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ABSTRACT

Graph neural networks have become the de facto standard for representational
learning in graphs, and have achieved SOTA in many graph-related tasks such as
node classification, graph classification and link prediction. However, it has been
shown that the expressive power is equivalent maximally to Weisfeiler-Lehman
Test. Recently, there is a line of work aiming to enhance the expressive power of
graph neural networks. In this work, we propose a more generalized variant of
neural Weisfeiler-Lehman test to enhance structural representation for each node
in a graph to uplift the expressive power of any graph neural network. It is shown
theoretically our method is strictly more powerful than 1&2-WL test. The Numer-
ical experiments also show that our proposed method outperforms the standard
GNNs on almost all the benchmark datasets by a large margin in most cases with
significantly lower running time and memory consumption compared with other
more powerful GNNs.

1 INTRODUCTION

Graph-structured data is ubiquitous in many real-world applications ranging from social network
analysis Fan et al. (2019), drug discovery Jiang et al. (2020), personalized recommendation He et al.
(2020) and bioinformatics Gasteiger et al. (2021). In recent years, Graph Neural Networks (GNNs)
have seized increasing attention due to their powerful expressiveness and have become dominant
approaches for graph-related tasks. Message Passing Graph Neural Networks (MPGNNs) are the
most common types of GNNs due to their efficiency and expressivity. MPGNNs can be viewed as
a neural version of the 1-Weisfeiler-Lehman (1-WL) algorithm Weisfeiler & Leman (1968), where
colors are replaced by continuous feature vectors and neural networks are used to aggregate over
node neighborhoods Morris et al. (2019). By iteratively aggregating neighboring node features to
the center node, MPGNNs learn node representations that encode their local structures and feature
information. A graph readout function can be further leveraged to pool a whole-graph representation
for downstream tasks such as graph classification.

Despite the success of MPGNNs, it is proved in some recent literatures that the expressive power
of MPGNNs is bounded by 1-WL isomorphism test (Morris et al., 2019; Xu et al., 2018a), i.e,
standard MPGNNs or 1-WL GNNs cannot distinguish any (sub-)graph structure that 1-WL cannot
distinguish such as for any two n-node r-regular graphs, standard MPGNNs will output the same
node representation.

Since then, a few works have been proposed to enhance the expressivity of MPGNNs. Methods
proposed by (Morris et al., 2019; Chen et al., 2019; Maron et al., 2019) aim at approximating
high-dimensional WL tests. However, these methods require learning all node tuples, which are
computationally expensive and not able to scale well to large-scale graphs. Another line of works
augment node features to enhance the expressive power of GNNs. E.g., works proposed by (Loukas,
2019; Sato et al., 2021) inject one-hot features or random features to each node of a graph, while
other works incorporate structural features to enhance expressivity of GNNs such as distance-based
features (Zhang & Chen, 2019; Li et al., 2020) and counting features of certain substructures Bourit-
sas et al. (2022). More recently, (Zhang & Li, 2021; Zhao et al., 2021) propose to leverage subgraph
information that cannot be captured by 1-WL test to infer node representations. Concretely, instead
of hashing the direct neighborhood information in 1-WL test, these methods hash the subgraph
information, and therefore inject additional structural information in the learning process. These
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methods are able to strike a balance between effectiveness and running time complexity. However,
scalability and memory consumption are still an issue as these methods need to materialize all the
subgraphs into GPU memory.

Accordingly, in this paper we tackle the above defects by proposing a lightweight module which
is an extension of neural Weisfeiler-Lehman test to extract meaningful structural representations,
which can be leveraged alone or plug into any MPGNN to enhance its expressive power. Our
proposed method generalizes a rooted subtree by encoding a multi-hop multi-color rooted subtree,
which induces a different message passing function. It is shown theoretically and empirically that
our method is strictly more powerful than 1&2-WL test with significant reduction in computational
complexity and memory consumption with comparable predictive performance or even superior to
previous methods.

Our main contributions are summarized as follows:

(1) New methodologies. We develop a more generalized variant of neural WL test, where the
message passing function induces a multi-hop multi-color rooted subtree instead of a rooted
subtree. Our proposed methods enjoys high flexibility and can be leveraged alone or equipped
with any graph neural network.

(2) Theoretical justification. We show our method is provably more expressive than 1-WL GNNs
with only 1 iteration of message passing.

(3) High efficiency. Our method can be equipped with any base graph neural network, incurring
almost no additional memory consumption while boosting the performance of the base GNN
significantly.

(4) Superior performance. We conduct extensive experiments in a wide variety of datasets with
different tasks. Empirically our approach outperforms all the baseline GNNs by a large margin
in most cases.

2 PRELIMINARY

We begin by introducing our notations, followed by presenting the concept of WL test and message
passing graph neural network framework.

2.1 NOTATION

A graph can be represented as G = (V, E), where V = {v1, . . . , vn} is the node set and E ⊆ V × V
is the edge set. X = {xv | ∀v ∈ V} is the node feature matrix and F = {euv | ∀euv ∈ E} denote
the edge feature matrix. The k-hop neighborhood of a node v ⊆ V is the set of nodes whose distance
(shortest path) to v is no greater than k and is denoted as N≤k(v), furthermore we denote Nk(v) to
be the k-th hop neighbors of node v. Given a set of nodes S ⊆ V , the subgraph induced by S is a
graph that has nodes in S and every endpoint of the edges is in S. The k-hop neighborhoods of node
v constitute an induced subgraph denoted by Gk

v . We further denote D and A to be the diagonal
degree matrix and adjacency matrix of G respectively, and Âk to be the k-hop neighborhood matrix
of graph G. Âk(i) outputs the non-zero entries of the i-th node whose distance to it equals to k.

2.2 WEISFEILER-LEHMAN TEST

WL test is a family of very successful algorithmic heuristics used in graph isomorphism problems.
1-WL test, being the simplest one in the family, works as follows - each node is assigned the same
color initially, and gets refined in each iteration by aggregating information from their neighbors’
states. The refinement stabilizes after a few iterations and the algorithm outputs a representation
of the graph. Two graphs with different representations are not isomorphic. The test can uniquely
identify a large set of graphs up to isomorphism (Babai & Kucera, 1979), but there are simple
examples where the test tragically fails—for instance, two regular graphs with the same number of
nodes and same degrees cannot be distinguished by the test. As a result, a natural extension to 1-WL
test is k-WL test which provides a hierarchical testing process by keeping the state of k-tuples of
nodes.
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Figure 1: An illustration of the working procedure for GNN-M2HC-RW where the root node is node
1. GNN-M2HC-RW first concatenate the random walk features to every node in the graph, then
build a multi-hop multi-color rooted subtree (in this case a 2-hop 2-color rooted subtree), followed
by performing message passing induced by standard rooted subtree and multi-hop multi-color rooted
subtree. A readout function is then leveraged to summarize the node representations from the dual
message passing procedure to get the final representation of node 1.

2.3 GRAPH NEURAL NETWORKS

In this paper, we focus on message passing GNNs (MPGNNs). For a MPGNN, the goal is to learn
meaningful node representation hv based on iterative aggregation of local network neighborhoods.
The t-th iteration of message passing can be written as:

a(t)v = AGG(t)
({

h(k−1)
u , et−1

uv |u ∈ N (v)
})

, h(t)
v = UPDATE(t)

(
h(t−1)
v , a(t)v

)
, (1)

where ht−1
u denotes the node u’s representation at time stamp t − 1, ek−1

uv is the edge feature of
euv ⊆ E , and N (v) returns the set of neighbors of node v. AGG(t) and UPDATE(t) are the
aggregation and update functions at time stamp t, respectively. After T time steps, the iterations
converge and the final node representation hT

u can then be summarized with a readout(pooling)
function R(◦) to extract graph-level representation hG .

hG = R
({

hT
v |v ⊆ V

})
. (2)

There is a close connection between MPGNN and 1-WL test in that they both encode rooted sub-
trees, and is not general enough to capture arbitrary patterns in a graph. It is proved that MPGNN’s
discriminative power is upper bounded by 1-WL test, and hence cannot distinguish any two n-node
r-regular non-isomorphic graphs. Despite subgraph GNN (see definition in the following section) is
proposed recently, the running time complexity and memory consumption overhead is still an issue
for large graphs.

3 PROPOSED METHOD

In this section, we propose our approach, Multi-Hop Multi-Color GNN (M2HC) which also encodes
a rooted subtree structure as 1-WL MPGNNs do. However, by incorporating multi-hop information
with different colors assigned to k-hop neighbors Nk(v) of the root node v, M2HC provably go
beyond 1-WL discriminative power using only 1-layer message passing, therefore is both fast and
memory efficient. The overall procedure of GNN-M2HC-RW is illustrated in figure 1.

Definition 1. (Rooted Subgraph) Given a graph G and a node v, the height-h rooted subgraph Gh
v is

induced by the nodes N≤k(v), i.e. the nodes whose distance to node v is no greater than k.

The concept of Rooted Subgraph follows Zhang & Li (2021). In Zhang & Li (2021), instead of iter-
atively refining node v’s representation using Eq. 1, they propose a subgraph-based nested scheme
to enhance the expressivity of MPGNNs. Similarly, Zhao et al. (2021) also proposes a rooted sub-
graph based approach named Subgraph-1-WL∗. The algorithm in (Zhang & Li, 2021) only runs for
1 iteration, while the subgraph-1-WL∗ runs for several iterations just as the standard 1-WL GNNs.
We refer to these variants of neural WL test as subgraph GNN.
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Figure 2: An illustration of resulted rooted subgraph and multi-hop multi-color rooted subtree for
two non-isomorphic 4-node 2-regular graphs where the root node is node 1. As shown in the figure,
both height-1 and height-2 rooted subgraph lead to the same representation for node 1. However
using a 2-hop 2-color rooted subtree, node 1 receive different representations hence can be distin-
guishable.

As a rooted subgraph is extracted for every node v ⊆ V independently, a node v in a different context
(rooted subgraph induced by different nodes in the graph G) may receive different representations,
which is different from standard MPGNN in that a node only receive a universal representation.
The discriminative power of subgraph GNN is enhanced due to the ability of each node being able
to be aware of its context, i.e. the rooted subgraph induced by different nodes in the graph. It is
guaranteed that subgraph GNN is able to exceed the expressive power of 1&2-WL test Zhao et al.
(2021); Zhang & Li (2021).

Definition 2. (Multi-hop multi-color rooted subtree) For a K-hop rooted subgraph GK
v , k-hop

neighborhood Nk(v) in GK
v is extracted and directly connected to the root node v and is assigned

with a unique color ck, where k ∈ [1,K].

Figure 2 provides an example to illustrates the resulting rooted subgraph and Multi-Hop Multi-Color
rooted subtree(M2HC) for two 4-node 2-regular non-isormorphic graphs. Although the encoded
rooted subgraph cannot distinguish the two graphs, M2HC is able to discriminate the structural
disparity even if the node features remain the same. Hence, instead of using direct neighbors in WL
test, we propose to leverage M2HC as a variant that could lead to the following message passing and
update function:

mt
v = AGG(t)

({
fk

(
ht−1
u | k ∈ [1,K], v ∈ V, u ∈ Âk[v]

)})
,

ht
v = UPDATE(t)

(
ht−1
v ,mt

v

)
.

(3)

Here, fk(◦) is the coloring function for the k-hop neighborhoods and u is a k-hop neighbor of
node v. By directly transferring M2HC into message passing function and run iteratively, the model
expressivity will get uplifted, however we aim for a memory efficient and fast approach. As we will
later prove that 1-iteration of M2HC is sufficient to go beyond 1-WL expressive power. Our message
passing function for a K-hop M2HC is therefore simplified as:

H = g
({

fk

(
ÂkX

)
| k ∈ [1,K]

})
, (4)

where g(◦) is the node readout function to summarize information from k ∈ [1,K] hop neighbor-
hoods to get node representations H ∈ RN×F , where F is the hidden dimensions of node v ∈ V .
The graph representation R(H) can be further obtained with a readout function R. In all the exper-
iments, we set g(◦) and R(◦) to be SUM or MEAN operators. Although being an extended version
of rooted subtree, M2HC resembles subgraph GNN in that, thanks to the introduction of coloring
function fk(◦), the same node v can also obtain a different representation for a different root node
as the relative distance to a different root node is subject to change, and hence by exploiting Âk,
the subgraph structure is implicitly captured. Although being more expressive than rooted subtree
structure, M2HC is less discriminative than subgraph GNN. In figure 3, we illustrate a failure case
where subgraph GNN is able to capture the structural difference of the two non-isomorphic graphs
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Figure 3: A failure case where subgraph GNN can distinguish the structrual difference while M2HC
cannot differntiate it. The figure also illustrate the attentional pattern induced by subgraph GNN and
M2HC,blue and orange dotted dash line denote different coloring functions. As shown in the figure,
subgraph GNN and M2HC lead to different attention patterns.

while M2HC will output the same node representation and fail to discriminate them. In the following
discussion, we treat message passing functions as a particular form of attention model, and provide
an intuitive explanation of the expressive power possessed by M2HC and subgraph GNN. As shown
in figure 3, a node v can attend to its K-hop neighboring nodes, and hence for subgraph GNN, it
follows a bidirectional pairwise attention pattern while M2HC follows a uni-directional hub-spoke
pattern, as all the nodes in the subgraph can capture its local substructure, therefore with a injective
readout function, subgraph GNN possess stronger expressive power than M2HC.

To mitigate this weakness, we leverage scalable node feature augmentation method to make every
node to be aware of its local substructure. We may resort to random features or one-hot features such
as those in (Sato et al., 2021; Loukas, 2019). Although being simple and fast, adding random features
would hurt the generalization performance, while one-hot features only adapt to transductive setting.
Inspired by previous works on positional encoding (Dwivedi et al., 2021; You et al., 2019), we adopt
L-step random walk self-landing probability of node v to summarise v’s local graph structure as
random walk can capture the status of a given node in the network. For instance, a hub node in the
network will reach to itself much often than other nodes in a graph. Furthermore, A local change
in the connection pattern will influence random walk dynamics, leading to a different pattern of
self-landing statistics (Lovász, 1993). We denote R = D−1A as the random walk matrix, the L-step
self landing probability vector for node v equals to (Rvv, R

2
vv, . . . R

L
vv) ⊆ RL. Let RW denote the

self-landing probability matrix, the message passing function in matrix form for M2HC is:

H = g
({

fk

(
ÂkX

′ | k ∈ [1,K]
)})

, where X ′ = CONCAT(X,RW ) (5)

We term the model applying Eq. 5 as M2HC-RW,and in all the experiments fk(◦) is set to be 2-layer
or 3-layer MLP due to the universal approximation theorem (Hornik et al., 1989; Hornik, 1991) and
g(◦) to be SUM or MEAN pooling functions.

Efficient Implementation. Here we propose an efficient implementation for Âk as the main com-
plexity of Eq. 5 stems from it.

Fact. The (i, j)th entry of Ak counts the number of walk of length k where the start and end vertices
are i and j respectively.

Lemma 1 Let dij be the distance between nodes i and j. Then there exists a walk of length dij + 2c
between i and j for a simple graph where c ∈ {0, 1, 2, 3 . . .}.

Using Lemma 1, we can come to the conclusion that Ak ̸= Âk as the non-zero entries Âk[i, j] =

1, s.t. dij = k while Ak[i, j] = dij + 2c. However, we can calculate Âk using Ak and(
Âk−1, Âk−2, . . . , Â1

)
efficiently using Eq. 6.

Mk−1 = γ

(
k−1∑
1

Âj

)
,[

Ak
]
ij
= 0,∀(i, j) ∈ Mk−1 ,
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Âk = 1
{
Ak

ij ≥ 1|i× j ∈ |V | × |V |
}
. (6)

Here,
∑k−1

1 Âj is a binary matrix where non-zero entries (v, w) implies that 1 <= dvw <= k − 1,
and γ(◦) returns a list of all the non-zero entries for

∑k−1
1 Âj . The second line of the equation sets[

Ak
]
ij

to zero where the indices (i, j) is resulted from Mk−1, and therefore now Ak only contains

the non-zero elements i, j where dij = k. The last line in Eq.6 outputs Âk as the binarized version

of Ak, where
[
Âk

]
ij

= 1,∀dij = k. The iterative realization of Âk is efficient as the computation

only involves sparse matrix multiplication, addition and fancy indexing.

4 DISCUSSIONS

In this section, we theoretically analyze the expressivity of our proposed method, followed by a
discussion of the computational complexity and memory requirement of M2HC-RW, finally We
compare and contrast our method with other related works.

4.1 THEORETICAL ANALYSIS

In this subsection, we theoretically analyze the expressive power of M2HC-RW.

Theorem 1 Subgraph GNN is strictly more powerful than 1&2-WL.

Theorem 1 can be directly obtained from Theorem 2 of Zhao et al. (2021) and Theorem 1 from Zhang
& Li (2021). Although the proof sketch is not the quite the same, they both prove that subgraph GNN
is more discriminative than 1-WL graph isormorphism test. As the discriminative power of 2-WL
is equivalent to 1-WLMaron et al. (2019), subgraph GNN is proved to be more powerful than 1&2-
WL. Next, we establish the connection between M2HC-RW and subgraph GNN in terms of their
expressive power.

Theorem 2 M2HC-RW is at least as equivalent to the expressive power of subgraph GNN if the
following conditions hold:

1. The coloring function f(◦),node readout function g(◦) and graph readout function R in
Eq. 5 should be injective.

2. For a K-hop M2HC and L-step random walk probability matrix RW, L should be sufficiently
large to capture the structural information.

A direct corollary derived from theorem 1 and 2 is:

Corollary 2.1 M2HC-RW is strictly more powerful than 1&2-WL.

Theorem 2 is proved by observing that incorporating self-landing probabilities to augment node fea-
tures could help resolve the expressivity issues incurred by hub-spoke attention pattern of M2HC.
We also provide a toy example to illustrate that M2HC can successfully discriminate some cases
where subgraph GNN fails to detect. Due to the exponential growth of K-hop neighbors, K should
not be set too large, which might require more expressive model to extract meaningful representa-
tions Loukas (2019), however K should not be too small neither as it will lose useful information.
K is typically set to 3 or 4 in the experiments to strike a balance between model complexity and
predictive performance.

Theorem 3 Let P = {0, 1}n×n be any permutation matrix,if we define T to be an alias operator
for M2HC-RW,then T (A,X) = T

(
PAPT , PX

)
,i.e. M2HC-RW is permutation invariant.

As M2HC-RW is experimented under the setting of graph classification, the permutation invariance
property guarantees that for any node permutation P , the graph representation remains the same,
hence is positive for the graph classification task.
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4.2 COMPLEXITY ANALYSIS

As there are two stages for our approach, we analyze the running time complexity separately in the
this section.

1. Preprocessing. In this stage, Âk and the self-landing probability matrix RW require some
pre-computation. However, both of them can be computed efficiently. First, to compute
Âk, we only need to compute Ak = A∗A(k−1), hence a bottom-up dynamic programming
approach only lead to O(K ∗m) computational complexity for a K-hop M2HC-RW and m
is the number of non-zero entries for adjacency matrix A. Similarly,we need to precompute
R,R2, R3, . . . , RL for a L-step RW probability matrix, we can use a similar approach
leading to O(L ∗m) running time complexity. Lastly, we can also precompute ÂkX , for
a sparse matrix G, the time complexity is O(mF ) where F is the feature dimension of
X . For a sparse graph, as K << m,L << m and F << m, the time complexity of the
preprocessing stage is O(|V |).

2. Training and Inference. The computation for training and inference is fast and memory-
efficient once the preprocessing stage is finished. As fk(◦) in Eq. 5 is a 2-layer or 3-layer
MLP, the computational complexity is O(|B|FH), where |B| is the batch size, F denotes
the feature dimensions and H denotes the hidden dimensions of fk(◦). M2HC-RW can
be even faster than 1-WL MPGNNs while being more expressive. Notably for Nested
GNN Zhang & Li (2021), the computational complexity is O(|B|hdFH), where h is the
height of extracted rooted subgraph which is typically 4 or 5, and d is the average node
degree. As subgraph GNN incurs an additional memory overhead of hd, M2HC-RW can
consume 10x-50x less memory than subgraph GNN assuming d ranges between 3 to 10.

4.3 RELATED WORK

Detailed discussion on the related works is shown in appendix A.3.

5 EXPERIMENTS

The following research questions guide the remainder of the paper: (Q1) Can M2HC-RW go beyond
1-WL expressive power? (Q2) Is M2HC-RW able to outperform 1-WL MPGNNs in real-world
datasets? (Q3) How does M2HC-RW perform in large-scale benchmark graph datasets? (Q4) How
much training time and memory consumption do M2HC-RW incur?

We make use of Pytorch Geometric (Fey & Lenssen, 2019) to implement our proposed framework,
and Pytorch Lightning that provides higher-level abstraction built upon PyTorch (Paszke et al., 2019)
for efficient model training and inference. Our code is available at https://github.com/
reywqua/ICLR2023_2923.

5.1 DATASETS

To answer Q1, we make use of the following synthetic datasets to examine if M2HC-RW can exceed
1&2-WL expressive power. i) LCC(X) Sato et al. (2021), which contains 20-node 3-regular random
graphs for multi-label node classification problem, the class label for node v is the local clustering
coefficient of node v. Both training set and test set consist of 1,000 graphs. ii) TRI(X) Sato et al.
(2021) which also consists of 2,000 20-node 3-regular random graphs split by half for training and
testing, the goal is to predict if two neighboring nodes are adjacent to each other. iii) EXP Abboud
et al. (2020) contains 600 pairs of 1&2-WL failed graphs that are split into two classes where each
graph of a pair is assigned to two different classes. iv) Graphlet counting Abboud et al. (2020). The
goal is to count four substructures’s number in random graphs,namely 3-star, traingle, tailed-triangle
and 4-cycle. For TRI(X) and LCC(X) datasets, the evaluation metric is ROC-AUC as the label dis-
tribution is skewed. For EXP dataset, the evaluation metric is Accuracy, and for graphlet counting
dataset, MAE is adopted. To answer Q2, We adopt ENZYMES, DD, PROTEINS, MUTAG, NCI1
and BZR from TUDataset Morris et al. (2020) which is self-contained in Pytorch Geometric Fey &
Lenssen (2019). We adopt Accuracy as the evaluation metric. To answer Q3, ogb-molhiv and ogb-
molpcba from Open Graph Benchmark datasets Hu et al. (2020) and zinc-12k are used to verify the
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Table 2: Results on counting 4 different substructures, the evaluation metric is Mean Square Error.
Truncation is performed when test error drops below 1.0E-4.

Method 3-Star Triangle Tailed Tri. 4-Cycle
GCN 1.0E-4 2.43E-1 1.42E-1 1.14E-1
GAT 1.0E-4 2.47E-1 1.44E-1 1.12E-1
GIN 1.0E-4 2.06E-1 1.18E-1 1.21E-1
PPGN 1.0E-4 1.0E-4 2.61E-4 3.30E-4
M2HC 1.0E-4 8.61E-4 2.20E-3 5.83E-3
GIN-M2HC-RW 1.0E-4 8.76E-4 2.25E-3 5.27E-3
PPGN-M2HC-RW 1.0E-4 1.0E-4 1.0E-4 1.0E-4

expressive power of the proposed method. The ogb-molhiv dataset contains 41K small molecules,
the task of which is to classify whether a molecule exhibits HIV virus or not. ROC-AUC is the stan-
dard evaluation metric for this dataset. The ogbg-molpcba dataset contains 438K molecules with 128
classification tasks. The evaluation metric is Average Precision over all the classification tasks. zinc-
12k (Sterling & Irwin, 2015; Gómez-Bombarelli et al., 2018; Dwivedi et al., 2020) dataset contains
12K molecule graphs to regress a molecular property known as constrained solubility. Following
Dwivedi et al. (2020) we adopt Mean Absolute Error(MAE) as evaluation metric.

5.2 EXPERIMENT RESULTS

Table 1: Results on
LCC(X),TRI(X) and EXP. ROC-
AUC is adopted as the evaluation
metric for LCC(X) and TRI(X),
and Accuracy(%) is used for EXP.

Method LCC(X) TRI(X) EXP
GCN 50% 50% 50%
GIN 50% 50% 50%
M2HC-RW 99.7% 100% 99.8%

For Q1, as illustrated in table 1, M2HC-RW is able to achieve
99.7% and 1.0 in LCC(X) and TRI(X) respectively, where
GIN and GCN can only achieve 50% in terms of ROC-
AUC score. For EXP dataset, M2HC-RW achieves 99.8%
accuracy while 1-WL GNNs only achieves 50%. This im-
plies that M2HC-RW exceeds 1-WL discriminative power
and can discriminate the substructures that GIN and GCN
do no better than random guess. For the graphlet counting
dataset, the experiment result is shown in table 2. M2HC-RW
achieves much lower MAE compared with 1-WL GNNs. Sec-
ond, equipped with M2HC-RW, GIN and PPGN Maron et al.
(2019) demonstrate higher expressive power, i.e., the result-
ing MAE is significantly less than the models without M2HC-
RW. This also implies that M2HC-RW can be equipped with more advanced models such as PPGN,
to uplift their expressivity. Finally, PPGN with M2HC-RW achieves the best MAE error consistently
in all of the four substructures.

To answer Q2, first we can see that a 1-layer M2HC-RW can outperform all the 1-WL GNNs in
almost all the datasets as shown in table 3, in most cases by a large margin. We also test GNN-RW to
verify the improved expressive power doesn’t come from injecting random-walk positional features-
although the accuracy does improve a little bit in some datasets, GNN-M2HC-RW improves much
more significantly. Finally 1-WL GNNs, together with M2HC-RW uplifts the model expressivity in
almost all datasets. This implies that by encoding a rooted subtree and multi-hop multi-color rooted
subtree in the message passing procedure, the model can leverage both inductive bias to extract
more meaningful representations. For all the datasets except MUTAG, the best performing model is
achieved by GNN-M2HC-RW or M2HC-RW.

To answer Q3, we adopt GIN+Virtual Node(GIN∗) as the base GNN method in GNN-M2HC-RW
for ogbg-molhiv and ogbg-molpcba, we can see that by equipping with M2HC-RW module, GIN∗’s
discriminative power has been improved significantly and consistently in both datasets- from 77.07%
to 78.21% in ogb-molhiv and 26.86% to 27.92% in ogbg-molpcba as illustrated in table 5. GIN∗-
M2HC-RW is even comparable with or outperform some heavily-tuned leading methods. Finally,
our method is comparable with subgraph GNN methods, i.e., Nested GNN Zhang & Li (2021)
and GNN-AK Zhao et al. (2021), which is also consistent with our theorem in terms of model
expressivity. Finally we test GNN and GNN-M2HC-RW on zinc-12k dataset which is a large scale
molecular benchmark. We use GCN,GIN,GraphSage and PPGN as the baseline methods and use
only node label features, without leveraging any edge features to verify whether GNN-M2HC-RW
can outperform the base GNN methods. As demonstrated in table 6, GNN-M2HC-RW outperforms
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Table 3: Graph classification results on TU datasets in terms of Accuracy(%) and one standard
deviation, we use bold to highlight the best performing method.

D&D PROTEINS MUTAG NCI1 BZR ENZYMES
GCN 68.64±4.7 69.42±4.1 74.73±6.8 64.92±1.1 80.93±5.1 24.21±3.7
GCN-RW 69.24±2.1 69.47±3.4 70.72±9.1 65.7±2.2 82.85±4.4 25.29±6.0
GCN-M2HC-RW 75.6±5.2 74.5±1.8 85.3±10.2 73.38±1.7 81.23±3.9 36.66±7.1
Graphsage 69.79±4.4 68.2±3.2 72.38±5.4 68.34±1.9 81.1±5.6 25.1±6.0
Graphsage-RW 70.12±3.5 69.6±3.1 75.98±5.8 68.74±1.8 82.77±3.6 23.33±6.2
Graphsage-M2HC-RW 73.71±2.51 73.7±2.2 86.2±8.1 74.06±1.2 82.78±4.0 38.19±3.9
GIN 70.98±4.5 70.3±3.1 87.89±7.9 71.61±2.0 85.9±3.6 32.01±7.3
GIN-RW 70.85±1.5 69.54±3.0 85.84±6.2 71.8±1.4 86.32±4.4 31.66±4.7
GIN-M2HC-RW 72.26±3.3 74.8±1.1 84.5±6.53 74.17±1.7 87.51±4.8 38.75±3.6
M2HC-RW 73.41±3.8 73.22±2.6 84.99±8.6 75.29±1.1 83.61±4.4 34.54±5.8
MAX IMPROVEMENT 10.14% 9.67% 19.22% 13.03% 2.07% 52.76%

Table 4: Normalized running time and memory overhead for various methods. Our approach incurs
significantly less memory usage.

Zinc-12k
Method Run Time(S/Epoch) Memory(MB)
GIN 1 1
GIN-AK∗ 1.57 15.41
GIN-AK∗-S(R=5) 2.08 15.008
GIN-AK∗-S(R=3) 2 11.23
GIN-AK∗-S(R=1) 1.8 3.16
GIN-M2HC-RW 1.24 1.04

all four GNN variants. PPGN-M2HC-RW achieves the best MAE across all the methods. Detailed
experiment results are illustrated in appendix A.2.

To answer Q4, we compare GNN-M2HC-RW with GIN-AK∗ on zinc-12k in terms of memory usage
and per epoch running time. As the experiment setting is different, we measure normalized running
time and memory overhead where the time and memory incurred by GIN equals to 1. The experi-
ment result is shown in table 4. We should also note that GIN-AK∗Zhao et al. (2021) is different with
GIN-AK in that GIN-AK∗ further leverages context encoding and distance-to-centroid encoding in
each layer to improve the model capacity, however the memory cost mainly arises from indepen-
dently rooted subgraph extraction for each node in the graph, hence the memory overhead would
be similar to GNN-AK. As we can see in table 4, add M2HC-RW on GIN is nearly memory-free,
the additional memory consumption stems from the model parameters of coloring function fk(◦)
in Eq. 5. As AX can be precomputed, the training and inference procedure is orthogonal to the
graph structure information, hence is also fast. GIN-M2HC-RW consumes only 1/15 memory over-
head compared with GIN-AK∗. Although GIN-AK∗-S introduces sampling operation, the training
becomes slower as the sampling operation introduces more computation complexity to avoid redun-
dant rooted subgraphs, and the inference stage, without using subgraph sampling, is still memory
inefficient.In terms of speed, GIN-M2HC-RW is 43% faster than GIN-AK∗-S(R=1) and is 25.6%
faster than GIN-AK∗.

6 CONCLUSION

In this paper we develop M2HC-RW, a more generalized variant of neural Weisfeiler-Lehman test
to uplift GNN’s representative power. M2HC-RW is fast, flexible and memory efficient. Further-
more, it is provably more expressive than 1-WL graph isomorphism testing using only 1 iteration
of message passing. Compared with other more powerful GNNs, M2HC-RW requires significantly
less memory overhead, and can be applied to large-scale graphs. M2HC-RW can also be deployed to
low-resource device for training and inference due to its low computational complexity and memory
efficiency. In the future, we seek to incorporate attention mechanism into M2HC-RW and make it
compatible with edge attributes.
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A APPENDIX

A.1 EXPERIMENT SETTING

For the synthetic datasets, we directly verify the model performance of M2HC-RW on LCC(X),
TRI(X) and EXP. The baseline methods are GCN Kipf & Welling (2016) and GIN Xu et al. (2018a).
For graphlet counting dataset, GCN,GAT Veličković et al. (2017), Graphsage, PPGN are used as the
baseline methods. For GIN and PPGN, M2HC-RW is also equipped to each of these methods to ver-
ify if there is uplift for the model expressivity. Besides, M2HC-RW is also experimented alone. All
methods are trained for 100 epochs. The best performing model at validation stage with specified
evaluation metric is used for test dataset.
For the TUDatasets, we adopt GCN, GraphSage Hamilton et al. (2017) and GIN as the base methods.
To demonstrate the uplifted power is not solely stemming from random-walk positional features,
we also evaluate the performance of GCN-RW, GraphSage-RW and GIN-RW. Two variants of our
proposed method are experimented, namely M2HC-RW and GNN-M2HC-RW. GNN-M2HC-RW
leverages both M2HC-RW and a base GNN method, and concatenates the graph-level representa-
tions from both models for the final classification. For all GNN models including GNN-M2HC-RW,
the message passing layers in {2, 3, 4, 5} is searched, and the hidden dimensions of {16, 32} is
searched. For M2HC-RW, 3-hop with 10-step random walk is used uniformly in all the experi-
ments without any hyperparameter search. All models are trained uniformly for 150 epochs with
32 batch-size. We adopt the 10-fold cross validation method to ensure a fair comparison. For each
fold, we record the test accuracy according to the best validation performance and report the average
accuracy across all 10 folds. It is also noteworthy that to ensure a fair comparison, Jumping Knowl-
edge Xu et al. (2018b) is not incorporated in GIN and all other methods, which is leveraged in Xu
et al. (2018a) to enhance GIN’s model capacity.
We then turn to large scale datasets to verify the performance of GNN-M2HC-RW and M2HC-RW.
For ogb-molhiv and ogbg-molpcba, we use GIN∗-M2HC-RW, and compare with other advanced
GNN methods, where GIN∗ refers to GIN+Virtual Node. A 1-layer or 2-layer K-hop L-step M2HC-
RW is used, where K is set to 3 and L equals to 20. For zinc-12k dataset, we ignore edge features
and only leverage node features to facilitate the comparison between M2HC-RW and other baseline
methods, namely GCN, Graphsage, GIN and PPGN. Finally, we compare base GNN methods with
and without M2HC-RW module to verify if equipped with our proposed method can enhance the
expressivity of base GNNs.

A.2 EXPERIMENT RESULTS ON OGBG AND ZINC-12K DATASETS

Table 5 illustrates the experimental results for ogbg-molhiv and ogbg-molpcba. As we can see, by
equipping with M2HC-RW module, GIN∗’s discriminative power has been improved significantly
and consistently in both datasets- from 77.07% to 78.21% in ogb-molhiv and 26.86% to 27.92%
in ogbg-molpcba. Our approach is also comparable with subgraph GNN methods, i.e., Nested
GNN Zhang & Li (2021) and GNN-AK Zhao et al. (2021), which is consistent with our theorem in
terms of model expressivity.

Table 6 shows the experimental result for zinc-12k dataset. As demonstrated in the table, GNN-
M2HC-RW outperforms all four GNN variants. PPGN-M2HC-RW achieves the best MAE across
all the methods.
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Table 5: Graph classification result on ogbg-molhiv and ogbg-molpcba in terms of roc-auc and
average precision

ogbg-molhiv ogbg-molpcba
Method Test Test

CCN 75.99±1.19 -
PNA 79.05±1.32 28.38±0.35
DGN 79.70±0.97 28.85±0.3

DeeperGCN - 27.81±0.38
CIN 80.94±0.57 -
GIN 77.07±1.49 27.03±0.23

Nested-GIN 78.34±1.86 28.32±0.41
GIN-AK 78.29±1.21 27.40±0.32

GIN-M2HC-RW 78.21±1.03 27.92±0.12

Table 6: Test results for zinc-12k dataset. bold indicates the best performing model in the test
dataset. Only node feature is leveraged, the edge feature is not leveraged even when it is available.

Method ZINC-12k(MAE)
GCN 0.317±0.012
GCN-M2HC-RW 0.26±0.004
GIN 0.316±0.003
GIN-M2HC-RW 0.266±0.003
SAGE 0.269±0.004
SAGE-M2HC-RW 0.247±0.004
PPGN 0.306±0.051
PPGN-M2HC-RW 0.182±0.002

A.3 RELATED WORK

In this section, we compare and contrast our approach with previous relevant works. As the expres-
sivity of standard message passing GNNs, e.g. GCN and GIN is upper bounded by 1-WL graph
isomorphism testing, a fruitful line of works has been proposed aligning to k-WL test. Although
the expressivity of these methods get uplifted with theoretical guarantee, most of them lacks an im-
portant feature contributing to the recent success of GNNs: the locality of computations. Therefore,
they hold more theoretical values than practical availability. However, our approach guarantees to
surpass 1-WL expressivity without losing the benefit of localized computations.

In Zhang & Li (2021); Zhao et al. (2021), the authors propose a variant of 1-WL test: instead of
hash the direct neighbors of a given node, a rooted subgraph is utilized for representation refinement.
Although these approaches(subgraph GNNs) enjoy theoretical guarantee to surpass the expressivity
of 1-WL test and preserves locality of computation, it requires expensive memory consumption as
an independent rooted subgraph needs to be extracted for each node in the graph. Thanks to this
operation, each node is able to receive different representations specific to the node-induced rooted
subgraph, which is different to 1-WL GNNs where a node calculates a universal representation
based on the rooted subtree. M2HC inherits the advantage from subgraph GNNs that a node get
a localized representation based on the root node v and the distance to v. M2HC also adopts the
idea of subgraph pooling from subgraph GNNs, i.e. the representation of a root node is obtained
by pooling the multi-hop multi-color rooted subtree instead of calculating a node representation in a
layer-by-layer regime in 1-WL GNNs. Due to the adopt of Âk and precomputation of ÂkX , M2HC
is able to capture the notion of rooted subgraph implicitly without the need of rooted subgraph
extraction, hence is significantly memory efficient and fast in both training and inference stage.
Although M2HC is less expressive than subgraph GNNs due to its hub-spoke attention pattern, by
adding random-walk self-landing probability as auxiliary feature, M2HC-RW is guaranteed to be
as least expressive as subgraph GNNs. Another difference is that subgraph GNNs encode rooted
subgraph in the neural WL test, while GNN-M2HC-RW leverages both rooted subtree and rooted
multi-hop multi-color subtree to calculate the node representation, hence GNN-M2HC-RW can be
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considered as an ensemble method where standard 1-WL test and a more generalized version of
1-WL test are both leveraged.

Recent works propose to provably enhance the expressivity of GNNs by augmenting node features
with random feature or auxiliary coloringsSato et al. (2021); Loukas (2019); Abboud et al. (2020);
Puny et al. (2020); Dasoulas et al. (2019), although being scalable and easy to implement, these
approaches may not preserve permutation invariant property, thus would hurt the generalization per-
formance outside of the training set. However, leveraging random-walk features as augmentation to
M2HC doesn’t hurt the generalization performance as it is provably permutation invariant. Instead,
ID-GNNYou et al. (2021) admits node coloring using different weight matrices, which is similar
to the coloring function in our work to tag node colors. ID-GNN still uses standard 1-WL test,
leading to a rooted subtree structure, the extra discriminative power stems from coloring the iden-
tity node. Meanwhile, we propose a new variant of 1-WL test by hashing a multi-hop multi-color
rooted subtree. With a 1-layer message passing function, M2HC-RW is guaranteed to go beyond
1-WL expressivity thanks to the localized node representation and pooling operation. Another line
of works resort to graph positional encoding to break the limit of 1-WL expressive power by inform-
ing the localized substructure of arbitrary nodes in a graphDwivedi et al. (2020; 2021); You et al.
(2019). unlike many previous works that inject positional encodings in 1-WL GNNs, we leverage
positional encoding in our proposed multi-hop multi-color rooted subtree, leading to several advan-
tages in uplifting the model expressivity: i) The view of each node is confined to rooted node v
in M2HC, due to the hub-spoke attention flow, the internal connection pattern induced by non-root
nodes are ignored which may lead to under-expressivity, the employee of graph positional encoding
could capture the structural disparity therefore enrich the node representations. ii) Graph positional
encoding is not restricted to a single M2HC, and can capture expected statistics over all the M2HC
induced by its neighboring nodes, hence can be viewed as context encodings. iii) A node’s represen-
tation conditions on both global-level positional encoding and local-level distance information (via
coloring funtion fk(◦)), leading to higher-quality representations. iv) The random-walk features is
permutation invariant, therefore won’t hurt the generalization performance outside of training set.

Recent work also proposes to use distance features to uplift GNN’s expressivityLi et al. (2020),
where a distance vector w.r.t the target node set is calculated for each node as its additional feature.
Our approach is compatible with distance-based features due to the adoption of coloring function
fK(◦). Similar to our framework, Nikolentzos et al. (2020); Abu-El-Haija et al. (2019) also lever-
ages multi-hop neighborhood to perform higher-order message passing. However, MixHopAbu-El-
Haija et al. (2019) directly utilizes Ak in the message passing function, resulting in the entanglement
of information from multi-hop neighborhood to the central node. While our framework leverages
Âk to disentangle the information from multi-hop neighborhoods to the root node, leading to a hub-
spoke multi-color attention pattern. Nikolentzos et al. (2020) directly utilizes k-hop neighbors in the
aggregation function instead of direct neighbors. Both Nikolentzos et al. (2020); Abu-El-Haija et al.
(2019) incorporate multi-hop neighborhood information into the message passing function and run
for several iterations. However, M2HC extends the rooted subtree in WL test and is provably more
expressive than 1-WL GNNs with only 1 iteration.

A.4 PROOF OF THEOREM 2

We consider two graphs G1 and G2, and select two nodes v1 ∈ G1 and v2 ∈ G2. For the extracted
height-h rooted subgraph Gh

v1 and Gh
v2 , let Qh

v1 denotes the number of nodes in Gh
v1 whose distance

to root node v1 equals to h, similarly for Qh
v2 . We consider the first case that {Q1

v1 , Q
2
v1 , . . . Q

h
v1} ≠

{Q1
v2 , Q

2
v2 , . . . Q

h
v2}, which means that at least one of the element Qk

v1 ̸= Qk
v2 , as the topology of

the two rooted subgraphs Gh
v1 and Gh

v2 is not the same, the resulted representation from subgraph
GNN for v1 and v2 will not be the same. Similarly, as the coloring function and readout function
in M2HC is injective, the node representation for v1 and v2 will also be different. Consider another
case that {Q1

v1 , Q
2
v1 , . . . Q

h
v1} = {Q1

v2 , Q
2
v2 , . . . Q

h
v2},however the internal structure for Gh

v1 and Gh
v2

is different, figure 3 illustrates one such scenario for Gh
v1 and Gh

v2 where h = 2. Due to the bidi-
rectional pairwise attention, subgraph GNN is able to capture the difference and generate different
representations for v1 and v2, yet M2HC cannot distinguish the difference due to its unidirectional
hub-spoke attention. However, with random walk features of sufficient steps, M2HC-RW can still be
aware of the structural disparity thanks to the node feature augmentation. Finally, we consider the
case where Gh

v1 is structurally identical to Gh
v2

, hence for subgraph GNN the representation for v1 and
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v2 is identical, but is different for M2HC-RW, as by incorporating random walk features every node
in the graph can be aware of global structural disparity. Figure 4 demonstrates one such scenario
where v1 and v2 leads to the same rooted subgraph hence the same representation using subgraph
GNN while receiving different representation using M2HC-RW. This also stresses the advantage of
our approach that the receptive field of each node v ∈ G is enlarged given sufficient steps of random
walk.
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Left figure and right figure leads to the same height-2 rooted subgraph for node 1. Hence the node 
representation obtained from subgraph GNN would be identical for node 1. However, the representation for 
node 1 obtained from our proposed method would be different for the two figures as node 1 is able to be 
aware of the substructure disparity incurred by node 13.  

Figure 4: One scenario where node 1 in G1 and G2 is able to capture the structural disparity with
M2HC-RW, but not with subgraph GNN as the resulted height-2 rooted subgraphs for node 1 in the
two figures are identical.

A.5 PROOF OF THEOREM 3

Let R=AD−1 denote the random walk matrix and RW =
[
diag(R),diag

(
R2
)
, . . . ,diag

(
RL
)]

be the L-step self-landing probability matrix. diag(◦) is an operator that takes in a matrix and return
a diagonal column vector. Given an arbitrary permutation matrix P = {0, 1}n×n, we need to prove
that T (A,X) = T

(
PAPT , PX

)
, where T is the M2HC-RW operator and X is the input that

consists of node features and self-landing random walk features RW. We expand T and get:

H = g
({

fk

(
Âk[X,RW ]

)})
= g

({
fk

([
ÂkX,

[
diag

(
r−1ÂkA

)
,diag

(
r−2ÂkA

2
)
, . . . ,diag

(
r−LÂkA

L
)]])}) (7)

In Eq. 7 we abuse X to be the node feature matrix, the input is a concatenation of node feature
matrix X and L-step self-landing probability matrix RW. K denote the height of the M2HC-RW,
i.e. K-hop M2HC-RW. For simplicity, we assume a r-regular graph, hence AD−1 = r−1A. With a
transformation of a permutation matrix P, we have:

Hπ = g
({

fk

(
PÂkP

T
[
PX,PRWPT

])})
= g

({
fk

([
PÂkX,PÂk

[
diag

(
r−1PTPAPT

)
,diag

(
r−2PTPA2PT

)
, . . . ,diag

(
r−LPTPALPT

)]])})
= g

({
fk

([
PÂkX,PÂk

[
diag

(
r−1APT

)
,diag

(
r−2A2PT

)
, . . . ,diag

(
r−LALPT

)]])})
= g

({
fk

([
PÂkX,

[
diag

(
r−1PÂkAPT

)
,diag

(
r−2PÂkA

2PT
)
, . . . ,diag

(
r−LPÂkA

LPT
)]])})

(8)

Clearly, PÂkX is a row-permutation of ÂkX , with a injective function f(◦) and a injective read-
out function g(◦), g

({
fk

(
ÂkX

)})
= g

({
fk

(
PÂkX

)})
holds true. Next, we compare

diag
(
r−lÂkA

l
)

with diag
(
r−lPÂkA

lPT
)

.

As diag
(
PÂkA

lPT
)

return a permutation of diag
(
ÂkA

l
)

without changing element values, and

this holds true for all the l ∈ [1, L], hence PRWPT returns a row-permutation of RW, and per-
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mutation invariance property also holds for RW. Based on the two observations, we come to the
conclusion that M2HC-RW is permutation invariant.
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