fundamental task with applications in photography, remote sensing, surveillance, autonomous driving, medical imaging, and scientific visualization. By proposing a unified and efficient framework capable of handling diverse degradation types with minimal computational cost, our work may benefit scenarios where image quality is compromised by environmental or hardware constraints. The lightweight design of MIRAGE further enables deployment on resource-limited devices such as mobile phones, drones, or embedded cameras, which can support use cases in low-resource settings or critical domains like emergency response and environmental monitoring. From a research perspective, our modular design and SPD-based contrastive formulation may encourage further exploration of geometrically-aware representation learning in restoration and related areas.

1458 **G USE OF LARGE LANGUAGE MODELS (LLMs)**
14591460 We used OpenAI’s GPT-based Large Language Models (LLMs) (OpenAI, 2023; 2022) to polish
1461 the writing and improve the readability of the paper. The models were not used for developing the
1462 methodology, running experiments, or analyzing results. All scientific contributions remain entirely
1463 the work of the authors.
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511