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Abstract

In dynamic survival prediction, landmarking predicts risk at a fixed future horizon1

from data observed at a single landmark time. Accuracy typically worsens as the2

prediction horizon increases. We propose a simple yet novel two-stage extension:3

first forecast near-future laboratory measurements, then predict the outcome over4

the resulting shorter window. This naive two-stage modeling already improves5

performance; an extended version that also passes distributional summaries from6

the measurement forecast (e.g., predictive mean and variance) to the outcome model7

yields further gains. In experiments on a hospital cohort with routine laboratory8

measurements and the MIMIC-IV dataset, the two-stage approach consistently9

outperforms one-stage landmarking across horizons, with the extended variant best10

overall. In aggregate, our method improves AUC by about 3 percentage points at11

most compared with the one-stage baseline.12
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(a) Predictive accuracy
of one-stage conventional
landmarking as a func-
tion of the horizon d (x-
axis: d in days; y-axis:
dynamic prediction accu-
racy (AUC)).
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(b) Error in forecasting
the Stage 1 biomarker k
days ahead in the two-
stage modeling (x-axis: k
in days; y-axis: Stage 1
forecasting error (MAE)).
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(c) Predictive accuracy of
naïve two-stage modeling
as a function of k (x-
axis: k in days; y-axis:
dynamic prediction accu-
racy (AUC)).
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(d) Predictive accuracy of
extended two-stage mod-
eling as a function of
k (conditioning on the
Stage 1 predictive mean
and standard deviation):
(x-axis: k in days; y-axis:
dynamic prediction accu-
racy (AUC)).

Figure 1: Results on a hospital cohort from our institution. For clarity, all panels use only a single
biomarker (C-reactive protein (CRP)). In the main experiments, we use four laboratory tests, which
improves overall accuracy but attenuates the clear monotonic trends visible here.

1 Introduction13

Prognostic prediction is fundamental in medicine: it supports patient decision-making, informs14

clinicians in choosing optimal treatments, and enables early identification of high-risk patients to15

catalyze new therapy development [1, 2]. In routine clinical practice, however, a patient’s condition16

evolves over time. Conventional prognostic models typically issue a prediction from a single snapshot17
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Figure 2: Overview of the baseline one-stage model and proposed two-stage model.

of patient status and cannot readily adapt to subsequent changes. This limitation is particularly18

consequential in intensive care and oncology, where patient trajectories are driven by rapid physiologic19

fluctuations and treatment effects; in such settings, predictions must be revised as new information20

arrives. Dynamic prediction models address this need by updating risk estimates over time using21

longitudinal data [3]. From a statistical perspective, landmarking [4, 5] and joint modeling of22

longitudinal and time-to-event data [6] are established paradigms. In parallel, the machine learning23

community has developed models that leverage longitudinal laboratory data for survival prediction [7,24

8], and recent deep learning approaches offer flexible function classes for continuous-time dynamic25

prediction [9, 10]. Empirical studies demonstrate clinical utility in intensive care [11] and allogeneic26

hematopoietic cell transplantation (allo-HCT) [12, 13].27

In this paper, we aim to improve predictive accuracy in landmarking. We first describe the conven-28

tional formulation and its drawback, and then extend it to a two-stage framework (see Fig. 2). Let L29

denote the landmark time at which a prediction is issued. Let T be the event time of interest. Let30

R := T−L denote the (random) residual time-to-event measured from the landmark. Let {Xt}t≥0 be31

a vector-valued longitudinal laboratory measurement process, and write the laboratory measurement32

history up to (and including) L as XL := {Xs : s ≤ L}. Given a prediction horizon d (e.g., d = 3033

days), conventional landmarking uses XL to predict the d-day horizon outcome YL,d = ⊮{R ≤ d}1.34

However, as illustrated in Fig. 1(a), predictive accuracy tends to deteriorate as the target day moves35

farther from the landmark.36

To improve accuracy, we consider shortening the effective prediction horizon. The intuition is simple.37

If the laboratory value on the target day (i.e., L+ d) were available, we would condition on that value38

and predict the same-day outcome, which would reduce error. Of course, those future laboratory39

measurements are unknown at the landmark. We therefore insert an intermediate step that forecasts a40

near-future laboratory value and then predicts the outcome over a shorter interval, which we refer41

to as two-stage modeling. Choose an offset k ∈ [0, d] 2. Stage 1 forecasts the laboratory value(s) at42

time L+ k from the information available at L, producing X̂L+k. Stage 2 uses X̂L+k to predict the43

outcome over the shorter horizon d − k. As shown in Fig. 1(b), increasing k generally laboratory44

value forecasting, but the survival horizon d− k becomes shorter, which mitigates prediction error45

relative to the one-stage baseline. In Fig. 1(c), the variant that uses only the Stage 1 point forecast46

X̂L+k slightly outperforms the one-stage baseline in aggregate; we refer to this as naive two-stage47

modeling. Furthermore, incorporating distributional summaries of the Stage 1 predictions (e.g.,48

the mean and variance of the predictive distribution for XL+k) into Stage 2 yields further gains in49

predictive accuracy (Fig. 1(d)); we refer to this as extended two-stage modeling.50

In the remainder of the paper, we demonstrate the effectiveness of our simple yet novel method and51

identify avenues for further improvement.52

2 Methods53

Stage 1 We constructed separate predictive models for each of the four laboratory variables. In54

each model, the laboratory value at the landmark was used as an explanatory variable of a regression55

model. The distribution of the laboratory value of k days ahead was predicted using Bayesian linear56

regression. Since the outputs of Stage 1 were subsequently used in Stage 2, Bayesian linear regression57

was employed to obtain predictive distributions of future laboratory values, thereby accounting for58

1For exposition, we ignore time-invariant baseline covariates.
2k = 0 recovers the standard one-stage landmarking formulation.
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prediction uncertainty. The predictive distributions were estimated by stochastic variational inference.59

From these distributions, various statistics such as the mean and standard deviation can be obtained,60

and we experimentally evaluated which of these features are most informative for predicting survival.61

While the basic setting involved forecasting 30 days ahead, we also examined multiple prediction62

horizons of k = 5, 10, 15, 20, 25, 30 days in the experiments.63

Stage 2 We used age at transplantation and rDRI, together with the mean and standard deviation64

obtained from 2,000 samples drawn from the predictive distributions of 30-day laboratory values65

estimated in Stage 1, as explanatory variables to predict 30-day mortality from each prediction point.66

As the prediction model, we employed a dynamic survival prediction framework that combines67

landmarking with the Cox proportional hazards model. A landmark represents the time point at which68

prediction is made, and multiple landmarks were set to construct regression models at each prediction69

time.70

3 Experiments71

3.1 Experimental Settings72

We retrospectively analyzed patients with hematologic malignancies who underwent allogeneic73

hematopoietic stem cell transplantation at our institute (anonymized for double-blind review) between74

January 2000 and December 2020. As pre-transplant factors, we considered age at transplantation and75

the refined Disease Risk Index (rDRI), which stratifies disease and disease status. As post-transplant76

longitudinal variables, we used serum albumin, C-reactive protein (CRP), lactate dehydrogenase77

(LDH), and platelet count. In total, data from 519 transplant recipients were included, with a median78

age of 48 years (range, 17—72). The median follow-up period was 677 days (range, 27—5510), and79

the 1-year overall survival rate was 66.5% (95% CI, 62.6–70.7%).80

Also, to further evaluate the accuracy of the proposed method, we conducted additional experiments81

using the MIMIC-IV v2.2 (Medical Information Mart for Intensive Care IV) database, which contains82

data from 299,712 intensive care unit (ICU) patients at the Beth Israel Deaconess Medical Center83

[14]. This dataset includes not only admission information but also vital signs and laboratory test84

results obtained during ICU stays, making it suitable for our task as it provides longitudinal patient85

data with survival labels. We excluded patients younger than 18 years and older than 90 years, as86

well as those who had not stayed in the ICU for at least 48 hours. After these criteria, 21,677 patients87

remained. As static variables, we used age and gender. For time-series variables, we used heart rate88

(HR), respiratory rate (RR), body temperature (°F), oxygen saturation (SaO2), and arterial blood89

pressure (systolic: ABPs, diastolic: ABPd). In this dataset, we defined 24-hour mortality as the90

prediction outcome.91

Experimental Task For the our-institute dataset, we compare the predictive accuracy of the92

proposed method and the baseline method for 30-day mortality. In this setting, we also examine the93

first stage by varying the forecasting horizon of laboratory values to 5, 10, 15, 20, 25, and 30 days.94

For the MIMIC dataset, we focus on 24-hour mortality prediction to align the prediction horizon with95

the outcome definition. In addition, to investigate the effect of dataset size, we performed bootstrap96

sampling of patients while fixing the test set with a random seed, and examined the relationship97

between the number of patients and predictive accuracy.98

Evaluation metrics We conducted a 10-fold cross-validation to evaluate the model’s generalization99

performance. The data were split into 10 folds on a per-patient basis to ensure that the same patient100

was not included in multiple folds. In each iteration, one fold was used as the test set, and the101

remaining nine folds were used as the training set. A subset of the training data was further split into102

a validation set. The final performance was obtained by aggregating the results across the 10 test103

folds. For accuracy assessment, we used time-dependent ROC curves and reported the average AUC104

across the ten folds as the evaluation metric.105

3.2 Results106

Table 1 shows the AUC values when varying the prediction horizon of laboratory values in Stage 1107

to 5, 10, 15, 20, 25, and 30 days. While the baseline method achieved an AUC of 0.8730, the108
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Table 1: Comparison between baseline one-stage model and proposed two-stage model.
Days ahead Baseline one-stage model (AUC) Proposed two-stage model (AUC)

5

0.8730

0.9022
10 0.9025
15 0.9027
20 0.9031
25 0.9032
30 0.9035

Table 2: Comparison of AUC between methods on the our-institute and MIMIC datasets
Method our-institute (AUC) MIMIC (AUC)

Baseline one-stage model 0.8730 0.6966
Proposed two-stage model 0.9035 0.7105

proposed method exhibited a slight improvement as the prediction horizon increased, reaching the109

highest value of 0.9035 at 30 days. These results indicate that the proposed method consistently110

maintains high performance across horizons, with the 30-day horizon being the most effective.111

Table 2 presents the comparison between the proposed method and the baseline method under the112

30-day horizon condition, which yielded the best results for the proposed method. In the our-institute113

dataset, the proposed method achieved an AUC of 0.9035, compared to 0.8730 for the baseline114

method, representing an improvement of 0.0305. In the MIMIC-IV dataset, the proposed method also115

outperformed the baseline, with an AUC of 0.7105 versus 0.6966. These results demonstrate that the116

proposed method consistently achieves higher accuracy than the baseline across different datasets.117

Figure 4 further illustrates the results of the additional experiment investigating the relationship118

between dataset size and predictive accuracy. The results show that the proposed method maintains its119

advantage over the baseline across different patient sample sizes, although the degree of improvement120

varies with the number of patients.121

4 Conclusion122

We presented a simple extension of landmarking for dynamic survival prediction that mitigates the123

degradation with increasing prediction horizon. The core idea is to shorten the effective horizon124

by first forecasting near-future laboratory data and then predicting the outcome over the shorter125

window. We studied two instantiations: a naive variant that conditions on the Stage 1 point forecast126

and an extended variant that additionally propagates distributional summaries from Stage 1. On an127

institutional hospital cohort with routine laboratory data and the MIMIC-IV dataset, both variants128

consistently outperformed one-stage landmarking across horizons, with the extended approach129

performing best; overall, discrimination improved by roughly 3.1 and 1.4 percentage points in AUC130

relative to the one-stage baseline, respectively.131
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Figure 3: Comparison of AUC
between the baseline one-stage
model (AUC = 0.8730) and
the proposed two-stage model
(AUC = 0.9035).
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(a) Our-institute dataset
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(b) MIMIC-IV dataset

Figure 4: Relationship between patient sample size and predictive
accuracy for the baseline one-stage model and proposed two-stage
model.
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