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Abstract

One of the main difficulties affecting the use of domain-
independent numeric planning is the complexity of the search
problem. The exploitation of structural symmetries in a
search problem can constitute an effective method of pruning
search branches that may lead to exponential improvements
in performance. Over a decade now, symmetry breaking tech-
niques have been successfully used within both optimal and
satisficing classical planning. In this work, we show that sym-
metry detection methods applied in classical planning with
some effort can be modified to detect symmetries in linear nu-
meric planning. The detected symmetry group, thereafter, can
be used almost directly in the A∗-based symmetry breaking
algorithms such as DKS and Orbit Space Search. We empir-
ically validate that symmetry pruning can yield a substantial
reduction in the search effort, even if algorithms are equipped
with a strong heuristic, such as LM-cut.

Introduction
Deterministic planning is the problem of finding a sequence
of actions that brings the actor from a given to some desired
state. While the formalisms to describe this paradigm may
vary, it seems reasonable to assume that richer models can
capture finer aspects, and thus, represent the problem with
higher fidelity. For example, in classical planning, the vari-
ables of the problem are restricted to finite domains, whereas
the numeric variant of planning encompasses both continu-
ous and finite variable ranges. Satisficing planners that can
manage numeric fluents were designed at the beginning of
the century (Hoffmann 2003), yet, it seems that the progress
was slowed due to the theoretical undecidability of even
simplest, yet still meaningful, numeric formalisms (Helmert
2002). In recent years, however, there seems to have been
a surge of interest in planning with numeric fluents, result-
ing in the development of multiple heuristics for both opti-
mal and satisficing settings (Aldinger and Nebel 2017; Scala
et al. 2016; Scala, Haslum, and Thiébaux 2016; Scala et al.
2017; Piacentini et al. 2018; Scala et al. 2020; Kuroiwa et al.
2021). Unfortunately, having a good heuristic is not enough
to assemble an efficient planner, e.g., A∗ can expand an ex-
ponential number of states even when equipped with an al-
most perfect heuristic (Helmert and Röger 2008).

Partially to account for this deficit, pruning methods
were developed for classical planning (Fox and Long 2002;

Coles and Coles 2010; Nissim, Apsel, and Brafman 2012;
Wehrle and Helmert 2012; Holte and Burch 2014), and in
the past decade, the use of symmetry-based pruning meth-
ods has shown its potential within the context of forward
search (Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2013; Wehrle et al. 2015; Gnad et al.
2017). In particular, symmetry reduction methods such as
DKS and Orbit Space Search (OSS) were effectively applied
in a wide range of classical planning domains, often sub-
stantially reducing the expanded state-space size, with a sig-
nificant increase in planning performance (Domshlak, Katz,
and Shleyfman 2012, 2015). In classical planning, symme-
try reduction methods compute equivalence classes of states,
where the equivalence relation of these classes is based on
a precomputed symmetry group. The search exploits these
classes by replacing all states in this class with some rep-
resentative state. Domshlak et al. have shown that given a
“path” where each consequent state was replaced by a repre-
sentative state, one may efficiently reconstruct a correspond-
ing path in the original state space. Hence, the expanded
search tree must contain at most one representative of each
class at all times.

In this work, we show that the graph-based symmetry de-
tection method proposed by Pochter et al. can be adapted for
the numeric setting. We extend the notion of structural sym-
metries proposed by Shleyfman et al. (2015) to account for
linear numeric formulas and demonstrate the equivalence of
the obtained symmetries. We also established that from the
theoretical standpoint computing these numeric symmetries
is not harder than computing the symmetries for classical
planning. By grounding these symmetries to the state space
level, we enable the use of both DKS and OSS practically
as is. Finally, our experimental evaluation demonstrates that
in presence of symmetries in the planning task the symme-
try breaking algorithms compete favorably with A∗, even if
equipped with a strong heuristic such as numeric LM-cut.

Preliminaries
We consider a fragment of numeric planning restricted to
the FDR formalism (Bäckström and Klein 1991; Bäckström
and Nebel 1995; Helmert 2009) with the addition of numeric
state variables, where the conditions and effects on numeric
variables are restricted to linear formulas, and unsurprisingly
called linear numeric planning task (LT). Formally, LT is de-



fined as a 4-tuple Π = 〈V,A, sI , G〉, where V = Vp ∪ Vn,
with Vp is being a finite sets of propositional variable, where
each variable v ∈ Vp is associated with a finite domain of
values D(v), and Vn is a set of numeric variables. Numeric
variables v ∈ Vn have rational values, i.e., D(v) = Q. If
Π does not have any numeric state variable (Vn = ∅), we
have a classical (FDR) planning task ΠFDR. Assignment
of a valid value d to a variable v ∈ V is called a fact and de-
noted by 〈v, d〉. For a subset of variables V ⊆ V we define
its joint domain to be D[V ] = ×v∈VD(v). The state space
is S = D[V]. A state s ∈ S is a full assignment over all vari-
ables, and can be seen as a tuple 〈sp, sn〉, where sp ∈ D[Vp]
and sn ∈ D[Vn]; s[v] indicates the value of the variable
v ∈ V over the state s. sI is a state. Note that s, sp, and
sn may be presented via vector representation, or as a set of
facts s = sp ∪ sn. In the latter case, there are no two facts
that involve the same variable, and |s| = |V|. The value of
a variable v in s is given by s[v] = d, and is equivalent to
〈v, d〉 ∈ s. A partial state is a subset spt ⊆ s of some s ∈ S.

A linear expression ξ has the form ξ =
∑
v∈V w

ξ
vv+wξ0,

where V ⊆ Vn, with ∀v ∈ V,wξv ∈ Q, and wξ0 ∈ Q. The
value of ξ in a state s is given by the expression s[ξ] =∑
v∈V w

ξ
vs[v] + wξ0. For simplicity, we assume that there

is always a variable v0 ∈ Vn such that for each state s it
holds s[v0] = 1. This assumption allows a more convenient
expression ξ =

∑
v∈V w

ξ
vv. We assume that there are no

redundant factors in the condition representation, i.e., for all
v ∈ V it holds wv 6= 0. Ξ is the set of all linear expressions
in Π. The set of all constants that appear in ξ is denoted
by nums(ξ), and the set of all variables that appear in ξ
is denoted by vars(ξ). Similarly, for a partial state spt we
denote by vars(spt) ⊆ V the variables involved in spt.

Conditions can be either propositional or numeric. A
propositional condition ψ is a partial state over the variables
vars(ψ) ⊆ Vp. We say that ψ is satisfied by s, s |= ψ, if
ψ ⊆ sp. A propositional condition ψ has the form ξ ≥ 0,
where ξ is a linear expression. In this case, we say that ψ
is satisfied by s if ξ[s] ≥ 0 holds. The set of conditions Ψ
is satisfied by s, if for each ψ ∈ Ψ it holds that s |= ψ.
The goal condition G = Gp ∪ Gn is a union over sets of
propositional and numeric conditions, respectively.

Action a = 〈pre(a), eff(a), cost(a)〉 ∈ A has precondi-
tions pre(a) = prep(a)∪pren(a), effects eff(a) = eff(a)p∪
effn(a), and cost cost(a) ∈ R0+. prep(a) is a partial state
over propositional variables and pren(a) is a set of linear
numeric conditions. The set of all numeric conditions of the
task is denoted by Ψn, i.e., Ψn = Gn ∪

⋃
a∈A pren(a).

a is applicable to s if s |= pre(a). Similarly, the propo-
sitional effect effp(a) is a partial state on a subset of Vp.
The effect effn(a) is a set of numeric effects of the form
(v += ξ), where v ∈ Vn and the value of ξ ∈ Ξ. We as-
sume that assignment effect v := ξ and subtractive effect
v −= ξ+c are normalized to the additive forms v += ξ−v
and v += −ξ − c, and one action has at most one effect on
the same numeric variable. The result of applying a in s is
denoted by sJaK = s′p ∪ s′n, where the resulting state is de-
fined as s′p[v] = effp(a)[v] for v ∈ vars(effp(a)), s[[a]][v] =

s[v] + ξ[s] if (v += ξ) ∈ effn(a), and s[[a]][v] = s[v] other-
wise. A(s) is the set of all actions applicable to s.

An s-plan is an action sequence π that can be applied suc-
cessively in s and results in a goal state s∗ |= G. A plan for
Π is an sI -plan. The cost of an s-plan π is the sum of all its
action costs and an optimal s-plan has minimal cost among
all possible s-plans.

A state transition graph is a labeled digraph TΠ = 〈S, E〉,
whose vertexes S are the states of Π, the set of labeled arcs
E = {〈s, sJaK; a〉 | s ∈ S, a ∈ A(s)} is induced by the
actions of Π, where cost(s, sJaK; a) = cost(a). A plan for
Π is equivalent to a path from sI to s∗ in TΠ.

Structural Symmetries and PDG
This subsection defines the notion of structural symmetries
(Shleyfman et al. 2015), which captures previously proposed
concepts of symmetries in classical planning. In short, struc-
tural symmetries relabel a given planning task. Variables
are mapped to variables, values to values (preserving the
〈var, val〉 structure), and actions are mapped to actions. In
this work, we follow the definition of structural symmetries
for FDR planning tasks as defined by Wehrle et al. (2015).
For a planning task ΠFDR = 〈V,A, I, G〉, let P be the set
of Π’s facts, and let PV := {{〈v, d〉 | d ∈ D(v)} | v ∈ V}
be the set of sets of facts attributed to each variable in V . We
say that a permutation σ : P ∪ A → P ∪ A is a structural
symmetry if the following holds:

1. σ(PV) = PV ,
2. σ(A) = A, and, for all a ∈ A, σ(pre(a)) = pre(σ(a)),
σ(eff(a)) = eff(σ(a)), and cost(σ(a)) = cost(a).

3. σ(G) = G.

We define the application of σ to a set X by σ(X) :=
{σ(x) | x ∈ X}, where σ is applied recursively up to the
level of action labels and facts. For example, let s be a partial
state, since s can be represented a set of facts, applying σ to s
results in a partial state s′, s.t. for all facts 〈v, d〉 ∈ s it holds
that σ(〈v, d〉) = 〈σ(v), d′〉 ∈ s′ and s′[σ(v)] = d′. This im-
plies that σ uniquely defines the values of each variable, i.e.,
if d ∈ D(v), we can write σ(d) = d′, where d′ ∈ D(σ(v)).

Note that the set of all structural symmetries of an FDR
task is a finite set of bijections closed under composition.
Thus, we have that structural symmetries form a group over
the task ΠFDR, denoted by Aut(ΠFDR).

Symmetries and Problem Description Graphs
The problem description graph (PDG) was introduced by
Pochter et al. (2011), and later on reformulated by Domsh-
lak et al. (2012), and Shleyfman et al. (2015).

Definition 1. Let ΠFDR be a FDR planning task. The prob-
lem description graph PDGΠFDR is the colored digraph
〈N,E, col〉 with nodes

N = NV ∪
⋃
v∈V

ND(v) ∪NA

where NV = {nv | v ∈ V}, ND(v) = {ndv | d ∈ D(v)}, and



NA = {na | a ∈ A}; node colors

col(n) =



0 if n ∈ NV
1 if ndv ∈

⋃
v∈V

ND(v) ∧ 〈v, d〉 ∈ G

2 if ndv ∈
⋃
v∈V

ND(v) ∧ 〈v, d〉 6∈ G

3 + cost(a) if na ∈ NA
and edges

E =
⋃
v∈V

Ev ∪
⋃
a∈A

Epre
a ∪ Eeff

a ,

where Ev = {(nv, ndv) | d ∈ D(v)}, Epre
a = {(na, ndv) |

〈v, d〉 ∈ pre(a)}, and Eeff
a = {(ndv, na) | 〈v, d〉 ∈ eff(a)}}.

In their work, Pochter et al. observed that PDG sym-
metry is a symmetry of TΠ that is induced by a graph
automorphism of the PDG of ΠFDR.1 In what follows,
we will denote by Aut(PDG(ΠFDR)) the automorphism
group of the PDG of the task ΠFDR. Shleyfman et
al. (2015), in turn showed that every structural symmetry
of ΠFDR corresponds to a PDG symmetry in the sense that
they induce the same transition graph symmetry, i.e., the
groups Aut(PDG(ΠFDR)) and Aut(ΠFDR) are isomor-
phic, namely Aut(PDG(ΠFDR)) = Aut(ΠFDR).

Group homomorphism f is a function between two groups
f : Γ → Γ̂ that respects the group operations. i.e., given
σ, σ′ ∈ Γ it holds f(σ ◦σ′) = f(σ) ◦ f(σ′). Isomorphism is
a bijective (one-to-one and onto) homomorphism. Note that
all isomorphsims are invertible, where the inverse is also an
isomorphism. When the groups Γ and Γ̂ are isomorphic, we
write Γ = Γ̂. If homomorphism f : Γ→ Γ̂ is injective (one-
to-one) we say that Γ is a subgroup of Γ̂ and write Γ ≤ Γ̂.

Symmetries of the State Transition Graph
A symmetry of a transition graph TΠ = 〈S, E〉 with actions
A is a permutation σ of S ∪ A mapping states to states and
actions to actions such that
– 〈s, s′; a〉 ∈ E iff 〈σ(s), σ(s′);σ(a)〉 ∈ E,
– cost(σ(a)) = cost(a), and
– s is a goal state iff σ(s) is a goal state
for all states s, s′ and actions a. Symmetries are also
called (goal-stable) automorphisms. They are closed under
composition and inverse, forming the automorphism group
Aut(TΠ) of the transition graph. Each subgroup Γ of sym-
metries induces an equivalence relation ∼Γ on states S:
s ∼Γ s′ iff σ(s) = s′ for some σ ∈ Γ. States in the same
equivalence class are called symmetric.

The following (immediate) result is the formal basis for
exploiting symmetries for planning:
Theorem 1. Let Π be a planning task, let s be one of its
states, let π be a sequence of actions of Π, and let σ be a
symmetry of TΠ. Then π is a plan for s iff σ(π) is a plan for
σ(s), and the two plans have the same cost.

Note that the definition of symmetries of a state transition
graph depends only on the notion of actions applicable to

1The formal proof can be found in Shleyfman (2020).

states, s′ = sJaK, and the notion of goal state, thus it fits
multiple formalisms that support this dynamic. Particularly,
this definition match not only the transition graph induced
by an FDR task but also the one induced by an LT.

A PDGΠFDR symmetry is a symmetry of TΠFDR that
is induced by a color preserving graph automorphism of
PDGΠFDR . The groupAut(PDG(ΠFDR)) = Aut(ΠFDR)
induces a subgroup of Aut(TΠFDR), which in turn defines
an equivalence relation over the states S of ΠFDR. In the
following section we define a numeric versions of PDG and
structural symmetries that obey the same relation, i.e., in-
duce a symmetry group of the state transition graph.

Symmetries in Numeric Domains

Shleyfman and Jonnson (2021) show that determining
whether two states are symmetric in a transition system in-
duced by an FDR planning task is PSPACE-hard. This result
automatically grants us that PSPACE-hardness also holds
for numeric planning, since it, trivially, contains the FDR
formalism. What is more troublesome, is the fact that the
presence of numeric fluents makes the search space infinite,
which may lead to a lot of unpleasant properties of its sym-
metry group. Consider, for example, that the permutation
group of a countable number of elements, contains an un-
countable number of symmetries, infinitely many of which
have infinite order.

Since identifying the whole symmetry group of the transi-
tion task is infeasible, we would like to obtain a manageable
subgroup and use it for symmetry breaking in the search over
the state space. To this end, we extend the Structural Sym-
metries and the PDG by numeric fluents. Then, we show
that Numeric Structural Symmetries (NSS) can be mapped
into symmetries of the state transition graph (Thm. 2), and
that the symmetry group of the numeric version of PDG is
isomorphic to the NSS group of the task (Thm. 3). For the
flowchart of the proof of the grounding process see Figure 1.

We exploit the grounded, effectively computed subgroup
ΓΠ of Aut(TΠ) by plugging it into the symmetry break-
ing searches DKS (Domshlak, Katz, and Shleyfman 2012),
OSS (Domshlak, Katz, and Shleyfman 2015).

Let us give here a motivational example. Suppose we have
a planning task where homogeneous trucks deliver various
cargo across a city, where the city map is represented via di-
graph. A truck T in this task is represented with three vari-
ables: loc(T ) the locations of the truck (finite domain vari-
able), fuel(T ) the amount of fuel in the truck, and load(T )
the current load of the truck (both numeric variables). Since
the trucks are homogeneous, we would like to have a sym-
metry σ to capture this information, i.e., given two trucks
T1 and T2 a map that replaces only the labels of the trucks
should induce an automorphism of the transition graph. In
what follow we would like to capture this behavior. Instead
of saying that T1 is symmetric to T2, we want a bijection that
switches between the variables associated with T1 and T2, as
follows: σ(loc(T1)) = loc(T2), σ(fuel(T1)) = fuel(T2),
σ(load(T1)) = load(T2), and vise versa.
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Figure 1: Toy example of a NPDGΠ graph of a task Π, with the variable Vp = {vp} and Vn = {x, y}, actions A = {a1, a2},
and the goal condition G = {3y ≥ 7}. The actions a1 and a2 has the following form pre(a1) = {〈vp = F 〉}, pre(a2) =
{〈vp, T 〉, x ≥ 3, y ≤ 0}, eff(a1) = {〈vp, T 〉}, eff(a2) = {〈vp, F 〉, y += 2x + 3}, and cost(a1) = cost(a2) = 1. The initial
state is not given, since it is not involved in the construction of NPDG.

Proof. Let Π be a numeric planning task, with the corre-
sponding NPDGΠ = 〈N,E, col〉. We start with the defini-
tion of the map f : Aut(NPDGΠ) → Aut(Π) that we aim
to prove to be a bijection.

Let f(α) = l−1 ◦ α ◦ l ∈ Aut(Π), where the map

l : V ∪ A ∪

 ⊔
v∈Vp

D(v)

→ N

is given by l(x) 7→ nx, with a slight abuse of notation
l(〈v, d〉) = nvd. Note that the fact that f is a homomorphism,
i.e., f(α)◦f(β) = f(α◦β) is obtained almost for free. Note
that the vertices Nξ ∪ {nG} are not in the image of l.

First, we need to show that f is well-defined, i.e.,
f(α) ∈ Aut(Π). Since α ∈ Aut(NPDGΠ) is color
and vertex degree preserving we have that the vertex sets
NVp ,NVn ,NA, NΨn ,N+,

⋃
v∈Vp ND(v),

⋃
v∈Vn ND(v), and

{nG} are all preserved under α. Specifically,NVp ,NVn , and⋃
v∈Vp ND(v) are preserved since, while being of the same

color, each n ∈ NVn has zero neighbors of color 0, each
n ∈ NVp has at least one neighbor of color 0 and an in-
degree of magnitude zero, while n ∈

⋃
v∈Vp ND(v) has at

least one neighbor of color 0 and an in-degree that is at least
one. All other sets differ due to different colors. Note also
that since α is edge preserving we have that if α(nv) = nu
than α(ND(v)) = ND(u). Vertexes in N+ must differ from
the ones in NΨn , under α, since each n ∈ N+ has at least
one outgoing neighbor of color 0, and vertices in NΨn has
none of these. Thus, we have that f(α) obeys the properties
1-3 of the definition of NSS.

Property 5 is preserved also due to edge preservance and
the fact that α(nG) = nG. Note that if 〈v, d〉 ∈ Gp than,
by construction of NPDGΠ, we have that (nvd, nG) ∈ E,
thus (α(nvd), α(nG) = nG) ∈ E. Which means that
f(α)(〈v, d〉) ∈ Gp. Now, let ψ : ξ ≥ 0 ∈ Gn. Then,

(n≥ξ , nG) ∈ E, and once again (α(n≥ξ ), nG) ∈ E. Note that
for each v ∈ vars(xi) there is wξv ∈ nums(ξ), and by con-
struction of NPDGΠ there are edges (nv, n

v
w), (nvw, n

≥
ξ ) ∈

E. Since α is edge preserving, we have the path
(α(nv), α(nvw)), (α(nvw), α(n≥ξ )), (α(n≥ξ ), nG) ∈ E, thus
the summand wvf(α)(v) is a part of the expression
f(α)(ξ) ≥ 0, since α(nvw) and nvw must be of the same
color, v and f(α)(v) have the same multiple in ξ and
f(α)(ξ), respectively. And since α is in-degree preserv-
ing, the number of summands in ξ is equal to the number
of summands in f(α)(ξ). Hence, f(α)(ξ) is well-defined
in terms of NSS, and f(α)(ξ) ≥ 0 ∈ G. Therefore,
f(α)(G) ⊆ G. To show the converse we need to recall that
α−1 ∈ Aut(NPDGΠ) and f is a homomorphism.

To prove property 4, we need to show that f(α)(h(a)) =
h(f(α)(a)) for each h ∈ {pren, prep, effn, effp, }. This
property on preconditions is obtained exactly as Property
5, where the node nG is replaced with the nodes na and
nf(α)(a). The proof for effects is similar, but requires us
to look at the nodes n+

ξ , where the only outgoing edge is
pointed towards a node that represents a numeric variable.
We omit the full proof here, since it is technical, space de-
manding, and, frankly, repeats the one given in the previous
paragraph almost verbatim.

For the injectivity of f , consider α, β ∈ Aut(NPDGΠ):

f(α) = f(β) =⇒ , l−1 ◦ α ◦ l = l−1 ◦ β ◦ l =⇒
α(n) = β(n) for all n ∈ N \ (NΞ ∪ {nG}),

where the last implication follows from the fact that l is in-
jective. To show that f is injective, we need to show that
α(n) = β(n) for all n ∈ N . Thus, assume in contradiction
that there is n ∈ N such that α(n) 6= β(n). These n is ei-
ther nG or lies inNΞ. Since nG has its own color, it is a fixed
point under all permutations inAut(NPDGΠ). Thus, assume
that there is nξ ∈ NΞ such that β−1 ◦ α(nξ) 6= β(nξ), i.e.,

Aut(NPDGΠ)

Effective

Group ΓΠ
Thm. 2

Thm. 3

Figure 1: Schematic representation of detection and ground-
ing of structural symmetries for linear numeric planning.

Numeric Structural Symmetries
For an LT Π = 〈V,A, I, G〉. We say that a permutation σ
over V ∪ A ∪

(⊔
v∈Vp D(v)

)
is a numeric structural sym-

metry (NSS) if the following holds:2

1. σ(Vp) = Vp, σ(Vn) = Vn,
2. for all v ∈ Vp holds σ(D(v)) = D(σ(v)),
3. σ(A) = A.

We define an application of σ to a partial state spt over
the propositional variables vars(spt), as σ(spt)[σ(v)] :=
σ(spt[v]) for all v ∈ vars(spt). Note that by points 1 and 2
the result of this application, σ(spt), is also a partial state.

Let ξ =
∑
v∈V w

ξ
vv be a linear formula over the vari-

ables V ⊆ Vn. We define the application of σ to ξ to be
σ(ξ) =

∑
v∈V w

ξ
vσ(v). The application of σ to condition

ξ ≥ 0 is defined as σ(ξ) ≥ 0. The application of σ to nu-
meric effect v += ξ ∈ effn(a) is written as σ(v) += σ(ξ),
where v ∈ Vn. Using these notations we establish the fol-
lowing conditions on σ.

4. for all a ∈ A, σ(pren(a)) = pren(σ(a)), σ(prep(a)) =
prep(σ(a)), σ(effp(a)) = effp(σ(a)), σ(effn(a)) =
effn(σ(a)), and cost(σ(a)) = cost(a).

5. σ(Gn) = Gn and σ(Gp) = Gp.

Note that immediate consequence of this definition is that
for any structural symmetry σ, it holds that σ(Ξ) = Ξ.

Note also that that for two structural symmetries σ1, σ2

the composition σ1 ◦ σ2 is also a structural symmetry.

• This is straightforward for properties 1, 3, and 5: σ1 ◦
σ2(X) = σ1(σ2(X)) = σ1(X) = X where X ∈
{Vn,Vp,A, Gn, Gp}.

• Property 4 holds for each a ∈ A since for each
h ∈ {pren, prep, effn, effp, } we have σ1 ◦ σ2(h(a)) =
σ1(σ2(h(a))) = σ1(h(σ2(a))) = h(σ1(σ2(a))) =
h(σ1 ◦ σ2(a)). By replacing a by v ∈ Vp and h by D,
we get property 2. The check for cost is trivial and re-
peats the previous point.

2Example of disjoint union: {5} t {5} = {〈5, 0〉, 〈5, 1〉}.

A well-known result in group theory (Herstein 1975) states
that a finite set closed under an operation forms a group.
Here we denote the group of all structural symmetries as
Aut(Π). This definition leads us to the observation below.

Theorem 2. There is a natural injection from Aut(Π) to
Aut(TΠ), i.e., for each σ ∈ Aut(Π) there is a unique σ̃ ∈
Aut(TΠ).

Proof. Let TΠ = 〈S, E〉 be a transition system induced by
a LT Π = 〈V,A, sI , G〉, and let σ ∈ Aut(Π) be a struc-
tural symmetry. For a state s = sp ∪ sn ∈ S we define the
application of σ̃ to s as σ̃(sp ∪ sn) = σ̃(sp) ∪ σ̃(sn), where

σ̃(sp) = {σ(〈v, dv〉) | 〈v, dv〉 ∈ sp} =

{〈σ(v), σ(dv)〉 | 〈v, dv〉 ∈ sp},

σ̃(sn) = {〈σ(v), qv〉 | 〈v, qv〉 ∈ sn} and σ̃(a) = σ(a) for
a ∈ A. By properties 1-3, we have that σ̃ is a permutation
over S ∪ A, and the map σ 7→ σ̃ is injective.

Let 〈s, s′; a〉 ∈ E, and let σ be a structural symmetry.
We aim to show that 〈σ̃(s), σ̃(s′); σ̃(a)〉 ∈ E. Let us de-
couple the states s and s′ to their propositional and numeric
components sp ∪ sn and s′p ∪ s′n, respectively. The proof
of the propositional part was already done by Shleyfman et
al. (2020), but we present it here for the sake of complete-
ness. Note that by definition of σ̃ we have σ̃(s)p = σ(sp).
Let ψ be a partial assignment over the propositional vari-
ables such that sp |= ψ, note that set wise it can be written as
ψ ⊆ sp. By applying σ to both sides we have σ(sp) |= σ(ψ),
thus σ̃(s) |= σ(ψ). This claim grants us: s |= prep(a) im-
plies that σ̃(s) |= prep(σ̃(a)), and s′ |= effp(a) implies that
σ̃(s′) |= effp(σ̃(a)). Since σ is a permutation over Vp, its ap-
plication to the unaffected variables Vp \ vars(effp(a)) can
be written as Vp \ vars(effp(σ̃(a))), and since s′[v] = s[v]
for each v ∈ Vp \ vars(effp(a)) we have that σ̃(s′)[v] =
σ̃(s)[v] for each v ∈ Vp \ vars(effp(σ̃(a))), resulting in
σ̃(s)Jσ̃(a)Kp = σ̃(s′)p. Note, that the fact that for any partial
assignment ψ, it holds sp |= ψ ⇐⇒ σ̃(s)p |= σ(ψ) which
directly implies that sp |= Gp ⇐⇒ σ̃(s)p |= Gp.

We aim to show that σ̃(s)Jσ̃(a)Kn = σ̃(s′)n. Let ψ ∈ Ψn

be a numeric condition ψ :
∑
v∈V v · wψv ≥ 0 such that

sn |= ψ. By definition of σ̃ we have s[v] = σ̃(s)[σ(v)], thus∑
v∈V

s[v] · wψv =
∑
v∈V

σ̃(s)[σ(v)] · wψv ≥ 0 implies that

sn |= ψ ⇐⇒ σ̃(s)n |= σ(ψ).

This statement combined with the previous paragraph has
two immediate consequences:
1. s |= G ⇐⇒ σ̃(s) |= G, and
2. s |= pre(a) ⇐⇒ σ̃(s) |= pre(σ(a)).
Now, to show that 〈σ̃(s), σ̃(s′); σ̃(a)〉 ∈ E, it is enough en-
sure that for any v ∈ Vn it holds that s′[v] = σ̃(s′)[σ(v)].
Here we have two cases, either v is affected by effn(a)
or not. If v is not affected, i.e., v /∈ vars(effn(a)), then
since σ is a permutation it holds that σ(v) is not affected
by effn(σ(a)), i.e., σ(v) /∈ vars(effn(σ(a))). Thus, s′[v] =
s[v] = σ̃(s)[σ(v)] = σ̃(s′)[σ(v)]. Otherwise, let v += ξ



be the numeric effect of a on v. Let ξ =
∑
v′∈V w

ξ
vv. By

definition we have that σ(v) += σ(ξ) ∈ effn(σ(a)). Thus,

s′[v] = s[v] +
∑
v′∈V

wξvs[v
′] = σ̃(s)[σ(v)]+∑

v′∈V
wξvσ̃(s)[σ(v′)] = σ̃(s′)[σ(v)],

since s[v] = σ̃(s)[σ(v)] for each v ∈ Vn by definition of σ̃.
Hence, we have that σ̃ is a symmetry of the transition

graph TΠ, since it satisfies the following three requirements:
– 〈s, s′; a〉 ∈ E iff 〈σ(s), σ(s′);σ(a)〉 ∈ E,
– cost(σ(a)) = cost(a), and
– s is a goal state iff σ(s) is a goal state.

This result establishes that structural symmetries induce
transition graph symmetries. Next, we show how to compute
these symmetries using a variation of the problem descrip-
tion graph modified for numerical planning.

Numeric Problem Description Graph
As the state transition graph TΠ of a planning task Π is usu-
ally too large to be given explicitly, symmetries must be in-
ferred from a compact description. Pochter et al. introduced
a method for deducing some symmetries of the planning
task from automorphisms of a certain graphical structure,
the problem description graph (PDG) of Π. Later, Domshlak
et al. slightly modified the definition, mainly to add support
for general-cost actions. As observed by Pochter et al., every
automorphism of the PDG of Π induces an automorphism of
TΠ, and the former can be found using off-the-shelf tools for
the discovery of automorphisms in explicit graphs, such as
bliss (Junttila and Kaski 2007).

Note that in contrast to the propositional FDR the transi-
tion system defined by its numeric counterpart may be infi-
nite. We group numeric elements of conditions and effects
into a set of linear formulas. Recall, that Ξ denotes the set
of all linear formulas that appear in Π (both in conditions
and in effects). For each v ∈ Vn, we defineW(v) = {wξv ∈
Q | ∃ξ ∈ Ξ : wξv ∈ nums(ξ)}, the set of all numeric coeffi-
cients associated with v. Let CΠ be the set of unique costs of
actions and constants in numeric variables in the task Π, i.e.

CΠ = {cost(a) | a ∈ A} t
⋃
v∈Vn

W(v).

We define a function ord : CΠ → [|CΠ|] to be an order pre-
serving function with respect to the lexicographic order over
the set CΠ, i.e., for c1, c2 ∈ CΠ holds that c1 ≤ c2 implies
that ord(c1) ≤ ord(c2). The main properties of the function
ord that we are interested in are
1. for c1, c2 ∈ CΠ it holds c1 = c2 iff ord(c1) = ord(c2),
2. for each c ∈ CΠ it holds that ord(c) ≤ |CΠ|.
In the following definition, the function ord allows us to dis-
tinguish between the task constants while operating within a
reasonable number of vertex colors.
Definition 2. Let Π = 〈V,A, sI , G〉 be a LT. The numeric
problem description graph (NPDGΠ) of Π is the colored
digraph 〈N,E, col〉 with nodes (e.g., Figure 2)

N = NVp ∪NVn ∪NA ∪NΞ ∪ {nG} ∪
⋃
v∈V

ND(v), where

NVx = {nv | v ∈ Vx} for x ∈ {p, n},
NA = {na, | a ∈ A},
∀v ∈ Vp : ND(v) = {nvd | d ∈ D(v)},
∀v ∈ Vn : ND(v) = {nvw | w ∈ W(v)},
NΨn = {n≥ξ | ψ : ξ ≥ 0 ∈ Ψn} and
N+ = {n+

ξ | ∃ξ ∈ Ξ, a ∈ A : v += ξ ∈ effn(a)},
with NΞ = NΨn ∪N+, edges

E = EVp ∪ EVn ∪ EΞ ∪ EA ∪ EG, where

EVp =
⋃
v∈Vp{(nv, n

v
d) | d ∈ D(v)},

EVn =
⋃
v∈Vn{(nv, n

v
w) | w ∈ W(v)},

EΞ =
⋃
nξ∈NΞ

{(nv
wξv
, nξ) | v ∈ Vn, wξv ∈ nums(ξ)},

EA =
⋃
a∈A

(
E

pren
a ∪ Eprep

a ∪ Eeffp
a ∪ Eeffn

a

)
, with

Epren
a = {(n≥ξ , na) | ψ : ξ ≥ 0 ∈ pren(a)},

E
prep
a = {(nvd, na) | 〈v, d〉 ∈ prep(a)},

Eeffn
a = {(na, n+

ξ ), (n+
ξ , nv) | v += ξ ∈ effn(a)},

Eeffp
a = {(na, nvd) | 〈v, d〉 ∈ effp(a)},

EG = {(n≥ξ , nG) | ξ ≥ 0 ∈ Gn} ∪ {(ndv, nG) | 〈v, d〉 ∈
Gp}, and node colors

col(n) =



ord(cost(a)) if n = na ∈ NA,
ord(w) if n = nxw ∈

⋃
v∈Vn ND(v),

|CΠ|+ 1 if n ∈ NΞ,

|CΠ|+ 2 if n = nG,

0 otherwise.

Theorem 3. Aut(NPDGΠ) and Aut(Π) are isomorphic.

Proof. Let Π be a numeric planning task, with the corre-
sponding NPDGΠ = 〈N,E, col〉. We start with the defini-
tion of the map f : Aut(NPDGΠ) → Aut(Π) that we aim
to prove to be a bijection.

Let f(α) = l−1 ◦ α ◦ l ∈ Aut(Π), where the map

l : V ∪ A ∪

 ⊔
v∈Vp

D(v)

→ N

is given by l(x) 7→ nx, with a slight abuse of notation
l(〈v, d〉) = nvd. Note that f is a homomorphism, i.e.,
f(α) ◦ f(β) = f(α ◦ β).

First, we need to show that f is well-defined, i.e.,
f(α) ∈ Aut(Π). Since α ∈ Aut(NPDGΠ) is color-,
edge- and degree-preserving we have that the vertex sets
NVp ,NVn ,NA, NΨn ,N+,

⋃
v∈Vp ND(v),

⋃
v∈Vn ND(v), and

{nG} are all preserved under α. Specifically,NVp ,NVn , and⋃
v∈Vp ND(v) are preserved since, while being of the same

color, each n ∈ NVn has zero neighbors of color 0, each
n ∈ NVp has at least one neighbor of color 0 and an in-
degree of magnitude zero, while n ∈

⋃
v∈Vp ND(v) has at
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Figure 2: Toy example of a NPDGΠ graph of a task Π, with the variable Vp = {vp} and Vn = {x, y}, actions A = {a1, a2},
and the goal condition G = {3y ≥ 7}. The actions a1 and a2 have the following form pre(a1) = {〈vp = F 〉}, pre(a2) =
{〈vp, T 〉, x ≥ 3, y ≤ 0}, eff(a1) = {〈vp, T 〉}, eff(a2) = {〈vp, F 〉, y += 2x + 3}, and cost(a1) = cost(a2) = 1. The initial
state is not given, since it is not involved in the construction of NPDG.

least one neighbor of color 0 and an in-degree that is at least
one. All other sets differ due to different colors. Note also
that since α is edge preserving we have that if α(nv) = nu
then α(ND(v)) = ND(u). Vertices in N+ must differ from
the ones inNΨnunder α, since each n ∈ N+ has at least one
outgoing neighbor of color 0, and the vertices in NΨn has
none of these. Hence, we have that f(α) obeys the proper-
ties 1-3 of the definition of NSS.

Property 5 is preserved also due to edge preservance
and the fact that α(nG) = nG. Note that if 〈v, d〉 ∈ Gp
then, by construction of NPDGΠ, we have that (nvd, nG) ∈
E, thus (α(nvd), α(nG) = nG) ∈ E, which means that
f(α)(〈v, d〉) ∈ Gp. Now, let ψ : ξ ≥ 0 ∈ Gn. Then,
(n≥ξ , nG) ∈ E, and once again (α(n≥ξ ), nG) ∈ E. Note that
for each v ∈ vars(ξ) there is wξv ∈ nums(ξ), and by con-
struction of NPDGΠ there are edges (nv, n

v
wξv

), (nv
wξv
, n≥ξ ) ∈

E. Since α is edge preserving, we have the path
(α(nv), α(nv

wξv
)), (α(nv

wξv
), α(n≥ξ )), (α(n≥ξ ), nG) ∈ E,

thus the summand wξvf(α)(v) is a part of the expression
f(α)(ξ) ≥ 0, since α(nv

wξv
) and nv

wξv
must be of the same

color, v and f(α)(v) have the same multiple in ξ and
f(α)(ξ), respectively. And since α is in-degree preserv-
ing, the number of summands in ξ is equal to the number
of summands in f(α)(ξ). Hence, f(α)(ξ) is well-defined
in terms of NSS, and f(α)(ξ) ≥ 0 ∈ G. Therefore,
f(α)(G) ⊆ G. To show the converse we need to recall that
α−1 ∈ Aut(NPDGΠ) and f is a homomorphism.

To prove property 4, we need to show that f(α)(h(a)) =
h(f(α)(a)) for each h ∈ {pren, prep, effn, effp, cost}. This
property on preconditions is obtained exactly as Property
5, where the node nG is replaced with the nodes na and
nf(α)(a). The proof for effects is similar, but requires us
to look at the nodes n+

ξ , where the only outgoing edge is
pointed towards a node that represents a numeric variable.

We omit the full proof here, since it repeats almost verbatim
the one given in the previous paragraph.

For the injectivity of f , consider α, β ∈ Aut(NPDGΠ):

f(α) = f(β) =⇒ l−1 ◦ α ◦ l = l−1 ◦ β ◦ l =⇒

α(n) = β(n) for all n ∈ NV ∪NA ∪
⋃
v∈Vp

ND(v),

where the last implication follows from the fact that l is bi-
jective. To show that f is injective, we need to show that
α(n) = β(n) for all n ∈ N . Thus, assume in contradiction
that there is n ∈ N such that α(n) 6= β(n). These n is either
nG or lies inNΞ∪

⋃
v∈Vn ND(v). Since nG has its own color,

it is a fixed under permutations in Aut(NPDGΠ). Since f is
well-defined we have that f(α), f(β) ∈ Aut(Π), thus for
nvw ∈

⋃
v∈Vn ND(v) we have

α(nvw) = nf(α)(v)
w = nf(β)(v)

w = β(nvw), and

α(n†ξ) = n†f(α)(ξ) = n†f(β)(ξ) = β(n†ξ) for n†ξ ∈ NΞ.

Lastly, to show that f is surjective, we need to prove that
f−1(σ) is in Aut(NPDGΠ), when σ is an NSS. We extend
this inverse as follows

f−1(σ)(n) =



nσ(x) if n = nx ∈ NVp ∪NVn ∪NA
nσ(〈v,d〉) if n = nvd = n〈v,d〉 ∈

⋃
v∈Vp ,

n
σ(v)
w if n = nvw ∈

⋃
v∈Vn ,

n†σ(ξ) if n = n†ξ ∈ NΞ ∧ † ∈ {+,≥},
nG if n = nG.

The extended function f−1(σ) is well-defined, i.e., all ver-
tices that involve σ in their indices do exist in NPDGΠ. To
show this, we note that by definition σ is a permutation on
variables, actions, and σ(〈v, d〉) ∈ D(σ(v)). Moreover, for
each nvw there is ξ ∈ Ξ, such that w ∈ nums(ξ). We saw
that for an NSS it holds that σ(Ξ) = Ξ. Hence, σ(ξ) ∈ Ξ,



thus, wσ(v) is a summand in σ(ξ). Lastly, to show that
n†σ(ξ) ∈ NPDGΠ, note that σ(Ξ) = Ξ and NSS preserves
linear conditions and effects.

Next, note that, by construction, f−1 is a homomor-
phism, since for σ, σ′ ∈ Aut(Π) it holds f−1(σ ◦ σ′) =
f−1(σ) ◦ f−1(σ′). Moreover, for the identity element idΠ ∈
Aut(Π) it holds that e := f−1(idΠ) is an identity element
in Aut(NPDGΠ). Let α := f−1(σ), it is invertible, hence, a
permutation since:
α ◦ f−1(σ−1) = f−1(σ) ◦ f−1(σ−1) = f−1(σ ◦ σ−1) =

f−1(idΠ) = e =⇒ α−1 = f−1(σ−1).

Next, we need to show that α is edge- and color-
preserving. We begin with color preservation.

• α(NVp) = NVp , α(NVn) = NVn , and α(NA) = NA
since σ(Vp) = Vp, σ(Vn) = Vn, and σ(A) = A, respec-
tively. All vertices inNV are of the same color. On action
vertices, na ∈ NA, the colors are preserved due to

col(α(na)) = col(nσ(a)) = ord(cost(σ(a))) =

ord(cost(a)) = col(na).

• For a variable v ∈ Vp we have σ(D(v)) = D(σ(v)).
Thus, α(ND(v)) = ND(σ(v)). Thus, α fixes the color on
the propositional domains vertices.

• Let v ∈ Vn, and nvw ∈ ND(v), then

col(α(nvw)) = col(nσ(v)
w ) = ord(w) = col(nvw).

• Note that for n†ξ ∈ NΞ it holds that α(n†ξ) = n†σ(ξ) ∈ NΞ,
and all vertices in NΞ are of the same color.

• Trivially, col(α(nG)) = col(nG).

Thus, we have that α is color preserving vertex permu-
tation. The last property for α being a color-preserving
automorphism, is edge-preservance, (n, n′) ∈ E ⇐⇒
(α(n), α(n′)) ∈ E.

The “⇒” part of this property follows from a meticulous
application of NSS properties 1-5 to

E = EVp ∪ EVn ∪ EΞ ∪ EA ∪ EG.
We omit the full proof here since it is straightforward and
repetitive. Overall, the edges of NPDGΠ correspond to el-
ement membership in sets, e.g., the edge (nvd, nG) corre-
sponds to 〈v, d〉 ∈ G, (nvw, n

+
ξ ) to wv ∈ nums(ξ) and

u += ξ ∈ effn(a) for some a ∈ A and v ∈ Vn. This
part of the proof is similar to the proofs of Thm. 5 in Sievers
et al. (2019) and Thm. 4.4 in Shleyfman (2020).

Briefly, the edges in EVp are preserved due to properties
1 and 2, EΞ and EA are preserved due to properties 3-4, and
EG is preserved due to property 5. EΞ is preserved since
σ(Ξ) = Ξ. The “⇐” part holds since α is invertible.

To summarise, in this section we proved that the groups
Aut(NPDGΠ) and Aut(Π) are isomorphic, i.e., structurally
identical, and that there is an injection that maps these
groups into a subgroup ofAut(TΠ), we name this group ΓΠ.
The generators of ΓΠ are the ones used by DKS and OSS for
symmetry breaking. Note that if we have the generators of
Aut(NPDGΠ), we can compute the generators of ΓΠ in lin-
ear time. In the next section we discuss the computational
complexity of computing the generators of Aut(NPDGΠ).

Computational Complexity
The graph isomorphism (GI) decision problem that gets
as input two finite graphs and determines if these graphs
are isomorphic. This problem is neither known to be NP-
complete nor tractable. Since many related problems ap-
peared to be polynomial-time equivalent to the GI prob-
lem (Mathon 1979), it gave its name to a complexity class.
As usual for complexity classes within the polynomial-
time hierarchy, a problem X is called GI-hard if there is
a polynomial-time reduction from GI to X . A problem X
lies in GI if it can be reduced to the GI problem. A prob-
lem X is GI-complete if it both lies in GI and GI-hard, i.e.,
polynomial-time equivalent to the GI problem.

Shleyfman (2019) showed that computing the generators
for the groups of Structural Symmetries and the automor-
phisms of PDG is GI-hard. Since Numeric Planning con-
tains FDR in the trivial case when Vn = ∅, and in this
case NPDG and PDG are equivalent, computing the auto-
morphism group of NPDG and NSS is also GI-hard.

Shleyfman and Jonsson (2021), in turn, proved that com-
puting the generators for the automorphism group of a col-
ored is GI-complete. Since NPDG is a colored graph, the
problem of computing generators of its automorphism group
lies in GI. Thus, we have that the computation of generators
of NPDG and NSS is GI-complete.

Note that while the computation on solutions to the GI
problem is suspected to have a quasi-polynomial complex-
ity (Babai 2015, 2016), there are some off-the-shelf sym-
metry detection packages such as bliss (Junttila and Kaski
2007) or Saucy (Darga, Sakallah, and Markov 2008), that
while being a worst-case exponential in time, perform well
in practice. For the experimental evaluation of the method
proposed in this paper, we chose bliss.

Experimental Evaluation
We implement the symmetry detection method in Numeric
Fast Downward (Aldinger and Nebel 2017). All experiments
are run on an Intel Xeon Gold 6148 processor with a 30-
minutes time limit and 4 GB memory limit using GNU par-
allel (Tange 2011). We evaluate A*, DKS and OSS using
the blind heuristic, operator-counting heuristic with LM-cut
and state equations constraints, hLM-cut, SEQ

LP (Kuroiwa et al.
2021), for SCT domains, which is a subset of LT, and LM-
cut heuristic adapted for LT planning, hLM-cut

2 (Kuroiwa, Sh-
leyfman, and Beck 2022), for LT domains. We only show in-
stances where symmetries are detected, since the overhead
of detecting no symmetries is usually less than 5 sec.

Symmetries in classical planning vary from domain to
domain, and where the GRIPPER has a symmetry group
that is exponential in the number of balls in the rooms, the
BLOCKSWORLD domain has no symmetries at all due to a
specific order imposed on the blocks in the task. The effi-
ciency of symmetry-breaking techniques can be attributed
to the vast variety of domains that were introduced to clas-
sical planning, within the setting of International Planning
Competitions that were held during the last three decades.

As a sanity check, we performed some preliminary exper-
iments on the GRIPPER domain, where the balls have ho-



A* DKS OSS
coverage time expansions coverage time expansions coverage time expansions

SCT Blind
DEPOTS-SYM (20) 4 18.6 1085229 5 11.2 305317 5 6.2 306229
GARDENING (63) 63 3.8 181199 63 4.2 103376 63 2.2 103405
GARDENING-SAT (51) 10 60.5 2082149 11 71.6 1261201 11 37.3 1265773
DELIVERY (20) 2 21.2 1174198 4 0.6 13717 6 0.3 13810
ROVER (19) 4 5.7 164822 4 4.2 70823 4 2.4 70825
SAILING (20) 0 - - 0 - - 1 - -
TOTAL (230) 83 - - 87 - - 90 - -
Linear Blind
ROVER-METRIC (10) 4 4.4 154592 4 6.1 110913 4 3.2 110786
TPP-METRIC (40) 5 1.9 40406 5 4.1 39994 5 2.5 55768
ZENOTRAVEL-LINEAR (9) 3 1.1 25372 2 2.0 25190 3 1.0 25407
BARMAN (15) 2 0.7 32854 3 0.2 4388 4 0.1 4417
BARMAN-UNIT (15) 2 4.0 176334 3 0.6 12618 3 0.3 12708
TOTAL (105) 16 - - 17 - - 19 - -

SCT hLM-cut,SEQ
LP

DEPOTS (6) 1 1096.9 109254 1 831.7 87917 1 799.3 88237
DEPOTS-SYM (20) 6 257.4 80762 6 108.5 45422 7 148.6 61358
GARDENING (63) 63 3.7 17479 63 2.5 10546 63 2.3 10522
GARDENING-SAT (51) 12 66.6 298918 12 46.8 181075 12 40.9 181086
DELIVERY (20) 2 0.1 16 6 0.0 15 6 0.0 20
ROVER (19) 4 63.7 154971 4 30.4 66308 4 26.2 66909
SAILING (20) 20 0.4 109 20 0.4 109 20 0.4 116
SAILING-SAT (30) 7 0.5 178 6 0.6 178 6 0.6 178
TOTAL (230) 115 - - 118 - - 119 - -
Linear hLM-cut

2

FO-SAILING (16) 1 631.6 188971 0 - - 1 560.7 180080
ROVER-METRIC (10) 6 38.6 47845 6 47.6 58884 6 31.3 41070
TPP-METRIC (40) 5 8.0 11275 5 7.7 11209 5 8.9 15190
ZENOTRAVEL-LINEAR (9) 8 194.0 11261 8 132.4 8087 8 129.8 8628
BARMAN (15) 2 2.0 30287 3 0.3 4182 4 0.2 4208
BARMAN-UNIT (15) 2 161.5 9764 2 42.3 2592 2 84.2 2646
TOTAL (105) 24 - - 24 - - 26 - -

Table 1: For the search time and the number of expansions, we took the average over instances solved by all of A*, DKS and
OSS except for hLM-cut

2 in FO-SAILING, where A* and OSS solve one instance and DKS solves no instance.

mogeneous weights, and the gripper-robot has a maximum
load. In this setting, the numeric approaches were consistent
with the classical ones. From the 20 GRIPPER problems we
have,A∗, DKS,OSS equipped with blind heuristics solved
7, 20, 20, respectively. The same algorithms equipped with
numeric LM-cut solved 6, 20, 20, in the same order. This re-
sults are in line with these reported by Domshlak et al. for
classical planning. We do not include this results in Table 1,
since we find these domains too simplistic.

Instead of GRIPPER we introduce a new domain DELIV-
ERY. In this domain multiple robots equipped with multiple
arms and a tray deliver objects in a building, represented by
a digraph. In addition, we introduced a DEPOTS-SYM do-
main, a variation of the previously existing DEPOTS SCT do-
mains, where the weights of the packages and the capacities
of the trucks are “standardized” by replacing what seems
to be arbitrarily chosen numbers by some standard upper
bounds. For example, the packages were all given weights
in the range {4, 6, 8, 10, 12}, while the truck got capacities
in the range {10, 20, 40}. This allowed us to obtain a more
symmetric domain while still having a meaningful numeric
behavior. One may even argue that DEPOTS-SYM is closer

to reality than DEPOTS due to standardization.
We also introduced a linear numeric version of the BAR-

MAN domain. This domain comes with unit-cost actions, and
actions that have costs only if a drink was poured from the
dispenser. Interestingly enough, since the BARMAN domain
has a lot of delete-effects, on the unit-cost version of the
domain the blind version of OSS out-performs all other con-
figurations, including those that use LM-cut.

One of the curious behaviors that can be spotted in Ta-
ble 1, is that OSS performs better than DKS. This was
not the case on the classical domains, where the algorithms
performed on par. We attribute this difference to the fact
that DKS stores both original and canonical states, while
OSS operates only on canonical states, and thus requires
less memory. The fact that numeric states require signifi-
cantly more memory may play a key role in this behavior.

Conclusion
In this paper, we extended the notions of structural symme-
tries and problem description graphs from classical to nu-
meric linear planning. This allowed us to use symmetry-
breaking forward search techniques in the numeric setting.



Our experiments demonstrate that these techniques solve
more problems than the current state-of-the-art. In the fu-
ture, one may consider looking for a larger symmetry group.
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Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Comp. Intell., 11(4): 625–655.
Coles, A. J.; and Coles, A. 2010. Completeness-Preserving
Pruning for Optimal Planning. In ECAI, 965–966.
Darga, P. T.; Sakallah, K. A.; and Markov, I. L. 2008. Faster
Symmetry Discovery Using Sparsity of Symmetries. In
DAC, 149–154.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. Enhanced
Symmetry Breaking in Cost-Optimal Planning as Forward
Search. In ICAPS, 343–347.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2013. Symme-
try Breaking: Satisficing Planning and Landmark Heuristics.
In ICAPS, 298–302.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Sym-
metry breaking in deterministic planning as forward search:
Orbit space search algorithm. Technical Report IS/IE-2015-
03, Technion, Israel.
Fox, M.; and Long, D. 2002. Extending the Exploitation of
Symmetries in Planning. In AIPS, 83–91.
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