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ABSTRACT

Neural Processes (NPs) are a powerful class of meta-learning models that can be
applied to time series forecasting by formalizing it as a probabilistic regression
problem. However, conventional NPs base their predictions only on observations
from a single time series, which limits their ability to leverage varied contextual
information. In this paper, we introduce a novel NP architecture that, in the spirit
of meta-learning, is designed to incorporate context information from multiple
related time series. To this end, our approach treats related time series as con-
ditionally independent context examples of a shared underlying data-generating
process corresponding to a specific meta-task. A sequence encoder aggregates a
variable number of such context time series into a latent task description, which
then conditions a sequence decoder, enabling accurate forecasting of unseen tar-
get time series. We evaluate our approach on challenging time series forecasting
problems, demonstrating that our architecture performs favorably compared to a
range of competitor approaches.

1 INTRODUCTION

Time series forecasting, i.e., the prediction of future values based on a sequence of past observa-
tions, is a fundamental task in many real-world applications such as predicting energy consumption,
product demand, or controlling physical systems (Tzelepi et al., 2023; Boese et al., 2017; Lim &
Zohren, 2020). In practice, time series data often exhibits complex, non-linear dynamics governed
by an underlying stochastic process, whose properties may generally vary between different time se-
ries. Under such conditions, making accurate and uncertainty-aware predictions is challenging but
essential for robust decision-making (Bishop & Bishop, 2024; Hüllermeier & Waegeman, 2021).

Naive deep learning approaches often demand substantial amounts of task-specific training data and
exhibit poor generalization when applied to unseen tasks Goodfellow et al. (2016); Bishop & Bishop
(2024). For many real-world applications, however, training data is scarce, rendering standard deep
learning unfeasible. Meta-learning offers a powerful paradigm to overcome this challenge (Schmid-
huber, 1987; Thrun & Pratt, 1998; Huisman et al., 2021; Hospedales et al., 2022). The core goal
of meta-learning is to leverage data across multiple related tasks in order to extract inductive bi-
ases about the underlying task structure. This enables data efficient adaption to novel tasks during
inference time. Bayesian variants are particularly well-suited for this setting, since they provide
a principled approach for handling the uncertainty that naturally arises from limited data, thereby
enhancing the robustness of meta-learning models Grant et al. (2018); Yoon et al. (2018); Garnelo
et al. (2018b); Volpp et al. (2023).

The Neural Process Family (NPF, Garnelo et al. (2018b;a)) is a prominent class of Bayesian meta-
learning models that has been extensively studied in the literature. Neural Processes (NPs) combine
the flexibility of a neural network (NN) based architecture with the ability to model Bayesian un-
certainty in order to learn stochastic processes, i.e., distributions over functions, in a data-efficient
manner. NPs can be utilized for a variety of different applications and, in particular, have been
applied in the time series domain, in order to make forecast predictions (Gordon et al., 2020) or to
model the temporal dynamics of physical systems (Volpp et al., 2021).

A common approach for applying NPs in a time series domain is to formalize a time series as a
function that maps a time index to an element of the series and to treat forecasting as a probabilistic
regression problem Gordon et al. (2020); Bruinsma et al. (2023). In this formulation, each meta-task
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is defined by a single time series, compelling the model to learn to make forecast predictions solely
based on a context set of past observations from that same series. However, for many practical
learning problems there is usually a broader context in the form of multiple related time series
available. Incorporating context information from multiple time series is crucial to achieve good
performance, especially if historical data for the target time series is limited and suffers from high
noise Flunkert et al. (2017); Iwata & Kumagai (2020); Lim et al. (2019).

In this paper, we study meta-learning for the time series forecasting problem within the Neural Pro-
cess framework, employing modern sequence models. In particular, our proposed method tackles
the meta-learning problem in a conceptually correct way by treating an entire time series as a single
context example. We introduce a structured meta-learning setting where each meta-task is defined by
a specific data-generating-process with each task’s dataset comprising multiple time series realiza-
tions of that process. We proposed a novel NP architecture for this setting, with the core innovation
being its ability to treat each entire time series as a conditionally independent example of the un-
derlying stochastic process. This sequence-level context aggregation empowers the model to better
capture temporal dynamics within a single time series and, to effectively aggregate task information
over multiple context time series. Through rigorous evaluation on various challenging time series
forecasting problems, we demonstrate that our model achieves significant improvements over stan-
dard Conditional Neural Process variants, particularly in scenarios demanding robust generalization
from limited or noisy data.

2 RELATED WORK

Traditional statistical time series forecasting methods such as ARIMA (Box & Jenkins, 1968) and
Exponential Smoothing (Gardner, 2006), typically make strong assumption about the statistical
structure of the data and often require manual selection of model parameters. More recent deep
learning approaches, including recurrent neural network and transformer-based models, have shown
remarkable performance on various sequence tasks, clearly outperforming statical methods (Flunkert
et al., 2017; Lim et al., 2019; Huo et al., 2022). However, a significant limitation for both these tra-
ditional and deep learning methods is their reliance on substantial amounts of historical data from
the specific time series that should be forecasted.

Early works in the meta-learning domain focused on learning feature extraction methods from past
observations. The extracted features are then used to select a suitable forecasting model or hyper-
parameter configuration, often employing classical machine learning techniques (Lemke & Gabrys,
2010; Talagala et al., 2018).

More recently, optimization based meta-learning methods, such as Model-Agnostic Meta-Learning
(MAML, Finn et al. (2017)), have been adapted for time series forecasting. These methods learn an
optimized initial- ization for recurrent neural networks (RNNs) or attention-based models that can be
rapidly fine-tuned to new time series using only a limited amount of historical data (Pineda-Arango
et al., 2021; Narwariya et al., 2020).

A prominent and highly relevant line of work on meta-learning for time series data centers around
Neural Process (NP) based models (Garnelo et al., 2018a;b). Neural Processes are designed to learn
a mapping from a set of context observations to a predictive distribution over target points, inherently
handling variable context sizes. In the context of forecasting, they are typically provided with a set
of historical data points from a time series and learn to produce a probabilistic forecast for future
values (Gordon et al., 2020; Bruinsma et al., 2023).

Several advancements have been proposed to enhance the capabilities of standard NPs by introduc-
ing specific inductive biases about the spatio-temporal structure of the data into the model archi-
tecture. Attentive Neural Processes (ANPs, Kim et al. (2019)) introduce attention mechanisms to
mitigate the underfitting often observed in standard NP-based models, allowing them to better cap-
ture complex relationships between context data and predictions. Convolutional Conditional Neural
Processes (ConvCNPs, Gordon et al. (2020)) incorporate translation equivariance of the modeled
data as an inductive bias. This is particularly beneficial for time series data, as time series of-
ten exhibit some form of periodicity or recurring patterns over time. By leveraging convolutional
neural networks, ConvCNPs can efficiently process sequential data and have demonstrated strong
performance on time series data. Sequential Neural Processes (Singh et al., 2019) capture temporal
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correlations between a sequence of context sets by modeling a recurrent latent space, enabling them
to handle stochastic processes evolving over time. Recurrent Attentive Neural Process (Qin et al.,
2019) extend ANPs for sequential data by integrating an RNN-based encoder to model temporally
changing stochastic processes.

3 BACKGROUND

In this section, we establish concepts and notations used throughout this paper.

Stochastic processes and time-series. A stochastic process is defined as a collection of random
variables {Xt}T (with index set T ) that map from a probability space (Ω,F ,P) to a common mea-
surable space (Y,Σ) Karlin & Taylor (1975). For a fixed event ω ∈ Ω, the mapping T ∋ t 7→ Xt(ω)
defines a function f : T → Y from the index set T to the measurable space (Y,Σ). Therefore, a
stochastic process can alternatively be viewed as a single random variable with values in the space
of measurable functions M(T,Y), i.e., as a distribution over functions p(f). The outcome of a
stochastic process is called a realization or sample function. If T = N, we can interpret the indices
of the stochastic process as time and call it a (discrete) temporal stochastic process. The realization
(x1, x2, . . . ) of a temporal stochastic process is called a time series. In practice, we also call a con-
secutive sample xk:l := (xk, . . . , xl) from any finite marginal of the underlying stochastic process a
time series.

Meta-learning. The goal of meta-learning, also called learning-to-learn, is to build a machine
learning model that can efficiently adapt to an unseen task given only a small set of context examples
from that task (Schmidhuber, 1987; Thrun & Pratt, 1998; Huisman et al., 2021; Hospedales et al.,
2022). Formally, we consider a distribution p(T ) of meta-tasks, where we assume that the tasks
have common structure. A specific meta-task can be defined as learning a prediction model for a
function T : X → Y given a training data set Dτ = {(xi, yi = T (xi)) ∈ X × Y}. Therefore, each
task constitutes a standard supervised learning problem. A meta-learning model defines a procedure
that maps a set of context examples DC

τ to a prediction model for the corresponding task. The
meta-learning model achieves this by extracting inductive biases about the structure of the meta-
task distribution. Training a meta-learning model requires a collection of task-specific data sets
D ≡ {Dτi = DC

τi ∪ DT
τi | Ti ∼ p(T )}, which is called a meta-data set. Each task data set is usually

divided into a context set DC
τ and a target set DT

τ . During meta-training, the meta-learning model is
optimized to produce the best predictive model for each task, leveraging examples from the context
set. The quality of the prediction models is evaluated on the corresponding target sets.

Probabilistic time series forecasting. We consider the problem of probabilistic time series fore-
casting. The goal is to estimate the predictive distribution over future values of a temporal stochastic
process given a history of observed time series elements (Rangapuram et al., 2018; Flunkert et al.,
2017). Formally, let {Xt}t∈N denote the latent stochastic process of interest, and let {Yt}t∈N denote
the corresponding observed process defined by an observation model Yt ∼ p(Yt | X1, . . . , Xt).
Given a sequence of past observations (y1, . . . , yl), the goal is to model the conditional distribution
over future trajectories p(Yl+1, . . . , YT | (y1, . . . , yl)).

The Neural Processes Family. The Neural Process Family (NPF, Garnelo et al. (2018a;b)) is
a class of neural network-based models designed to meta-learn stochastic processes. The goal
of Neural Processes (NPs) is to model the posterior predictive distribution p(y | x;DC

τ ) of
a stochastic process p(f) conditioned on observed data, i.e., on a set of function evaluations
DC

τ = {(xi, yi = fτ (xi) | i ∈ [NC
τ ]}, where NC

τ denotes the number of context points of task τ
and [n] := {1, . . . , n}.

NP models can be divided into two sub-families. Latent Neural Processes (LNPs, Garnelo et al.
(2018b)) utilize a stochastic latent variable to parameterize expressive non-Gaussian predictive dis-
tributions. However, this comes at the cost of requiring approximations during training. Conditional
Neural Processes (CNPs, Garnelo et al. (2018a)) replace the latent variable with a deterministic con-
text encoding and model the predictive distribution as pθ(y | x, rCτ ), where rCτ = Encθ(DC

τ ) is a
fixed-sized deterministic deep set encoding of the context Zaheer et al. (2017). In contrast to LNPs,
the model parameters θ can be optimized by standard gradient ascent on the log-likelihood function

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

evaluated on the meta-dataset, i.e.,

L({Dl}L) =
L∑

l=1

Ml∑
m=1

log pθ
(
yTm,l | xT

m,l,Encθ(DC
l )

)
.

A significant limitation of standard CNPs arises from the form of the learned predictive distribution,
which is factorized conditioned on the context set. This restriction becomes especially severe
when the likelihood parameterization pθ(y | x, rC) (often an isotropic Gaussian distribution) is
too simplistic. While the architecture proposed in this paper is compatible with both conditional
and latent Neural Process formulations, we nevertheless adopt a Conditional Neural Process (CNP)
approach in this work. This choice is motivated by the practical advantages of CNPs as they
prioritize simpler, deterministic optimization over the ability to generate diverse, correlated function
samples. Crucially, this often leads to superior empirical performance, particularly when employing
complex likelihood models, as is the case in our probabilistic time series forecasting setup (Gordon
et al., 2020; Foong et al., 2020; Bruinsma et al., 2021; Markou et al., 2021; 2022; Bruinsma et al.,
2023).

Bayesian Context Aggregation. A key property of NPs is the ability to make predictions
given a variable number of context points. This requires some form of a permutation invariant
aggregation mechanism that maps a variable-size set of elements DC = {(xi, yi)} to a fixed-size,
learnable representation r = Encθ(DC), called a deep set encoding (Zaheer et al., 2017; Wagstaff
et al., 2022). Volpp et al. (2021) propose Bayesian Aggregation (BA) as a more principled approach
that treats the context aggregation as a Bayesian inference problem. To this end, BA defines a
latent observation model with Gaussian likelihood p(ri | z) = N (ri | z, σ2

ri) and Gaussian prior
p(z) = N (z | µz, σz). The posterior p(z | {ri}) ∝ p(z)

∏
i p(ri | z, σ2

ri) is also Gaussian and,
thus, can be computed in closed form. A neural network-based encoder learns to map context points
to corresponding latent observation together with their variances (ri, σ

2
ri) = encϕ(xi, yi). This

simplifies the model architecture by unifying context aggregation and latent parameter inference
into a single step. Moreover, unlike traditional mean aggregation, BA can easily assign varying
levels of importance to individual context points, resulting in better inference. Although Bayesian
Aggregation maps the context set to a distribution in the latent space, it can still be applied
within the CNP framework. To this end, the likelihood model is conditioned on the aggregated
mean and variance parameters, rather than sampling from the corresponding distribution. This
effectively optimizes the predictive distribution by matching the first two moments of the likelihood
to the corresponding moments of the latent posterior. Volpp et al. (2021) refer to this approach
as parameter-based likelihood optimization and demonstrate empirically that it is a powerful
aggregation scheme for CNP-based architectures.

4 BAYESIAN META LEARNING IN THE TIME SERIES DOMAIN

Motivation. A common approach for applying NP-based models in a time series domain is to treat
forecasting as a multi-task probabilistic regression problem (Gordon et al., 2020; Bruinsma et al.,
2023). In this setting, a time series is formalized as a function f : N → Rd; t 7→ xt that maps a time
index t to a time-series element xt. Consequently, a meta-task corresponds to making predictions
for a specific time series and the data set of a task is comprised of individual time series elements
(i.e., Dτ = {(ti, xti) | i ∈ [Mτ ]}, where Mτ denotes the number of data points of task τ ). A
collection of such time series can be used as a meta-dataset to train an NP-based forecast model.
This approach has two major issues in practice:

1. Conditional independence of data points. In the standard CNP formulation (Garnelo
et al., 2018a), the context points as well as the target predictions are modeled as being con-
ditionally independent. However, this is not consistent with the explicit temporal structure
of time series. Without including temporal dependencies as inductive bias, causality has to
be learned implicitly from the data at the cost of predictive performance.

2. Only context information from previous time steps. By formalizing time-series fore-
casting as a regression problem, the model can merely utilize context elements from the
target time series itself (i.e., time series elements at previous time steps). An implicit but
fundamental assumption is that meta-learning extracts sufficient inductive bias regarding
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the structure of the underlying stochastic process, thereby enabling the extrapolation of a
time series’ future solely from past observations. However, it can be necessary to pro-
vide additional contextual information beyond historical observations to achieve accurate
forecast predictions. This is especially the case if the history is short or observations are
rather noisy. One particular option is to incorporate information from additional related
time series.

The first issue has been addressed by specialized CNP variants such as Convolutional Conditional
Neural Processes (Gordon et al., 2020), Gaussian Neural Processes (Bruinsma et al., 2021) or
Autoregressive Conditional Neural Processes (Bruinsma et al., 2023) which incorporate inductive
bias about the spatial or temporal structure of the data into the model architecture and model
predictive correlations. However, none of these approaches can be readily applied to utilize context
information from multiple time series. In this work, we address both issues by proposing an
alternative Conditional Neural Process architecture specifically designed to operate on time series
data.

Problem Statement. In order to derive our approach, we consider a more structured meta-
learning definition for probabilistic time series forecasting. To this end, we assume that the time
series are realizations of a hierarchical stochastic process and make a clear distinction between the
low-level data-generating process of a specific time series and the high-level meta-task distribution:

1. The low-level data-generating-process is a (usually parameterized) stochastic process
{Xt}τt∈N that produces concrete time-series realizations.

2. The meta-task distribution is a high-level distribution over data-generating-processes,
e.g., a distribution p(τ) over the parameters of the low-level parameterized process.

A specific data-generating-process corresponds to a single meta-task, and the data
set of that task comprises multiple realizations of the underlying process (i.e.,
Dτ = {(x1:Tm

)τm ∼ {Xt}τt∈N | m ∈ [Mτ ]}). In this setting, the meta-learning objective is to
acquire the ability to make accurate forecast predictions for any meta-task, conditioned on a context
set of multiple realizations from the corresponding process.

Model. Akin to standard CNPs, we propose an MLP based encoder-decoder architecture to
encode a variable sizeed set of context time series into a fixed sized latent representation, which
conditions the decoder to make forecast predictions. In the following we describe specifics about
both components.

Context Aggregation (Encoder). In our hierarchical setting, each context time series corresponds
to an individual, conditionally independent context example of the meta-task. In addition to that, we
may have access to a sequence of past observations from the target time series. For the purpose of
latent parameter inference, this history can be treated as an additional context sequence. Therefore,
analogously to standard NP formulations, the model has to be able to aggregate a variable-sized set
of context time series in a permutation invariant way. However, each context time series can, in
turn, have an arbitrary length. We employ a neural network-based causal sequence model (e.g., a
recurrent neural network (Elman, 1990; Hochreiter & Schmidhuber, 1997) or a causal transformer
based architecture (Vaswani et al., 2017)), which enables the architecture to encode time series of
variable length into a fixed-sized context encoding. Moreover, using a causal encoder explicitly
accounts for the temporal structure of time series. The individual time series encodings can be
mapped to the latent context set representation using any deep set encoding mechanism Zaheer et al.
(2017). However, we follow Volpp et al. (2021) and propose to apply Bayesian Aggregation.

N (µzτ , σzτ ) = p(zτ | {ri}τ ) , (ri, σ
2
ri)τ = seqencϕ

(
(x1:Ti)

τ
i

)
As described in Section 3, BA incorporates weighting of context examples based on learned confi-
dence into the context aggregation. This can be particularly important in settings where the context
time series exhibit heterogeneous lengths, corresponding to greatly varying amount of information
provided about the underlying stochastic process.
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Likelihood Parameterization (Decoder). The conditional likelihood of future time series elements
depends on both the latent context encoding rτ = (µzτ , σ

2
zτ ) and on the sequence of past obser-

vations x1:l = (x1, . . . , xl). We model this as a factorized Gaussian distribution, with mean and
variance parameterized by a causal sequence model

pθ(yl:T | x1:l, µzτ , σ
2
zτ ) = N (yl:T | µl:T , diag(σ2

l:T )) , (µl:T , σ
2
l:T ) = seqdecθ(x1:l, µzτ , σ

2
zτ ) .

Employing a sequence model enables forecasting from a variable-length history and to incorporate
time dependent covariates or exogenous inputs. Furthermore, the Gaussian parameters µl:T and
σ2
l:T are likewise produced as a sequence over a variable-length prediction horizon (i.e., dim(µt) =

dim(σt) = d and dim(µl:T ) = dim(σl:T ) = d(T − l)).

Meta-Training. The meta-training procedure for our proposed model is similar to that of standard
NP variants Garnelo et al. (2018a;b). During a training step, the dataset for each task in a mini-batch
is partitioned into a context and a target set. The size of the context set is sampled randomly and,
in addition to that, we also sample a random length for each context time series individually. In
this way, the model can learn to properly handle task uncertainty arising from a variable amount of
context data. For the target time series, we may sample a variable-length subsequence as a history.
The model is trained to make forecast predictions for a fixed-length time horizon.

Sampling Correlated Sequence Predictions. A key limitation of standard CNPs is that they can
not be used to acquire correlated function samples due to the factorized predictive distribution (Gar-
nelo et al., 2018a). To overcome this issue, Bruinsma et al. (2023) propose an autoregressive sam-
pling scheme for CNPs to define interdependent, non-Gaussian predictive distributions by itera-
tively conditioning subsequent predictions on previously generated outputs. This is implemented by
adding these outputs to the context set. A strength of our method is that this autoregressive rollout
strategy can be straightforwardly adapted to our model’s sequence decoder. To this end, a prediction
for the next time step can be sample from the forecast horizon and subsequently fed into the decoder
as a new element in the observation histoy.

5 EXPERIMENTAL EVALUATION

In this section, we present a comprehensive experimental evaluation comparing the performance of
our proposed approach against a range of competitive baselines. Our experimental comparison aims
to assess the ability of different models to infer the meta-task from multi-time series context data.

Dynamics Modeling. We evaluate our approach on the task of modeling the temporal dynamics
of complex systems. Concretely, the objective is to forecast the sequence of future system states
given an initial state, and conditioned on a sequence of control inputs (actions), i.e., (s0, a0:T ) 7→
s1:T+1. This is formulated as a meta-learning problem by considering systems with varying physical
parameters. Each configuration of these parameter values defines a distinct meta-task. A context
time series is given by a state-action trajectory (st, at)1:T . Besides the context encoding, the decoder
is conditioned on the first state of the target trajectory (i. e., corresponding to a history of length one)
and additionally receives the sequence of actions as covariate input. In a fully observable setting,
accurate forecast predictions are theoretically attainable with complete knowledge of the true task
parameters. Thus, this scenario provides a crucial benchmark for evaluating a model’s ability to
infer the underlying meta-task from the given context trajectories.

To generate diverse and challenging data, we utilize trajectory data from various reinforcement
learning environments within the MuJoCo Playground framework Zakka et al. (2025) and modify
the physical parameters of the simulation. For each meta-task, we generate multiple trajectories with
varying initial configurations and goal conditions to ensure a diverse set of trajectories. We inject
noise into the trajectories by adding Gaussian noise to the actions passed to the RL-environment.

Our evaluation includes a diverse set of tasks. The PandaRobotiqPushCube environment represents
a robotic manipulation task, where a robotic arm has to push a box to a target location. For this envi-
ronment, we varied the mass and friction coefficient of the box across meta-tasks. Additionally, we
chose three different locomotion tasks where we varied the link masses and static friction of the robot
joints. Comprehensive details on our data generation methodology are provided in Appendix A.1.2.
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Baselines and Competitors. We compare our approach against the following competitor methods:

• Transition-based Conditional Neural Process (CNP): As discussed in section 4, a
generic approach for applying CNPs to time series forecasting uses individual time-series
elements (t, xt) from the target time series as context points, thereby discarding the causal
structure. To enable a fair evaluation that is directly comparable with our proposed archi-
tecture, we follow Volpp et al. (2021; 2023) and instead employ a CNP where the context
set is instead given by the set of all transitions {(st, at, st+1)} from the provided context
trajectories. This allows the CNP to access the same multi-trajectory context data as our
model. Crucially, considering transitions is viable in this specific application because the
underlying data generation process is Markovian, and transitions are independent of the
absolute time index. The CNP utilizes a standard MLP-based encoder architecture with
Bayesian Context Aggregation (Volpp et al., 2021).

• Transformer-Concat: This variant explores an alternative approach to context aggrega-
tion. All context sequences are concatenated into a single, long sequence. A transformer-
based encoder then processes this concatenated sequence, implicitly learning a latent task
representation. To distinguish individual trajectories within the concatenated input, a ded-
icated feature dimension is added to indicate the start of a new sequence. This setup ef-
fectively performs context aggregation through the self-attention mechanism of the trans-
former, without a separate, explicit aggregation mechanism present in NP-based models.

• Oracle Model: The Oracle model is explicitly conditioned on the true meta-task parame-
ters (i.e., the varied physical parameters of the simulation). As such, it does not consider
the context data to infer the meta-task. This baseline represents the upper bound of perfor-
mance given full knowledge about the task and serves to quantify the irreducible error due
to environmental stochasticity and data noise.

• Uninformed Model: In contrast to the Oracle, the uninformed model is context-oblivious.
It makes predictions without access to any information about the meta-task, neither from
context trajectories nor explicit task parameters. This baseline establishes the lower bound
of performance, demonstrating the challenge of prediction without meta-task awareness.

For all evaluated models, including our proposed approach and all baselines, we employ the same
decoder architecture based on a causal transformer. This ensures a fair comparison in which the
performance differences can be primarily attributed to the context encoding and aggregation mech-
anisms rather than variations in the sequence generation capabilities of the decoder.

Training and Evaluation Procedure. The training procedure for our model is described in
Section 4. We apply this identical procedure to all baselines, with specific adaptations for their re-
spective architectures. For the Transition-based CNP, sampled context trajectories are decomposed
into individual transitions. The Concatenated Context Transformer, conversely, processes these
trajectories as a single, concatenated sequence. The Oracle and Uninformed models, by definition,
operate without context encoding.

For each benchmark, the training dataset consists of 128 distinct meta-tasks, each compris-
ing 32 trajectories, with each trajectory having a length of 64 timesteps. All models are trained to
forecast a prediction horizon of 32 timesteps. During both training and evaluation, the length of the
context time series is randomly sampled between a minimum of 4 and a maximum of 32 timesteps.
We evaluate performance on an unseen test set of identical size and structure to the training data.
Crucially, this test set, including the sampled context and target sets, is fixed across all baselines
and random seeds to ensure a fair comparison.

Predictive performance is quantified using two primary metrics: the predictive log-likelihood and
the mean-squared-error (MSE) of the mean predictions. Furthermore, we aim to evaluate a model’s
ability to infer the true meta-task parameters from the provided context. For this purpose, we sepa-
rately train a simple MLP-based regression model to predict task parameters from the latent context
encodings produced by a model. Note, that we do not propagate gradient from the regression model
to the encoder. This ensures, that the model can not exploit usually unknown information during
training. This regression model is trained on the MSE, but we show the R2-coefficient for bet-
ter comparability between different benchmarks. For all metrics, we report the mean and standard
deviation across 7 independent experimental runs, each initialized with a different random seed.
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Time Series CNP (ours) Transition-based CNP TransformerConcat
NLL MSE NLL MSE NLL MSE

PandaRobotiqPushCube -6.62 ± 0.55 0.14 ± 0.05 -6.97 ± 0.57 0.13 ± 0.05 -6.39 ± 0.49 0.16 ± 0.05

Go1 -8.05 ± 0.73 1.81 ± 0.08 -4.66 ± 0.60 2.41 ± 0.07 -7.58 ± 0.74 1.91 ± 0.14
BerkeleyHumanoid -7.35 ± 0.81 2.95 ± 0.13 -4.65 ± 0.96 3.53 ± 0.16 -7.08 ± 0.87 3.00 ± 0.16
T1 -23.54 ± 1.61 3.84 ± 0.24 -12.27 ± 1.68 6.16 ± 0.30 -23.94 ± 2.30 3.86 ± 0.26

Table 1: Negative log-likelihood (NLL) and mean squared error (MSE) for the contextual model
variants averaged over all context set sizes. Our proposed model architecture performs best or
similar to the competitors on all benchmarks. On the locomotion tasks, the Transition-based CNP
exhibits significantly worse predictive performance compared to the other approaches.

Oracle Model Uninformed Model Time Series CNP (ours) Transition-based CNP Transformer-Concat
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Figure 1: Evaluation of model performance on the PandaRobotiqPushCube task for variable context
set sizes. Our approach performs better than Transformer-Concat, both in terms of predictive per-
formance (measured by neg. log-likelihood (left panel) and MSE (middle panel)) and in its ability to
infer the task parameters (right panel). The traditional Transition-based CNP exhibits even stronger
predictive performance while having a similar parameter inference accuracy.
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Figure 2: Evaluation of model performance on the Go1JoystickFlatTerrain locomotion task variable
context set size. Our approach performs better than Transformer-Concat, both in terms of predictive
performance (measured by neg. log-likelihood (left panel) and MSE (middle panel)) and in its ability
to infer the task parameters (right panel). In contrast to the robotics task (Figure 1), the standard CNP
struggles to produce meaningful predictions and is outperformed even by the uninformed baseline.

Experimental Results. On the box push manipulation task, all contextual model variants consis-
tently exhibit performance metrics (both predictive log-likelihood and Mean Squared Error (MSE))
that fall between the uninformed and oracle baselines (see Figure 1 and Table 1). Without any
contextual information (i.e., context set size 0), all variants show similar performance as the un-
informed model. Crucially, performance consistently and significantly improves with an increased
number of context sequences, demonstrating the value of contextual data from multiple independent
context time series. Our proposed approach strictly outperforms the Transformer-Concat variant,
across both predictive performance metrics. More importantly, our model demonstrates a supe-
rior ability to infer the underlying task parameters (i.e., box mass and friction coefficients). This
enhanced parameter inference, attributed to a more principled context aggregation, is a key factor
contributing to the overall superior predictive performance of CNP-based methods compared to the
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purely transformer-based variant. Interestingly, the standard Transition-based CNP demonstrates
even stronger predictive performance than our approach on this task, despite exhibiting similar pa-
rameter inference accuracy to our method. One explanation is that the model is not required to
consider complex temporal dynamics since the box does not possess a complex state. Consequently,
predicting its trajectory becomes a rather stationary task.

Results for one of the locomotion tasks are depicted in Figure 2 and Table 1. Further results are pro-
vided in the Appendix (Figures 3 and 4). On the locomotion tasks, our approach again consistently
outperforms Transformer-Concat, albeit by a smaller margin. A significant advantage, however, is
the notably reduced variance in performance across different random seeds, indicating a more stable
model performance. Intriguingly, our model achieves performance close to the oracle with just a
single context sequence, resulting in only marginal improvements when conditioning on additional
sequences. We hypothesize this originates from the nature of the locomotion task’s parameters.
Here, the task parameters (i.e., the mass and static friction of the robot itself) directly influence
the robot’s trajectory at each time step. Thus, a single observed trajectory already provides rich
information about the robot properties.

In contrast, for the box push manipulation task, the task parameters affect external object properties
(i.e., the mass and friction of the pushed box) while the robot’s own dynamics remain constant. In-
ferring these external properties requires observing multiple interactions between the robot and the
box to build a comprehensive understanding of their behavior. In contrast to the box-push manipula-
tion task, the standard CNP performs significantly worse compared to all other baselines, including
the uninformed model. This poor predictive quality is evident in both predictive likelihood and
mean predictions (MSE). Despite this, the standard CNP still demonstrates some utilization of the
provided context, as its predictive performance significantly improves given at least one context
sequence compared to no context at all. Furthermore, its parameter inference capabilities are com-
parable to our method and Transformer-Concat, yielding a similar R2-coefficient for the inferred
task parameters. It is noteworthy that parameter inference quality does not substantially improve
beyond a single context sequence and a similar level of inference error consistently remained across
all methods. Nevertheless, the drastic variation in predictive performance across models, despite
comparable underlying parameter inference, is a critical observation. This strongly suggests that
by inherently disregarding the explicit sequential structure within the context trajectories, the stan-
dard CNP struggles to robustly model temporal dependencies required to make accurate predictions.
This architectural limitation likely leads to overconfident yet less accurate predictions, culminating
in its significantly degraded predictive performance in locomotion tasks, even when its latent context
embedding effectively captures the underlying task parameters.

Overall, our proposed Time Series CNP architecture provides accurate predictions over the whole
range of evaluated meta-modeling tasks, performing best or comparable to the competitor methods.

6 CONCLUSION AND OUTLOOK

We introduced a novel meta-learning approach for robust time series forecasting, leveraging a Con-
ditional Neural Process (CNP) architecture designed to integrate context from multiple related time
series. Our experiments demonstrated that while standard CNP architectures can achieve excellent
predictions in scenarios with relatively static temporal dynamics, their limitations become apparent
when accurate forecasting demands a deeper understanding of sequential dependencies. In such
cases, achieving precise future predictions necessitates architectural inductive biases that explicitly
model temporal structure. Furthermore, our findings underscore the importance of principled con-
text aggregation within a meta-learning setting, resulting in superior and more robust performance.

9
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REPRODUCIBILITY STATEMENT

To ensure a fair and rigorous comparison, we employed a consistent and robust training and evalu-
ation procedure across all proposed and baseline models. Performance was assessed on a fixed test
set, as detailed in Section 5, yielding statistically reliable and reproducible results. Hyperparame-
ter settings and architectural specifics for all experiments are thoroughly documented in Appendix
A.1.1. Furthermore, a comprehensive description of our data generation methodology for both train-
ing and testing sets is provided in Appendix A.1.2. We commit to releasing the full source code for
this work with the camera-ready version of this paper to facilitate complete reproducibility.

ETHICS STATEMENT

This work focuses on fundamental research in machine learning methodology and does not involve
human subjects, sensitive data, or applications with immediate societal impact. We do not expect
any direct ethical concerns arising from this research.
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Michael Volpp, Fabian Flürenbrock, Lukas Großberger, Christian Daniel, and Gerhard Neumann.
Bayesian context aggregation for neural processes. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Michael Volpp, Philipp Dahlinger, Philipp Becker, Christian Daniel, and Gerhard Neumann. Accu-
rate bayesian meta-learning by accurate task posterior inference. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023.

Edward Wagstaff, Fabian B. Fuchs, Martin Engelcke, Michael A. Osborne, and Ingmar Posner.
Universal approximation of functions on sets. J. Mach. Learn. Res., 23:151:1–151:56, 2022.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-
learning without memorization. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=BklEFpEYwS.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 MODEL ARCHITECTURE AND HYPERPARAMETER

Decoder Architecture. To ensure a fair comparison, all baselines and contextual models tested in
our experiments utilize an identical decoder architecture and architectural differences are confined
solely to the encoder. The decoder architecture is concretely based on a causal transformer. The
decoder’s input is first projected to the transformer’s embedding dimension via an MLP-based token
embedding layer. We employ distinct embedding networks for the latent context encoding and for
inputs related to the target time-series, specifically the start-state and the action sequence of the target
trajectory. The transformer’s output token is then mapped to the parameters (mean and variance) of
a Gaussian likelihood function using two separate MLPs, one dedicated to predicting the mean and
the other for the variance. Table 2 contains the decoder hyperparameters used in our experiments.

Table 2: Decoder Hyperparameters

Parameter Value
General:
Activation Function ReLU
Optimizer AdamW (Kingma & Ba, 2015)
Learning Rate η 1× 10−4

Batch Size 16 meta-task (note, that the context set size is variable)
Token embedding net:
Number of hidden layers 2
Hidden dimension 256
Output nets for mean and variance:
Number of hidden layers 2
Hidden dimension 256

Causal Transformer:
Number of layers 2
Embedding dimension 256
Number of attention heads 8
Feedforward dimension 2048
Dropout rate 0.1
Positional Encoding sinusoidal

Encoder Architecture. The specific encoder architectures for the contextual models evaluated by
us are designed based on their respective approaches to handling the context sequences.

• Transition-based CNP: This model employs a simple MLP-based encoder to map indi-
vidual transitions to latent observations.

• Our Approach: Our model utilizes a causal transformer-based sequence model to encode
entire context time-series.

• Transformer-concat: This encoder directly aggregates concatenated context sequences
into a latent representation by employing a transformer without causal masking, thereby
allowing elements within different context sequences to attend to each other.

For both the Transition-based CNP and our proposed model, the encoders are designed to output
the mean and variance of latent observations. These are subsequently aggregated using Bayesian
aggregation (Volpp et al., 2021). Similar to the output nets of the decoder, we use separate MLPs
to learn mean and variance of the latent observations. The transformer architectures for the en-
coders of our model and Transformer-concat are symmetric to the decoder architecture. The specific
hyperparameters for the encoder architecture of the Transition-based CNP are given in Table. 3.
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Table 3: Encoder Hyperparameters

Parameter Value
General:
Activation Function ReLU
Optimizer AdamW (Kingma & Ba, 2015)
Learning Rate η 1× 10−4

Batch Size 16 meta-task (the context set size is variable)
Latent context embedding dimension 128

Transition-based CNP:
Number of hidden layers 2
Hidden dimension 256

A.1.2 DATASET GENERATION

To generate trajectory data for our experiments, we utilize MuJoCo Playground (Zakka et al., 2025)
environments. We create a set of meta-tasks by systematically varying the physical property of the
underlying simulations. Details on the meta-task parameters are provided in Table 4. All parameter
values are scaling factors multiplied with the default value of the respective property.

Our data generation process begins by training a reinforcement learning policy on the default en-
vironment (i.e., without parameter modifications). For all environments, we employ a PPO-based
policy (Schulman et al., 2017) configured with the standard settings provided by the MuJoCo Play-
ground framework. Once trained, this policy is repeatedly rolled out in the default environment
to produce a large collection of reference trajectories. Subsequently, we sample task parameters
to define our meta-tasks. For each meta-task, we generate a fixed number of trajectories using a
two-step process: First, we randomly select an equal number of previously generated reference tra-
jectories. Second, we execute the action sequences from these sampled reference trajectories in the
corresponding meta-task environment (with varied parameters), always starting from the same initial
state as the original reference trajectory.

We deliberately chose this open-loop trajectory generation method over directly rolling out the pol-
icy in a closed-loop fashion within the meta-environments. Closed-loop policy rollouts tend to steer
trajectories towards a mean, simplifying the forecasting problem. Furthermore, conditioning a se-
quence decoder on task-specific actions in a closed-loop setting can lead to meta-overfitting (Rajen-
dran et al., 2020; Yin et al., 2020). During trajectory generation, we disable the standard observation
noise present in MuJoCo Playground. Instead, we introduce noise by executing noisy actions within
the meta-environments, resulting in a challenging scenario where the effective noise increases with
trajectory length.

Environment Varied environment parameters Rarameter distribution std. of injected action noise

PandaRobotiqPushCube box mass U(0.5, 2.0) 0.025
box friction coeff. U(0.5, 2.0)

Go1JoystickFlatTerrain mass of robot links U(0.7, 1.3) 0.025
static joint friction U(0.7, 1.3)

BerkeleyHumanoidJoystickFlatTerrain mass of robot links U(0.7, 1.3) 0.025
static joint friction U(0.7, 1.3)

T1JoystickFlatTerrain mass of robot links U(0.8, 1.2) 0.01
static joint friction U(0.8, 1.2)

Table 4: Details on used meta-task parameters per environment.
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A.1.3 EVALUATION PROCEDURE

We evaluate the model performance on an unseen test set that is fixed across all tested models and
random seeds. Crucially, this test set, also fixes the sampled context and target sets per meta-task.
Given a specific context set, we evaluate the model on multiple target time series.

Evaluation Metrics. We use three different metrics to assess the predictive performance and the
ability to infer the latent task parameters of a model.

• Predictive Log-Likelihood
• Mean Squared Error
• R2-coefficient: In order to assess a model’s ability to infer the task parameters zτ from

the provided context, we train a separate MLP-based regression model to maps the latent
context encoding rτ = Encϕ(DC

τ ) to the true task parameters ẑτ = paramdec(rτ ). This
regression model is trained with a standard MSE loss. However, since a MSE in a parameter
space is hard to interpret and to compare between different benchmarks, we instead report
the R2-coefficient of the regression model, which is defined as

R2 = 1−
∑

τ (zτ − ẑτ )
2∑

τ (zτ − z)2
.

Here, z denotes the mean task parameters over all meta-tasks.

Log-Likelihood and mean squared error are computed for each target time series, averaging over all
elements in the series. Finally, the metrics are averaged over all tasks and all target time series per
task.
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A.2 ADDITIONAL EXPERIMENTAL RESULTS

This Section of the Appendix contains plots with experimental results for further benchmarks.

Oracle Model Uninformed Model Time Series CNP (ours) Transition-based CNP Transformer-Concat
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Figure 3: Evaluation of model performance on the BerkeleyHumanoidJoystickFlatTerrain locomo-
tion task over variable context set size. Our approach performs better than Transformer-Concat,
both in terms of predictive performance (measured by neg. log-likelihood and MSE) and in its abil-
ity to infer the task parameters. In contrast, the standard CNP’s performance is inferior even to the
uninformed baseline.

Oracle Model Uninformed Model Time Series CNP (ours) Transition-based CNP Transformer-Concat
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Figure 4: Evaluation of model performance on the T1JoystickFlatTerrain locomotion task over vari-
able context set size. Our approach performs better than Transformer-Concat, both in terms of
predictive performance (measured by neg. log-likelihood and MSE) and in its ability to infer the
task parameters. In contrast, the standard CNP’s performance is inferior even to the uninformed
baseline.

Time Series CNP (ours) Transition-based CNP TransformerConcat
1 − R2 1 − R2 1 − R2

PandaRobotiqPushCube 0.44 ± 0.23 0.43 ± 0.24 0.52 ± 0.19

Go1JoystickFlatTerrain 0.60 ± 0.15 0.57 ± 0.16 0.62 ± 0.15
BerkeleyHumanoidJoystickFlatTerrain 0.62 ± 0.14 0.58 ± 0.16 0.60 ± 0.15
T1JoystickFlatTerrain 0.61 ± 0.14 0.62 ± 0.16 0.61 ± 0.15

Table 5: Experimental results on the model’s ability to infer the true meta-task parameters from the
provided context averaged over all context set sizes.
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