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Abstract
Integrated with multi-modal learning, knowl-001
edge graphs (KGs) as structured knowledge002
repositories, enhance AI’s capability to pro-003
cess and understand complex, real-world data.004
This paper provides a comprehensive survey005
of cutting-edge research on KG-aware multi-006
modal learning, providing task definitions, eval-007
uation benchmarks, and detailed insights into008
key breakthroughs. Furthermore, we also dis-009
cuss current challenges, highlighting emerging010
trends and future research directions.011

1 Introduction012

The brain’s accumulation of memories over time013

is crucial for societal adaptation and survival, en-014

abling meaningful actions and interactions. These015

memories can be categorized into two types. Con-016

ditioned Reflexes: Intuitive memory developed017

through repeated practice, enhancing analogical018

reasoning. Combined with sensory inputs like vi-019

sual, auditory, and tactile data, it enables efficient020

performance of basic tasks, similar to many tradi-021

tional multi-modal tasks. Torso-to-tail Knowledge:022

Less frequently encountered, requiring active mem-023

orization or deep contemplation. This knowledge024

highlights the importance of Knowledge Graphs025

(KGs) in capturing and structuring long-tail knowl-026

edge. Our study focuses on leveraging symbolic,027

structured knowledge within KGs to enhance Multi-028

Modal Learning (MML). Given their vital role in029

organizing long-tail knowledge and proven effec-030

tiveness in AI systems, integrating KGs with MML031

offers a promising approach to addressing the chal-032

lenges inherent in multi-modal data integration.033

As illustrated in Fig 1, individuals continuously034

process multi-modal information from the environ-035

ment while absorbing and utilizing external knowl-036

edge. Despite extensive research within NLP com-037

munities, a systematic review of these approaches038

remains absent. Our survey fill this gap by synthe-039

sizing existing KG4MML methods, detailing key040

Figure 1: Knowledge Graphs for Multi-modal Learning.

resources and breakthroughs. We balance these 041

details to address content overlaps and focus on 042

core challenges, ultimately emphasizing KG’s piv- 043

otal role in shaping the past, present, and future 044

developments of multi-modal learning. 045

2 Preliminaries 046

Knowledge Graphs. KGs represent entities and 047

their relationships in a graph structure, where nodes 048

symbolize real-world entities or atomic values (at- 049

tributes), and edges denote relations. Knowledge 050

in KG is often captured in triples, with an ontology- 051

based schema defining basic entity classes and their 052

relations in a taxonomic structure. A KG is defined 053

as G = E ,R, T , with entities E , relations R, and 054

statements T . Statements include relational fact 055

triples (h, r, t), where h is the head entity, r is the 056

relation, and t is the tail entity, or attribute triples 057

(e, a, v), where e is an entity, a is an attribute, and 058

v is the attribute’s value. Attribute values can be 059

literals such as strings or dates and may include 060

metadata like labels and textual definitions. 061

Multi-modal Learning. We focus on visiolin- 062

guistic (VL) tasks involving text and image data, 063

aiming to provide in-depth analysis and research 064

continuity. Other modalities like video or biochem- 065

istry are less emphasized as VL methods can often 066

1For a focused discussion, most method references & de-
tailed descriptions are organized in the Appendix for readers
interested in tracing the original sources.
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Figure 2: Comprehensive Overview of KG-driven Multi-modal Learning. Due to space constraints and task
overlaps, we focus on the most representative sub-tasks in each category (Generation, Understanding & Reasoning,
Classification) to maximize relevant content coverage. Additional content is analyzed in the Appendix1.

be adapted to them. Thus, the input domain is067

X = X l×X v, with inputs x̂ = (xl, xv), where xl068

and xv are language and visual data, respectively.069

KGs Acquisition for Multi-modal Learning.070

1) Task-agnostic Sub-KG Extraction: Practical ap-071

plications often require localized knowledge to ad-072

dress specific tasks. Sub-KG extraction isolates073

minimal knowledge units or triplets from a large074

KG like WordNet (Miller, 1995) directly, reducing075

noise from irrelevant information using retrieval,076

routing, or semantic parsing algorithms.077

2) Task-Oriented KG Construction: Sometimes,078

constructing task-specific KGs from scratch is079

necessary to meet unique requirements, either080

from datasets or by combining multiple KGs:081

(i) Static Domain KGs Construction: Creating sta-082

ble, domain-specific KGs with predefined entities083

and relations to encapsulate crucial background084

knowledge, especially when general KGs are in-085

adequate for a specific task. E.g., Zero-shot Im-086

age Classification tasks necessitate building KGs087

that capture visual attributes or taxonomy associa-088

tions (Geng et al., 2021a). These KGs are designed089

to cover all relevant classification knowledge with090

textual data like class labels utilized to delineate091

class relationships, aiding in the formation of KG092

edges. (ii) Dynamic Temporary KGs Construction:093

Building dynamic, temporary KGs during task ex-094

ecution and leveraging KG reasoning algorithms095

for task support. E.g., establishing co-occurrence096

relations between classes (e.g., food ingredients)097

by analyzing their frequency in training datasets.098

3 KG-driven Multi-modal Learning099

3.1 Multi-modal Understanding & Reasoning100

Visual Question Answering (VQA) (Antol et al.,101

2015) is a fundamental task in multi-modal learn-102

ing, frequently used to evaluate multi-modal foun-103

dation models (Alayrac et al., 2022). Knowledge-104

based VQA (Wu et al., 2016) incorporates an ex-105

ternal Knowledge Base (KB) for complex question106

analysis and deeper reasoning assistance (Wang107

et al., 2018a). When using KGs as the KB, given an 108

image-question pair (I , Q), the goal of KG-based 109

VQA is to derive an answer y via: 110

p(y|Q, I,G,Θ) = p(Gret|Q, I,G;Φ)︸ ︷︷ ︸
Retriever (if have)

· p(A|Q, I,Gret;Θ)︸ ︷︷ ︸
Reader

, 111

where G is the background KG, Gret is the retrieved 112

sub-KG, while Φ refers to the model parameters 113

used in the knowledge retrieval step. 114

Current KG-aware VQA research typically has 115

four key stages for incorporating knowledge: 116

• Knowledge Retrieval focuses on extract- 117

ing pertinent knowledge from various sources, 118

including KGs and document collections like 119

Wikipedia (Denoyer and Gallinari, 2006). The 120

methods have evolved from early matching-based 121

and dense embedding similarity approaches to 122

learnable retrieval and Pre-trained Language Model 123

(PLM) generation techniques, broadening the scope 124

and efficiency of knowledge integration. Fig. 4 (a) 125

illustrates the basic form of KG retrieval in VQA. 126

(i) Matching-based Retrieval generally em- 127

ploys entity-level methods to identify key concepts 128

within images and questions, linking these to rele- 129

vant data to external large-scale KGs. 130

The extraction process from images involve iden- 131

tifying spatial positions (Zhu et al., 2020), visual 132

object sizes and names (Narasimhan et al., 2018), 133

high-level attributes like scene names, object parts, 134

and human activities (Khademi et al., 2023). Addi- 135

tionally, image captions and OCR text strings are 136

generated for supplement (Lin and Byrne, 2022). 137

Questions and captions can be parsed for syntax 138

analysis using various NLP tools like Dependency 139

Parsers and Named Entity Recognizers (Wu and 140

Mooney, 2022). Additional techniques include reg- 141

ular expressions (Wang et al., 2017), SpanSelector 142

or query template selector (Wang et al., 2018a). 143

During this stage, unimportant visual objects not 144

present in the question or caption might be filtered 145

out (Gardner et al., 2018). To associates these con- 146

cepts with relevant entries in KGs, methods like 147

greedy longest-string matching (Su et al., 2018), 148
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Figure 3: Current KG-aware Understanding & Reasoning research pipeline, which typically involves four key stages
for incorporating knowledge. Note that studies often employ one or more of these stages in model design.

template matching (Wang et al., 2018a), and Multi-149

modal Entity Linking (Jain et al., 2021) are used.150

Then, fact triples can be collected by involving the151

first-order sub-KG from these identified concept152

nodes, which can sometimes extend to three-hop153

connections in character KGs (Shah et al., 2019).154

Alternatively, brief knowledge paths can be identi-155

fied among the entities from I and Q via sub-KG156

construction (Wang et al., 2019). Generating RDF157

queries (e.g., SPARQL) often involves filling pre-158

defined templates with parsed question data, mak-159

ing it suitable for datasets with consistent question160

patterns (Wang et al., 2017). Term-based retriev-161

ers (e.g., TF-IDF and BM25) are another effective162

option, with their scoring reflecting the direct corre-163

lation between Q and fact triples (Luo et al., 2021).164

(ii) Pruning. The pruning stage refines the165

coarse-grained sub-KG obtained from initial re-166

trieval. This involves re-ranking candidate facts167

and may include assigning weights to nodes based168

on corresponding visual object sizes (Wang et al.,169

2019), ensuring each knowledge triple contains key170

elements from Q or auto-generated captions (Su171

et al., 2018; Wu and Mooney, 2022), or aligns with172

the relation type implied in Q (Yin et al., 2023a).173

Additionally, a learnable score function can be used174

to assess the compatibility between a fact and the175

Q-I representation (Ravi et al., 2023).176

(iii) Dense Retrieval methods typically retrieve177

the most relevant top-k facts for a given Q-I pair.178

This technique utilizes embedding similarities to179

match questions and visual concepts with pre-180

flattened concise fact sentences (Narasimhan et al.,181

2018; Ziaeefard and Lécué, 2020), simplifying the182

retrieval process without complex rules. Some-183

times, dense retrieval can also serve as a mecha-184

nism for KG pruning, selectively excluding infor-185

mation that is likely irrelevant. Retrieval efficiency186

is frequently enhanced by employing open-source187

indexing engines like FAISS (Johnson et al., 2021),188

which facilitates the organization and indexing of189

large-scale dense embeddings. 190

(iv) Search Engine serves as a valuable tool 191

in VQA for accessing open knowledge and can 192

complement other knowledge sources in ensemble 193

methods. For instance, Marino et al. (2019) gather 194

Wikipedia articles for each Q-I pair, selecting sen- 195

tences that closely match the query by keyword 196

frequency and then predicting answer presence and 197

positioning within these articles. Given that this is 198

not a primary focus for KG-based VQA, a more 199

detailed discussion is provided in the appendix. 200

(v) Learnable Retrievers adapt to specific con- 201

texts, providing biased recall that highlights inter- 202

actions between Q-I and knowledge components. 203

These models require rigorous training, using ei- 204

ther labeled data or autonomously generated labels. 205

For example, UnifER (Guo et al., 2022b) compares 206

reader loss from Q-I inputs to loss with additional 207

retrieved knowledge, defining the difference as the 208

loss gap. A negative loss gap indicates counterpro- 209

ductive knowledge, and the model uses this metric 210

to iteratively refine both the retriever and the reader. 211

Cold Start issues with asymmetric or randomly ini- 212

tialized retrievers can lead to irrelevant items and 213

inadequate feedback. Hu et al. (2023) address this 214

by creating an initial dataset with pseudo ground- 215

truth knowledge from a large-scale image-caption 216

dataset for pre-training. Chen et al. (2022c) use a 217

BM25-based KG retriever initially to distill prefer- 218

ence knowledge to the differentiable retriever. 219

(vi) PLM Generation. Recent research shows 220

that PLMs can function as KBs when appropri- 221

ately prompted (Petroni et al., 2019). Specifically, 222

PROOFREAD (Zhou et al., 2023) uses ChatGPT to 223

generate relevant Q and knowledge entries for each 224

Q-I pair, storing them in a Demo Bank for demon- 225

stration reuse while ensuring case diversity; Addi- 226

tionally, several studies directly harness the knowl- 227

edge embedded in PLMs for reasoning, skipping 228

a separate knowledge retrieval step (Yang et al., 229

2022). E.g., CodeVQA (Subramanian et al., 2023) 230
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involves a knowledge query module that utilizes a231

PLM to answer questions based on world knowl-232

edge embedded within its parameters.233

• Knowledge Representation involves select-234

ing the appropriate format for symbolic KGs to235

integrate with multi-modal models.236

(i) Direct Text-to-Embedding Mapping. Some237

research treats e and r in KGs as words, embedding238

them into continuous vectors using methods like239

Glove. This enables the compression of knowledge240

components (e.g., triples) into fixed-size vectors us-241

ing RNNs (Wang et al., 2019), (V)PLMs (Chevalier242

et al., 2023), or mean pooling (Chen et al., 2021d).243

Strategies like stop-word removal can further refine244

these embeddings by reducing noise from irrele-245

vant words (Chen et al., 2022c). Additionally, some246

works convert fact collections into natural language247

sentences (Hu et al., 2023), allowing PLMs to en-248

code them directly into fixed-length vectors.249

(ii) Knowledge Graph Embedding (KGE)250

methods embeds facts and reveals semantic rela-251

tionships among triples in an abstract space, facili-252

tating initial fact embeddings (Zheng et al., 2021b;253

Han et al., 2023). During self-supervised train-254

ing, signals from neighboring entities are embed-255

ded into each central entity’s unique representation.256

This approach facilitates the identification and inte-257

gration of key entities into downstream tasks, effec-258

tively simulating the retrieval of specific sub-KGs259

without explicit retrieval steps.260

(iii) Pure Context. In many cases, KG triples261

are maintained in their original textual format for262

direct participation in multi-modal reasoning. This263

includes using sub-KGs for RDF query-based an-264

swer retrieval (Wang et al., 2017) and serializing265

triples for joint reasoning with (V)PLMs (Gao et al.,266

2022; Dong et al., 2024). To handle lengthy in-267

put sequences predominantly composed of facts,268

which might shift the model’s focus away from269

other crucial cues, Ravi et al. (2023) summarizes270

information from each inference sentence into a271

single token representation using SBERT (Reimers272

and Gurevych, 2019); Wang et al. (2023g) select273

only factual summaries with higher contribution274

scores than the original Q as caption supplements.275

• Knowledge-aware Modality Interaction is276

the core of KG-based multi-modal reasoning. To277

some extend, it mirrors human knowledge applica-278

tion in understanding the world (Fig. 4).279

(i) Concatenation of multi-modal vectors pro-280

vides a straightforward and effective approach for281

modality fusion (Ramnath and and, 2020), combin- 282

ing different modality features into a single repre- 283

sentation. This unified feature is typically refined 284

with a MLP to enhance modality interaction and 285

integration. 286

(ii) LSTM networks typically employ an LSTM 287

encoder to process semantic inputs from I and Q, 288

and an LSTM decoder for generating answers, ini- 289

tializing the hidden state with embeddings from 290

attributes, captions, or external knowledge. As 291

shown in Fig. 4 (b), Q is tokenized and fed into the 292

system sequentially (Wu et al., 2016). 293

(iii) GNNs enhance concept connections in VQA 294

by integrating representations from I , Q, and en- 295

tities into cohesive networks, with each node (en- 296

tity e) represented by a multi-modal concatenated 297

embedding (Narasimhan et al., 2018). GNNs it- 298

eratively process these e embeddings, and the fi- 299

nal learned representations are fed into an MLP, 300

which assigns a binary label to each e indicating 301

its relevance as an answer, as shown in Fig. 4 (c). 302

Mucko (Zhu et al., 2020) independently process- 303

ing distinct modality KGs, separately analyzing the 304

visual scene KG, the semantic KG from image cap- 305

tions, and the common sense KG, which supports 306

precise answer determination through Q-guided 307

attention and cross-KG GNNs. 308

(iv) Dynamic Memory Networks (DMNs) (Ku- 309

mar et al., 2016) filter critical information from 310

localized small-scale knowledge triple embeddings 311

(Fig. 4 (d)) to enable interactions across multiple 312

data channels (Yin et al., 2023a). This process, 313

akin to building a cache and performing secondary 314

retrieval, is typically achieved through an attention- 315

based mechanism. In particular, VKMN (Su et al., 316

2018) deconstructs each knowledge triple into three 317

Key-Value pairs, e.g., (h, r) as the key and t as 318

the value, improving reasoning performance by re- 319

ducing interference from using only head and tail 320

entities as keys for memory grounding. 321

(v) Guided-Attention & Transformer. The 322

Transformer architecture, featuring multi-head at- 323

tention, layered stacking, and residual connections, 324

is widely used in multi-modal fusion (Vaswani 325

et al., 2017). It enables knowledge embeddings 326

to integrate seamlessly with other modalities. The 327

guided-attention mechanism (Heo et al., 2022) en- 328

hances this by using distinct feature sets to direct 329

attention unidirectionally, unlike self-attention’s 330

symmetric interactions. This is intuitive, reflect- 331

ing the unequal roles of different modalities and 332

knowledge in fusion. Examples include knowledge- 333
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Figure 4: Current knowledge-aware modality interaction paradigms utilizing KG as the knowledge repositories.

guided visual/textual embeddings and Q-guided334

visual/knowledge embeddings (Fig. 4 (e)).335

(vi) PLM & VLM Reasoning allow researchers336

to focus on data organization and training objective337

design without significantly altering the backbone338

structure, effectively utilizing the inherent parame-339

terized knowledge in original models (Fig. 4 (f)):340

(a) Embedding-Based Visual Information In-341

tegration involves converting visual data into342

embeddings compatible with existing (V)PLMs,343

like compressing patch or object features into344

fixed-length embeddings (Jaegle et al., 2021)345

or using adapters/projection heads for cross-346

modal alignment (Yin et al., 2023b). Specif-347

ically, RVL (Shevchenko et al., 2021) and348

KVQAmeta (García-Olano et al., 2022) inject the349

knowledge into VLMs via aligning the KG em-350

beddings of e with corresponding textual phrase351

representations derived from the PLM’s embedding352

layers. MuKEA (Ding et al., 2022) uses VLM’s353

visual output embeddings as the head, question as354

the relation, and the answer as the tail to design a355

multi-modal triple completion training objective,356

leveraging implicit knowledge for reasoning.357

(b) Textual Conversion of Visual Data involves358

converting all visual information into a textual for-359

mat, like captions, allowing PLM reasoning on a360

uniform textual data collection that includes back-361

ground knowledge, Q, and I (Hu et al., 2022).362

• Knowledge-aware Answer Determination.363

(i) Information Extraction methods typically 364

focus on locating specific entities within the re- 365

trieved knowledge or existing I-Q pair, emphasiz- 366

ing content grounding. Among them, query-based 367

methods (Wang et al., 2017) obtain the final an- 368

swer through sub-KG inference, yielding benefits 369

such as improved matching accuracy, relevance, 370

and interpretability. Their effectiveness, however, 371

depends on the model’s capability to parse queries 372

and the KG’s completeness. Challenges arise with 373

non-unique or difficult-to-find answers. To further 374

rank the potential answers, heuristic rules can be 375

employed, like matching score calculation (Wang 376

et al., 2018a; Narasimhan and Schwing, 2018) and 377

answer frequency assessment (Wang et al., 2018a). 378

(ii) Discrimination. Particularly suited in multi- 379

choice VQA tasks, these methods use a discrimi- 380

nator for final selection among candidate answers. 381

They are effective in narrowing down potential an- 382

swers within a certain range (or in a sub-KG), of- 383

ten using GNN-alike backbones (Hussain et al., 384

2022) (Fig. 4 (c)). Furthermore, discriminators 385

can be either MLP-based (Liu et al., 2022) or rule- 386

based (Narasimhan and Schwing, 2018), with a 387

notable limitation being time consumption, espe- 388

cially with extensive answer vocabularies. 389

(iii) Classification. In many VQA datasets, the 390

range of possible answers is pre-determined, typi- 391

cally constrained by their frequency range or a min- 392

imum occurrence threshold. Consequently, many 393

5



Figure 5: A comparison of previous paradigms for KG-based Zero-shot Image Classification (ZS-IMGC) methods.

studies reformulate VQA as a classification prob-394

lem (Gardères et al., 2020; Song et al., 2023b), with395

the output dimension corresponding to the number396

of answer candidates. For (V)PLM-based methods,397

a classification (or projection) head is typically ap-398

pended to the output [CLS] embedding, as shown399

in Fig. 4 (f) (He and Wang, 2023).400

(iv) Generation. With the expansion of pa-401

rameters and pre-training data in LMs (Schaeffer402

et al., 2023), generative models’ accuracy has sig-403

nificantly improved, effectively mitigating the dis-404

advantages posed by the exact match criteria that405

constrained early LSTM-based methods. As a re-406

sult, generative (V)PLM-based methods are now407

increasingly supplanting traditional classification-408

based approaches (Ghosal et al., 2023) (Tab. 1).409

3.2 Multi-modal Classification410

This section explores multi-modal classification411

tasks, particularly focusing on Zero-Shot Image412

Classification (ZS-IMGC), which classifies images413

from novel, unseen classes without prior specific414

training, as denoted by Ytr ∩ Yte = ∅. In contrast,415

traditional image classification (x as an image and416

y as its class) assumes a closed world where Ytr =417

Yte = Y , demanding extensive labeled images for418

both training and testing within known classes.419

Early ZS-IMGC works use textual class charac-420

teristics (Zhu et al., 2018) and define shared de-421

scriptive attributes (Xian et al., 2018) to model422

inter-class relationships (see Fig. 10, left). Re-423

cently, KGs have become integral to ZS-IMGC by424

unifying various forms of above knowledge into a425

single graph, G = {E ,R, T }, where Y ⊂ E . This426

integration not only encapsulates diverse and ex-427

plicit class semantics but also enhances compatibil-428

ity and interpretability (see Fig. 10, right). Specif-429

ically, studies like (Kampffmeyer et al., 2019)430

integrate hierarchical relationships from Word-431

Net, while Roy et al. (2022) explore class knowl-432

edge from commonsense KGs (e.g., ConceptNet).433

Pahuja et al. (2024) enhance species classification434

by structuring it as a link prediction task within a435

Multi-Modal Knowledge Graph (MMKG), leverag-436

ing visual cues and GPS coordinates to efficiently 437

identify unseen classes, such as deducing that an 438

image of a feline captured in Africa is likely a lion. 439

Furthermore, ontologies can be utilized to define 440

complex class relationships (Chen et al., 2020a) 441

(e.g., disjointness), providing a channel to explic- 442

itly introduce rules for refinement. 443

Existing KG-driven ZS-IMGC approaches, 444

which guide feature transfer from seen to unseen 445

classes, can be categorized into three types: 446

Mapping-based methods develop mapping func- 447

tions that align image inputs with KG-based class 448

semantics into a shared vector space, simplifying 449

the identification of the nearest class to a test image 450

based on similarity metrics, as shown in Fig. 5 (a). 451

For instance, HierSE (Li et al., 2015) employs 452

a linear projection to map image features into a 453

class embedding space derived from word embed- 454

dings of the class and its superclasses, using cosine 455

similarity for comparison. Similarly, Chen et al. 456

(2020a) use an OWL-based ontology to encode 457

animal classes, and Akata et al. (2013) represent 458

classes using multi-hot vectors of ancestors, reflect- 459

ing class hierarchies in KGs. 460

Data Augmentation methods alleviate the sam- 461

ple shortage in ZS-IMGC by synthesizing images 462

or features for unseen classes, transforming it into 463

a supervised learning problem and reducing bias. 464

These methods primarily use generative models 465

like GANs and VAEs, leveraging feature-related 466

KGs to simulate characteristics of unseen images. 467

For example, OntoZSL (Geng et al., 2021a) syn- 468

thesizes image features by blending class embed- 469

dings from an attribute-and-species KG with ran- 470

dom noise vectors. This process, supervised by 471

real features from annotated images, employs an 472

adversarial discriminator to differentiate between 473

real and generated features as shown in Fig. 5 (b). 474

Propagation-based methods leverage KG- 475

structured inter-class relationships for knowledge 476

transfer, using GNNs to propagate features from 477

seen to unseen class nodes (Wang et al., 2018b; 478

Geng et al., 2021b). Concretely, GNN models 479

train to produce class-specific parameter vectors as 480
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classifiers. These classifiers for unseen classes are481

estimated by aggregating those from neighboring482

seen classes within the graph (see Fig. 5 (c)).483

3.3 Multi-modal Generation484

Given visual images (xv) or textual descriptions485

(xl), the objective of KG-aware generation tasks486

is to generate, in a cross-modal manner, either a487

textual target yl (e.g., caption and scene graph), a488

visual target yv (e.g., image), leveraging the back-489

ground KG G for foundational support2.490

Scene Graphs (SGs) are vital for scene under-491

standing, cataloging objects and their interrelation-492

ships within a scene. These instances, ranging from493

people to places and objects, are described through494

attributes like shape, color, and pose (Chang et al.,495

2023). The relationships between these instances,496

often action-based or spatial, are expressed as497

(subject, predicate, object) triplets, paralleling the498

(h, r, t) and (e, a, v) triplets in KGs. Scene Graph499

Generation (SGG) serves as an intermediary task,500

unlike other multi-modal tasks with specific end501

goals, providing enhanced understanding and rea-502

soning to support downstream tasks (Fig. 6).503

Several works adopt the KG representation504

learning techniques into SGG scenario. For ex-505

ample, Yu et al. (2022) improve zero-shot perfor-506

mance in SGG by constructing a KG from training507

set SG triples, distinguishing existing (non-zero-508

shot) and missing (zero-shot) edges. They train a509

KG Embedding model to complete the graph and510

fills these missing edges, thereby integrating zero-511

shot triples similarly to their non-zero-shot coun-512

terparts. Others employ KGs for triple prediction513

to generate rich and expressive SGs. Specifically,514

Gu et al. (2019) utilize a knowledge-based mod-515

ule to identify relevant ConceptNet entities and re-516

trieve commonsense facts, each assigned a weight517

indicating its real-world prevalence to filter can-518

didate triples. Khan et al. (2022b) enrich SGs519

using CSKG (Ilievski et al., 2021), a substantial520

commonsense KG repository as shown in Fig. 6.521

This upgrades SGG with additional information522

on objects’ spatial proximity and potential interac-523

tions derived from external knowledge, improving524

higher-level reasoning and mitigating some missed525

or incorrect predictions made during SGG.526
2We defer detailed discussion to Appendix A.5, noting sig-

nificant overlaps with reasoning tasks like Image Captioning
and Visual Storytelling, similar to VQA as discussed in § 3.1,
and because KG-aware cross-modal image generation, where
only limited work exists, is still in its early stages.

3Off-scene entities refer to those not part of the VG (Kr-
ishna et al., 2017) classes, as opposed to on-scene entities.

Figure 6: Scene Graph (SG) of an image equiped with
CSKG (Ilievski et al., 2021). The SG (in blue) outlines
objects and their relationships in the scene. Additional
background knowledge from CSKG triples (in red) such
as (Woman, capableOf, Playing_Tennis), enriches the
SG with off-scene3 knowledge (Khan et al., 2022b).
This facilitates higher-level inferences, enabling more
accurate caption deductions, e.g., “A woman is playing
tennis on a tennis count” (Hou et al., 2020).

3.4 KG-aware Mutli-modal Pre-training 527

Currently, multi-modal LLMs (MLLMs) are widely 528

recognized for their task-agnostic capabilities, but 529

their lack of long-tail knowledge often leads to 530

cross-modal hallucinations, causing inconsisten- 531

cies and errors, as evidenced in Fig. 7. To mitigate 532

this issue, KG-aware Multi-modal Pre-training of- 533

fers a viable strategy for knowledge infusion. 534

Specifically, Med-VLP (Chen et al., 2022b) em- 535

ploys structured medical knowledge entities from 536

UMLS KG (Bodenreider, 2004) as mediators to 537

align image and text features (Li et al., 2021), 538

using a whole-entity mask strategy (Sun et al., 539

2019a) instead of sub-word masking. It focuses 540

the model’s attention on crucial medical informa- 541

tion across modalities, enabling medical VLMs 542

to gain domain-specific knowledge for knowledge- 543

aware representations in downstream tasks. Ye et al. 544

(2023) introduce a DANCE dataset where common- 545

sense KG triples are turned into natural language 546

riddles paired with images, aimed at embedding 547

knowledge relations and linking KG entries (h, r, t) 548

with images that depict related entities, where enti- 549

ties in the images are referred to as “this item”. 550

KGTransformer (Zhang et al., 2023b) is a BERT- 551

alike KG pre-training model with objectives like 552

triple-based masked relation/entity prediction and 553

entity pair prediction (i.e., assessing whether two 554

entities from a one-hop subgraph were previously 555

connected by the same relation in G), supporting 556

downstream tasks like QA and ZS-IMGC. 557
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Figure 7: Examples of limited cross-modal knowledge
alignment ability in current multi-modal LLMs (Zha
et al., 2023), as demonstrated by (a) BLIP-2 (Li et al.,
2023b) and (b) MiniGPT-4 (Zhu et al., 2023), which
lead to multi-modal hallucinations.

4 Challenges and Future Directions558

Multi-modal Knowledge Graphs. Focusing559

solely on the benefits of traditional KGs for multi-560

modal tasks can be limiting due to the narrow scope561

of knowledge in single-modality KGs. Scenarios562

like detailing badge designs or architectural pho-563

tos, which are challenging to describe with text564

alone, highlight the necessity for MMKGs which565

integrate knowledge symbols across modalities like566

text, images, and sound (typically as entities). How-567

ever, most MMKG research remains focused on568

tasks within the In-MMKG framework like Mulit-569

modal Knowledge Graph Completion (Zhao et al.,570

2022), with limited exploration into MMKG-driven571

tasks. We identify three main challenges hinder-572

ing broader application: non-uniform organiza-573

tion and ontology of MMKGs, substantial stor-574

age and processing overheads, and issues of data575

timeliness and completeness in MMKGs, which576

are discussed in the Appendix. Currently, the few577

studies on MMKG-driven tasks primarily empha-578

size retrieval-related activities, exploiting MMKGs’579

natural database-like functionalities, yet they do580

not fully exploit MMKGs’ structured multi-modal581

capabilities. For instance, Zha et al. (2023) en-582

hance knowledge-based VQA by employing multi-583

modal concept descriptions and using MMKGs584

as “key:value” based retrieval KBs to support rea-585

soning in MLLMs. Looking forward, to fully un-586

lock the potential of large-scale MMKGs for multi-587

modal tasks, we must resolve key issues includ-588

ing the effective construction and utilization of 589

MMKGs that are well-suited to multi-modal tasks. 590

Large Language Models. The challenge of ex- 591

tracting sufficient visual knowledge, as identified 592

by Chen et al. (2023a), alongside Zhou et al.’s 593

(2023) finding that 43% of BLIP2 (Li et al., 2023b) 594

errors on the A-OKVQA dataset (Schwenk et al., 595

2022) could be addressed with proper knowledge 596

integration. Fine-tuning MLLMs with MMKGs 597

can be realized via two main strategies: active KG 598

routing for creating specific instructions (Wan et al., 599

2023), and the use of self-instructing techniques to 600

autonomously generate multi-grained, multi-modal 601

instructional data (Du et al., 2023). Besides, the 602

structured multi-modal relational data inherent in 603

MMKGs provides an essential foundation for inves- 604

tigating the visual extrapolation abilities of Large 605

Vision Models (LVMs) (Bai et al., 2023) as well as 606

MLLMs (Sun et al., 2023d). 607

The increasing risk of generating seemingly au- 608

thentic but factually inaccurate web content in 609

MLLMs, known as hallucination (Agrawal et al., 610

2023), is another concern. Future efforts could 611

focus on combining MMKGs with hallucination 612

detection or correction methods to enhance multi- 613

modal task precision and leveraging KGs for rewrit- 614

ing input statements in a knowledge-aware manner 615

to reduce factual hallucinations in MLLM reason- 616

ing (Wang et al., 2023a). This process could be 617

aligned with CoT approaches like Think-on-Graph 618

(ToG) (Sun et al., 2023a), improving MLLM’ abili- 619

ties to interpret and interact with (MM)KGs, thus 620

advancing towards human-like multi-modal pro- 621

ficiency and greater machine intelligence. More- 622

over, MMKGs can enhance multi-modal Retrieval 623

Augmented Generation (RAG) by using various 624

modalities as anchors (Song et al., 2023a), yielding 625

more relevant and insightful results than traditional 626

vector-based searches (Wu and Xie, 2023). 627

5 Conclusion and Vision 628

This paper provides an overview of KG-driven 629

multi-modal learning, tracing the field’s evolution 630

from past achievements through current trends to 631

future developments. Our goal is to construct a sys- 632

tematic blueprint of the domain, providing a valu- 633

able reference for researchers currently involved in 634

or planning to explore this area. Looking ahead, 635

we envision a stronger synergy between MMKGs 636

and MLLMs, aiming to create a robust interactive 637

system powered by this dual-drive approach. 638
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6 Limitations639

In this study, we provide a survey of multi-modal640

learning with knowledge graphs. We discuss re-641

lated surveys in Appendix A.1 and will continue642

adding more related approaches with more detailed643

analysis. Despite our best efforts, there may be still644

some limitations that remain in this paper.645

References & Methods. Due to the page limit,646

we may have omitted some important references647

and cannot afford all the technical details. Our648

Literature Collection Methodology is shared in649

Appendix A.1. We primarily review cutting-edge650

methods from the past three years (mostly in 2023),651

sourced from major conferences and journals like652

ACL, EMNLP, NAACL, CVPR, NeurIPS, ICLR,653

and arXiv, etc., and we will continue to update our654

review with the latest research.655

Benchmarks. Most of the benchmarks men-656

tioned (e.g., Tab. 1 and Tab. 2) are gathered and cat-657

egorized from the experimental part of mainstream658

works. In order to help readers quickly understand659

the tasks’ goals and formats from a unified perspec-660

tive, the definition and boundary of each task may661

not be accurate enough. Additionally, considering662

the similarity and coupling between different tasks663

and the uneven number of related works, we may664

have overlooked some multi-modal tasks such as665

multi-modal summarization (Jangra et al., 2023).666

We also have not discussed specialized domains667

such as Medicine (Du et al., 2016) and Science, but668

we aim to address these gaps in the future.669

Empirical Conclusions. We provide detailed670

comparisons and discussions on KG-driven multi-671

modal learning in § 3, listing some promising fu-672

ture directions in § 4. All conclusions are based on673

empirical analysis of existing works, which may674

not capture a broader perspective. As the field675

evolves, we will update our findings to reflect the676

latest developments.677
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A Appendix2355

A.1 Literature Collection Methodology2356

For our paper, we source literature primarily from2357

Google Scholar and arXiv. Google Scholar pro-2358

vides broad access to leading computer science con-2359

ferences and journals, while arXiv serves as a key2360

platform for preprints across various disciplines,2361

including a significant repository recognized by the2362

computer science community. We employ a sys-2363

tematic search strategy on these platforms, using2364

relevant keyword combinations to assemble our2365

references. We rigorously curate this collection,2366

manually filtering out irrelevant papers and incor-2367

porating initially overlooked studies mentioned in2368

their main texts. By exploiting Google Scholar’s2369

citation tracking, we thoroughly augment our list2370

through iterative depth and breadth traversal.2371

Organization. We begin by introducing the pre-2372

liminaries, defining key concepts in KGs and multi-2373

modal learning, and providing an overview of2374

KG4MML settings (§ 2). Then we delves into var-2375

ious KG4MM tasks, detailing resources and key2376

breakthroughs in recent years (§ 3), while balanc-2377

ing details to address content overlaps across tasks2378

and focusing on core challenges (Fig. 2). Finally,2379

we explore the future integration of multi-modal2380

methods with (MM)KGs, proposing potential en-2381

hancements for previously discussed tasks (§ 4),2382

especially considering the rapid development of2383

multi-modal Large Language Models (LLMs).2384

Related work. Several surveys are closely re-2385

lated to our work. Monka et al. (2022) overview2386

Knowledge Graph Embedding (KGE) methods2387

and their integration with high-dimensional vi-2388

sual embeddings, emphasizing KGs’ role in vi-2389

sual information transfer. Lymperaiou and Stamou2390

(2022) discuss enhancing multi-modal learning2391

with knowledge but lack a systematic analysis of2392

KG-driven multi-modal learning, including bench-2393

marks, method comparisons, and task paradigms.2394

Moreover, these studies all focus on developments2395

up to 2022, missing the latest insights.2396

In response to the rapid advancements in AGI2397

from 2022 to 2023, our survey places a strong em-2398

phasis on emerging areas like LLMs, aiming to2399

fill critical knowledge gaps. Our goal is to pro-2400

vide a clear roadmap for future research, highlight2401

challenges and opportunities, and systematically2402

compare methodologies to inspire new ideas.2403

Figure 8: Applications of KGs in downstream multi-
modal tasks within the context of the Marvel Universe.

A.2 Supplement for Preliminaries 2404

Aiming to align with established literature, we be- 2405

gin with a widely-accepted definition of KG and 2406

its foundational operations, explore KGs enriched 2407

with ontologies from the semantic web perspective, 2408

and conclude with diverse interpretations and uses 2409

of KGs beyond the semantic web. 2410

A.2.1 Knowledge Graph 2411

Since their inception around 2007, Knowledge 2412

Graphs (KGs) have become pivotal in various aca- 2413

demic domains, marked by foundational projects 2414

such as Yago (Suchanek et al., 2007), DBPedia 2415

(Auer et al., 2007), and Freebase (Bollacker et al., 2416

2008). The integration of Google’s Knowledge 2417

Panels into web search in 2012 highlighted a sig- 2418

nificant milestone in the adoption of KGs. Today, 2419

KGs enhance search engines like Google and Bing 2420

and are integral to the functionality of voice assis- 2421

tants like Amazon Alexa and Apple Siri, reflecting 2422

their widespread business importance and increas- 2423

ing prevalence. 2424

Structural Composition. KGs represent entities 2425

and relations using a graph structure, where nodes 2426

symbolize real-world entities or atomic values (at- 2427

tributes), and edges denote relations. Knowledge 2428

is often captured in triples, such as (Hangzhou, lo- 2429

catedAt, China). They utilize an ontology-based 2430

schema to define basic entity classes and their rela- 2431

tions, usually in a taxonomic structure. This semi- 2432

structured nature merges structured data’s clear se- 2433

mantics (from ontologies) with the flexibility of 2434

unstructured data, allowing easy expansion through 2435

new classes and relations. 2436

Accessibility and Advantages. KGs support a 2437

wide array of downstream applications, accessi- 2438

ble primarily via Lookup and Querying methods. 2439

Lookup in KGs, also known as KG retrieval, iden- 2440

tifies relevant entities or properties based on input 2441

strings, leveraging lexical indices (surface) from 2442

entity and relation labels. An example of this is 2443

25



the DBpedia online lookup service 4. Alterna-2444

tively, Querying returns results from input queries2445

crafted in the RDF query language SPARQL5.2446

These queries typically involve sub-graph patterns2447

with variables, yielding matched entities, proper-2448

ties, literals, or complete sub-graphs.2449

Note that KGs, especially those with OWL on-2450

tologies, support symbolic reasoning, including2451

consistency checks to identify logical conflicts and2452

entailment reasoning to infer hidden knowledge2453

via Description Logics. KGs also facilitate inter-2454

domain connections. An example is the linkage2455

between the Movie and Music domains through2456

common entities like individuals who are both ac-2457

tors and singers. This interconnectivity not only en-2458

hances machine comprehension but also improves2459

human understanding, benefiting applications like2460

search, question answering, and recommendations.2461

Furthermore, recent developments in LLMs high-2462

light the crucial role of KGs, particularly in man-2463

aging long-tailed knowledge, as evident in several2464

studies (Dong, 2023; Sun et al., 2023b; Pan et al.,2465

2023a,b).2466

Ontology. Within the semantic web, ontologies2467

serve as KG schemas, utilizing languages like2468

RDFS6 and OWL7 to ensure richer semantics and2469

superior quality (Horrocks, 2008). Key features of2470

ontologies include: (i) Hierarchical classes, often2471

termed as concepts8; (ii) Properties that specify the2472

terms used in relations; (iii) Hierarchies involving2473

both concepts and relations; (iv) Constraints, in-2474

cluding the domain and range of relations, as well2475

as class disjointness; (v) Logical expressions that2476

encompass relation composition.2477

Languages like RDF, RDFS, and OWL introduce2478

built-in vocabularies to capture these knowledge2479

elements, with predicates like rdfs:subClassOf de-2480

noting concept subsumption, and rdf:type indi-2481

cating instance-concept associations. RDFS also2482

provides annotation properties like rdfs:label and2483

rdfs:comment for resource meta-information.2484

KG Scope Extension. Widely accepted KGs2485

include WordNet (Miller, 1995), a lexical2486

database defining word interrelations, and Concept-2487

4https://lookup.dbpedia.org/
5https://www.w3.org/TR/rdf-sparql-query/
6RDF Schema, https://www.w3.org/TR/rdf-schema/
7Web Ontology Language, https://www.w3.org/TR/

owl2-overview/
8To distinguish between class in machine learning tasks

and class in KGs, we refer to the latter as concept.

Net (Speer et al., 2017), which archives common- 2488

sense knowledge interlinked by different terms. 2489

In this paper, we extend the conventional view 2490

of KGs beyond standard-format entities and rela- 2491

tions. This paper extends the conventional view 2492

of KGs beyond standard-format entities and rela- 2493

tions. Besides, the ontology alone, often utilized to 2494

define domain knowledge including conceptualiza- 2495

tion and vocabularies like terms and taxonomies, 2496

is also considered a form of KG. Further elabo- 2497

rating on this expanded perspective, as outlined 2498

by Chen et al. (2023c), our scope includes sim- 2499

pler graph structures, such as basic taxonomies 2500

with hierarchical classes and graphs with weighted 2501

edges denoting quantitative relationships like sim- 2502

ilarity and distance between entities. Addition- 2503

ally, we categorize any structured data organized 2504

in a graph format with nodes that have explicit se- 2505

mantic interpretations as part of this broader KG 2506

definition. A prominent example is the Semantic 2507

Network, which connects various concepts with 2508

labeled edges to represent different relationships. 2509

We also consider ontologies, basic taxonomies, 2510

and graphs with weighted edges as forms of KGs. 2511

Any structured data organized in a graph format 2512

with nodes having explicit semantic interpretations 2513

falls under this broader KG definition. An example 2514

is the Semantic Network, which connects various 2515

concepts with labeled edges to represent different 2516

relationships. 2517

A.2.2 Multi-modal Learning. 2518

Our world is perceived through diverse modalities, 2519

including sight, sound, movement, touch, and smell 2520

(Smith and Gasser, 2005). A “modality” typically 2521

refers to a specific type of data or information chan- 2522

nel, characterized by sensory input or representa- 2523

tion format. Each modality encapsulates unique 2524

features from specific sensory sources. It is intu- 2525

itive that models, which integrate data from various 2526

modalities, generally surpass uni-modal models 2527

by accumulating more information. Multi-modal 2528

learning aims to develop a unified representation 2529

or mapping from multiple modalities to an output 2530

space, leveraging the complementarity and redun- 2531

dancy across modalities to improve prediction. The 2532

challenge lies in effectively aligning, fusing, and 2533

integrating information from various modalities to 2534

exploit their collective power. 2535

Difference to Multi-view Learning. Unlike 2536

multi-view analysis, which suggests that each view 2537

26

https://lookup.dbpedia.org/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/


(e.g., different perspectives of a flower) can in-2538

dependently yield accurate predictions (Xu et al.,2539

2013; Federici et al., 2020), multi-modal learning2540

contends with scenarios where the absence of one2541

modality could impede task completion (Huang2542

et al., 2021) (e.g., an image-lacking Visual Ques-2543

tion Answering scenario). Additionally, multi-view2544

learning typically involves varying perspectives2545

of the same data type, originating from a single2546

source, such as different features of image data.2547

In contrast, multi-modal learning deals with dis-2548

parate data types, like text and images, derived2549

from multiple sources. In this paper, our explo-2550

ration of multi-modal tasks and the application of2551

multi-modal learning on KGs are grounded in this2552

broader understanding of multi-modal learning.2553

Definition 1 Multi-modal Learning. Assume2554

given data x̂ =
(
x(1), . . . , x(K)

)
consists of K2555

modalities, with x(k) ∈ X (k) representing the do-2556

main set of the k-th modality and X = X (1) ×2557

· · · ×X (K). Let Y denote the target domain and Z2558

represent a latent space. Denote g : X 7→ Z2559

as the true mapping from the input space (uti-2560

lizing all K modalities) to the latent space, and2561

q : Z 7→ Y as the true task mapping. For example,2562

in aggregation-based multi-modal fusion, g serves2563

as an aggregation function built upon K separate2564

sub-networks, and q is a multi-layer neural net-2565

work (Wang et al., 2020c). In a learning task, a2566

data pair (x̂, y) ∈ X × Y is generated from an2567

unknown distribution D, such that2568

PD(x̂, y) = Py|x̂ (y | q ◦ g(x̂))Px̂(x̂) , (1)2569

where q ◦g(x̂) = q(g(x̂)) represents the composite2570

function of q and g.2571

A.3 Supplement for Understanding &2572

Reasoning Tasks2573

Multi-modal reasoning tasks, like knowledge-2574

based VQA, demand knowledge that goes beyond2575

regular daily experiences (Khan et al., 2022a).2576

These tasks often delve into less common, long-2577

tail knowledge domains that typically require in-2578

tentional reflection, with KGs providing a crucial2579

structured repository for this extensive, specialized2580

knowledge.2581

A.3.1 Supplementary Information for VQA2582

Current KG-aware VQA research typically in-2583

volves four key stages for incorporating knowl-2584

edge. These stages, integral to the workflow of2585

Figure 9: Illustration of KG-based Visual Question An-
swering (VQA) (§ 3.1) and Visual Referring Expres-
sions (VRE) (§ A.6). To some extent, KG-based VRE
can be viewed as an extension of KG-based VQA, in-
corporating an additional step of grounding answers.

KG-aware understanding and reasoning tasks, may 2586

be adopted individually or in combination across 2587

different studies to form a comprehensive approach. 2588

Those method references are provided and orga- 2589

nized here for tracing the original sources: 2590

Knowledge Retrieval. Implicit knowledge en- 2591

coded in model parameters, typically pre-trained 2592

on large-scale datasets via self-supervised tasks, 2593

makes the use of a retriever optional but still ben- 2594

eficial for VQA. 2595

1. Matching-based Retrieval: 2596

• Identifying spatial positions (Shah et al., 2597

2019; Zhu et al., 2020; Yu et al., 2020; 2598

Gardères et al., 2020; Marino et al., 2021; 2599

Lin et al., 2022). 2600

• Identifying visual object sizes and 2601

names (Wang et al., 2017, 2018a; 2602

Narasimhan and Schwing, 2018; Wang 2603

et al., 2019; Narasimhan et al., 2018; Zhu 2604

et al., 2020; Ziaeefard and Lécué, 2020; Yu 2605

et al., 2020; Li et al., 2020; Ramnath and 2606

and, 2020; Zhang et al., 2021a; Gardères 2607

et al., 2020; Zheng et al., 2021b; Vickers 2608

et al., 2021; Li and Moens, 2022; Zhang 2609

et al., 2022a; Ding et al., 2022; Hussain 2610

et al., 2022; Han et al., 2023; Song et al., 2611

2023b; Ravi et al., 2023; You et al., 2023; 2612

Khademi et al., 2023; Yin et al., 2023a; 2613

Dong et al., 2024). 2614

• Identifying high-level attributes like scene 2615

names, object parts, and human activi- 2616

ties, using various pre-trained classifiers or 2617
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APIs9 (Wang et al., 2017; Wu et al., 2016;2618

Narasimhan and Schwing, 2018; Wang2619

et al., 2018a; Narasimhan et al., 2018;2620

Yu et al., 2020; Ramnath and and, 2020;2621

Marino et al., 2021; Hussain et al., 2022;2622

Zhang et al., 2022a; Lin and Byrne, 2022;2623

He and Wang, 2023; Song et al., 2023b;2624

You et al., 2023; Khademi et al., 2023).2625

• Image captions and OCR text strings can be2626

generated for information supplement (Wu2627

et al., 2016; Su et al., 2018; Zhu et al., 2020;2628

Yu et al., 2020; Salaberria et al., 2023; Chen2629

et al., 2022c; Hussain et al., 2022; Gui2630

et al., 2022; Lin and Byrne, 2022; Wu and2631

Mooney, 2022; Lin et al., 2022; You et al.,2632

2023; Zhou et al., 2023; Si et al., 2023;2633

Khademi et al., 2023; Dong et al., 2024).2634

• Those question and captions can be2635

parsed by NLP tools (e.g., NLTK (Bird2636

et al., 2009), AllenNLP constituency2637

parser (Gardner et al., 2018), Stanza (Qi2638

et al., 2020), NLP Dependency2639

Parser (Chen and Manning, 2014),2640

Named Entity Recognizer (Finkel et al.,2641

2005), LLMs (Dong et al., 2024)) for2642

syntax analysis (Wang et al., 2019; Li et al.,2643

2020; Saqur and Narasimhan, 2020; Cao2644

et al., 2022b; Han et al., 2023; Wu and2645

Mooney, 2022; Ravi et al., 2023), along2646

with techniques like regular expressions2647

(regex) (Wang et al., 2017), semantic graph2648

parsing model (Zhu et al., 2020; Yu et al.,2649

2020; Wu et al., 2022; He and Wang, 2023;2650

Hussain et al., 2022), SpanSelector (Jain2651

et al., 2021), or query template selec-2652

tor (Wang et al., 2018a; Narasimhan and2653

Schwing, 2018; Narasimhan et al., 2018).2654

• Unimportant visual objects not present in2655

the question or caption might be filtered2656

out (Zhang et al., 2021a; Gardner et al.,2657

2018).2658

• After extracting initial concepts from Q and2659

I , two key mappings are established: the2660

first links parsed objects in Q to their vi-2661

sual counterparts in I , and the second asso-2662

ciates these concepts with relevant entries2663

in KBs. This is achieved using methods2664

like greedy longest-string matching (Wang2665

et al., 2017; Su et al., 2018; Shevchenko2666

9https://azure.microsoft.com/en-us/products/
cognitive-services/vision-services

et al., 2021), template matching (Wang 2667

et al., 2018a), and Multi-modal Entity Link- 2668

ing methods (Zheng et al., 2021b; Jain et al., 2669

2021; Wu and Mooney, 2022; You et al., 2670

2023; Adjali et al., 2023). Techniques like 2671

face identification algorithms (Shah et al., 2672

2019; Vickers et al., 2021; Heo et al., 2022; 2673

Lerner et al., 2022) and ViLBERT-multi- 2674

task (Lu et al., 2020) serve as effective tools 2675

for linking objects. 2676

• Fact triples can be collected by involving 2677

the first-order sub-KG from these iden- 2678

tified concept nodes (sometimes will be 2679

three-hops in character KG (Shah et al., 2680

2019)) or by identifying brief knowledge 2681

paths among the entities from I and Q. 2682

This process requires constructing a tem- 2683

porary (local) sub-KG specific to the cur- 2684

rent Q-I pair (Wang et al., 2019; Su et al., 2685

2018; Li et al., 2020). In addition, KG- 2686

Aug (Li et al., 2020) constructs a global 2687

sub-KG that links Q, I , and candidate 2688

answers in a unified knowledge-based se- 2689

mantic space. KAN (Zhang et al., 2021a) 2690

presents a weighting system for each fact to 2691

indicate the reliability of the corresponding 2692

knowledge piece. Heo et al. (2022) develop 2693

a hypergraph from the KG, using a triplet as 2694

the basic unit to preserve the higher-order 2695

semantics inherent in the KG. 2696

• RDF query (e.g., SPARQL) generation 2697

often involves filling pre-defined tem- 2698

plates with parsed question data, suitable 2699

for datasets with consistent question pat- 2700

terns (Wang et al., 2017). Those queries 2701

typically include both “ASK” and “SE- 2702

LECT” types, with “ASK” checking for a 2703

solution to the query pattern and “SELECT” 2704

returning variables from all matched solu- 2705

tions (Wang et al., 2017). 2706

• Term-based (e.g., TF-IDF and BM25) re- 2707

trievers is another good choice, with their 2708

scoring reflecting the direct correlation be- 2709

tween the query and fact triplets. Luo 2710

et al. (2021) use image captions generated 2711

by a model, concatenating them with Q 2712

as a query for BM25-based document re- 2713

trieval. LaKo (Chen et al., 2022c) presents 2714

a Stem-based BM25 approach, using word 2715

stems as the smallest semantic units to max- 2716

imize knowledge extraction from limited 2717

28
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VQA and KG resources. EnFoRe (Wu and2718

Mooney, 2022) utilizes entity-augmented2719

queries to recall passages via BM25, mea-2720

suring an entity’s importance to the query2721

by the relevance of these passages to the2722

answer.2723

2. Retrieval Pruning:2724

• Re-ranking candidate facts and may in-2725

clude assigning weights to nodes based on2726

corresponding visual object sizes (Wang2727

et al., 2019), ensuring each knowledge2728

triple contains key elements from Q or auto-2729

generated captions (Su et al., 2018; Wu and2730

Mooney, 2022), or aligns with the relation2731

type implied in Q (Narasimhan et al., 2018;2732

Zhu et al., 2020; Yu et al., 2020; Ramnath2733

and and, 2020; Hussain et al., 2022; Yin2734

et al., 2023a).2735

• A learnable score function can assess the2736

compatibility between a fact representation2737

and the Q-I representation (Narasimhan2738

and Schwing, 2018; Hussain et al., 2022;2739

Ravi et al., 2023).2740

• Global KG-level pruning is also practiced.2741

For example, KRISP (Marino et al., 2021)2742

gathers all symbolic entities from the VQA2743

dataset, including questions, answers, and2744

visual concepts recognized by visual sys-2745

tems, and incorporates only triples related2746

to these concepts to the model training.2747

LaKo (Chen et al., 2022c) streamlines the2748

KG by creating a stem corpus specific to2749

the VQA field, ensuring all KG triples con-2750

tain at least one stem from this corpus.2751

KAT (Gui et al., 2022) extracts a subset2752

from Wikidata (Vrandecic and Krötzsch,2753

2014) covering common real-world objects,2754

and RR-VEL (You et al., 2023) only retains2755

triples in the KG that include candidate an-2756

swers and visually detected entities in the2757

training set images.2758

3. Search Engine:2759

• Marino et al. (2019) gather Wikipedia arti-2760

cles for each Q-I pair and select sentences2761

closely matching the query based on key2762

word frequency. Their ArticleNet predicts2763

the presence and positioning of correct an-2764

swers in these articles. Jain et al. (2021)2765

utilize Google’s search engine to retrieve2766

the top-10 relevant snippets for a Machine2767

Reading Comprehension (MRC) module2768

based on a reformulated Q. 2769

• MAVEx (Wu et al., 2022) enriches knowl- 2770

edge retrieval through Google APIs for 2771

category labels, OCR readings, and logo 2772

information, collecting sentences from 2773

Wikipedia articles that contain candidate 2774

answers. It also uses Google Image Search 2775

with candidate Q-A pairs to provide addi- 2776

tional visual information. Luo et al. (2021) 2777

notice that snippet-level knowledge outper- 2778

forms sentence-level, and select ten snip- 2779

pets for each Q-A query. 2780

4. Dense Retrieval (Karpukhin et al., 2020): 2781

• This technique utilizes embedding similar- 2782

ities to match questions and visual con- 2783

cepts with pre-flattened concise fact sen- 2784

tences (Narasimhan et al., 2018; Zhu et al., 2785

2020; Yu et al., 2020; Ziaeefard and Lécué, 2786

2020; Wu et al., 2022; Li and Moens, 2022; 2787

Gao et al., 2022; Ossowski and Hu, 2023; 2788

Liu et al., 2022; You et al., 2023; Si et al., 2789

2023). 2790

• Retrieval efficiency is frequently enhanced 2791

by employing open-source indexing en- 2792

gines like FAISS (Johnson et al., 2021), 2793

which facilitates the organization and in- 2794

dexing of large-scale dense embeddings. 2795

The architectures involved are generally 2796

symmetrical or siamese to support shared 2797

embedding spaces, while asymmetrical de- 2798

signs are adopted for Cross-Modal Re- 2799

trieval scenarios (e.g., CLIP-based re- 2800

trieval). 2801

• DMMGR (Li and Moens, 2022) ranks 2802

triplets based on the average cosine sim- 2803

ilarity between each word in the triplet and 2804

both the nouns in Q and the objects de- 2805

tected in I , excluding pairs with a zero av- 2806

erage similarity. 2807

• RR-VEL (You et al., 2023) assesses the sim- 2808

ilarity between Q and key entities across 2809

various knowledge triples, using combined 2810

similarity scores to rank the candidate 2811

triples. KAT (Gui et al., 2022) uses the 2812

CLIP model to encode patch-level image 2813

regions and knowledge entries for retrieval 2814

purposes. 2815

• MAVEx (Wu et al., 2022) creates a con- 2816

cept pool for each Q-A pair, selecting facts 2817

containing potential answers identified by 2818

other VQA models. These facts are en- 2819
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coded using a pre-trained BERT model2820

for re-ranking. Its subsequent work En-2821

FoRe (Wu and Mooney, 2022) also priori-2822

tizes key entities in the Q-I pair, enhancing2823

the knowledge retrieval process by focus-2824

ing on entities crucial for answering the2825

question.2826

• HKEML (Zheng et al., 2021a) applies 2D2827

convolutional operations (Gao et al., 2021)2828

to align the head and relation patterns in2829

knowledge queries with Q, effectively min-2830

ing implicit connections within the KG per-2831

tinent to Q-A pairs.2832

5. Learnable Retriever:2833

• Learnable Retriever refers to a trainable re-2834

trieval model that enhances the adaptability2835

and compatibility in KG-based VQA set-2836

tings (Chen et al., 2021d; Luo et al., 2021;2837

Lin and Byrne, 2022; Ravi et al., 2023; Wu2838

et al., 2023b; Adjali et al., 2023).2839

• Chen et al. (2021d) and Li et al. (2022b)2840

separately aligning the joint embedding of2841

the Q-I pair with the targets like relations2842

in separate feature spaces. The prediction2843

for relation type in the sub-KG pruning op-2844

eration mentioned before is similar.2845

• VLC-BERT (Ravi et al., 2023) assigns sim-2846

ilarity scores to inference facts for each2847

Q based on their overlap with human-2848

annotated answers. These scores act as2849

weak signals, indicating the relevance of2850

each fact to Q, thus guiding the training of2851

the retriever.2852

• Luo et al. (2021) utilize DPR (Karpukhin2853

et al., 2020) as a neural retriever, leveraging2854

two BERT models for encoding the query2855

and context. They further adapt DPR for2856

visual domains with two variants: Image-2857

DPR based on LXMERT (Tan and Bansal,2858

2019), and Caption-DPR, which modifies2859

the DPR approach to suit visual content.2860

• LaKo (Chen et al., 2022c) explores a dif-2861

ferentiable KG retriever, leveraging cross-2862

attention scores between the token of the2863

prediction output and input facts for itera-2864

tive reader-retriever training.2865

• Addressing the challenge of slow con-2866

vergence and sub-optimal performance in2867

learnable retrievers, DEDR (Salemi et al.,2868

2023a) employs a dual multi-modal en-2869

coder architecture with shared parameters2870

for both Q-I queries and knowledge con- 2871

tent, starting from the same shared embed- 2872

ding space. It further explores both multi- 2873

modal and text-only retrievers, combining 2874

their results via an ensemble method. The 2875

training of these retrievers utilizes a multi- 2876

modal retrieval dataset provided by Qu et al. 2877

(2021) as a supervised corpus. Training for 2878

these retrievers is based on a supervised 2879

multi-modal retrieval dataset from Qu et al. 2880

(2021). 2881

• REVEAL (Hu et al., 2023) integrates three 2882

data sources: WikiData KB (Vrandecic 2883

and Krötzsch, 2014), Wikipedia-Image- 2884

Text (WIT) (Srinivasan et al., 2021), and 2885

the VQA2.0 dataset (Antol et al., 2015). 2886

It utilizes a gating mechanism for optimal 2887

knowledge source selection and employs 2888

the perceiver architecture (Jaegle et al., 2889

2021) to encode and compress knowledge 2890

items, enabling cascading multi-modal re- 2891

trievers and joint reasoning. 2892

• RAVQA (Lin and Byrne, 2022) treats re- 2893

trieval content as negative if it does not aid 2894

in answer generation, using the rest as posi- 2895

tive samples. This approach helps in train- 2896

ing the retriever by defining relevant and ir- 2897

relevant content. Additionally, it combines 2898

the retrieval probability with the reader’s 2899

answer prediction to determine the final re- 2900

sult. 2901

• Cold Start issues: REVEAL (Hu et al., 2902

2023) creates an initial retrieval dataset 2903

with pseudo ground-truth knowledge, using 2904

a large-scale image-caption dataset (Srini- 2905

vasan et al., 2021). For pre-training, RE- 2906

VEAL pairs passages with query images 2907

as pseudo ground-truth knowledge and, to 2908

align with VQA task formats, randomly 2909

truncates captions to predict the truncated 2910

content using the image and the remaining 2911

text. LaKo (Chen et al., 2022c) initially 2912

employs a BM25-based retriever for knowl- 2913

edge retrieval in the first training phase, al- 2914

lowing for preliminary distillation to the 2915

differentiable retriever to mitigate the cold 2916

start problem. 2917

6. PLM Generation as the Retrieval: 2918

• Implicit knowledge encoded in model pa- 2919

rameters, typically pre-trained on large- 2920

scale datasets via self-supervised tasks, 2921
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makes the use of an explicit retriever op-2922

tional for VQA completion. Several studies2923

directly and implicitly harness the knowl-2924

edge embedded in PLMs for reasoning, of-2925

ten skipping a separate knowledge retrieval2926

step (Salaberria et al., 2023; Yang et al.,2927

2022; Zhang et al., 2022a; Shao et al., 2023;2928

Subramanian et al., 2023).2929

• KAT (Gui et al., 2022) and TwO (Si2930

et al., 2023) take GPT-3 to retrieve im-2931

plicit textual knowledge with supporting2932

evidence; VLC-BERT (Ravi et al., 2023)2933

uses COMET (Hwang et al., 2021), a LM2934

trained on commonsense KGs, to gener-2935

ate contextual expansions instead of direct2936

knowledge retrieval from KBs. Wang et al.2937

(2023g) utilize ChatGPT to decompose Q,2938

alleviating the issue of unfocused and lack-2939

ing detailed image features in image cap-2940

tioning; MM-Reasoner (Khademi et al.,2941

2023) employs LLMs to create rationales2942

from multi-aspect visual descriptions (e.g.,2943

commonsense knowledge facts and exter-2944

nal information). These rationales, along-2945

side I and Q, are processed by a specif-2946

ically fine-tuned Visual Language Model2947

(VLM) designed to handle such enriched2948

input.2949

Knowledge Representation involves selecting2950

the appropriate format for symbolic KGs to in-2951

tegrate with multi-modal models. This decision2952

is crucial for effectively infusing knowledge into2953

multi-modal reasoning tasks.2954

1. Direct Text-to-Embedding Mapping:2955

• Some research treats entities and relations2956

in KGs as words, using embedding meth-2957

ods like Glove (Pennington et al., 2014)2958

to translate them into continuous vectors.2959

This transformation enables the further2960

compression of knowledge components2961

(e.g., triples) into fixed-size vectors using2962

Recurrent Neural Networks (RNNs) (Wang2963

et al., 2019), (V)PLMs (You et al., 2023;2964

Hu et al., 2023; Chevalier et al., 2023), or2965

mean pooling (Narasimhan and Schwing,2966

2018; Narasimhan et al., 2018; Zhu et al.,2967

2020; Yu et al., 2020; Chen et al., 2021d;2968

Marino et al., 2021; Li and Moens, 2022;2969

Wu et al., 2022; Hussain et al., 2022).2970

• When handling lengthy text from SPARQL2971

queries, Wu et al. (2016) use Doc2Vec (Le2972

and Mikolov, 2014) to learn feature repre- 2973

sentations for variable-length texts. 2974

• Techniques such as stop-word removal 2975

in Word2Vec can further refine knowl- 2976

edge representation, reducing the noise 2977

from irrelevant words in mean pool- 2978

ing (Narasimhan et al., 2018; Liu et al., 2979

2022; Chen et al., 2022c). 2980

• Some methods convert fact collections into 2981

natural language sentences via concatenat- 2982

ing the relation and object entities (Ziaee- 2983

fard and Lécué, 2020; Zhang et al., 2021a; 2984

You et al., 2023; Hu et al., 2023), allowing 2985

direct encoding into fixed-length vectors by 2986

PLMs. 2987

2. Knowledge Graph Embedding (KGE): 2988

• KGE offers a practical approach to em- 2989

bed facts and reveal semantic relationships 2990

among triples in an abstract space. This 2991

technology is valuable for setting up ini- 2992

tial (Su et al., 2018; Ramnath and and, 2993

2020; Zheng et al., 2021b; Han et al., 2023) 2994

fact embeddings and gathering multi-modal 2995

knowledge (Ding et al., 2022). 2996

• Cao et al. (2022b) train the RotatE model 2997

on the entire KG to get entity and rela- 2998

tion features, modifying a guided-attention 2999

block to fuse those knowledge embeddings 3000

with I and Q features. 3001

• Chen et al. (2021d) evaluate various embed- 3002

dings including TransE-based KG embed- 3003

dings, BERT-based node representations of 3004

ConceptNet (Yang et al., 2023b; Malaviya 3005

et al., 2020), and GloVe embeddings, find- 3006

ing that Word2Vec representations excel at 3007

mapping answers in smaller datasets. 3008

• RVL (Shevchenko et al., 2021) utilizes 3009

the PyTorchBigGraph method (Lerer et al., 3010

2019) for embedding the Wikidata KG, 3011

while KVQAmeta (García-Olano et al., 3012

2022) employs Wikipedia2Vec for repre- 3013

senting entities from Wikipedia, emphasiz- 3014

ing KGE’s versatility in representing differ- 3015

ent knowledge sources. 3016

3. Pure Context: 3017

• In many cases, KG triples are maintained in 3018

their original textual format for direct par- 3019

ticipation in multi-modal reasoning. They 3020

serialize triples for joint reasoning with 3021

(V)PLMs (Vickers et al., 2021; Chen et al., 3022

2022c; Gao et al., 2022; Yang et al., 2022; 3023
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Gui et al., 2022; Lin and Byrne, 2022; Wu3024

and Mooney, 2022; Lin et al., 2022; Si et al.,3025

2023; Ravi et al., 2023; You et al., 2023;3026

Shao et al., 2023; Zhou et al., 2023; Wang3027

et al., 2023g; Hu et al., 2022; Xenos et al.,3028

2023; Khademi et al., 2023; Dong et al.,3029

2024).3030

Knowledge-aware Modality Interaction.3031

1. Concatenation:3032

• This unified feature is typically refined with3033

a Multi-Layer Perceptron (MLP) to en-3034

hance modality interaction and integration.3035

In multi-modal fusion models like MU-3036

TAN (Ben-Younes et al., 2017), BAN (Kim3037

et al., 2018), SAN (Yang et al., 2016) and3038

ERMLP (Ramnath and and, 2020), feature3039

concatenation is a preliminary step before3040

being input to the MLP layer, crucial for3041

sophisticated multi-modal analysis.3042

2. Long Short-Term Memory (LSTM) Net-3043

work:3044

• LSTM Network is a foundational frame-3045

work for integrating knowledge with multi-3046

modal data.3047

• Sometimes LSTMs also act as standalone3048

encoders for textual data (Narasimhan and3049

Schwing, 2018; Narasimhan et al., 2018;3050

Yu et al., 2020; Zhu et al., 2020; Li et al.,3051

2020; Ramnath and and, 2020; Zhang et al.,3052

2021a; Li and Moens, 2022), employing3053

Glove (Pennington et al., 2014; Han et al.,3054

2023) or PLMs (Devlin et al., 2019; Lan3055

et al., 2020) for token embedding initial-3056

ization. The output embeddings aid in sub-3057

sequent stages of modality fusion, giving3058

LSTM a pivotal role similar to those meth-3059

ods in Direct Text-to-Embedding Mapping3060

paradigm.3061

3. Graph Neural Networks (GNNs):3062

• GNNs emphasize the connection of con-3063

cepts in VQA by integrating representa-3064

tions from I , Q, and entities into cohesive3065

networks, where each node (entity) is rep-3066

resented by an embedding that is a concate-3067

nation of different modalities (Narasimhan3068

et al., 2018).3069

• Mucko (Zhu et al., 2020) diverges from3070

traditional modality embedding concatena-3071

tion by independently processing distinct3072

modalities’ KGs. This involves isolating3073

and separately analyzing the visual scene3074

KG, the semantic KG from image cap- 3075

tions, and the common sense KG, support- 3076

ing precise answer determination through 3077

Q-guided attention and cross-KG convo- 3078

lution. The method of Q-guided KG node 3079

weighting has seen similar implementations 3080

in other studies (Yu et al., 2020; Li et al., 3081

2020; Saqur and Narasimhan, 2020; Ziaee- 3082

fard and Lécué, 2020; Li and Moens, 2022; 3083

Liu et al., 2022; Hussain et al., 2022; Wang 3084

et al., 2022b). 3085

• KG-Aug (Li et al., 2020) uses GCN to gen- 3086

erate entity representations, which are then 3087

used to embed knowledge into the features 3088

of both Q and I . 3089

• KRISP (Marino et al., 2021) applies a 3090

RGCN (Schlichtkrull et al., 2018) for sym- 3091

bolic knowledge reasoning, enhancing each 3092

entity with four inputs: a) A binary indi- 3093

cator for concept presence in Q; b) Clas- 3094

sifier probabilities for the concept’s node, 3095

or zero if not detected in I , using various 3096

classifiers and detectors; c) A GloVe pool- 3097

ing representation of the concept; d) An 3098

implicit knowledge representation derived 3099

from a multi-modal pre-trained model (Li 3100

et al., 2019). 3101

• VQA-GNN (Wang et al., 2022b) employs a 3102

multi-modal GNN with bidirectional fusion 3103

to update concept and scene graph nodes 3104

for answer prediction through inter-modal 3105

message passing. 3106

4. Dynamic Memory Networks (DMNs): 3107

• DMNs (Kumar et al., 2016) utilize an 3108

attention-based mechanism for filtering crit- 3109

ical information from localized small-scale 3110

knowledge triple embeddings (Fig. 4 (d)), 3111

achieved by modeling interactions across 3112

multiple data channels (Wang et al., 2019; 3113

Shah et al., 2019; Han et al., 2023; Yin 3114

et al., 2023a). 3115

• Through triple replication, VKMN (Su 3116

et al., 2018) deconstructs each knowledge 3117

triple into three Key-Value pairs, for in- 3118

stance, (h, r) as the key and t as the value, 3119

reducing interference caused by using only 3120

head and tail entities as keys for retrieval 3121

thereby improving reasoning performance. 3122

• DMMGR (Li and Moens, 2022) follows 3123

this setting and further refines knowledge 3124

triple composition by using the average em- 3125
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bedding of a triple as a key and its individ-3126

ual elements as values for enhanced rele-3127

vance assessment. These networks apply3128

a multi-scale attention mechanism that ini-3129

tially evaluates the overall relevance of a3130

triplet’s embedding, then assess the impor-3131

tance of each element, leading to more ac-3132

curately recalled dynamic memories.3133

• GRUC (Yu et al., 2020) uses visual and se-3134

mantic scene graphs as knowledge sources3135

for external memory, iteratively updating3136

multi-modal memories and employing a3137

GRU module to refresh factual entity repre-3138

sentations, incorporating inputs from previ-3139

ous entities and memory from the last time3140

step.3141

• SUPER (Han et al., 2023) integrates a mem-3142

ory augmented component to retain and ad-3143

just key clues for answering questions, a3144

method named memory reactivation. RE-3145

VEAL (Hu et al., 2023) unifies multi-modal3146

data by compressing each entry into a set3147

number of value embeddings and a sin-3148

gle key embedding for memory storage,3149

achieving synchronous and stable updates3150

between the memory encoder and main3151

framework by re-encoding a portion (10%)3152

of the retrieved knowledge items in each3153

training iteration.3154

5. Guided-Attention & Transformer:3155

• Many studies (Ramnath and and, 2020;3156

Gardères et al., 2020; Zhang et al., 2021a;3157

Cao et al., 2022b; Wu et al., 2022; Heo3158

et al., 2022) have adopted a guided-3159

attention mechanism to merge knowledge3160

embeddings with visual and textual fea-3161

tures.3162

6. PLM & VLM Reasoning:3163

• Embedding-Based Visual Information3164

Integration: This category includes meth-3165

ods that convert visual data into embed-3166

dings compatible with the input specifica-3167

tions of (V)PLMs (Dou et al., 2022). It3168

involves techniques that restructure visual3169

inputs into embeddings which seamlessly3170

integrate with the model’s existing archi-3171

tecture, such as compressing patch or lo-3172

cal object features into fixed-length embed-3173

ding sets (Jaegle et al., 2021; Hu et al.,3174

2023) or applying adapters or projection3175

heads for cross-modal feature space align-3176

ment (Lin et al., 2022; Yin et al., 2023b). 3177

These visual embeddings, combined with 3178

textual inputs, are processed in the em- 3179

bedding layers of (V)PLMs (Jaegle et al., 3180

2021; Ossowski and Hu, 2023) as shown 3181

in Fig. 4 (f). Some studies (Vickers et al., 3182

2021; Luo et al., 2021; Guo et al., 2022b; 3183

Ravi et al., 2023; Salemi et al., 2023a) in- 3184

tegrate retrieved knowledge content and 3185

questions with image regions of interest, 3186

subsequently fine-tuning VLMs end-to-end 3187

on the VQA dataset using ground truth an- 3188

swers for optimization. RVL (Shevchenko 3189

et al., 2021) and KVQAmeta (García-Olano 3190

et al., 2022) inject the knowledge into 3191

the VLMs via aligning the KG embed- 3192

ding with the corresponding textual phrase 3193

representations derived from the output 3194

summations of PLM’s embedding layers. 3195

MuKEA (Ding et al., 2022) uses the visual 3196

and language output sides of the LXMERT 3197

as the head and relation of a triple, re- 3198

spectively, pairing these with the ground 3199

truth answer as the tail entity. This associ- 3200

ation, aroused through the KGE method 3201

(e.g., TransE), leverages implicit knowl- 3202

edge within VLMs for reasoning. VLC- 3203

BERT (Ravi et al., 2023) uses a Q-guided 3204

multi-head attention block to fuse multi- 3205

ple knowledge representation vectors be- 3206

fore feeding them into the VLM. He and 3207

Wang (2023) propose a graph-involved Q- 3208

attention mechanism, where V -Q guided 3209

graphs are built to direct VLM training by 3210

integrating a graph-aware mask matrix into 3211

the Transformers’ attention matrix. Pang 3212

et al. (2023) enhance a VLM’s ability for 3213

parametric knowledge injection by integrat- 3214

ing the frozen Transformer layer of the 3215

LLM (LLaMA (Touvron et al., 2023)) be- 3216

tween its cross-modal fusion and decoder 3217

modules. 3218

• Textual Conversion of Visual Data: This 3219

category involves converting all visual in- 3220

formation into a textual format, like cap- 3221

tions shown in Fig. 4 (f), enabling the ap- 3222

plication of PLM reasoning to a uniform 3223

textual dataset that includes background 3224

knowledge, questions, and images (Salaber- 3225

ria et al., 2023; Chen et al., 2022c; Luo 3226

et al., 2021; Zhang et al., 2022a; Yang et al., 3227
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2022; Gao et al., 2022; Si et al., 2023; You3228

et al., 2023; Zhou et al., 2023; Hu et al.,3229

2022; Xenos et al., 2023). These works3230

usually hold that text-only PLMs can ef-3231

fectively infer answers, even compensat-3232

ing for the loss of fine-grained visual fea-3233

tures in image captions. Chen et al. (2022c)3234

illustrate how encoder-decoder PLMs ad-3235

dress the long-tail problem in answers and3236

discrepancies between training and test-3237

ing sets, while avoiding span prediction3238

and directly generating free-form answers.3239

Jain et al. (2021) reframe VQA as a MRC3240

task, integrating search engines for addi-3241

tional context. TRiG (Gao et al., 2022) and3242

TwO (Si et al., 2023) expand this approach3243

to include object-level (e.g., object, at-3244

tribute, and OCR labels) information along-3245

side captions. Utilizing LLMs like GPT-3246

3 with image captions, PICa (Yang et al.,3247

2022) reveals that pure PLMs can achieve3248

impressive performance in zero-shot and3249

few-shot learning scenarios. KAT (Gui3250

et al., 2022) further queries GPT-3 for pro-3251

viding reasoning evidence, aiming to ex-3252

tract deeper insights and implicit knowl-3253

edge from GPT-3’s outputs to bolster the3254

reasoning process. REVIVE (Lin et al.,3255

2022) employs a Transformer encoder as3256

an adapter to utilize fine-grained regional3257

visual information. PROOFREAD (Zhou3258

et al., 2023) utilizes XGBoost (Chen and3259

Guestrin, 2016), a gradient-boosted deci-3260

sion tree model, as a knowledge perceiver3261

to classify knowledge entries based on their3262

contribution scores across various dimen-3263

sions. The Fusion-in-Decoder (FiD) ap-3264

proach (Izacard and Grave, 2021), where3265

knowledge is individually compressed in3266

the encoder and then jointly utilized in the3267

decoder for reasoning, is adopted by var-3268

ious studies (Gui et al., 2022; Gao et al.,3269

2022; Chen et al., 2022c; Wu and Mooney,3270

2022; Lin et al., 2022; Salemi et al., 2023a;3271

Si et al., 2023). This allows for the simulta-3272

neous input of a large corpus of uni-modal3273

or multi-modal background knowledge into3274

the (V)PLMs.3275

• To mitigate the loss of fine-grained visual3276

details in caption-based conversion, Wang3277

et al. (2023g) leverage the LLM’s reason-3278

ing capabilities to spotlight critical image 3279

details that that might be overlooked in cap- 3280

tions. By decomposing the main Q into 3281

sub-questions and obtaining answers via a 3282

pre-trained VQA model, they identify and 3283

select those factual summaries with higher 3284

contribution scores than the original Q, sup- 3285

plementing the initial captions with these 3286

key details. This is similar to KAT (Gui 3287

et al., 2022) and TwO (Si et al., 2023), 3288

which apply In-Context Learning (ICL) in 3289

GPT-3 which employs a combination of Q, 3290

caption, and object labels as the prompt 3291

to generate implicit textual knowledge; 3292

PromptCap (Hu et al., 2022) introduces Q- 3293

guided caption generation to cover the vi- 3294

sual details required by Q; ASB (Xenos 3295

et al., 2023) identifies the image patches 3296

most relevant to Q and generates informa- 3297

tive captions from these patches only; Cola- 3298

FT (Chen et al., 2023d) prompts VLMs 3299

to generate captions and plausible answers 3300

separately, which are then concatenated 3301

with the instruction prompt, Q, and choices, 3302

forming a holistic context for LLMs to log- 3303

ically deduce the answer. 3304

Knowledge-aware Answer Determination 3305

plays a crucial role in generating and predicting 3306

answers, often overlapping with Knowledge-aware 3307

Modality Interaction. Certain methods uniquely 3308

address both these aspects simultaneously, 3309

highlighting their intertwined nature. 3310

1. Information Extraction: 3311

• To further rank the potential answers, some 3312

approaches implement heuristic rules, like 3313

matching score calculation (Wang et al., 3314

2018a; Narasimhan and Schwing, 2018) 3315

and answer frequency assessment (Wang 3316

et al., 2018a). 3317

2. Discrimination: 3318

• Such methods are effective when narrow- 3319

ing down potential answers within a cer- 3320

tain range, often using GNN-alike mod- 3321

els (Narasimhan et al., 2018; Liu et al., 3322

2022; Hussain et al., 2022) as the back- 3323

bones (Fig. 4 (c)). 3324

• Furthermore, discriminators can be ei- 3325

ther MLP-based (Wang et al., 2019; 3326

Narasimhan et al., 2018; Zhu et al., 2020; 3327

Yu et al., 2020; Liu et al., 2022) or rule- 3328

based (Narasimhan and Schwing, 2018). A 3329
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notable limitation of this approach is time3330

consumption, especially when dealing with3331

extensive answer vocabularies.3332

3. Classification:3333

• Many studies reformulate the question-3334

answering process as a classification prob-3335

lem, often employing a Fully Connected3336

(FC) or MLP layer for answer predic-3337

tion (Su et al., 2018; Marino et al., 2019;3338

Shah et al., 2019; Li et al., 2020; Ziaeefard3339

and Lécué, 2020; Saqur and Narasimhan,3340

2020; Zhang et al., 2021a; Gardères et al.,3341

2020; Zheng et al., 2021b; Li and Moens,3342

2022; Guo et al., 2022b; Han et al., 2023;3343

Heo et al., 2022; Li et al., 2022b; Wang3344

et al., 2022b; Song et al., 2023b), where3345

the output dimension corresponds to the3346

pre-defined number of answer candidates.3347

• Chen et al. (2021d) introduce an an-3348

swer masking strategy that imposes di-3349

rect knowledge-based constraints on the3350

classifier’s predicted answer probabili-3351

ties, thereby limiting the range of po-3352

tential answers. This method parallels3353

KRISP (Marino et al., 2021), which em-3354

ploys late fusion to integrate the implicit3355

and symbolic components of the model, se-3356

lecting the highest-scoring answer from the3357

combined answer vectors. MAVEx (Wu3358

et al., 2022) introduces an answer valida-3359

tion module that leverages knowledge fea-3360

tures from retrieved I , ConceptNet, and3361

Wikipedia for answer candidate validation.3362

• For (V)PLM-based methods, a classifica-3363

tion (or projection) head is typically ap-3364

pended to the output [CLS] embedding3365

(Fig. 4 (f)) (Shevchenko et al., 2021; Luo3366

et al., 2021; Salaberria et al., 2023; García-3367

Olano et al., 2022; Guo et al., 2022b; Ding3368

et al., 2022; He and Wang, 2023; Ravi3369

et al., 2023), often utilizing encoder-based3370

backbones like LXMERT (Tan and Bansal,3371

2019) and BERT (Devlin et al., 2019).3372

However, a significant trade-off common3373

to classification-based approaches still ex-3374

ists, as noted by Chen et al. (2022c): the3375

necessity to balance answer coverage and3376

error rate, which hinges on pre-defining the3377

answer candidate set according to its occur-3378

rence frequency.3379

4. Generation:3380

• Textual Generative Models have be- 3381

come increasingly important in VQA 3382

tasks, particularly for addressing ques- 3383

tions with answers outside pre-defined 3384

vocabularies. Generative (V)PLM-based 3385

methods are now increasingly supplant- 3386

ing traditional classification-based ap- 3387

proaches (Chen et al., 2022c; Yang et al., 3388

2022; Gao et al., 2022; Gui et al., 2022; Lin 3389

and Byrne, 2022; Wu and Mooney, 2022; 3390

Zhang et al., 2022a; Lin et al., 2022; Salemi 3391

et al., 2023a; You et al., 2023; Si et al., 3392

2023; Hu et al., 2023; Shao et al., 2023; 3393

Zhou et al., 2023; Ossowski and Hu, 2023; 3394

Wang et al., 2023g; Hu et al., 2022; Xenos 3395

et al., 2023; Ghosal et al., 2023; Khademi 3396

et al., 2023). 3397

• These methods, using decoder-based or 3398

encoder-decoder based models like GPT- 3399

3 (Brown et al., 2020), T5 (Raffel et al., 3400

2020), VL-T5 (Cho et al., 2021), and 3401

BLIP-2 (Li et al., 2023b), feed constructed 3402

prompts to implicitly retrieve knowledge 3403

and perform analytical reasoning. Answer 3404

generation often relies on greedy decod- 3405

ing or beam search strategies (Gao et al., 3406

2022; Ravi et al., 2023; Khandelwal et al., 3407

2023), with the former selecting the most 3408

probable token at each step and the lat- 3409

ter maintaining a fixed-size beam to pro- 3410

duce a list of ranked answer candidates. 3411

To improve few-shot learning performance 3412

in models with large parameters, such as 3413

GPT-3, strategies like incorporating high- 3414

quality ICL examples (Shao et al., 2023; 3415

Wang et al., 2023g; Hu et al., 2022; Xenos 3416

et al., 2023) and employing multi-query en- 3417

sembles (Yang et al., 2022; Xenos et al., 3418

2023) are effective. Prophet (Shao et al., 3419

2023) enhances this process by first gener- 3420

ating candidate answers using a standard 3421

VQA model, subsequently refined through 3422

GPT-3. Meanwhile, Cola-FT (Chen et al., 3423

2023d) prompts VLMs to generate captions 3424

and plausible answers separately, then inte- 3425

grating them with the instructional prompt, 3426

question, and candidate options for LLM- 3427

based reasoning. 3428

• As shown in Table 1, a noticeable increase 3429

in text-generation-based VQA methods is 3430

observed in the last two years. This trend 3431
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can also be attributed to the limitations3432

of Exact Match answer evaluation man-3433

ner in VQA benchmarks, which historically3434

do not provide an advantage in evaluating3435

the performance of open-ended generative3436

models.3437

Recent advancements include CodeVQA (Subra-3438

manian et al., 2023), a training-free method prompt-3439

ing Codex (Chen et al., 2021c) with in-context ex-3440

amples to break down Q into Python code. This3441

method leverages pre-defined visual modules in3442

pre-trained VLMs, utilizing conditional logic and3443

arithmetic. In line with NLP findings that LLMs3444

improve performance at reasoning tasks when solv-3445

ing problems step-by-step (Wei et al., 2022; Yin3446

et al., 2023b), VQA performance improves by de-3447

composing Q and answering sub-questions sequen-3448

tially. Khandelwal et al. (2023) propose Successive3449

Prompting, where a LLM generates and resolves3450

follow-up questions one at a time using a VLM,3451

culminating in an answer to the original Q.3452

Metrics. In VQA performance evaluation, Accu-3453

racy (Acc), defined as the proportion of correctly3454

answered test questions, is a predominant metric.3455

The Georgia Tech Visual Intelligence Lab’s VQA3456

Python API10 employs a standard technique for3457

computing Acc is recommended in the VQA chal-3458

lenge (Antol et al., 2015):3459

Acc(ans) = min(1,#{human that said that ans}/3) .
(2)3460

This metric assigns a soft score (ranging from 03461

to 1) to each answer, based on a voting mecha-3462

nism among multiple annotators. In contrast, the3463

Exact Match (EM) metric treats all annotated an-3464

swers as ground truth (GT), offering a less stringent3465

evaluation criterion (Gao et al., 2022). Addition-3466

ally, the WuPalmer similarity (WUPS) (Wu and3467

Palmer, 1994) calculates the similarity between3468

words based on their common sub-sequences in a3469

taxonomy tree. A candidate answer is considered3470

correct if its similarity to a reference word exceeds3471

a specified threshold. Chen et al. (2022c) introduce3472

Inclusion-based and Stem-based Acc metrics. The3473

former considers an answer A correct if it includes3474

or is included by a GT answer after normalization.3475

The latter assesses correctness based on the inter-3476

section of stems between A and the GT A (e.g.,3477

the stem of “happy” and “happiness” is “happi”).3478

Not that other NLP automatic evaluation metrics,3479

10https://github.com/GT-Vision-Lab/VQA

beyond assessing answer correctness, can also eval- 3480

uate the model’s explanation quality. For exam- 3481

ple, generative metrics such as BLEU (Papineni 3482

et al., 2002), CIDEr (Vedantam et al., 2015), and 3483

METEOR measure the linguistic quality and rel- 3484

evance of rationale statements against a reference 3485

set. Originally developed for machine translation, 3486

these metrics provide insights into the generated ex- 3487

planations’ coherence and fluency, complementing 3488

the evaluation of answer correctness. 3489
3490

Question: What is he doing? 3491
Answer: horseback riding 3492
Candidate: riding a horse 3493
Is the candidate correct? [yes/no] 34943495

Given the limitations of lexical matching met- 3496

rics in evaluating open-domain VQA predictions 3497

from generative models, where entirely different 3498

words may convey the same meaning, (Khandel- 3499

wal et al., 2023), Kamalloo et al. (2023) further 3500

propose an evaluation metric that leverages Instruct- 3501

GPT (Ouyang et al., 2022), prompting it with Q 3502

and the candidate answers to determine their cor- 3503

rectness. An example of this process is illustrated 3504

in the adjacent code snippet. 3505

Knowledge Base. The background KBs for 3506

knowledge-aware multi-modal reasoning fre- 3507

quently involves multiple KGs, each bringing its 3508

unique and complementary insights to the reason- 3509

ing process. Trivia knowledge, such as DBpedia, 3510

provides facts about famous people, places, and 3511

events. Commonsense knowledge, offers insights 3512

into basic concepts like the composition of houses 3513

or parts of a wheel. Scientific knowledge, found 3514

in databases like hasPart KB, details classifications 3515

and properties, such as the genus of dogs or types 3516

of nutrients. Lastly, situational knowledge from re- 3517

sources like Visual Genome offers contextual data, 3518

e.g., typical locations of cars or common contents 3519

found in bowls. 3520

• ConceptNet (Speer et al., 2017) encapsulates 3521

human commonsense knowledge, containing 3522

various relations including usedFor, createdBy, 3523

and isA, primarily generated from the Open 3524

Mind Common Sense (OMCS) project; 3525

• DBpedia (Auer et al., 2007), constructed from 3526

Wikipedia, spans multiple fields relevant to 3527

daily life. In this KG, concepts are connected 3528

through categories and super-categories in ac- 3529

cordance with the SKOS11 Vocabulary; 3530

11http://www.w3.org/2004/02/skos/
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• WebChild (Tandon et al., 2014) connects3531

nouns with adjectives through fine-grained re-3532

lations, such as hasShape, faster, bigger. This3533

information is automatically extracted from the3534

Web;3535

• Wikidata (Vrandecic and Krötzsch, 2014) of-3536

fers extensive factual knowledge, including a3537

broad range of topics about the world;3538

• hasPart KB (Bhakthavatsalam et al., 2020)3539

documents relationships between objects, both3540

common and scientific, such as (Dog, hasPart,3541

Whiskers) and (Molecules, hasPart, Atoms);3542

• Visual Genome (VG) (Krishna et al., 2017)3543

gathers scene graphs from real-life situations,3544

focusing on spatial relationships, e.g., (Boat,3545

isOn, Water), and common affordances, e.g.,3546

(Person, sitsOn, Couch);3547

• ATOMIC (Hwang et al., 2021) consists of3548

over 1M knowledge triplets covering a range3549

of topics, including physical-entity relations,3550

event-centered relations, and social interactions.3551

• CSKG (Ilievski et al., 2021) is a large3552

consolidated source that integrates common-3553

sense knowledge from seven diverse and dis-3554

joint sources, including ConceptNet, Wikidata,3555

ATOMIC, VG, Wordnet (Miller, 1995), Ro-3556

get (Kipfer, 1992) and FrameNet (Baker et al.,3557

1998).3558

BENCHMARKS: We select FVQA (Wang3559

et al., 2018a) and OKVQA (Marino et al., 2019)3560

as our primary datasets due to their critical contri-3561

butions to advancing knowledge-aware VQA and3562

their significant impact on the development of sub-3563

sequent datasets. Table 1 presents a chronological3564

analysis of relevant methods, detailing their perfor-3565

mance, model paradigms, and design principles.3566

Discussion 1 VQA datasets vary in their answer3567

formats, ranging from multiple-choice, where mod-3568

els select from provided options, to open-ended for-3569

mats that test a model’s understanding, reasoning,3570

and independent answer generation or retrieval3571

capabilities. Beyond answer formats, an impor-3572

tant consideration in these datasets is the use of3573

a Ground Truth (GT) set of facts for answering3574

questions. Datasets like those in the FVQA series3575

come with their own GT facts, while those in the3576

OKVQA series do not. These facts should ideally3577

be employed not for training purposes (such as3578

pre-training a relation classifier) but for assessing3579

the model’s proficiency in KG fact retrieval. Be-3580

sides, selecting appropriate knowledge sources and3581

methods for knowledge filtering is also crucial for 3582

model performance. 3583

Furthermore, as indicated in Table 1, the com- 3584

parison of VQA works can be influenced due to 3585

varying background KG sources and backbone 3586

models. Ensuring consistency in these aspects is 3587

essential for fair comparative analysis. It’s impor- 3588

tant for researchers to distinguish whether improve- 3589

ments are due to the quality of the KB, the method 3590

of KG integration, or the backbone’s inherent ca- 3591

pabilities. These distinctions, often overlooked, are 3592

crucial to understanding genuine progress in the 3593

field. Relying solely on sophisticated visual, lan- 3594

guage, or multi-modal backbones to claim SOTA 3595

results, without addressing the uniformity of model 3596

parameters and ensuring fair comparisons, may 3597

compromise the credibility of the findings. Given 3598

VQA’s practical applications, additional factors 3599

such as time, space complexity, real-time consump- 3600

tion, and GPU requirements are also significant 3601

for a comprehensive evaluation of these models. 3602

Resource: In analyzing the evolution of KG- 3603

aware VQA datasets, we categorize the devel- 3604

opments into three main groups: FVQA-type, 3605

OKVQA-type, and others. 3606

(i) FVQA (Wang et al., 2018a): The KB-VQA 3607

dataset (Wang et al., 2017) first evaluates VQA al- 3608

gorithms’ ability to leverage external knowledge 3609

for answering complex image-based questions. It 3610

consists of multiple Q-A pairs per image, crafted 3611

by five questioners using predefined templates. 3612

These pairs aim to probe knowledge levels that 3613

surpass mere visual observation by leveraging DB- 3614

pedia as the knowledge source. Expanding on 3615

KB-VQA, FVQA (Wang et al., 2018a) includes 3616

more questions, images and integrates additional 3617

KGs such as ConceptNet and Webchild. Notably, 3618

FVQA is the first VQA dataset to provide support- 3619

ing facts for each question (i.e., external knowl- 3620

edge facts, rather than visual relation facts in R- 3621

VQA (Lu et al., 2018b)), paving the way for devel- 3622

oping more knowledgeable VQA systems. Vari- 3623

ants: ZS-F-VQA (Chen et al., 2021d) targets Zero- 3624

shot VQA, designed to prevent overlap between 3625

training and testing answers, paying attention on 3626

answer bias and Out Of Vocabulary (OOV) issues. 3627

KRVQA (Cao et al., 2022b) imposes constraints 3628

to promote image context engagement over mere 3629

knowledge fact memorization; FVQA 2.0 (Lin 3630

et al., 2023) increases dataset size and introduces 3631

adversarial question variants to balance the answer 3632
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Table 1: Comparison of Knowledge-based VQA accuracy results on OKVQA (Marino et al., 2019) and FVQA
(Wang et al., 2018a). The icon v represents KG-based VQA methods; u indicates methods without KG
utilization. The † symbol signifies methods pre-trained on VQA2.0 or similar datasets. ⋆ indicates results reported
on dataset version 1.1, which differs from version 1.0 in answer stemming methods. Abbreviations used: Q
(Question), V (Visual), w/ (with), KG (Knowledge Graph), CN (ConceptNet), WP (Wikipedia), WC (WebChild),
WD (Wikidata), DBP (DBpedia), VG (VisualGenome), YG (YAGO), HP (hasPart KB), AT (ATOMIC (Sap et al.,
2019)), AS (Ascent (Nguyen et al., 2021)), VLM (Visual-Language Model), GNN (Graph Neural Network),
GAT (Graph Attention Network), MRC (Machine Reading Comprehension), MHA (Multi-head Attention), DMN
(Dynamic Memory Network), DPR (Dense Passage Retriever), FiD (Fusion-in-Decoder), In-context Learning
(ICL), GI (Google Image), GS (Google Search), Enc.Dec.(Encoder-Decoder), DC (Discrimination), IE (Information
Extraction), CLS (Classification), TG (Text Generation), WIT (Wikipedia-Image-Text (Srinivasan et al., 2021)). For
methods employing both PLM intrinsic knowledge and external KB, only the KB is listed in the knowledge source.

Methods Approaches (Paradigms) Key Idea Knowledge Source FVQA OKVQA

20
18

∼
20

21

v QQmaping (Wang et al., 2018a) RDF Query (IE) Question-Query Mapping DBP / CN / WC 56.91 -
v STTF (Narasimhan and Schwing, 2018) Relation Query (IE) Scoring the Facts DBP / CN / WC 62.20 -
v OB (Narasimhan et al., 2018) Fact Retrieval + GNN (DC) Entity Graph + GCN DBP / CN / WC 69.35 -
u Marino et al. (2019) Retrieval + ArticleNet (IE) Web Retrieval + Knowledge Span Prediction WP - 27.84
v KG-Aug (Li et al., 2020) Fact Retrieval + GNN (CLS) Augment Q&V Features w/ Entity Embedding WD / CN 38.58 26.71
v Chen et al. (2021d) Alignment + Re-rank (CLS) KG-aware Answer Masking for Validation DBP / CN / WC 58.27 -
v ERMLP (Ramnath and and, 2020) KGE + Attention (IE) Knowledge-guided Co-attention DBP / CN / WC 60.82 -
v Liu et al. (2022) Fact Retrieval + GNN (DC) Q-V Guided Cross-modal GAT DBP / CN / WC 63.56 29.43
v KAN (Zhang et al., 2021a) Retrieval + Attention (CLS) Question-guided MHA CN 66.39 -
v Mucko (Zhu et al., 2020) Fact Retrieval + GNN (DC) Question-guided Attention + Cross-KG GAT DBP / CN / WC 73.06 29.20
v GRUC (Yu et al., 2020) Fact Retrieval + DMN (DC) Fact-centered DMN + GRU DBP / CN / WC 79.63 29.87
v ConceptBert (Gardères et al., 2020) GCN + Attention (CLS) Compact Trilinear Interaction + MHA CN - 33.66
v KRISP† (Marino et al., 2021) GCN + VLM (CLS) Global KG + RGCN + VisualBERT HP / DBP / CN / VG - 38.90⋆

v MAVEx† (Wu et al., 2022) Multi-retrieval + Re-rank (CLS) Web Retrieval + VilBERT + Answer Validation WP / CN / GI - 38.70⋆

v RVL† (Shevchenko et al., 2021) KGE Alignment + VLM (CLS) Aligning VLM Text Embedding w/ KGE WD / CN / PLM 54.27 39.04
u Luo et al. (2021)† Dense Retriever + PLM (IE) RoBERTa + DPR Learning + MRC GS - 39.20⋆

v PGVQA (Song et al., 2023b) Retrieval + Re-rank (CLS) KG-aware Answer Refinement DBP / CN / WC - 41.07

20
22

v SUPER (Han et al., 2023) Multi-modules + DMN (CLS) Q-V Guided Modular Routing + DMN CN 48.90 30.46
v MKRE (Hussain et al., 2022) Fact Retrieval + GNN (DC) Question Guided Attention + Cross-KG GAT DBP / CN / WC 73.06 -
v DMMGR (Li and Moens, 2022) Retrieval + DMN + GNN (CLS) Caption + Multi-scale DMN + GAT DBP / CN / WC 81.20 -
u CBM-BERT† (Salaberria et al., 2023) Caption + PLM (CLS) Caption + BERT + Ensemble PLM - 36.00⋆

u CBM-T5† (Salaberria et al., 2023) Caption + PLM (TG) Caption + T5 + Ensemble PLM - 40.80⋆

v UnifER† (Guo et al., 2022b) Fact Retrieval + VLM (CLS) Loss Gap Driven DPR Learning + ViLT CN - 42.13⋆

u MuKEA† (Ding et al., 2022) VLM + KGE LXMERT + Multi-modal TransE VLM - 42.59⋆

u PICa† (Yang et al., 2022) Caption + Decoder (TG) Caption + Tag + ICL + GPT3 GPT3 - 43.30⋆

v KVQAmeta† (García-Olano et al., 2022) KGE Alignment + VLM (CLS) Aligning VLM Embedding w/ Wikipedia2Vec WP - 43.67⋆

v LaKo† (Chen et al., 2022c) Retrieval + Enc.Dec. (TG) Caption + Fact DPR + T5 + FiD HP / DBP / CN / WC - 47.01⋆

u TRiG† (Gao et al., 2022) Retrieval + Enc.Dec. (TG) Caption + Tag + DPR + FiD WP - 49.24⋆

v KAT† (Gui et al., 2022) Retrieval + Enc.Dec. (TG) Caption + Tag + ICL + GPT3 + DPR + FiD WD / GPT3 - 53.09 ⋆

v EnFoRe† (Wu and Mooney, 2022) Retrieval + Enc.Dec. (TG) KAT + Entity Focused DPR WD / GPT3 - 54.35⋆

u RAVQA† (Lin and Byrne, 2022) Retrieval + Enc.Dec. (TG) DPR Learning + Ensemble GS - 54.48⋆

v REVIVE† (Lin et al., 2022) Retrieval + Enc.Dec. (TG) KAT + Regional Visual WD / GPT3 - 56.604⋆

20
23

v VLC-BERT† (Ravi et al., 2023) Fact Generation + VLM (CLS) COMET Generation + MHA + VL-BERT CN / AT - 43.14⋆

u DEDR† (Salemi et al., 2023a) Retrieval + Enc.Dec. (TG) Mutual Retriever Distillation + VL-T5 + FiD WP 61.80 44.57⋆

v RR-VEL† (You et al., 2023) EL + Retrieval + Enc.Dec. (TG) Ground Truth Referent in Q + T5 HP / CN / Ascent 65.59 49.48⋆

v MCR-MemNN (Yin et al., 2023a) Fact Retrieval + DMN (CLS) Multi-clue Reasoning + Fact-centered DMN DBP / CN / WC 70.92 -
u CodeVQA† (Subramanian et al., 2023) Code Generation + PLM (TG) ICL + Codex + Modular Combination Codex / VLM - 53.50⋆

u TwO† (Si et al., 2023) Retrieval + Enc.Dec. (TG) KAT + OFA Multi-modal Knowledge WP / GPT3 - 57.57⋆

u PROOFREAD† (Zhou et al., 2023) Decoder + Re-rank (TG) Answer-aware Knowledge Generation & Filter ChatGPT - 57.60⋆

v REVEAL† (Hu et al., 2023) Retrieval + Enc.Dec. (TG) Multi-modal Retrieval + Gate + DMN + T5 WIT / WD / VQA2.0 - 59.10⋆

v MM-Reasoner† (Khademi et al., 2023) Fact Generation + Enc.Dec. (TG) Vision APIs + ICL Rationales Generation GPT-4 61.10 59.20⋆

u Wang et al. (2023g)† Q-decomposition + Decoder (TG) Q Decomposition + Fact Refinement + PICa ChatGPT - 59.34⋆

u PromptCap† (Hu et al., 2022) Caption + Decoder (TG) Q-guided Caption Generation + PICa GPT-3 - 60.40⋆

u Prophet† (Shao et al., 2023) Caption + Decoder (TG) MCAN + Answer Pruning + Answer-aware ICL GPT3 - 61.10⋆

u ASB† (Xenos et al., 2023) Caption + Decoder (TG) Q-guided Patch Caption Selection + PICa LLaMA-13B - 61.20⋆

u Cola-FT† (Chen et al., 2023d) Decoder (TG) OFA + BLIP + LLM Answer Decision FLAN-T5 - 62.40⋆

u GPT-4V† (Li et al., 2023f) Decoder (TG) Prompt + GPT-4V GPT-4V - 64.28⋆
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distribution;3633

(ii) OKVQA (Marino et al., 2019): Different3634

from FVQA, OKVQA dataset focuses on open-3635

world VQA, involving questions that implicitly3636

require external knowledge without specifying a3637

direct KB link or providing explicit KG triplets.3638

Its broad knowledge scope makes it a benchmark3639

alongside the VQA2.0 dataset (Antol et al., 2015).3640

Variants: OKVQAS3 and S3VQA (Jain et al.,3641

2021) enhance the original OK-VQA by incor-3642

porating questions that require object detection3643

within images, with subsequent substitution of the3644

detected object in the query and employing web3645

searches to find answers; A-OKVQA (Schwenk3646

et al., 2022) introduces a greater diversity of world3647

knowledge and more reasoning steps to extend OK-3648

VQA, further providing rationales for each ques-3649

tion to aid in training explainable VQA models.3650

OKVQA2.0 (Reichman et al., 2023) refines OK-3651

VQA with corrections and attaching Wikipedia3652

sources to Q-I pairs; ConceptVQA (Gan et al.,3653

2023) enriches OK-VQA with entity-level annota-3654

tions aligned with ConceptNet entities and presents3655

a unique challenge by ensuring its testing split fea-3656

tures non-overlapping answers with the training set,3657

similar to ZS-F-VQA (Chen et al., 2021d).3658

(iii) Others: Li et al. (2017) develop Vi-3659

sual7W+KB from the Visual7W test split im-3660

ages (Zhu et al., 2016), automating question cre-3661

ation using predefined templates and Concept-3662

Net (Speer et al., 2017) for guidance; KVQA (Shah3663

et al., 2019) incorporates world knowledge about3664

named entities like Barack Obama and the White3665

House from Wikidata (Vrandecic and Krötzsch,3666

2014), also employing face identification tech-3667

nology in image analysis; ViQuAE (Lerner3668

et al., 2022) extends KVQA’s scope to include3669

a broader range of entity types beyond just per-3670

sons; VCR (Zellers et al., 2019) targets un-3671

derstanding human intentions in movie scenes3672

with questions such as “why is [PERSON] doing3673

this?”; AI-VQA (Li et al., 2022b) utilizes Visual3674

Genome scene graphs and ATOMIC KG (Hwang3675

et al., 2021) event knowledge, enriched by in-3676

cluding volunteer-annotated QA pairs and detailed3677

scene/object descriptions; DANCE (Ye et al., 2023)3678

re-formats knowledge triples as natural language3679

riddles paired with images, aiming to infuse visual3680

language models with commonsense knowledge;3681

Gao et al. (2023) introduce LoRA, a dataset fo-3682

cusing on formal and complex description logic3683

reasoning in VQA. Centered around a KB related3684

to food and kitchen scenarios, LoRA aims to en- 3685

hance the logical reasoning capabilities of VQA 3686

models, which are not adequately assessed by ex- 3687

isting VQA datasets; ScienceQA (Lu et al., 2022), 3688

sourced from elementary and high school science 3689

curricula, includes 21, 208 items along with lec- 3690

tures and explanations. It challenges models to 3691

generate coherent explanations across a wide range 3692

of subjects, setting it apart from OKVQA. Despite 3693

not incorporating a KG in its design, ScienceQA is 3694

pivotal for advancing knowledge-intensive multi- 3695

modal models, which marks a significant step in 3696

the evolution of future KG-aware VQA methods. 3697

In addition, KG-aware VQA can also extend to 3698

various scenarios beyond traditional settings. For 3699

example, KnowIT VQA (Garcia et al., 2020) con- 3700

tains video clips from “The Big Bang Theory” with 3701

associated knowledge-based QA pairs, annotated 3702

by those dedicated fans well-versed in the show’s 3703

content. K-EQA (Tan et al., 2023) employs a KB 3704

and 3D scene graphs, enabling an AI agent to navi- 3705

gate environments and answer environment-aware 3706

natural language queries. 3707

A.3.2 Visual Question Generation 3708

VQG (Xie et al., 2022; Chen et al., 2023b; Salemi 3709

et al., 2023b) leverages visual cues to generate ques- 3710

tions, diverging from traditional VQA by prioritiz- 3711

ing question creation. This process is crucial in 3712

educational applications, such as engaging children 3713

with questions about images to support learning. 3714

Early VQG models (Mostafazadeh et al., 2016) uti- 3715

lize RNNs to generate questions based solely on im- 3716

ages, leading to questions that often lack specific fo- 3717

cus. In the KG-aware VQG domain, volunteers cre- 3718

ate the K-VQG dataset (Uehara and Harada, 2023) 3719

by integrating external knowledge from resources 3720

like ConceptNet and Atomic (Hwang et al., 2021) 3721

with image content, using partially masked com- 3722

monsense triplets to enrich questions with knowl- 3723

edge. Xie et al. (2022) develop a pipeline compris- 3724

ing a visual concept feature extractor, knowledge 3725

representation extractor, target object extractor, and 3726

a decoder. This setup, aligned with the process out- 3727

lined in Fig. 3, integrates non-visual knowledge 3728

into VQG and employs FVQA for its evaluation. 3729

KECVQG (Chen et al., 2023b) utilizes a causal 3730

graph to analyze and correct spurious correlations 3731

in VQG by linking unbiased features with external 3732

knowledge, thereby disentangling visual features 3733

to lessen the impact of these correlations. Unlike 3734

VQA, VQG methods prioritize evaluation on mean- 3735
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ingfulness, logical soundness, and consistency with3736

target knowledge over strict correctness (Uehara3737

and Harada, 2023), often using NLP-style metrics3738

like BLEU and CIDEr for assessment.3739

Discussion 2 Evolving intelligent dialogues with3740

chatbots remains a critical objective in VQG,3741

particularly in empowering robots to formulate3742

precise, knowledge-enriched questions that boost3743

problem-solving capabilities for future advance-3744

ments. Equally important is the progression to-3745

wards more interactive KG-aware VQG systems,3746

which can dynamically adapt their questioning3747

strategies based on user interactions and feedback,3748

marking a significant direction for future research.3749

Moreover, with the ongoing rapid developments3750

in VQA, transferring and adapting common prob-3751

lems and methods from VQA to VQG can catalyze3752

further innovative breakthroughs in question gen-3753

eration technologies.3754

A.3.3 Visual Dialog3755

VD (Chen et al., 2022a) extends the VQA task by3756

adopting a multi-round format where a continuous3757

series of Q-A pairs revolves around a single image.3758

This setting shifts from the single-question focus3759

of VQA to a dynamic, conversational interaction3760

about the image, posing a challenge for agents to3761

adaptively interpret evolving relationships among3762

visual elements based on the dialogue context. VD3763

methods typically leverage historical dialogue in-3764

formation as background knowledge (Guo et al.,3765

2020; Jiang et al., 2020; Kang et al., 2021; Wang3766

et al., 2022c; Zhao et al., 2023), employing visual3767

graph construction, query-guided relation selec-3768

tion and GNN propagation for dialog reasoning.3769

Guo et al. (2020, 2022a) introduce Q-conditioned3770

attention to aggregate textual context from dia-3771

logue history, constructing a context-aware object3772

graphs for Q-guided message passing. Similarly,3773

KBGN (Jiang et al., 2020) uses cross-modal GNNs3774

to bridge modal gaps and capture inter-modal se-3775

mantics, retrieving information relevant to the cur-3776

rent question from both vision and text sources.3777

Addressing the limitations of relying solely on3778

internal knowledge from images and dialog history,3779

some approaches integrate commonsense knowl-3780

edge for enhanced conversational depth. These3781

methods all align with the KG-aware Understand-3782

ing and Reasoning paradigms we have previously3783

outlined (Fig. 3). For example, (i) Knowledge3784

Retrieval: SKANet (Zhao et al., 2021a) inte-3785

grates commonsense knowledge from Concept-3786

Net into VD by using concept recognition and n- 3787

gram matching techniques to build a sub-KG. (ii) 3788

Knowledge Representation: KACI-Net (Zhang 3789

et al., 2023e) selects triplets with at least two 3790

entities or relations mentioned in a questionand 3791

transforms them into textual format for subsequent 3792

processing. (iii) Knowledge-aware Modality In- 3793

teraction: RMK (Zhang et al., 2022b) utilizes 3794

caption-based dense retrieval to fetch relevant facts 3795

from ConceptNet, injecting knowledge into the 3796

dialogues through sentence-level and graph-level 3797

cross-modal attention and embedding concatena- 3798

tion. (iv) Knowledge-aware Answer Determina- 3799

tion: Acknowledging the issue of spurious corre- 3800

lations from unobserved confounders in retrieved 3801

knowledge, Liu et al. (2023a) construct a coun- 3802

terfactual commonsense-aware VD causal graph. 3803

This graph applies counterfactual reasoning to mit- 3804

igate commonsense bias, reducing the effect of 3805

misleading or inaccurate commonsense in answer 3806

derivation. 3807

Discussion 3 Currently, the emphasis in 3808

knowledge-based VD mainly lies in using 3809

external commonsense knowledge, while other 3810

knowledge types, such as scientific and situational, 3811

have been relatively underexplored. However, the 3812

rise of LLMs is diminishing the distinction between 3813

VD and VQA, with In-context Learning techniques 3814

in VQA starting to overshadow the traditional role 3815

of context in dialogues. This shift prompts a need 3816

to reassess VD’s unique contribution and its path 3817

forward. As the boundaries between VD and VQA 3818

continue to merge, identifying and articulating the 3819

distinct potential of VD becomes imperative. 3820

A.4 Supplement for KG-driven Multi-modal 3821

Classification Tasks 3822

Discussions are also extended to related multi- 3823

modal tasks like Fake News Detection and Movie 3824

Genre Classification, highlighting the diversity and 3825

wide-ranging applications within the field. 3826

A.4.1 Supplementary Information for IMGC 3827

Image Classification (IMGC) aims to identify ob- 3828

jects within images and, with deep learning ad- 3829

vancements, has even surpassed human perfor- 3830

mance in challenges like ImageNet ILSVRC (Rus- 3831

sakovsky et al., 2015). Consider a set of labeled 3832

training samples Dtr = {(x, y)|x ∈ X , y ∈ Y}, a 3833

classifier aims to approximate a function f : x → y 3834

from input x to output label y with the assist of 3835
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Figure 10: Comparison of previously used external knowledge (Left) and KG (Right) in Zero-shot Image Classifica-
tion task (Geng et al., 2021a).

a background KG G. This function should accu-3836

rately predict the labels of samples in a testing set3837

Dte = {(x, y)|x ∈ X ′, y ∈ Y}, with X ∩ X ′ = ∅.3838

In IMGC, x denotes an image, and y represents3839

its class. Traditional IMGC follows a closed-world3840

assumption, requiring extensive labeled images for3841

both training and testing within known classes, i.e.,3842

Ytr = Yte = Y . However, it is not feasible for3843

newly emerging classes due to the impracticality of3844

continuously annotating and retraining models with3845

sufficient images for these classes. Consequently,3846

there is a growing interest in Zero-Shot Image Clas-3847

sification (ZS-IMGC), which supports classifying3848

images of novel, unseen classes without the need3849

for specific training images, i.e., Ytr ∩ Yte = ∅.3850

To handle these unseen classes, most existing3851

ZS-IMGC methods adopt a knowledge transfer3852

strategy (Chen et al., 2023c, 2021b): transferring3853

labeled images, image features or model param-3854

eters from the seen classes in training set to un-3855

seen classes, guided by external knowledge that3856

describes semantic relationships between classes.3857

For instance, as illustrated in the left part of Fig. 10,3858

consider the description of a “Zebra” as an animal3859

with a horse-like body, tiger-like stripes, and black-3860

and-white colors similar to a panda. Models can3861

infer the appearance of a “Zebra” by combining3862

features of these seen animals, even without direct3863

exposure to its images. Briefly, ZS-IMGC relies3864

on data from observed classes and class-specific3865

semantic knowledge, with the external knowledge3866

frequently embodying a modality distinct from the3867

image data. This section reviews KG-based ZS-3868

IMGC efforts to illustrate the typical practice of3869

multi-modal learning in IMGC.3870

In ZS-IMGC literature, various forms of exter-3871

nal knowledge are employed. Early ZS-IMGC3872

works (Frome et al., 2013; Zhu et al., 2018) use tex-3873

tual class descriptions or names to model inter-class3874

relationships. Others (Xian et al., 2018; Lampert 3875

et al., 2014) utilize class attributes, annotating each 3876

class with descriptive characteristics, thereby defin- 3877

ing semantic relationships through shared attributes 3878

(see Fig. 10, left). However, these approaches 3879

sometimes face limitations in capturing complete 3880

semantics (Geng et al., 2023). 3881

In KG-aware ZS-IMGC, a KG is defined as 3882

G = E ,R, T , with Y ⊂ E . This paradigm, repre- 3883

senting semantic hierarchical relationships among 3884

classes, is instrumental in augmenting classifica- 3885

tion performance and interpretability. For exam- 3886

ple, studies like (Wang et al., 2018b; Kampffmeyer 3887

et al., 2019) integrate hierarchical relationships 3888

from WordNet, while (Roy et al., 2022; Nayak and 3889

Bach, 2022; Gao et al., 2019) explore class knowl- 3890

edge from commonsense KGs such as ConceptNet. 3891

KGs, due to their compatibility, can unify various 3892

knowledge forms, including textual description and 3893

discrete attributes, into a single graph (see Fig. 10, 3894

right). 3895

Mapping-based Methods. Chen et al. (2020a) 3896

employ an OWL-based ontology for animal classes, 3897

encoding it via the OWL EL embedding method 3898

and learn a linear encoder to map image features 3899

to class embeddings, with a focus on reconstruc- 3900

tion loss for reverse mapping. Kata et al. (Zeynep 3901

Akata and Florent Perronnin and Zaïd Harchaoui 3902

and Cordelia Schmid, 2016; Akata et al., 2013) 3903

map initial class encodings into the image feature 3904

space, representing classes as multi-hot vectors of 3905

ancestors based on class hierarchies. There are 3906

also some joint mapping methods that map both 3907

the class encoding and the image features. For ex- 3908

ample, DUET (Chen et al., 2023h), an end-to-end 3909

Transformer-based ZSL method, leverages cross- 3910

modal PLMs for fine-grained visual characteristic 3911

reorganization and discrimination with structured 3912

KGs serialized as input. 3913
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Although mapping-based methods, which often3914

employ linear or nonlinear transformations, are3915

straightforward to implement, they exhibit a bias3916

towards seen classes when trained exclusively on3917

their images. This bias is particularly problem-3918

atic in generalized ZSL scenarios, where seen and3919

unseen classes coexist, highlighting their inherent3920

limitations.3921

Data augmentation Methods. DOZSL (Geng3922

et al., 2022) employs a disentangled KG embed-3923

ding module to enhance the quality of synthesized3924

image features in OntoZSL (Geng et al., 2021a).3925

TGG (Zhang et al., 2019) generates few-shot sam-3926

ples, where a GAN-based generation module is3927

applied to generate an image-level graph. Zhang3928

et al. (2022d) develop a MMKG by merging visual3929

representations of classes with word embeddings,3930

creating multi-modal class nodes and edges that3931

explicitly model class correlations, thereby enhanc-3932

ing information transfer from seen to unseen class3933

nodes.3934

Propagation-based Methods. Certain methods3935

tackle KGs’ diverse relation types by using multi-3936

relational GCNs (Chen et al., 2020b) or dividing3937

multi-relation KGs into single-relation graphs with3938

parameter-shared GCNs for feature propagation3939

(Geng et al., 2022; Wang and Jiang, 2021; Wu et al.,3940

2023a). For multi-label images, where models as-3941

sign a probability score per class, GNNs utilize3942

KG-implied correlations to propagate these scores3943

from seen to unseen class nodes, as done by Lee at3944

al. (Lee et al., 2018).3945

Discussion 4 Incorporating diverse class seman-3946

tics generally yield better ZS-IMGC results, even3947

with basic methods. For instance, Table 2 illus-3948

trates that some mapping-based methods (Frome3949

et al., 2013; Chen et al., 2020a), employing3950

straightforward linear mapping functions, achieve3951

better performance by integrating various class se-3952

mantics such as attributes, hierarchy, and names,3953

compared to GCNZ†, which relies solely on class3954

hierarchy. Significantly, enriching GCNZ† with3955

more class semantics, markedly enhances its ef-3956

fectiveness (GCNZ‡). Furthermore, KG-based ZS-3957

IMGC methods typically operate in a class trans-3958

ductive setting, where unseen classes are known3959

during training (Fig. 5 (b)), in contrast to the con-3960

ventional inductive approach that utilizes only seen3961

class knowledge. These methods leverage a KG3962

to bridge seen and unseen classes through seman-3963

tic links. Additionally, although the generalized 3964

ZSL setting is well-recognized by many researchers, 3965

some studies adopt their own definitions, specifi- 3966

cally testing only unseen class images while clas- 3967

sifying them within a combined pool of both seen 3968

and unseen classes. This variation requires careful 3969

consideration in future work. 3970

Table 2: Comparison of ZS-IMGC results across var-
ious datasets. We use Acc and H as the evaluation
metrics of Standard ZSL and Generalized ZSL, respec-
tively. DeViSE here is implemented with a KG which
covers the semantics of class hierarchy, class attributes,
attribute hierarchy and class names (see (Geng et al.,
2023) for details). GCNZ† utilizes a KG with class hi-
erarchy only, whereas GCNZ‡ includes broader class
semantics like attributes, as reported in (Geng et al.,
2023). DOZSL (GAN) and DOZSL (GCN) are variants
of DOZSL (Geng et al., 2022), representing generation-
based and propagation-based ZSL learners, respectively.
ImageNet results are tested on 2-hops unseen classes.

Dataset Methods Acc (%) H (%)

ImageNet
GCNZ (Wang et al., 2018b) 19.8 –
DGP (Kampffmeyer et al., 2019) 26.6 –
FGP (Wu et al., 2023a) 26.4 –

ImNet-A

DeViSE (Frome et al., 2013) 33.62 26.01
OntoZSL (Geng et al., 2021a) 39.00 32.15
DOZSL (GAN) (Geng et al., 2022) 40.26 32.82
DOZSL (GCN) (Geng et al., 2022) 38.69 32.12
GCNZ† (Wang et al., 2018b; Geng et al., 2023) 33.95 26.68
GCNZ‡ (Wang et al., 2018b; Geng et al., 2023) 36.64 31.38

AwA2

DeViSE (Frome et al., 2013) 46.12 15.88
OWL-based (Chen et al., 2020a) 58.90 –
DUET (Chen et al., 2023h) – 58.00
OntoZSL (Geng et al., 2021a) 63.31 56.06
DOZSL (GAN) (Geng et al., 2022) 66.36 57.62
DOZSL (GCN) (Geng et al., 2022) 63.88 52.74
GCNZ† (Wang et al., 2018b; Geng et al., 2023) 37.44 14.34
GCNZ‡ (Wang et al., 2018b; Geng et al., 2023) 62.98 31.98
FGP (Wu et al., 2023a) 79.10 43.30

RESOURCES: Several open datasets and KG 3971

resources for KG-aware ZS-IMGC have been pro- 3972

posed: 3973

(i) ImageNet (Deng et al., 2009): A large-scale 3974

database with 14M images across 21K classes each 3975

aligned with a WordNet (Miller, 1995) entity. It 3976

leverages class hierarchies as KG-based knowledge, 3977

where the graph only contains one type of relation, 3978

i.e., subClassOf. From (Xian et al., 2019), a subset 3979

of 1K classes serves as seen classes, with unseen 3980

classes determined by their distance in the WordNet 3981

graph. ImageNet is widely used for ZS-IMGC 3982

benchmarking, albeit with a single-relational KG 3983

limitation. 3984

(ii) ImNet-A and ImNet-O: Subsets of Ima- 3985

geNet by Geng et al. (2021a, 2023). ImNet-A 3986

contains 80 animal classes, and ImNet-O has 35 3987

general object classes. Each comes with a KG 3988

combining multiple knowledge types, including 3989
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class attribute, class name, commonsense knowl-3990

edge from ConceptNet, class hierarchy (taxonomy)3991

from WordNet, and logical relationships such as3992

disjointness.3993

(iii) AwA2 (Xian et al., 2019): A coarse-grained3994

animal classification dataset with 50 animal classes3995

and 37,322 images, plus 85 expert-annotated at-3996

tributes. Its classes align with WordNet entities for3997

taxonomy-based KGs. Geng et al. (2023) equip3998

AwA2 with a KG similar to ImNet-A and ImNet-O.3999

Chen et al. (2020a) utilize OWL2 to model com-4000

plex class semantics.4001

(iv) NUS-WIDE (Chua et al., 2009): A mutli-4002

label image classfication dataset, where each image4003

contains multiple objects. In works like (Lee et al.,4004

2018), NUS-WIDE is accompanied by a KG with4005

three types of label relations, including a super-4006

subordinate correlation from WordNet, positive and4007

negative correlations computed by label similarities4008

such as WUP similarity.4009

BENCHMARKS: Single-label image classifica-4010

tion in ZS-IMGC includes two evaluation settings:4011

(i) Standard ZSL: Focuses solely on unseen class4012

samples, using Macro Accuracy, which is calcu-4013

lated as the average of individual class accuracies4014

(correct predictions to total samples ratio), as the4015

metric. (ii) Generalized ZSL (GZSL): Evaluates4016

both seen and unseen class samples, hence more4017

challenging. Here, two Macro Accuracies, Accs4018

for seen classes and Accu for unseen classes, are4019

measured. The key performance indicator is the4020

harmonic mean H = (2×Accs ×Accu)/(Accs +4021

Accu), ensuring a balance between the two.4022

In Table 2, we compile results from key meth-4023

ods across the three groups for benchmarks ZS-4024

IMGC task. Incorporating diverse class seman-4025

tics generally yield better ZS-IMGC results, even4026

with basic methods. For instance, Table 2 illus-4027

trates that some mapping-based methods (Frome4028

et al., 2013; Chen et al., 2020a), employing straight-4029

forward linear mapping functions, achieve better4030

performance by integrating various class seman-4031

tics such as attributes, hierarchy, and names, com-4032

pared to GCNZ†, which relies solely on class hier-4033

archy. Significantly, enriching GCNZ† with more4034

class semantics, markedly enhances its effective-4035

ness (GCNZ‡).4036

A.4.2 Fake News Detection4037

FND, also termed Rumor Detection, addresses the4038

proliferation of misleading multimedia content on4039

social media to ensure the dissemination of trust-4040

worthy information. Unlike standard text classifi- 4041

cation, FND challenges involve discerning false- 4042

hoods across diverse subjects. While traditional 4043

deep learning approaches in FND emphasize text, 4044

they frequently neglect the significance of visual 4045

content and background knowledge. Thus, a com- 4046

prehensive integration of text, visuals, and knowl- 4047

edge is essential for precise FND. 4048

KMGCN (Wang et al., 2020d) employs Entity 4049

Linking to map entities from social media posts 4050

to concepts from Probase (Wu et al., 2012) and 4051

YAGO KGs. It constructs a graph with post words 4052

as nodes and incorporates visual words from im- 4053

ages (detected by a pre-trained object detector (Red- 4054

mon and Farhadi, 2018)), weighting edges with 4055

Point-wise Mutual Information to emphasize word 4056

correlations. A GCN is then utilized to model se- 4057

mantic interactions, employing global mean pool- 4058

ing for the final binary classification of multimedia 4059

posts. Extending these insights, KMAGCN (Qian 4060

et al., 2021) integrates the visual modality through 4061

a late fusion paradigm, employing feature-level at- 4062

tention to more accurately delineate the interplay 4063

between visual and textual content. As a dual- 4064

consistency network, KDCN (Sun et al., 2023c) 4065

identifies inconsistencies in both cross-modal and 4066

content-knowledge aspects with Freebase as the 4067

reference KG. It finds that entities in rumor posts 4068

are more distantly connected within KGs com- 4069

pared to non-rumors, providing a clear marker for 4070

distinction. EmoKnow (Zhang et al., 2023d) ad- 4071

vances COVID-19 FND by incorporating WiKi- 4072

Data5M (Wang et al., 2021) as an external knowl- 4073

edge source. It uses PLMs for text analysis, extracts 4074

emotion features, and identifies relevant linked en- 4075

tities, utilizing TransE (Bordes et al., 2013) for 4076

entity representation, with an MLP-based classifier 4077

to combine these multi-modal inputs. 4078

Discussion 5 The progression of LLMs is trans- 4079

forming many classification tasks into ones focused 4080

on inference and directive question-answering, em- 4081

phasizing the crucial role of selecting knowledge 4082

sources. Moreover, given the frequent association 4083

of fake news with political content, their urgency 4084

of timely news highlights the need for conducting 4085

research on knowledge updating and lifelong learn- 4086

ing in FND. 4087

A.4.3 Movie Genre Classification 4088

MMGC models integrate visual, textual, and meta- 4089

data information to predict movie genres, represent- 4090

ing each genre as an element in a binary vector for 4091
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multi-genre classification of movies.4092

Traditional methods (Bain et al., 2020; Huang4093

et al., 2020b) primarily rely on features extracted4094

from images and texts alone. A recent work,4095

IDKG (Li et al., 2023a), integrates a domain-4096

specific MMKG created from metadata fields such4097

as titles, genres, casts, and directors. Its motivation4098

stems from recognizing the relational patterns in4099

metadata, like the tendency for “Nolan to direct4100

science fiction movies” or “Emma to not often fea-4101

ture in comedies”. It use a translation model to4102

merge KG embeddings with other modality fea-4103

tures, guided by attention mechanism.4104

Discussion 6 The success of a domain-specific KG4105

largely depends on the metadata’s quality and com-4106

pleteness, where addressing scalability is vital espe-4107

cially for large movie datasets. Additionally, there4108

is scope for creating interactive and personalized4109

Movie Genre Classification systems. By integrating4110

user feedback and preferences, the system can be4111

tailored to individual tastes, offering personalized4112

genre suggestions. Techniques such as reinforce-4113

ment learning and user modeling could be utilized4114

to customize the genre classification process, thus4115

further enhancing user experience and satisfaction.4116

A.5 Supplement for KG-driven Multi-modal4117

Generation Tasks4118

Some of the reasoning methods previously dis-4119

cussed, including those used in VQA tasks, are4120

based on generative approaches. This section fo-4121

cuses on tasks where content generation is strictly4122

necessary for task completion.4123

A.5.1 Scene Graph Generation4124

Introduced by Johnson et al. (2015), Scene Graphs4125

(SGs) form a crucial data structure for scene under-4126

standing, cataloging object instances within a scene4127

and delineating their interrelationships. These in-4128

stances, ranging from people to places and objects,4129

are described through attributes like shape, color,4130

and pose (Chang et al., 2023). The relationships be-4131

tween these instances, often action-based or spatial,4132

are expressed as (subject, predicate, object) triplets,4133

paralleling the (h, r, t) and (e, a, v) triplets in KGs.4134

Scene Graph Generation (SGG) serves as an in-4135

termediary task, unlike other multi-modal tasks4136

with specific end goals, providing enhanced un-4137

derstanding and reasoning to support downstream4138

tasks (Huang et al., 2023b; Koner et al., 2021; Yu4139

et al., 2021).4140

Grasping all relationships in SGG training data 4141

is challenging, yet crucial, and leveraging prior 4142

knowledge significantly aids in effectively learn- 4143

ing relationship representations from limited data, 4144

thereby enhancing detection, recognition, and over- 4145

all accuracy of SGG. One effective approach is 4146

using language priors. By leveraging semantic 4147

word embeddings, these priors adjust relationship 4148

prediction probabilities, thus augmenting visual re- 4149

lationship identification. For example, even with 4150

infrequent occurrences in training data, like inter- 4151

actions between people and elephants, language 4152

priors can assist the inference of similar relation- 4153

ships, such as “a person riding an elephant”, by 4154

studying more common examples like “a person 4155

riding a horse” (Chang et al., 2023). This also 4156

helps mitigate the long tail effect in visual rela- 4157

tionships (He et al., 2020). Another approach in- 4158

volves statistical priors, leveraging the structural 4159

regularity inherent in visual scenes, as highlighted 4160

in (Zellers et al., 2018). These priors capitalize on 4161

typical object-relation statistical correlations, such 4162

as “people wearing shoes” or “mountains being 4163

near water”. 4164

Several works adopt the KG representation learn- 4165

ing techniques into SGG scenario. For example, 4166

RLSV (Wan et al., 2018) uses existing SGs and 4167

images to predict new relationships between enti- 4168

ties, targeting SG completion and blending KG 4169

embedding methods with SG characteristics in 4170

a structural-visual embedding model. Yu et al. 4171

(2022) improve zero-shot performance in SGG by 4172

constructing a KG from training set SG triples, 4173

distinguishing existing (non-zero-shot) and miss- 4174

ing (zero-shot) edges. They train a KG Em- 4175

bedding model to complete the graph and fills 4176

these missing edges, thereby integrating zero-shot 4177

triples similarly to their non-zero-shot counterparts. 4178

GLAT (Zareian et al., 2020b) separates perception 4179

and commonsense into two models, training on an- 4180

notated SGs with a BERT-like masking approach 4181

(akin to KG pre-training (Yao et al., 2019)) for ele- 4182

ment prediction. This method, when added to any 4183

SGG model, can rectify errors in SGs by harnessing 4184

the synergy of perception and commonsense. 4185

Some SGG studies (Chen et al., 2019; Gu et al., 4186

2019; Zareian et al., 2020a; Khan et al., 2022b; 4187

Chen et al., 2023f; Lu et al., 2023) also em- 4188

ploy KGs for triple prediction, utilizing them 4189

to generate rich and expressive SGs. Specifically, 4190

KERN (Chen et al., 2019) leverages structured KGs 4191

to capture statistical correlations between object 4192
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pairs and relationships, boosting SGG by contextu-4193

alizing and stabilizing relationship predictions to4194

address distribution imbalances. Gu et al. (2019)4195

utilize a knowledge-based module to identify rel-4196

evant ConceptNet entities and retrieve common-4197

sense facts, each assigned a weight indicating its4198

real-world prevalence to filter candidate triples.4199

Then a Dynamic Memory Network (Kumar et al.,4200

2016) is applied for multi-hop reasoning on these4201

facts, enabling inference of the most probable SG4202

triples. GB-Net (Zareian et al., 2020a) views SGs4203

as image-conditioned versions of commonsense4204

KGs, shifting the focus from traditional entity and4205

predicate classification to linking these two graph4206

types. Utilizing a graph-based neural network, GB-4207

Net iteratively propagates and refines information4208

between and within both graphs, effectively bridg-4209

ing scene and commonsense knowledge. Khan4210

et al. (2022b) enrich SGs using CSKG (Ilievski4211

et al., 2021), a substantial commonsense KG repos-4212

itory. By employing graph embeddings to assess4213

the similarity of object nodes, their approach en-4214

ables graph refinement and enrichment as shown4215

in Fig. 6. This upgrades SGG with additional in-4216

formation on objects’ spatial proximity and poten-4217

tial interactions derived from external knowledge,4218

improving higher-level reasoning and mitigating4219

some missed or incorrect predictions made dur-4220

ing SGG. Explicit Ontological Adjustment frame-4221

work (Chen et al., 2023f) mitigates predicate biases4222

using knowledge priors from ConceptNet and Wiki-4223

data, refining relationship detection by integrating4224

an edge matrix from the KG into a GNN model.4225

Tian et al. (2023) add a branch for independent la-4226

bel confidence estimation in SGG network, which4227

assesses the difficulty of visual recognition. This4228

branch balances the need for commonsense knowl-4229

edge in diverse scenes, especially for relations like4230

“throwing” that require supplementary knowledge4231

compared to more straightforward spatial relations4232

like “sitting on”.4233

Discussion 7 In the realm of SGG, KGs are in-4234

strumental in mitigating relationship bias and the4235

long-tail phenomenon within training sets, serving4236

as a form of refinement. However, existing SGG4237

methods still face challenges in complex scenarios4238

where the spatial distance between objects may be4239

significant enough to disregard potential interac-4240

tions. Enhancing scene graph integrity could be4241

achieved by incorporating larger-scale images to4242

recognize relationships between distantly located4243

objects (Hossain et al., 2019). Moreover, extending 4244

SGG to identify human interactions, both in terms 4245

of object relations and social dynamics, would en- 4246

rich scene comprehension and widen its practical 4247

uses, thereby aiding in the development of MMKG. 4248

Additionally, leveraging structured features from 4249

SGs in training LLMs represents a promising strat- 4250

egy to boost multi-modal learning, capitalizing on 4251

the combined strengths of SGs, KGs, and language 4252

priors. 4253

A.5.2 Image Captioning 4254

Image Captioning (IC) (Hossain et al., 2019) is a 4255

pivotal multi-modal learning task, aiming to de- 4256

scribe images in natural language. In IC, KGs can 4257

provide essential prior knowledge, including com- 4258

monsense semantic correlations and constraints 4259

among objects, guiding the construction of se- 4260

mantic graphs for meaningful caption generation, 4261

even when certain elements are not visually present 4262

(Fig. 6). Furthermore, since each image in the train- 4263

ing data typically comes with only a few ground 4264

truth captions, models often lack the cues neces- 4265

sary to uncover implicit intentions. KGs can sig- 4266

nificantly bridge this gap by offering essential fact- 4267

checking support. 4268

Rule-based methods (Aditya et al., 2015; Lu 4269

et al., 2018a; Huang et al., 2020a) primarily incor- 4270

porate KG knowledge into caption models through 4271

Entity Linking and symbolic rules, often sup- 4272

plemented by inter-concept co-occurrence scores. 4273

Aditya et al. (2015) pioneer the application of KG 4274

into IC, identifying relevant events from a KG 4275

based on detected visual concepts, then construct- 4276

ing a Scene Description Graph (SDG) with pre- 4277

defined rules, from which captions are generated 4278

using NLG tools. Lu et al. (2018a) use a CNN- 4279

LSTM model to create a template caption from the 4280

input image, followed by employing a KG-based 4281

collective inference algorithm to populate the tem- 4282

plate with specific named entities, sourced from 4283

hashtags. Instead of directly integrating semantic 4284

knowledge into the neural network layers, Huang 4285

et al. (2020a) input retrieved triples from Concept- 4286

Net during the word generation stage for next-word 4287

prediction, augmenting the probabilities of poten- 4288

tial words identified within the semantic knowledge 4289

corpus. 4290

Embedding-based methods (Hou et al., 2019, 4291

2020; Li and Jiang, 2019; Mogadala et al., 2020; 4292

Zhang et al., 2021c; Zhong and Wang, 2023) typ- 4293
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ically employ networks such as GNNs or RNNs4294

to efficiently encode retrieved knowledge as vec-4295

tors, subsequently incorporating these vectors into4296

the caption generation process. Hou et al. (2019,4297

2020) utilize human commonsense knowledge to4298

support object relationship reasoning in IC, avoid-4299

ing the need for pre-trained detectors. Using Visual4300

Genome as an external KG, they map densely sam-4301

pled regions from images into low-dimensional4302

vectors, and then, guided by the KG, form a tem-4303

porary semantic graph. This graph enhances GNN-4304

based relational reasoning for captioning and itera-4305

tively refines the KG itself. CNet-NIC (Zhou et al.,4306

2019) connects ConceptNet entries with identified4307

image objects to enrich descriptions and infer non-4308

explicit visual information. This method enhances4309

the semantic depth of object recognition module4310

outputs, integrating the embeddings of knowledge4311

terms and image features to initialize a RNN for4312

IC generation. Interpret-IC (Mogadala et al., 2020)4313

selects local objects in an image based on human-4314

interpretable rules, ensuring captions reflect only4315

those objects of human interest. During training,4316

entities not present in standard captions are masked4317

to align the model with human preferences. Zhang4318

et al. (2020) employ a chest abnormality KG with4319

prior chest X-ray knowledge to support radiology4320

report generation. In this KG, entity features are ini-4321

tialized with CNN-extracted features of frontal and4322

lateral chest X-ray images, where the application of4323

GCN mean pooling yields graph-level features that4324

contributes to generating radiology reports. Zhao4325

et al. (2021b) utilizes an MMKG that associates4326

visual objects with named entities for IC, incorpo-4327

rating external multi-modal knowledge sourced4328

from Wikipedia and Google Images. This MMKG,4329

once processed through a GAT (Velickovic et al.,4330

2018), feeds its final layer’s output into a Trans-4331

former decoder which enables entity-aware cap-4332

tion generation. Nikiforova et al. (2022) propose a4333

dataset from the Geograph project12, including geo-4334

graphic coordinates of photo locations. Concentrat-4335

ing on encyclopedic knowledge, they extract facts4336

from DBpedia and use a retriever to prioritize facts4337

for possible caption inclusion. These knowledge4338

triples, combined with the image and geographic4339

context, are then utilized in an encoder-decoder IC4340

pipeline.4341

12http://www.geograph.org.uk/

A.5.3 Visual Storytelling 4342

Visual Storytelling (VST) transcends traditional 4343

Image Captioning by transforming a series of pic- 4344

tures into a cohesive narrative, demanding both the 4345

recognition of contexts within and across images 4346

and overcoming narrative monotony. KGs are cru- 4347

cial here, enhancing story diversity, rationality, and 4348

coherence. 4349

KG-Story (Hsu et al., 2020) links concept terms 4350

from images across scenes using background KGs 4351

like FrameNet (Baker et al., 1998) and Visual 4352

Genome, refined by a PLM for sequential image 4353

storytelling. Yang et al. (2019a) develop a vision- 4354

aware directional encoding schema, integrating es- 4355

sential commonsense knowledge from ConceptNet 4356

for concept in each image. The enhanced snapshot 4357

representations, augmented with attentive knowl- 4358

edge, processed in a GRU-based framework for 4359

final VST. Building upon this, MCSM (Chen et al., 4360

2021a) applies pruning rules and two concept se- 4361

lection modules to refine commonsense knowledge 4362

facts and facilitate sentence generation for each im- 4363

age using a visual-adapter-equipped BART (Lewis 4364

et al., 2020). Further, PR-VIST (Hsu et al., 2021) 4365

represents image sequences as story graphs to iden- 4366

tify the best storyline path and develop a discrim- 4367

inator model for outputting story quality scores, 4368

aligning the narratives with human preferences. 4369

IRW (Xu et al., 2021) utilizes imaginary key con- 4370

cepts derived from each image for entity mention 4371

detection, retrieving candidate fact triples from 4372

ConceptNet to form a sub-KG. This sub-KG, along 4373

with the constructed scene and event graph for each 4374

image, is integrated using separate GCNs, adap- 4375

tively contributing to the VST process. KAGS (Li 4376

et al., 2023c) involves a knowledge-enriched atten- 4377

tion network with a group-wise semantic model for 4378

globally consistent VST guidance. 4379

Discussion 8 The advent of Multi-modal LLMs 4380

(MLLMs) has enriched the knowledge embedded 4381

in pre-trained models, often diminishing the need 4382

for KGs to supply coarse-grained commonsense 4383

knowledge for those IC and VST tasks. This devel- 4384

opment highlights the need for KGs offering finer- 4385

grained or specific commonsense knowledge to ad- 4386

dress model hallucination issues. Moreover, for 4387

VST task, maintaining coherence between pictures 4388

and scenes is essential, where KGs are vital for 4389

linking disparate scenes and enriching scene tran- 4390

sitions with background knowledge. Several meth- 4391

ods have innovated with data-centric KG enhance- 4392
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ments, such as deriving background KGs from story4393

collections in training corpora (Hsu et al., 2021),4394

or creating event graphs through image selection4395

from the training set that resemble the query image,4396

subsequently using Information Extraction tools4397

to construct events for each sentence associated4398

with an image (Xu et al., 2021). While these strate-4399

gies are pioneering, they introduce challenges in4400

ensuring equitable model comparisons due to var-4401

ied dependencies on external knowledge sources,4402

suggesting the need for separate evaluation of such4403

data-centric methods.4404

A.5.4 Conditional Text-to-Image Generation4405

Conditional Text-to-Image Generation (cIG) aims4406

to transform textual descriptions into visually re-4407

alistic images, where KGs could supply detailed4408

prior knowledge and commonsense elements not4409

originally present in the datasets. LeicaGAN (Qiao4410

et al., 2019) establishes a shared semantic space4411

that enables text embeddings to convey visual infor-4412

mation, by integrating a text-image encoder for se-4413

mantic, texture, and color understanding, alongside4414

a text-mask encoder for shaping layout through seg-4415

mentation masks. During the image imagination4416

phase, it merges the outputs of these encoders with4417

added Gaussian noise to enhance diversity. Here,4418

a cascaded attentive generator produces detailed4419

and realistic images, ensuring semantic and visual4420

coherence through adversarial learning. Many fol-4421

lowing works (Cheng et al., 2020; Jun Cheng and4422

Fuxiang Wu and Yanling Tian and Lei Wang and4423

Dapeng Tao, 2022; Liu et al., 2023b) treat image-4424

caption pairs in training sets as KB entries, enrich-4425

ing captions by selecting and refining relevant items4426

from this KB, thereby aiding in feature extraction4427

and enabling more accurate cIG. Concretely, KnHi-4428

GAN (Ge et al., 2021) and AttRiGAN (Zhu et al.,4429

2021) present a Knowledge-enhanced Hierarchical4430

GAN, employing a KG to enrich text descriptions4431

for detailed generative input. This task-specific KG4432

is constructed from training sample attributes, for-4433

matted in RDF triples (Geng et al., 2021a, 2023).4434

For 3D cIG, T2TD (Nie et al., 2023) involves a4435

text-3D KG that correlates text with 3D shapes and4436

textual attributes, utilizing these elements as prior4437

knowledge. During 3D generation, it retrieves the4438

knowledge based on text descriptions and employs4439

a causal module to select shape information rele-4440

vant to the text.4441

Discussion 9 While metrics like the Inception4442

score (Salimans et al., 2016) and R-precision (Xu4443

et al., 2018) are commonly used for evaluating the 4444

diversity of generated images and the semantic con- 4445

sistency between input text and generated images, 4446

current evaluation methods for generated images 4447

still lack critical assessment at the knowledge and 4448

commonsense level (Huang et al., 2023b). Bridg- 4449

ing this gap presents a critical direction for future 4450

research. 4451

A.6 KG-driven Multi-modal Retrieval Tasks 4452

Definition 2 KG-aware Retrieval aims to utilize 4453

textual descriptions (xl) for ranking similar visual 4454

images (xv), or vice versa, including the sorting 4455

and retrieval of all relevant images or region pro- 4456

posals within an image. Utilizing a background 4457

KG G, this approach transcends mere appearance- 4458

based retrieval by incorporating non-visual at- 4459

tributes, striving for a human-level semantic under- 4460

standing, especially in scenarios lacking precise 4461

targets. 4462

A.6.1 Cross-Modal Retrieval 4463

Cross-Modal Retrieval (CMR) focuses on fetching 4464

data across different modalities, such as images, 4465

text, audio, or video, in response to a query from 4466

another modality. Specifically, this section explores 4467

Image-Text Retrieval, aiming to identify semanti- 4468

cally similar instances across visual and textual 4469

modalities. 4470

Image-Text Matching (ITM) vs. Image-Text 4471

Retrieval (ITR): ITM and ITR are closely related 4472

yet differ mainly in their application: ITM eval- 4473

uates relevance between an image and text, of- 4474

ten used in image-caption correspondence (Huang 4475

et al., 2023b; Gómez-Pérez and Ortega, 2019), 4476

while ITR focuses on finding relevant matches 4477

in larger datasets based on textual or visual 4478

queries, crucial for visual search engines, digital 4479

asset management, and automated content genera- 4480

tion (Cao et al., 2022a). Both ITM and ITR lever- 4481

age similar underlying technologies, metrics, and 4482

datasets such as Flickr30k (Young et al., 2014) 4483

and MSCOCO (Lin et al., 2014), which feature 4484

extensive labeled images with captions. In cross- 4485

modal pre-training, ITM serves as a foundational 4486

task, honing the model’s ability to semantically 4487

correlate images and text, thereby improving its 4488

effectiveness in ITR (Zhang et al., 2021b; Li et al., 4489

2022a, 2023b). This pre-training ranges from 4490

coarse-grained matching (assessing general seman- 4491

tic relatedness) to fine-grained matching (aligning 4492

specific image regions with text). Such granularity 4493
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enhances the nuanced understanding and retrieval4494

capabilities for pre-trained models, bridging the4495

gap between general-purpose models and the spe-4496

cific demands of ITR tasks.4497

Early CMR research often overlook long-tail4498

and occluded semantic concepts in images (Yang4499

et al., 2021; Cao et al., 2022a). Recent advance-4500

ments (Shi et al., 2019; Wang et al., 2020a, 2022a;4501

Li et al., 2023d; Yang et al., 2023a) tend to fix4502

this by leveraging knowledge from frequently co-4503

occurring concept pairs in Visual Genome’s scene4504

graphs (Krishna et al., 2017) or image captioning4505

corpus. They create Scene Concept Graphs (SCGs)4506

using heuristic or rule-based tools such as language4507

parsers (Anderson et al., 2016), aiming to capture4508

fine-grained details. Shi et al. (2019) initially iden-4509

tify broad concepts, further refined into detailed4510

ones via SCG’s co-occurrence relationships, fol-4511

lowed by a concept prediction module for accurate4512

labeling. EKDM (Yang et al., 2023a) employs an4513

iterative concept filtering module that progressively4514

incorporates candidate concepts into a static global4515

representation in a dynamic manner, which uses the4516

significance scores of these concepts to set the fu-4517

sion order, integrating higher-scored concepts first.4518

CVSE (Wang et al., 2020a, 2022a) utilizes a GNN4519

for semantic correlation propagation in SCG, en-4520

riching concept representations with commonsense4521

knowledge via weighted embedding summation. A4522

confidence scaling function is introduced to miti-4523

gate long-tail distribution challenges. CSRC (Li4524

et al., 2023d) further employs a multi-head self-4525

attention mechanism to selectively focus on deeper4526

conceptual emphasis, while MACK (Huang et al.,4527

2022) eliminates the need for paired domain data4528

during training.4529

Note that the background KGs in these works4530

are typically derived from large-scale multi-modal4531

datasets, rather than directly utilizing public4532

KGs. However, a reliance on mere word co-4533

occurrences for entity similarities can be mis-4534

leading, like wrongly linking “man” and “dog”4535

due to frequent co-occurrences. Utilizing Word-4536

Net’s noun hierarchies helps distinguish such en-4537

tities. Additionally, MMKGs could address this4538

by capturing inter-modal co-occurrence relations,4539

like temporal, causal, and logical connections. For4540

instance, “washing” with “tap” or “cutting” with4541

“knife” in image-text pairs enhances semantic un-4542

derstanding across modalities. Building on this4543

perspective, Fig. 11 illustrates MMKG-based ap-4544

proach MKVSE (Feng et al., 2023), which en-4545

Figure 11: We illustrates the MMKG-supported Image-
Text Retrieval process (Feng et al., 2023). For simplicity,
all URI prefixes and certain relations (sourceImg and tar-
getImg) from the PictureRelation (Inter-modal_Relation
and Intra-modal_Relation) entity are omitted. This en-
tity’s values indicate intra-modal path similarities or
inter-modal co-occurrence correlations, essential for
training a model (e.g., multi-modal GCN) to produce
knowledgeable image or text representations. Note: In
cases of multiple images within a picture unit, mean
pooling is used for a unified feature representation.

hances image-text semantic connections, espe- 4546

cially for images with indirect textual descrip- 4547

tions. It scores intra- and inter-modal relations in 4548

MMKGs using WordNet path similarity (calculated 4549

by NLTK (Bird et al., 2009)) and co-occurrence 4550

correlations, improving ITR through GNN-based 4551

embeddings. Moreover, Yang et al. (2023a) focus 4552

on a common limitation in visual concept modeling, 4553

where varying spatial locations are often inaccu- 4554

rately linked by fixed relationships, like “man-on- 4555

bike” for any proximity of “man” and “bike” in an 4556

image. They spatial information from a geometric 4557

graph (Monti et al., 2017) to discern spatial rela- 4558

tions between image regions and employ a location 4559

CNN model to refine visual-semantic representa- 4560

tions. EGE-CMP (Dong et al., 2023) is a entity- 4561

graph enhanced cross-modal pre-training frame- 4562

work that leverages entity knowledge extracted 4563

from captions instead of human labeling. It focuses 4564

on learning instance-level feature representations 4565

by infusing real semantic information into visual- 4566

text alignment, improving text-image cross-modal 4567

alignment. 4568

Discussion 10 Current VLMs face challenges in 4569

fine-grained cross-modal semantic matching. Wang 4570

et al. (2023b) tackle this issue by using contrastive 4571

48



learning for aligning entities from Visual Genome4572

in ITR, enhancing cross-modal sensitivity with4573

entity masking. We note that a shift towards4574

knowledge-guided strategies rather than relying4575

solely on co-occurrence in VLM training could sig-4576

nificantly improve retrieval and matching of fine-4577

grained, long-tail objects, potentially leading to4578

advanced semantic grounding (Chen et al., 2023h)4579

and wider applications. However, only limited stud-4580

ies (Feng et al., 2023) have considered the role of4581

external knowledge like WordNet’s semantic struc-4582

tures. Besides, as discussed in § A.3.1, various4583

types of KGs, including trivia, commonsense, sci-4584

entific, and situational knowledge, offer unique and4585

complementary insights for reasoning processes.4586

But the prevalent focus on co-occurrence informa-4587

tion captures a fraction of commonsense knowl-4588

edge. Looking ahead, exploiting long-tail knowl-4589

edge from diverse large-scale KBs holds significant4590

potential for enhancing models’ generalization ca-4591

pabilities across various domains and real-world4592

scenarios.4593

A.6.2 Visual Referring Expressions &4594

Grounding4595

This section revisits KG-aware approaches in Vi-4596

sual Referring Expressions (also known as Phrase4597

Grounding or Referring Expression Comprehen-4598

sion) and Visual Grounding. While CMR typi-4599

cally entails matching across diverse textual and4600

visual contexts, VRE and VG focus on aligning4601

fine-grained features within specific textual-visual4602

pairs. From a certain point of view, these tasks are4603

akin to adding an extra step of grounding answers4604

in the conventional KG-based VQA, as illustrated4605

in Fig. 9.4606

Visual Referring Expressions (VRE) vs. Vi-4607

sual Grounding (VG): VRE and VG (Qiao et al.,4608

2021) integrate linguistic and visual information,4609

differing in focus (Qiao et al., 2021): VRE iden-4610

tifies and localizes a specific image region that4611

corresponds to a given textual expression, typi-4612

cally involving a detailed description of one object.4613

Conversely, VG is about localizing various object4614

regions linked to multiple noun phrases in a sen-4615

tence, aiming to establish fine-grained alignment4616

between vision and language. Despite these differ-4617

ences, both tasks require deep semantic language4618

interpretation and manage ambiguities inherent in4619

natural language and visual perception, relying on4620

extensive annotated datasets. The line between4621

VRE and VG often blurs in research, with some4622

approaches (Yang et al., 2019b; Sibei Yang and 4623

Guanbin Li and Yizhou Yu, 2021; Tang et al., 2023) 4624

merging their key aspects: VRE’s precise object 4625

localization and VG’s broad contextual analysis. 4626

KAC Net (Chen et al., 2018) utilizes the knowl- 4627

edge from pre-trained fixed category detectors, es- 4628

sential for selecting relevant proposals and ensuring 4629

visual consistency, to filter out unrelated proposals 4630

in VG progress. Shi et al. (2022) tackle zero-shot 4631

VRE, where visual examples of queried object cat- 4632

egories in the test set are not shown in the train- 4633

ing set (i.e., open-vocabulary scene); they achieve 4634

this by dynamically building MMKGs using com- 4635

monsense knowledge from WordNet and Concept- 4636

Net, combined with situational knowledge from 4637

Visual Genome. Query-derived entities, detected 4638

objects, and predefined relationships are integrated 4639

into these MMKGs, employing GCN for node rep- 4640

resentation and defining eight spatial relations to 4641

assist localization of noun phrases. 4642

The KB-Ref dataset (Wang et al., 2020b) empha- 4643

sizes commonsense knowledge, with its construc- 4644

tion process inspired by the F-VQA dataset (Wang 4645

et al., 2018a), which involves creating a common- 4646

sense KG. Concretely, volunteers craft referring 4647

expressions for queried objects based on facts from 4648

this KG, deliberately avoiding the use of specific 4649

object names. Building upon the KB-Ref dataset, 4650

ECIFA (Wang et al., 2020b) introduces a multi-hop 4651

facts attention module from the KG and a match- 4652

ing module that utilizes expression-object scores 4653

for accurate grounding; CK-Transformer (Zhang 4654

et al., 2023f), leveraging the UNITER (Chen et al., 4655

2020c) as its backbone, selects top-K retrieved facts 4656

from the KG for a given expression and visual re- 4657

gion candidates, encoding these into multi-modal 4658

features to compute matching scores for each can- 4659

didate. Bu et al. (2023) observe that knowledge- 4660

based Referring Expressions often consist of two 4661

segments: visual segments (e.g., “on the sofa” in 4662

Fig. 9), interpretable directly from visual content 4663

like color and shape, and knowledge segments (e.g., 4664

“used for sleeping” in Fig. 9), requiring additional 4665

information beyond visuals like function and non- 4666

visual attributes. To mitigate similarity bias, they 4667

introduce the SLCO network, which uses knowl- 4668

edge segments for category retrieval and visual 4669

segments for object grounding. 4670

The SK-VG dataset (Chen et al., 2023g) targets 4671

at scene knowledge-guided VG, using movie scene 4672

images from the VCR dataset (Zellers et al., 2019). 4673

Designed to promote reasoning beyond mere image 4674
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content, SK-VG employs a detailed two-stage anno-4675

tation process: firstly, generating story descriptions4676

for each image, and secondly, crafting referring4677

expressions tied to these stories and images, ac-4678

companied by object bounding box annotations.4679

These annotations are crafted to ensure knowledge4680

relevance to the scene context, uniqueness for ac-4681

curate object identification, and diversity in both4682

lexical use and objects. Chen et al. (2023g) further4683

provide two benchmarking algorithms: a one-stage4684

approach that embeds knowledge into image fea-4685

tures prior to query interaction, and a two-stage4686

method that extracts features from images and text,4687

subsequently employing structured linguistic data4688

for computing region-entity similarity.4689

Discussion 11 A good VRE and VG system can4690

benefit various downstream tasks such as VQA,4691

CMR, and IMGC. Chen et al. (2023h) develop a4692

cross-modal semantic grounding network for ZS-4693

IMGC, aimed at disentangling semantic attributes4694

from images via a self-supervised method. This4695

technique bridges knowledge from PLMs to visual4696

models without needing region-attribute supervi-4697

sion. By leveraging AWA2-KG (Geng et al., 2023)4698

for fine-grained labeling, it connects species to4699

their attributes (e.g., “zebra” to “striped”) and4700

uses KG serialization to blend structured knowl-4701

edge into cross-modal grounding. The network also4702

incorporates attribute-level contrastive learning to4703

tackle attribute imbalance and co-occurrence, thus4704

refining the distinction of fine-grained visual fea-4705

tures across images from both seen and unseen4706

classes. This highlights the value of KGs in Visual4707

Grounding tasks, serving as a natural knowledge4708

organizer and a conduit for transferring VG prin-4709

ciples to related tasks without specialized annota-4710

tions.4711

A.7 Supplement for KG-driven Multi-modal4712

Pre-training4713

In this section, our primary focus is on pre-training4714

definitions related to Transformer-based models,4715

aligning with the current mainstream discourse in4716

AI community. Other paradigms, such as Poincaré4717

embedding pre-training (Xu et al., 2020), are not4718

covered in this discussion.4719

We highlight that multi-modal reasoning and4720

generation tasks often require an extensive range4721

of specialized knowledge, typically involving long-4722

tail information that goes beyond everyday experi-4723

ences. KGs are crucial in these scenarios, serving4724

as structured repositories for such diverse knowl- 4725

edge. However, there exists a notable gap between 4726

KGs and multi-modal tasks, as current methods fre- 4727

quently depend on indirect approaches like modal 4728

transformation for knowledge representation, re- 4729

trieval, and interaction in multi-modal contexts. A 4730

significant challenge arises in tasks requiring vi- 4731

sual common sense, where models may falter due 4732

to limited cross-modal alignment capabilities, lead- 4733

ing to multi-modal hallucinations as evidenced in 4734

Fig. 7. Recent works (Zha et al., 2023) demonstrate 4735

that MMKGs can effectively bridge this gap, en- 4736

hancing the potential of multi-modal methods and 4737

offering a robust solution to multi-modal halluci- 4738

nations in the era of LLMs. Specifically, Zha et al. 4739

(2023) introduce M2ConceptBase, a multi-modal 4740

conceptual MMKG. They develop a pipeline us- 4741

ing M2ConceptBase to improve knowledge-based 4742

VQA performance by retrieving multi-modal con- 4743

cept descriptions and crafting instructions to refine 4744

answers with MLLMs. 4745

Structure Knowledge aware Pre-training. The 4746

integration of structured knowledge into multi- 4747

modal content understanding has gradually gained 4748

momentum, drawing inspiration from advance- 4749

ments in the NLP field. KM-BART (Xing et al., 4750

2021) adapts the BART (Lewis et al., 2020) model 4751

to multi-modal tasks by incorporating a pre-trained 4752

visual feature extractor. It tackles knowledge-based 4753

commonsense generation by using COMET (Bosse- 4754

lut et al., 2019) to augment image-caption datasets 4755

with commonsense context. The enriched datasets, 4756

combined with a next-token prediction target, em- 4757

power KM-BART to deduce events and character 4758

intentions from image-text pairs. ERNIE-ViL (Yu 4759

et al., 2021) incorporates Scene Graph (SG) knowl- 4760

edge into a VLM, enhancing visual scene com- 4761

prehension by adding SG completion and predic- 4762

tion tasks (covering objects, attributes, and rela- 4763

tionships) during its multi-modal pre-training stage. 4764

ROSITA (Cui et al., 2021) strengthens semantic 4765

alignments across visual and language modalities 4766

by employing a unified SG shared between the in- 4767

put image and text. Existing VLMs often struggle 4768

with Image-Text Matching tasks that demand an un- 4769

derstanding of reversed roles or actions, evident in 4770

scenarios like “An astronaut rides a horse” versus 4771

“A horse rides an astronaut” (refer to § A.6.1). To 4772

tackle this, Structure-CLIP (Huang et al., 2023b) 4773

improves structured multi-modal representation 4774

learning by leveraging SGs to generate semantic 4775
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negative examples.4776

Knowledge Graph aware Pre-training. KG-4777

Transformer (Zhang et al., 2023b) is pre-trained4778

on KGs including WN18RR (Sun et al., 2019b),4779

FB15k-237 (Toutanova and Chen, 2015), and4780

CoDEx (Safavi and Koutra, 2020), with pre-4781

training objectives like masked relation/entity pre-4782

diction and entity pair prediction. This model can4783

be applied to ZS-IMGC, framing the task as de-4784

termining the match score between input images4785

and target classes. It undergoes fine-tuning using4786

AwA-KG (Geng et al., 2023), with a pre-trained4787

ResNet serving as the vision encoder and image4788

representations further transformed through a train-4789

able matrix.4790

Discussion 12 Current KG-equipped VLMs pri-4791

marily use triple contexts to enhance multi-4792

modal data, with a few examples, like KGTrans-4793

former (Zhang et al., 2023b), incorporating KG’s4794

structural information into pre-training. However,4795

its application is limited to Zero-shot Image Clas-4796

sification, using a uni-modal approach during pre-4797

training. Future research in this domain can focus4798

on four key areas: Firstly, scaling up KG to exploit4799

its rich knowledge and structural traits, rethink-4800

ing the long-tail phenomenon in multi-modal pre-4801

training data and expanding the knowledge scope4802

to involve world knowledge. Secondly, the integra-4803

tion of MMKGs, which are further discussed in § 4.4804

Third, exploring unique pre-training paradigms4805

suited for (MM)KGs to fully harness the value of4806

structured knowledge in multi-modal pre-training.4807

Fourth, extending to more downstream tasks to4808

align with the latest advancements in AGI, utilizing4809

MLLMs (Liu et al., 2023c).4810

A.8 Supplement for Future Directions4811

Focusing solely on the benefits that traditional KGs4812

bring to multi-modal tasks can be inherently limit-4813

ing due to the restricted scope of knowledge cap-4814

tured in single-modality KGs. In evaluating KG-4815

aware multi-modal tasks, it’s crucial to discern the4816

unique advantages of multi-modal knowledge, es-4817

pecially compared to large-scale textual or multi-4818

modal corpora. Specifically for image modalities,4819

MMKGs can be categorized into two types: A-4820

MMKGs where images serve as entity attributes,4821

and N-MMKGs where images are independent en-4822

tities with their own relationships (Zhu et al., 2022).4823

A pivotal question is whether structured (MM)KGs4824

offer irreplaceable benefits that maximize their po-4825

tential. Additionally, we should consider whether 4826

non-LLM models augmented by (MM)KG can ri- 4827

val or outperform MLLMs in specific tasks, pro- 4828

viding compelling reasons to support the future 4829

development. 4830

A.8.1 KG4MML Tasks. 4831

Multi-modal Content Generation. Current ap- 4832

plications of MMKGs in multi-modal content gen- 4833

eration are quite limited. Most existing efforts only 4834

integrate KGs to supplement additional context be- 4835

yond datasets or to connect different visual scenes. 4836

Future developments should aim for larger, more 4837

detailed MMKGs to employ multi-modal structural 4838

data in training, fostering more controlled and logi- 4839

cally coherent generation and mitigating hallucina- 4840

tions. 4841

Multi-modal Task Integration. Different do- 4842

mains currently evolve independently with lim- 4843

ited cross-interaction. In Cross-Modal Retrieval 4844

(CMR), (MM)KGs are widely employed for in- 4845

formation enhancement, whereas in knowledge- 4846

based VQA, the focus is mainly on dense vec- 4847

tor retrieval and modality conversion techniques. 4848

This highlights the potential for future advance- 4849

ments like integrating KG-based CMR methods 4850

into KG-based VQA. In a similar vein, generation 4851

tasks can enhance retrieval, reasoning, and discrim- 4852

ination, with knowledge-enhanced discrimination 4853

tasks playing a key role in refining answers for 4854

other tasks. As knowledge-intensive multi-modal 4855

tasks gain prominence, merging these distinct do- 4856

mains with (MM)KG at the core will becomes cru- 4857

cial. 4858

Challenges in Scaling MMKG for Multi-modal 4859

Tasks. MMKG-driven tasks often emphasize 4860

retrieval-related activities, leveraging the natural 4861

database-like capabilities of MMKGs. However, 4862

the utilization of large-scale MMKGs in varied 4863

tasks, especially reasoning, is still nascent with lim- 4864

ited exploratory studies. For example, Zha et al. 4865

(2023) enhance knowledge-based VQA by employ- 4866

ing multi-modal concept descriptions and integrat- 4867

ing MLLMs for refined answers. Nevertheless, 4868

these methods only use MMKGs as “key:value” 4869

based retrieval databases, not fully leveraging their 4870

multi-modal structured capabilities. 4871

The constrained utilization of MMKGs in di- 4872

verse tasks can be attributed to several factors: 4873

• Non-Uniform Organization and Ontology of 4874

MMKGs: Current MMKGs, lacking a stan- 4875
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dardized format, vary significantly in their fo-4876

cal points and the knowledge domains they4877

cover for each downstream task. Predominantly,4878

MMKGs cater to encyclopedic or trivia knowl-4879

edge (Gong et al., 2023; Zhang et al., 2023a;4880

Wu et al., 2023c; Zha et al., 2023), with com-4881

monsense and scientific related MMKGs (Wang4882

et al., 2023c; Lee et al., 2023) being notably4883

scarce. Moreover, the “non-visualizable” na-4884

ture of some abstract knowledge components4885

restricts their practical application (Jiang et al.,4886

2022; Wu et al., 2023c).4887

• Storage and Processing Overheads: The4888

substantial storage space requirements and4889

extended processing times for large-scale4890

MMKGs hinder their extensive adoption. Con-4891

versely, small-scale MMKGs frequently offer4892

limited value for cross-task generalization.4893

• Data Timeliness and Completeness Issues in4894

MMKGs heightens the risk of multi-modal hal-4895

lucinations.4896

• Comparative Advantages of LLMs and4897

MLLMs: LLMs and MLLMs excel in gen-4898

eralizability and AGI potential across various4899

domains (Zhang et al., 2024), complementing4900

the interpretability and editing flexibility of4901

MMKGs. While MMKGs bring unique value,4902

their development, maintenance, and applica-4903

tion also involve certain costs. The evolving4904

feedback from downstream tasks will continue4905

to shape the industry’s perspective on their re-4906

spective roles and potentials.4907

Unlocking the Potential of Large-Scale MMKGs4908

for Multi-Modal Tasks.4909

• Integration with Non-text Modalities: Fu-4910

ture downstream tasks driven by large-scale4911

MMKGs can integrate methods from current4912

KG-driven VQA methods, placing equal em-4913

phasis on non-textual modalities. This may4914

further involve using modality projection or4915

adapters for cross-modal alignment (Li et al.,4916

2023e; Long et al., 2023), along with multi-4917

modal GNN methods (Yoon et al., 2023) and4918

modal feature decoupling techniques to enrich4919

the granularity and hierarchy of multi-modal4920

information (Chen et al., 2023h).4921

• Rich Semantic MMKG Construction:4922

MMKG data can transcend traditional spe-4923

cialized or general formats. By developing4924

task-specific pipelines, multi-modal datasets4925

can be converted into MMKGs with enhanced4926

semantics, using existing KGs as foundational 4927

references or bridges. This process can not 4928

only augments MLLM training with structured 4929

multi-modal input but also enriches the MMKG 4930

community with valuable, semantically rich 4931

datasets. 4932

• Reconstruction of Multi-Modal Tasks with 4933

LLM: Combining LLM’s text understanding 4934

and generation capabilities, multi-modal tasks 4935

can be restructured. Transforming KG-driven 4936

multi-modal tasks into in-MMKG-tasks, such 4937

as Multi-modal Knowledge Graph Construction, 4938

Multi-modal Entity Alignment, can enhance do- 4939

main integration. There are already some at- 4940

tempts in this direction (Pahuja et al., 2024). 4941

A.8.2 Large Language Models. 4942

The academic definition of LLMs, often associ- 4943

ated with models possessing extensive parameters 4944

such as LLaMA-7B (Touvron et al., 2023), re- 4945

mains broad. These models’ emergent abilities and 4946

Zero-shot Learning capabilities edge them closer 4947

to achieving AGI, underscoring their importance in 4948

NLP and multi-modal domains. 4949

1. Fine-Tuning: 4950

• MMKGs provide a rich source of struc- 4951

tured multi-modal data for Supervised 4952

Fine-Tuning (SFT) of Multi-modal LLMs 4953

(MLLMs), Training techniques effective 4954

for MMKGs in VLMs can also be applied 4955

to MLLMs, especially in domain-specific 4956

applications (Zheng et al., 2024; Zhang 4957

et al., 2023c). 4958

• Leverageing self-instructing techniques 4959

to autonomously evolve and generate 4960

multi-grained, multi-modal instructional 4961

data (Wang et al., 2023d; Xu et al., 2023a; 4962

Du et al., 2023; Yona et al., 2024) 4963

• Furthermore, MMKG data can be utilized 4964

to further explore the concept of multi- 4965

modal reversal curse (Lv et al., 2023), 4966

where the ordering of knowledge entities 4967

in training data influences model compre- 4968

hension, potentially limiting the model’s 4969

understanding. 4970

2. Hallucination: 4971

• As LLMs rapidly advance, the risk of 4972

generating seemingly authentic but factu- 4973

ally inaccurate web content is increasing. 4974

This phenomenon, known as hallucina- 4975

tion (Agrawal et al., 2023), often arises 4976
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from outdated or incorrect training encoun-4977

tered during the model training process,4978

or from the frequent co-occurrence bind-4979

ings of objects, affecting both LLMs and4980

MLLMs (Liu et al., 2024).4981

• Hallucination in MLLMs: (Huang et al.,4982

2023a; Tong et al., 2024; Liu et al., 2024)4983

• To combat this, LAMM (Yin et al., 2023b)4984

incorporates 42K KG facts from Wikipedia4985

and leveraged the Bamboo dataset (Zhang4986

et al., 2022c) to refine commonsense knowl-4987

edge in Q&A, underscoring the role of qual-4988

ity (MM)KGs in mitigating LLM halluci-4989

nations (Agrawal et al., 2023; Xu et al.,4990

2023c). Developing robust hallucination4991

detectors (Chen et al., 2023e; Mishra et al.,4992

2024) is crucial for identifying and curb-4993

ing errors in LLM outputs. Future efforts4994

could focus on pairing MMKGs with de-4995

tection methods to improve multi-modal4996

task precision and leveraging (MM)KGs4997

for knowledge-aware statement rewriting4998

to diminish factual hallucinations in LLM4999

reasoning (Guan et al., 2023; Wang et al.,5000

2023a).5001

3. Agent:5002

• Multi-agent Collaboration (Xu et al.,5003

2023b; Xiao et al., 2023; Lu et al., 2024),5004

simulating human cognitive processes, can5005

dissect VQA reasoning paths and engage5006

multiple (M)LLMs in collective problem-5007

solving (Wang et al., 2023e; Qiao et al.,5008

2024). In this framework, KGs can initial-5009

ize agent personalities (Mao et al., 2023; Tu5010

et al., 2023), providing a structured basis5011

for intuitively designing character brains,5012

enriching the interaction between agents5013

and enhancing their collective reasoning5014

capabilities.5015

• Chain-of-thought (CoT) reasoning (Wei5016

et al., 2022) significantly improves LLMs’5017

complex reasoning abilities by incorporat-5018

ing intermediate reasoning steps. This5019

progress has catalyzed the emergence of5020

various KG-focused applications (Park5021

et al., 2023; Sun et al., 2023a). For example,5022

Sun et al. (2023a) demonstrate how LLMs5023

can be used to interactively navigate KGs5024

to extract knowledge for reasoning. Their5025

Think-on-Graph (ToG) approach utilizes5026

beam search to identify effective reasoning5027

paths within KGs. Merging these innova- 5028

tions with MMKGs promises to expand the 5029

scope of tasks, especially in improving the 5030

ability of models to interpret and interact 5031

with diverse data types, such as images and 5032

text (Mondal et al., 2024). This integration 5033

moves us closer to achieving human-like 5034

multi-modal proficiency and paves the way 5035

for advanced machine intelligence. 5036

• 5037

4. Retrieval Augmented Generation: 5038

• Retrieval Augmented Generation 5039

(RAG) (Ovadia et al., 2023) systems 5040

enhance (M)LLMs by incorporating long- 5041

tail knowledge beyond their parameter 5042

limits. However, excessive document 5043

retrieval can lead to contextually inap- 5044

propriate answers (Barnett et al., 2024), 5045

increasing hallucination risks unless 5046

carefully designed prompts are used (Wang 5047

et al., 2023f). The high information density 5048

and structured organization in KGs can 5049

mitigate this issue. 5050

• Moreover, MMKGs can further aid multi- 5051

modal RAG by using various modalities as 5052

anchors (Song et al., 2023a), offering more 5053

relevant and explanatorily powerful results 5054

than vector-based searches (Wu and Xie, 5055

2023; Yu et al., 2023). 5056
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