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Abstract

In dynamic survival prediction, landmarking predicts risk at a fixed future horizon
from data observed at a single landmark time. Accuracy typically worsens as the
prediction horizon increases. We propose a simple yet novel two-stage extension:
first forecast near-future laboratory measurements, then predict the outcome over
the resulting shorter window. This naive two-stage modeling already improves
performance; an extended version that also passes distributional summaries from
the measurement forecast (e.g., predictive mean and variance) to the outcome model
yields further gains. In experiments on a hospital cohort with routine laboratory
measurements and the MIMIC-IV dataset, the two-stage approach consistently
outperforms one-stage landmarking across horizons, with the extended variant best
overall. In aggregate, our method improves AUC by about 3 percentage points at

most compared with the one-stage baseline.
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(a) Predictive accuracy
of one-stage conventional
landmarking as a func-
tion of the horizon d (x-
axis: d in days; y-axis:
dynamic prediction accu-
racy (AUC)).

(b) Error in forecasting
the Stage 1 biomarker k
days ahead in the two-
stage modeling (z-axis: k
in days; y-axis: Stage 1
forecasting error (MAE)).

(c) Predictive accuracy of
naive two-stage modeling
as a function of k (x-
axis: k in days; y-axis:
dynamic prediction accu-
racy (AUC)).

(d) Predictive accuracy of
extended two-stage mod-
eling as a function of
k (conditioning on the
Stage 1 predictive mean
and standard deviation):
(z-axis: k in days; y-axis:
dynamic prediction accu-
racy (AUC)).

Figure 1: Results on a hospital cohort from our institution. For clarity, all panels use only a single
biomarker (C-reactive protein (CRP)). In the main experiments, we use four laboratory tests, which
improves overall accuracy but attenuates the clear monotonic trends visible here.

1 Introduction

Prognostic prediction is fundamental in medicine: it supports patient decision-making, informs
clinicians in choosing optimal treatments, and enables early identification of high-risk patients to
catalyze new therapy development [[1,[2]. In routine clinical practice, however, a patient’s condition
evolves over time. Conventional prognostic models typically issue a prediction from a single snapshot
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Figure 2: Overview of the baseline one-stage model and proposed two-stage model.

of patient status and cannot readily adapt to subsequent changes. This limitation is particularly
consequential in intensive care and oncology, where patient trajectories are driven by rapid physiologic
fluctuations and treatment effects; in such settings, predictions must be revised as new information
arrives. Dynamic prediction models address this need by updating risk estimates over time using
longitudinal data [3]. From a statistical perspective, landmarking [4} |5] and joint modeling of
longitudinal and time-to-event data [[6] are established paradigms. In parallel, the machine learning
community has developed models that leverage longitudinal laboratory data for survival prediction [[7}
8l|, and recent deep learning approaches offer flexible function classes for continuous-time dynamic
prediction [9,|10]]. Empirical studies demonstrate clinical utility in intensive care [11] and allogeneic
hematopoietic cell transplantation (allo-HCT) [[12} [13]].

In this paper, we aim to improve predictive accuracy in landmarking. We first describe the conven-
tional formulation and its drawback, and then extend it to a two-stage framework (see[Fig. 2). Let L
denote the landmark time at which a prediction is issued. Let T" be the event time of interest. Let
R := T — L denote the (random) residual time-to-event measured from the landmark. Let {X; },>¢ be
a vector-valued longitudinal laboratory measurement process, and write the laboratory measurement
history up to (and including) L as Xy, := {X; : s < L}. Given a prediction horizon d (e.g., d = 30
days), conventional landmarking uses X, to predict the d-day horizon outcome Yy, 4 = K{R < d}[ﬂ
However, as illustrated in[Fig. T(a)| predictive accuracy tends to deteriorate as the target day moves
farther from the landmark.

To improve accuracy, we consider shortening the effective prediction horizon. The intuition is simple.
If the laboratory value on the target day (i.e., L + d) were available, we would condition on that value
and predict the same-day outcome, which would reduce error. Of course, those future laboratory
measurements are unknown at the landmark. We therefore insert an intermediate step that forecasts a
near-future laboratory value and then predicts the outcome over a shorter interval, which we refer
to as two-stage modeling. Choose an offset k € [0, d] El Stage 1 forecasts the laboratory value(s) at

time L 4 k from the information available at L, producing X ;. Stage 2 uses X L+k to predict the
outcome over the shorter horizon d — k. As shown in [Fig. 1(b)] increasing k generally laboratory
value forecasting, but the survival horizon d — k becomes shorter, which mitigates prediction error
relative to the one-stage baseline. In[Fig. 1(c)] the variant that uses only the Stage 1 point forecast
X L+k slightly outperforms the one-stage baseline in aggregate; we refer to this as naive two-stage
modeling. Furthermore, incorporating distributional summaries of the Stage 1 predictions (e.g.,
the mean and variance of the predictive distribution for Xy ) into Stage 2 yields further gains in
predictive accuracy (Fig. 1(d)); we refer to this as extended two-stage modeling.

In the remainder of the paper, we demonstrate the effectiveness of our simple yet novel method and
identify avenues for further improvement.

2 Methods

Stage 1 We constructed separate predictive models for each of the four laboratory variables. In
each model, the laboratory value at the landmark was used as an explanatory variable of a regression
model. The distribution of the laboratory value of k£ days ahead was predicted using Bayesian linear
regression. Since the outputs of Stage 1 were subsequently used in Stage 2, Bayesian linear regression
was employed to obtain predictive distributions of future laboratory values, thereby accounting for

"For exposition, we ignore time-invariant baseline covariates.
2k = 0 recovers the standard one-stage landmarking formulation.
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prediction uncertainty. The predictive distributions were estimated by stochastic variational inference.
From these distributions, various statistics such as the mean and standard deviation can be obtained,
and we experimentally evaluated which of these features are most informative for predicting survival.
While the basic setting involved forecasting 30 days ahead, we also examined multiple prediction
horizons of k£ = 5,10, 15, 20, 25, 30 days in the experiments.

Stage 2 We used age at transplantation and rDRI, together with the mean and standard deviation
obtained from 2,000 samples drawn from the predictive distributions of 30-day laboratory values
estimated in Stage 1, as explanatory variables to predict 30-day mortality from each prediction point.
As the prediction model, we employed a dynamic survival prediction framework that combines
landmarking with the Cox proportional hazards model. A landmark represents the time point at which
prediction is made, and multiple landmarks were set to construct regression models at each prediction
time.

3 Experiments

3.1 Experimental Settings

We retrospectively analyzed patients with hematologic malignancies who underwent allogeneic
hematopoietic stem cell transplantation at our institute (anonymized for double-blind review) between
January 2000 and December 2020. As pre-transplant factors, we considered age at transplantation and
the refined Disease Risk Index (rDRI), which stratifies disease and disease status. As post-transplant
longitudinal variables, we used serum albumin, C-reactive protein (CRP), lactate dehydrogenase
(LDH), and platelet count. In total, data from 519 transplant recipients were included, with a median
age of 48 years (range, 17—72). The median follow-up period was 677 days (range, 27—5510), and
the 1-year overall survival rate was 66.5% (95% CI, 62.6-70.7%).

Also, to further evaluate the accuracy of the proposed method, we conducted additional experiments
using the MIMIC-IV v2.2 (Medical Information Mart for Intensive Care IV) database, which contains
data from 299,712 intensive care unit (ICU) patients at the Beth Israel Deaconess Medical Center
[[L4]]. This dataset includes not only admission information but also vital signs and laboratory test
results obtained during ICU stays, making it suitable for our task as it provides longitudinal patient
data with survival labels. We excluded patients younger than 18 years and older than 90 years, as
well as those who had not stayed in the ICU for at least 48 hours. After these criteria, 21,677 patients
remained. As static variables, we used age and gender. For time-series variables, we used heart rate
(HR), respiratory rate (RR), body temperature (°F), oxygen saturation (Sa02), and arterial blood
pressure (systolic: ABPs, diastolic: ABPd). In this dataset, we defined 24-hour mortality as the
prediction outcome.

Experimental Task For the our-institute dataset, we compare the predictive accuracy of the
proposed method and the baseline method for 30-day mortality. In this setting, we also examine the
first stage by varying the forecasting horizon of laboratory values to 5, 10, 15, 20, 25, and 30 days.
For the MIMIC dataset, we focus on 24-hour mortality prediction to align the prediction horizon with
the outcome definition. In addition, to investigate the effect of dataset size, we performed bootstrap
sampling of patients while fixing the test set with a random seed, and examined the relationship
between the number of patients and predictive accuracy.

Evaluation metrics We conducted a 10-fold cross-validation to evaluate the model’s generalization
performance. The data were split into 10 folds on a per-patient basis to ensure that the same patient
was not included in multiple folds. In each iteration, one fold was used as the test set, and the
remaining nine folds were used as the training set. A subset of the training data was further split into
a validation set. The final performance was obtained by aggregating the results across the 10 test
folds. For accuracy assessment, we used time-dependent ROC curves and reported the average AUC
across the ten folds as the evaluation metric.

3.2 Results

Table[T]shows the AUC values when varying the prediction horizon of laboratory values in Stage 1
to 5, 10, 15, 20, 25, and 30 days. While the baseline method achieved an AUC of 0.8730, the
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Table 1: Comparison between baseline one-stage model and proposed two-stage model.

Days ahead || Baseline one-stage model (AUC) | Proposed two-stage model (AUC)
5 0.9022
10 0.9025
15 0.9027
20 0.8730 0.9031
25 0.9032
30 0.9035

Table 2: Comparison of AUC between methods on the our-institute and MIMIC datasets

Method our-institute (AUC) | MIMIC (AUC)
Baseline one-stage model 0.8730 0.6966
Proposed two-stage model 0.9035 0.7105

proposed method exhibited a slight improvement as the prediction horizon increased, reaching the
highest value of 0.9035 at 30 days. These results indicate that the proposed method consistently
maintains high performance across horizons, with the 30-day horizon being the most effective.
Table 2] presents the comparison between the proposed method and the baseline method under the
30-day horizon condition, which yielded the best results for the proposed method. In the our-institute
dataset, the proposed method achieved an AUC of 0.9035, compared to 0.8730 for the baseline
method, representing an improvement of 0.0305. In the MIMIC-IV dataset, the proposed method also
outperformed the baseline, with an AUC of 0.7105 versus 0.6966. These results demonstrate that the
proposed method consistently achieves higher accuracy than the baseline across different datasets.
Figure [4| further illustrates the results of the additional experiment investigating the relationship
between dataset size and predictive accuracy. The results show that the proposed method maintains its
advantage over the baseline across different patient sample sizes, although the degree of improvement
varies with the number of patients.

4 Conclusion

We presented a simple extension of landmarking for dynamic survival prediction that mitigates the
degradation with increasing prediction horizon. The core idea is to shorten the effective horizon
by first forecasting near-future laboratory data and then predicting the outcome over the shorter
window. We studied two instantiations: a naive variant that conditions on the Stage 1 point forecast
and an extended variant that additionally propagates distributional summaries from Stage 1. On an
institutional hospital cohort with routine laboratory data and the MIMIC-IV dataset, both variants
consistently outperformed one-stage landmarking across horizons, with the extended approach
performing best; overall, discrimination improved by roughly 3.1 and 1.4 percentage points in AUC
relative to the one-stage baseline, respectively.

Sample Size Desion Parameter : - . : Torget somple ize

Figure 3: Comparison of AUC (a) Our-institute dataset (b) MIMIC-1V dataset
between the baseline one-stage
model (AUC = 0.8730) and
the proposed two-stage model
(AUC = 0.9035).

Figure 4: Relationship between patient sample size and predictive
accuracy for the baseline one-stage model and proposed two-stage
model.
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