
Scalable, Explainable and Provably Robust
Anomaly Detection with One-Step Flow Matching

Zhong Li♣,♡ Qi Huang♣ Yuxuan Zhu▲ Lincen Yang♣(B)

Mohammad Mohammadi Amiri▲ Niki van Stein♣ Matthijs van Leeuwen♣

♣The Leiden Institute of Advanced Computer Science (LIACS), Leiden University
▲Department of Computer Science, Rensselaer Polytechnic Institute
♡The Intelligent Computing Research Center, Great Bay University

Corresponding Author (B): l.yang@liacs.leidenuniv.nl (Lincen Yang)

Abstract

We introduce Time-Conditioned Contraction Matching (TCCM), a novel method
for semi-supervised anomaly detection in tabular data. TCCM is inspired by flow
matching, a recent generative modeling framework that learns velocity fields be-
tween probability distributions and has shown strong performance compared to
diffusion models and generative adversarial networks. Instead of directly applying
flow matching as originally formulated, TCCM builds on its core idea—learning
velocity fields between distributions—but simplifies the framework by predicting
a time-conditioned contraction vector toward a fixed target (the origin) at each
sampled time step. This design offers three key advantages: (1) a lightweight
and scalable training objective that removes the need for solving ordinary differ-
ential equations during training and inference; (2) an efficient scoring strategy
called one time-step deviation, which quantifies deviation from expected con-
traction behavior in a single forward pass, addressing the inference bottleneck
of existing continuous-time models such as DTE (a diffusion-based model with
leading anomaly detection accuracy but heavy inference cost); and (3) explain-
ability and provable robustness, as the learned velocity field operates directly
in input space, making the anomaly score inherently feature-wise attributable;
moreover, the score function is Lipschitz-continuous with respect to the input,
providing theoretical guarantees under small perturbations. Extensive experi-
ments on the ADBench benchmark show that TCCM strikes a favorable balance
between detection accuracy and inference cost, outperforming state-of-the-art meth-
ods—especially on high-dimensional and large-scale datasets. The source code is
provided at https://github.com/ZhongLIFR/TCCM-NIPS.

1 Introduction

Background. Anomaly detection in tabular data is the task of identifying data instances (or patterns)
that deviate significantly from expected behavior (Chandola et al., 2009; Aggarwal and Aggarwal,
2017a; Pang et al., 2021). It has found widespread applications in various domains, such as fraud
detection in finance (Hilal et al., 2022), fault detection in manufacturing (Yu and Zhang, 2023),
intrusion detection in cybersecurity (Chou and Jiang, 2021), and medical diagnosis in healthcare
(Fernando et al., 2021). In these high-stakes domains, data is growing rapidly in both size and
dimensionality, calling for approaches that are not only effective but also scalable. Equally important,
decisions made in these settings often have critical consequences, making interpretability an ethical
and regulatory necessity (Li et al., 2023). Therefore, anomaly detection methods should also be able
to provide meaningful explanations alongside accurate predictions.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ZhongLIFR/TCCM-NIPS

Positioning our work. Existing anomaly detection methods can be broadly categorized into classical
machine learning approaches and deep learning-based techniques. Classical methods—such as
OCSVM (Schölkopf et al., 1999), LOF (Breunig et al., 2000), PCA (Shyu et al., 2003), and KDE
(Latecki et al., 2007)—often struggle with high-dimensional data due to the curse of dimensionality,
and with large-scale datasets due to limited computational scalability. To address these limitations,
deep learning-based anomaly detection methods have gained research attention and achieved strong
performance across various domains (Pang et al., 2021). Deep methods can be grouped into two
categories: (1) two-stage approaches, which first learn a low-dimensional representation (e.g., via
an autoencoder) and then apply off-the-shelf anomaly detectors. However, such decoupled training
strategies often struggle to learn task-effective features due to the lack of joint optimization (Nguyen
and Vien, 2019); and (2) end-to-end trained approaches, which integrate representation learning and
anomaly detection into a unified training objective, achieving better performance. Meanwhile, given
that labeled anomalies are both scarce and expensive to obtain in many real-world applications—such
as system failures, fraud, or clinical anomalies—many existing methods, both classical and deep,
adopt a semi-supervised setting. In this paradigm, models are trained solely on normal data and tasked
with identifying deviations at test time. Although claimed as“unsupervised" in some studies (Goodge
et al., 2022), we rigorously refer to this setup as semi-supervised anomaly detection following An
and Cho (2015); Ruff et al. (2018); Akcay et al. (2018); Bergman and Hoshen (2020). Our work is
situated within this setting, adopting a deep1, end-to-end, and semi-supervised approach that learns
the structure of normality during training and identifies deviations at inference.

Limitations of Existing Studies. Despite recent advances in end-to-end deep anomaly de-
tection, many existing approaches face fundamental limitations. Adversarial models such as
AnoGAN (Schlegl et al., 2017) and GANomaly (Akcay et al., 2018) often suffer from training insta-
bility due to their reliance on min-max optimization. Density-based methods like DAGMM (Zong
et al., 2018) introduce complex architectures to approximate latent distributions. Diffusion-based
approaches such as Anomaly-DDPM and DTE (Livernoche et al., 2023) may depend heavily on
carefully tuned noise schedules and sampling hyperparameters; in practice, they also suffer from
extremely slow inference on large-scale datasets due to their iterative nature. Normalizing flows
(e.g., OneFlow (Maziarka et al., 2021)) require invertibility and Jacobian computations, leading to
trade-offs between model expressivity and computational efficiency. LUNAR (Goodge et al., 2022),
which employs graph neural networks to capture relational structures, incurs high training costs
and scales poorly with data size. Methods such as DeepSVDD (Ruff et al., 2018), which focus on
compact representation learning, rely on restrictive architectural constraints (e.g., no biases, bounded
activations) to avoid representation collapse, and often depend on numerous training heuristics to
yield satisfactory results. Another major limitation lies in the lack of interpretability—most deep
models offer little insight into why a sample is considered anomalous. While a few methods have
made progress in this direction—e.g., AE-1SVM (Nguyen and Vien, 2019) using gradient-based
attribution, ICL (Shenkar and Wolf, 2022) identifying key contributing features, MCM (Yin et al.,
2024) modeling both feature-level abnormality and inter-feature correlations, and DTE (Livernoche
et al., 2023) providing denoised reconstructions as explanations—such interpretable designs remain
the exception rather than the norm. The vast majority of deep anomaly detection models continue to
operate as black boxes, limiting their utility in high-stakes domains where interpretability is critical.

Flow Matching. Flow matching has emerged as a promising generative modeling framework
that retains the training stability and expressivity of diffusion models, while offering improved
computational efficiency (Liu et al., 2022; Lee et al., 2023). Instead of relying on stochastic differential
equations (SDEs), it learns an ordinary differential equation (ODE) that deterministically maps
samples from a source to a target distribution, enabling faster sampling and easier optimization. Flow
matching also bypasses the need for a forward noising process and explicit density functions, making
it well-suited for settings with implicit or intractable data distributions (Albergo and Vanden-Eijnden,
2023; CSAIL, 2024). Its interpolant formulation further allows empirical analysis of learned velocity
fields over time (Albergo and Vanden-Eijnden, 2023), enhancing interpretability for downstream
tasks. Despite its recent success in generative modeling, flow matching has not been explored for
anomaly detection as of this writing, to the best of our knowledge.

1Following common practice in the machine learning community, we use the term “deep” to indicate deep
learning-based, end-to-end models, even when the employed neural architecture is relatively shallow (e.g., a
multi-layer perceptron with two hidden layers).

2

Contributions. Motivated by the limitations of existing deep anomaly detection methods and
benefiting from recent advances in generative modeling—particularly flow matching—we introduce
Time-Conditioned Contraction Matching (TCCM), a novel flow matching-inspired approach for
semi-supervised anomaly detection. Specifically, TCCM learns a time-conditioned velocity field
that contracts normal data, drawn from a source distribution ρsource, towards a degenerate target
distribution ρtarget, defined as a Dirac delta at the origin. Unlike previous approaches that simulate full
continuous trajectories via ODE or SDE integration, TCCM avoids trajectory simulation entirely by
directly learning a velocity field that approximates contraction dynamics from any input point at any
time (details are described in Section 3). At test time, samples are scored based on how much their
predicted velocity field deviates from the expected contraction pattern—an idea illustrated in Figure 1.
This mismatch in velocity magnitudes and directions forms the basis of our anomaly score. TCCM
inherits the scalability and simplicity of flow matching (Liu et al., 2022), and is trained using an
unconstrained least-squares objective. It avoids adversarial instability (as in AnoGAN (Schlegl et al.,
2017), GANomaly (Akcay et al., 2018)), complex density modeling (as in DAGMM (Zong et al.,
2018) or KDE (Latecki et al., 2007)), and slow sampling-based inference (as in DTE (Livernoche
et al., 2023)). Unlike normalizing flows (Maziarka et al., 2021), it requires neither invertibility nor
Jacobian computation, and unlike DeepSVDD (Ruff et al., 2018), it does not rely on restrictive
architectural constraints to avoid collapse. Furthermore, compared to graph-based methods like
LUNAR (Goodge et al., 2022), TCCM achieves significantly faster training on large-scale datasets.
Crucially, TCCM is inherently interpretable—its velocity field lives in the input space, supporting
feature-wise attribution—and provably robust, with a Lipschitz-continuous anomaly score under
small input perturbations.

Findings. We evaluate TCCM on 47 benchmark datasets from the ADBench suite (Han et al.,
2022), comparing it against 44 baseline methods (23 deep learning-based and 21 classical), for a
total of 10,575 runs across five seeds. Our results demonstrate five key strengths: (1) Accuracy:
TCCM achieves top-1 performance in both AUPRC and AUROC scores (see Appendix B.4 for
definitions) across all evaluated methods (see Figures 2a and 2b for aggregated results). (2) Scalability:
The model is highly efficient in both training and inference on high-dimensional and large-scale
datasets—achieving, on average, 1573× faster inference than DTE-NonParametric (top-2 in AUROC
and AUPRC), and 85× faster inference than LUNAR (top-3 in both metrics), while maintaining
superior detection performance (see Figure 3a). (3) Explainability: TCCM enables feature-level
attribution for anomaly scores, supporting interpretable diagnosis—an aspect largely absent in
existing deep anomaly detection models (see Figure 4). (4) Robustness: We theoretically prove that
the anomaly score satisfies a Lipschitz continuity condition, offering provable robustness guarantees
under input perturbations (see Proposition 1). (5) Simplicity of training: TCCM requires no adversarial
losses, density estimation, or noise schedules—making it simple to train, stable to optimize, and easy
to reproduce (see Eq. 4). Together, these findings establish TCCM as a principled, highly effective,
scalable, explainable, and provably robust solution for semi-supervised anomaly detection in tabular
data.

2 Preliminaries

Due to space constraints, we defer a detailed discussion of related work—including anomaly detection
methods and flow matching—to Appendix A, and begin with a general problem statement.

2.1 Problem Statement

Notations. Bold lowercase letters (e.g., x) denote vectors; bold uppercase letters (e.g., X) represent
matrices. Calligraphic symbols (e.g., X) denote sets, and standard italic letters (e.g., x) are used
for scalars, unless otherwise specified. Besides, these symbols may be used to denote both random
variables and their realizations; this dual use is common in the machine learning literature and will be
made explicit whenever necessary.

Problem Setting. We consider a semi-supervised anomaly detection scenario, where only normal
samples are available during training. Let X = {xi}Ni=1 ⊂ Rd be a dataset of d-dimensional
observations, partitioned into a training set Xtrain containing only normal instances sampled from
an unknown distribution pdata(x), and a test set Xtest that may include both normal and anomalous
samples.

3

Problem 1 (Semi-Supervised Anomaly Detection). Given access to normal training dataXtrain ⊂ Rd,
the goal is to learn an anomaly scoring function S : Rd → R that quantifies the deviation of any test
input x ∈ Xtest from the learned notion of normality.

To solve this problem, we aim to learn the structure of normal data using only unlabeled normal
instances. At test time, deviations from this learned structure are quantified and assigned anomaly
scores, allowing the detection of abnormal inputs without access to anomalous data during training.

2.2 Recap of Flow Matching

Flow matching (or stochastic interpolant) (Lipman et al., 2022; Albergo and Vanden-Eijnden, 2023;
Liu et al., 2022) provides a principled and flexible framework for learning neural ODE-based transport
maps between two empirical distributions. Given samples from a source distribution x0 ∼ p0 and
a target distribution x1 ∼ p1, the goal is to learn a time-dependent velocity field v(xt, t) such that
the following ODE governs the evolution between the two: dxt = v(xt, t)dt for t ∈ [0, 1]. This
Lagrangian formulation describes the motion of particles from x0 to x1, implicitly defining the
coupling π(p0, p1) between the distributions. The velocity field is parameterized as vθ(xt, t) via a
neural network and trained to match a reference velocity field using a simple least-squares objective:

min
θ

Et,xt

[
∥v(xt, t)− vθ(xt, t)∥22

]
. (1)

Different choices of interpolation path xt and reference velocity v(xt, t) give rise to different flow
matching models. A widely used class of methods adopts the probability flow ODE formulation (Song
et al., 2020), where the velocity incorporates the score function ∇ log pt and corresponds to a
deterministic trajectory derived from an underlying SDE. In this case, the path is often defined via a
variance-preserving schedule:

xt = αtx0 +
√
1− α2

t x1, with αt = exp

(
−1

2

∫ t

0

β(s) ds

)
,

where β(s) is a pre-defined noise schedule that controls the rate of variance increase over time. This
form allows equivalence to score matching under certain conditions (Lee et al., 2023; Zheng et al.,
2023), and is popular in diffusion-based generative models. However, the resulting curved trajectory
can complicate optimization and slow down sampling (Liu et al., 2022).

To address these issues, Liu et al. (2022) have proposed a constant velocity ODE approach, where
the interpolation path is simply linear: xt = (1 − t)x0 + tx1. In this case, the reference velocity
becomes a constant vector x1 − x0, and the flow matching objective reduces to:

min
θ

Et,xt

[
∥x1 − x0 − vθ(xt, t)∥22

]
. (2)

This variant is known as the rectified flow model, and has been shown to improve training efficiency
and reduce curvature in the learned trajectories, facilitating both forward simulation and backward
sampling. Our proposed method builds on this formulation, leveraging its simplicity and scalability
while adapting it for the anomaly detection setting.

3 Methodology: Time-Conditioned Contraction Matching (TCCM)

Core idea. Conventional flow matching models (Lipman et al., 2022; Liu et al., 2022) construct
continuous-time trajectories that gradually transport samples from a source distribution (at t = 0)
to a target distribution (at t = 1) by integrating a learned velocity field over the entire time interval.
In contrast, our method departs from this paradigm both conceptually and technically. Rather than
relying on the full trajectory across time to learn the transformation, we directly learn a contraction
vector field at each time step—one that immediately points from the current position to the fixed
target (the origin). This allows the model to predict the contraction behavior independently at each
time point, avoiding the need for simulating or reconstructing the full flow path. This provides a
powerful yet simple framework for anomaly detection: every point learns how to contract back to the
origin over time, which motivates the name Time-Conditioned Contraction Matching (TCCM).

Formally, we treat the data distribution as the source, z0 := z ∼ pdata, and consider the target as
a degenerate Dirac distribution at the origin, z1 := 0. While this setup may suggest a flow-like

4

interpretation, we emphasize that our model is not tasked with approximating the full solution of a
dynamical system such as:

dz(t) = −z(t)dt, with z(0) = z, (3)

whose analytical solution would be z(t) = z · e−t. However, our model does not supervise or
simulate z(t) across time. Instead, we adopt a simplified training strategy that uses a constant target
direction −z for supervision at all time steps. To achieve this, we learn a neural velocity field fθ(·)
on an augmented space z̃ = [z;Embed(t)]. Specifically, fθ(·) is conditioned on both the input z
and a time variable t ∈ [0, 1]. The time is encoded using sinusoidal embeddings (Vaswani et al.,
2017), which are concatenated with the input: z̃ = [z;Embed(t)], and passed through the model fθ
to predict a contraction vector.

4 2 0 2 4 6
X1

4
2
0
2
4
6

X2

Ring (AUC-ROC: 1.000)
 Points before Flowing

1.0 0.5 0.0 0.5 1.0 1.5 2.0
X1

0.5

0.0

0.5

1.0

X2

Two Moons (AUC-ROC: 0.997)
 Points before Flowing

4 2 0 2 4
X1

4

2

0

2

X2

Blobs (AUC-ROC: 1.000)
 Points before Flowing

4 2 0 2 4 6
X1

4
2
0
2
4
6

X2

Flowing according to Vector Fields

1.0 0.5 0.0 0.5 1.0 1.5 2.0
X1

0.5

0.0

0.5

1.0

X2

Flowing according to Vector Fields

4 2 0 2 4
X1

4

2

0

2

X2

Flowing according to Vector Fields

0.3 0.2 0.1 0.0 0.1
X1

0.3

0.2

0.1

0.0

0.1

X2

Points after Flowing

0.0 0.1 0.2 0.3
X1

0.2

0.1

0.0

X2

Points after Flowing

0 1 2 3 4
X1

0

1

2

3

4

X2

Points after Flowing

0.1

0.2

0.3

An
om

al
y

Sc
or

e

0.1

0.2

0.3

An
om

al
y

Sc
or

e

0.1

0.2

0.3

An
om

al
y

Sc
or

e
0.1

0.2

0.3

An
om

al
y

Sc
or

e

0.1

0.2

0.3

An
om

al
y

Sc
or

e
0.1

0.2

0.3

An
om

al
y

Sc
or

e

1

2

3

4

5

An
om

al
y

Sc
or

e

1

2

3

4

5

An
om

al
y

Sc
or

e

1

2

3

4

5

An
om

al
y

Sc
or

e

Figure 1: Core idea of TCCM: TCCM learns a time-conditioned velocity (vector) field that contracts
normal data points, sampled from a source distribution ρsource, towards a degenerate target distribution
ρtarget, defined as a Dirac delta at the origin. At test time, anomalies are detected by measuring
inconsistency with this learned contraction field. Illustrative examples: We visualize TCCM
behavior on synthetic 2D datasets with varying normal (circles) and anomalous (squares) distributions.
Left: Normal data form a ring; anomalies are sampled from a central Gaussian. Middle: Normals
follow an upper moon; anomalies form a sparse lower moon. Right: Normals are clustered bottom-
left; anomalies are drawn from a distinct Gaussian in the top-right. In all cases, TCCM successfully
distinguishes anomalies based on their deviation from the expected contraction vector.

Training Objective. The training minimizes the following loss:

min
θ

Ez∼pdata, t∼U(0,1) [∥fθ([z;Embed(t)]) + z∥2] . (4)

Optimizing objective (4) encourages the model to predict a velocity vector that approximates the
negation of the current state, i.e., fθ([z;Embed(t)]) ≈ −z. This guides the system to evolve toward
the origin by learning both the direction and magnitude of motion in a time-dependent manner. To
achieve this, the neural velocity field is required to extract the common factors of variation present in
normal data. As a result, normal samples following their predicted velocity fields can approach the
origin at any given time, while anomalous instances, due to their deviation from the learned structure,
fail to do so. The pseudocode for training is given in Algorithm 1 in Appendix B.5.

Interpretation and Motivation. Although not derived from an explicit ODE, our method can be
viewed as learning a time-aware vector field that approximates the contraction dynamics toward a
shared target. This formulation provides several advantages: (1) Time-Conditioned Consistency: The
model learns to predict contraction vectors across time steps that consistently guide inputs toward
the origin, promoting geometric alignment and stability; (2) Simplified Supervision: Using a fixed
supervision target −z removes the need for trajectory supervision, leading to a simpler and smoother
optimization process; (3) No ODE Solvers Required: Unlike conventional flow-based models, TCCM
avoids numerical integration during both training and inference, resulting in substantial computational

5

efficiency; (4) Learnable Temporal Dynamics: Sinusoidal time embeddings allow the model to
modulate both the magnitude and direction of contraction vectors over time, enabling rich, non-linear
temporal behavior.

Anomaly Scoring at Inference Time. Given a test input z ∈ Xtest and a fixed evaluation time
tfixed ∈ (0, 1], we define the anomaly score as:

Sfixed(z; tfixed) = ∥fθ ([z;Embed(tfixed)]) + z∥2 , (5)

where fθ([z;Embed(t)]) denotes the learned velocity field conditioned on both the input feature
z and the time variable t, encoded via sinusoidal embeddings and concatenated with z before
being passed into a multilayer perceptron (MLP). This scoring strategy is grounded in the following
expectations: (1) Normal instances are trained to follow a contraction path toward the origin. Since
supervision is based on a constant target −z across all time steps, a well-aligned normal sample
satisfies fθ([z;Embed(t)]) ≈ −z, leading to a small residual norm. (2) Anomalous instances, which
deviate from the learned contraction pattern, yield misaligned velocities and hence higher residuals.
(3) This approach is computationally efficient, as it avoids solving ODEs and requires only a single
forward pass through the network at a chosen time step tfixed, which overcomes the primary bottleneck
of high evaluation cost found in existing continuous-time ODE/SDE models such as Anomaly-
DDPM (Livernoche et al., 2023) and DTE-NonParametric (Livernoche et al., 2023). (4) Importantly,
because the residual vector fθ([z;Embed(tfixed)]) + z lies in the original feature space, the absolute
values of its entries directly quantify how much each feature contributes to the anomaly score. This
provides intrinsic feature-level interpretability, in contrast to post-hoc explanation methods such as
SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016).

We refer to this anomaly scoring procedure as one-step flow matching because, unlike classical flow
matching models that integrate velocity fields across time to compute transformation paths, our
method makes a single-time-point evaluation to determine alignment with the learned contraction
dynamics. While the underlying model is termed TCCM, this scoring mechanism captures the spirit
of flow matching—comparing learned dynamics to an ideal contraction vector—yet does so in a
highly scalable one-step formulation. Although the evaluation time tfixed in Eq 5 can be any value
in (0, 1], we set tfixed = 1 by default throughout our experiments for simplicity. Particularly, we
provide a sensitivity analysis (see Figure 13) showing that the anomaly detection performance is
largely stable across different values of t, validating the temporal consistency of the learned flow field
and its ability to produce meaningful predictions at any time step. The pseudocode for inference is
given in Algorithm 2 in Appendix B.5.

4 Theoretical Properties of TCCM

In this section, we establish two key theoretical properties of our method: (i) Lipschitz continuity
of the anomaly score, which leads to provable robustness guarantees under input perturbations; and
(ii) discriminative behavior of the score function under distributional shift, explained via a stylized
Gaussian mixture setting. These results offer both certifiability of robustness and theoretical insight
into the score function’s discriminative behavior, complementing our empirical findings.
Proposition 1 (Lipschitz Continuity and Robustness). Let fθ(·, tfixed) be L-Lipschitz continuous in
its first argument (for a fixed time tfixed ∈ (0, 1]). Then the anomaly score

Sfixed(x) := ∥fθ ([x;Embed(tfixed)]) + x∥2
is (L+ 1)-Lipschitz continuous with respect to x, i.e.,

|Sfixed(x1)− Sfixed(x2)| ≤ (L+ 1)∥x1 − x2∥2.

Proof. Define g(x) := fθ([x;Embed(tfixed)]) + x. Then:

∥g(x1)−g(x2)∥2 ≤ ∥fθ([x1;Embed(t)])−fθ([x2;Embed(t)])∥2+∥x1−x2∥2 ≤ (L+1)∥x1−x2∥2.

Finally, since the ℓ2 norm is 1-Lipschitz, we have |Sfixed(x1)−Sfixed(x2)| ≤ ∥g(x1)− g(x2)∥2.

Remark and Implications. The assumption that fθ(·, tfixed) is Lipschitz is both theoretically and
practically reasonable. In continuous normalizing flows (CNFs) and flow-matching models, such
smoothness is often required to ensure existence and uniqueness of solutions (via Picard–Lindelöf

6

theorem (Murray and Miller, 2013)) or to stabilize ODE solvers. More specifically, the function fθ is
implemented as a multilayer perceptron with ReLU activations and a fixed architecture, making it
piecewise linear and hence Lipschitz continuous. The Lipschitz constant L can be further controlled
through spectral normalization, gradient penalties, or other regularization techniques. Moreover,
this proposition has the following two implications: (1) robustness: the score is stable under small
perturbations, enhancing reliability in noisy or adversarial environments; and (2) certifiability: the
bound implies that |S(x+ δ)− S(x)| ≤ (L+ 1)ε if ∥δ∥ ≤ ε, providing a certifiable safety margin.

To theoretically support the discriminative power of our anomaly score, we analyze an idealized
setting where normal and anomalous instances are drawn from two disjoint Gaussian mixture models
(GMMs) with shared isotropic covariance. Although simplified, this setup enables a clean analysis of
how the learned score function behaves on out-of-distribution samples. Under the assumption that
the model has learned a noisy contraction field of the form fθ([x;Embed(1)]) = −x+ ϵ for normal
training data, we establish the following result:
Proposition 2 (Discriminative Power under GMM-to-GMM Shift). Let normal samples be drawn
from a Gaussian mixture pnormal(x) =

∑R
r=1 πr · N (µr, σ

2Id), and anomalous samples from a
disjoint mixture panom(z) =

∑S
s=1 ηs ·N (νs, σ

2Id), with νs /∈ {µr}Rr=1. Assume the learned con-
traction field satisfies fθ([x;Embed(1)]) = −x+ϵ, where ϵ ∼ N (0, σ2

fId); and the learned velocity
field is mismatched for anomalies. Define the anomaly score: S(x) = ∥fθ([x;Embed(1)]) + x∥2 =

∥ϵ∥2 . Then, it holds that: (1) for normal samples, S(x) ∼ χd · σf , and E[S(x)] = σf ·
√
2 · Γ(

d+1
2)

Γ(d
2)

;

(2) for anomalies, let λs =
∥νs−µr∗(s)∥

2
2

σ2
f

, where r∗(s) := argminr ∥νs − µr∥2, we have

S(z) ∼
∑S

s=1 ηs · χd(λs); and (3) the expected anomaly scores of normal and anomalous instances
satisfy: E[S(z)] > E[S(x)]. This implies that our score function assigns, in expectation, higher
values to anomalies than to normal points—providing a theoretical foundation for its discriminative
capability.

The proof, provided in Appendix C.2, shows that the anomaly score corresponds to the norm of a
central chi-distributed variable for normal samples and a non-central chi-distributed one for anomalies.
The non-centrality parameter captures the squared distance between each anomaly and the closest
normal-mode center, leading to systematically larger scores.

Implications. This result provides a theoretical lens into why our anomaly score increases for
distributional outliers. Even though real-world data may not exactly follow Gaussian mixtures, the
underlying intuition persists: samples that deviate from the structure captured by the contraction field
are naturally assigned larger residuals.

In addition, Appendix C.3 further analyzes the model’s representation dynamics and verifies that
TCCM avoids degenerate or collapsed mappings in practice, complementing the above theoretical
guarantees with empirical evidence of stable and discriminative behavior.

5 Experiments

We conduct comprehensive experiments to address the following research questions: (1) Effective-
ness—Can TCCM outperform existing baselines in anomaly detection? (2) Scalability—How does
TCCM compare to the strongest baselines in detection accuracy in terms of training and inference
efficiency? (3) Explainability—Are the explanations generated by TCCM intuitive and meaningful
to human users? (4) Ablation Studies and Sensitivity Analysis—How do various design choices
impact the performance of TCCM?

5.1 Experiment Setup

Datasets Description and Processing. (1) Dataset Description: A summary of the datasets used
in our study is provided in Table 1. We adopt 47 benchmark datasets from the well-established
ADBENCH benchmark (Han et al., 2022), spanning diverse domains including sociology, finance,
linguistics, physics, and healthcare. To enable a comprehensive evaluation of different anomaly
detectors, including our proposed method, we categorize the datasets into four groups based on
their scale and dimensionality: (a) High-dimensional datasets, with more than 50 features; (b)

7

Large-scale datasets (but not high-dimensional), containing more than 10,000 instances and fewer
than 50 features; (c) Medium-scale datasets (not high-dimensional), with 1,000 to 10,000 instances;
and (d) Small-scale datasets (not high-dimensional), containing fewer than 1,000 instances. This
categorization facilitates a nuanced analysis of model performance across varying data regimes. (2)
Data Processing: We adopt a semi-supervised anomaly detection setting, where models are trained
solely on normal instances. Specifically, we apply a stratified split to the normal data, using 50% for
training and holding out the rest for testing. The test set includes both normal and anomalous samples.
All features are standardized using a StandardScaler (Pedregosa et al., 2011) fitted on the training
data (see Figure 16 in Appendix D.3 for an ablation study on the effect of feature normalization).
This protocol is consistent with common practices in anomaly detection (e.g., (Zong et al., 2018;
Bergman and Hoshen, 2020; Shenkar and Wolf, 2022; Yin et al., 2024)) and ensures a fair evaluation.

TCCM (O
urs

)

DTENon
Para

metr
ic

LU
NAR

KDE

Auto
Enc

od
er

CBLO
F

OCSVM
GMM

DTECate
go

ric
al

DTEGau
ss

ian IC
L

DTEInv
ers

eG
am

ma

Sam
pli

ng VAE
MCM

Fea
tur

eB
ag

gin
g
SLA

D

AE1S
VM
IFore

st

HBOS
MCD DIF

Ano
GAN

Dee
pS

VDD

GANom
aly

DTEDDPM
ECOD

LM
DD

Norm
ali

zin
gF

low
LO

DA
KNN

GOAD

DROCC
QMCD

IN
NE CD

PCA
ABOD

LO
F

MO_G
AAL

SO_G
AAL

DAGMM
COF

ALA
D
KPCA

0

10

20

30

40

R
an

k_
A

U
P

R
C

5.8
8.0 8.1 9.3

13.0 13.7 14.6 14.6 14.6 14.9 15.2 16.0 16.1 16.5 16.8 17.3 17.4 17.8
19.6

21.0 21.8 22.0 22.9 24.0 24.1 24.6 24.7
26.7 26.8 27.8 27.9 28.1 28.7 28.9 29.9 30.4 30.5

32.6 32.9
34.6 34.9 35.7

37.1 37.5 38.2

Detector Type
Deep Learning Classical (Transductive) Classical (Inductive)

(a) AUPRC ranking distribution across 47 datasets for 45 anomaly detectors.

TCCM (O
urs

)

DTENon
Para

metr
ic

LU
NAR

KDE

Auto
Enc

od
er

CBLO
F

DTECate
go

ric
al
GMM

Sam
pli

ng

Fea
tur

eB
ag

gin
g

OCSVM
VAE

DTEGau
ss

ian
MCM

IFore
st
SLA

D IC
L

DTEInv
ers

eG
am

ma
MCD

AE1S
VM

HBOS
DIF

Ano
GAN

Dee
pS

VDD
ECOD

GANom
aly

IN
NE

KNN

Norm
ali

zin
gF

low

DTEDDPM
LO

DA

QMCD
LM

DD
PCA CD

GOAD

DROCC
ABOD

LO
F

MO_G
AAL

SO_G
AAL

COF

DAGMM
KPCA

ALA
D

0

10

20

30

40

R
an

k_
A

U
R

O
C

5.7 6.3
7.8

9.2

12.5 12.5 13.2 13.9 14.2 15.0 15.4 16.1 16.3 16.9 16.9 17.4 17.6 17.6
18.8 18.9

21.5 22.4
23.8 24.2

25.4 25.5 26.1 26.4 26.4 26.5
28.5 28.8 28.9 29.3 29.5 30.1 31.1 31.6 31.9

35.5 35.7 36.4 36.7 37.6 37.6

Detector Type
Deep Learning Classical (Transductive) Classical (Inductive)

(b) AUROC ranking distribution across 47 datasets for 45 anomaly detectors..

Figure 2: Box plots of detector rankings based on AUPRC and AUROC scores across 47 datasets.
Medians are marked by horizontal lines; means are shown as numbers.

Baselines and Evaluation Metrics. (1) Baselines: We evaluate our method against 44 baselines,
including 21 classical (shallow) and 23 deep anomaly detection algorithms. Detailed descriptions of
these baselines are provided in Appendix B.2. In particular, we offer a critical review of each deep
method, highlighting their limitations in comparison to our approach in Appendix A.1. (2) Evaluation
metrics: We adopt two standard metrics—Area Under the Receiver Operating Characteristic curve
(AUROC) and Area Under the Precision-Recall Curve (AUPRC)—with higher values indicating
better performance (see Appendix B.4 for more information).

Configurations. The details of architectures and hyperparameters will be postponed to Appendix B.3,
while we highlight some of the main characteristics of our model here: the vector field fθ(x, t) is
parameterized by a 3-layer multilayer perceptron (MLP), where each hidden layer contains 256 units
followed by ReLU activations. To incorporate time information, we use a fixed sinusoidal embedding
of the scalar time input t ∈ [0, 1], following the positional encoding scheme used in transformer
models (Vaswani et al., 2017). The time embedding is concatenated with the input vector x, and the
combined representation is passed through the MLP to produce the predicted velocity field.

8

5.2 Results Analysis

10_cover

11_donors

13_fraud
16_http

1_ALOI

22_magic.gamma

23_mammography

32_shuttle
33_skin

34_smtp

3_backdoor

5_campaign

8_celeba

9_census

Dataset

DTENonParametric
KDE

LUNAR
TCCM (Ours)D

et
ec

to
r 48.91 476.60 1721.03 81.53 38.60 3.53 1.46 16.38 41.67 21.69 843.28 45.99 713.79 48942.85

2977.36 14977.49 4802.00 9945.43 148.45 4.92 1.71 43.09 1385.01 117.20 5691.08 366.16 1364.64 80378.72
19.01 174.49 190.11 5.65 3.53 0.68 0.11 3.60 1.53 0.54 37.45 4.02 105.64 1591.84
0.93 1.50 0.91 1.69 0.13 0.08 0.02 0.12 0.98 0.29 0.52 0.76 0.59 3.02

×1573.39

×4864.76

×85.91

Avg. Slowdown
vs. TCCMMean Test Time per Detector

10
1

10
0

10
1

10
2

10
3

10
4

Mean_TestTime

(a) Mean inference time (in seconds)

10_cover

11_donors

13_fraud
16_http

1_ALOI

22_magic.gamma

23_mammography

32_shuttle
33_skin

34_smtp

3_backdoor

5_campaign

8_celeba

9_census

Dataset

DTENonParametric
KDE

LUNAR
TCCM (Ours)D

et
ec

to
r 0.27 0.90 0.58 0.23 0.07 0.01 0.01 0.04 0.14 0.04 1.20 0.12 0.39 35.16

3407.59 14178.55 5022.42 10104.66 164.24 2.48 1.68 40.00 1242.23 127.03 4640.53 452.62 1510.78 83629.88
1197.48 2763.17 2505.55 2304.92 196.44 44.49 35.90 459.37 805.42 370.51 625.33 176.90 1618.39 5997.86
32.03 121.58 198.24 566.93 41.64 5.31 6.19 69.08 252.76 6.96 487.48 112.00 3.63 50.08

×0.06

×170.99

×51.93

Avg. Slowdown
vs. TCCMMean Training Time per Detector

10
2

10
1

10
0

10
1

10
2

10
3

10
4

Mean_TrainTime

(b) Mean training time (in seconds).

10_cover

11_donors

13_fraud
16_http

1_ALOI

22_magic.gamma

23_mammography

32_shuttle
33_skin

34_smtp

3_backdoor

5_campaign

8_celeba

9_census

Dataset

DTENonParametric
KDE

LUNAR
TCCM (Ours)D

et
ec

to
r 49.18 477.50 1721.62 81.76 38.67 3.54 1.46 16.42 41.81 21.73 844.47 46.11 714.18 48978.01

6384.95 29156.04 9824.43 20050.09 312.69 7.40 3.38 83.09 2627.24 244.24 10331.61 818.78 2875.42 164008.59
1216.49 2937.66 2695.67 2310.57 199.97 45.17 36.01 462.97 806.95 371.06 662.77 180.92 1724.03 7589.70

32.96 123.07 199.15 568.61 41.77 5.39 6.21 69.21 253.74 7.24 488.00 112.76 4.22 53.11

×79.49

×311.95

×50.89

Avg. Slowdown
vs. TCCMTotal Time per Detector (Train + Test)

10
1

10
2

10
3

10
4

10
5

Mean_TotalTime

(c) Mean total time (in seconds).

Figure 3: Mean run time (in seconds) across large-scale datasets for TCCM and other top-performing
baselines in detection accuracy.

(1) Effectiveness. Figures 2a and 2b present the aggregated results based on AUPRC and AUROC
scores, respectively. Due to the large scale of our experiments—covering 45 anomaly detectors
across 47 datasets with 5 different random seeds, resulting in a total of 10,575 runs—it is impractical
to include all individual results in the main paper. We thus report the complete results in Tables
6–13 in Appendix D. Particularly, we evaluate each method by reporting the distribution of its
rankings across the 47 datasets. Rankings are computed based on the average AUPRC (respectively,
AUROC) across the 5 seeds. As shown in Figures 2a and 2b, our method, TCCM, achieves the best
overall performance in terms of both AUPRC (with an average rank of 5.8) and AUROC (with an
average rank of 5.7). While DTE-NonParametric (second in both AUPRC and AUROC), LUNAR
(third in both), and KDE (fourth in both) also demonstrate strong detection accuracy, we will show
later that these methods suffer from poor scalability in training and/or inference, making them less
favorable for large-scale deployment compared to TCCM. A more detailed analysis is deferred to
Appendix D.1 due to space constraint. We further perform statistical significance testing using the
Friedman (Friedman, 1937) and Nemenyi tests (Nemenyi, 1963) to assess whether the observed
ranking differences are statistically meaningful; detailed results are provided in Appendix D.5.

(2) Scalability. TCCM achieves considerably faster inference than most deep learning baselines, par-
ticularly on large-scale and high-dimensional datasets. As shown in Figure 3a, it significantly outpaces
other high-accuracy methods in inference speed—being 1,573.39× faster than DTE-NonParametric,
4,864.76× faster than KDE, and 85.91× faster than LUNAR on average. On the largest dataset, cen-
sus (299,285 samples× 500 dimensions), TCCM takes just 1.50 seconds, while DTE-NonParametric
requires 48,942 seconds. These results highlight TCCM’s scalability and suitability for real-time
anomaly detection in big-data environments. Beyond inference efficiency, we further provide an
analysis on training time and total runtime to evaluate the end-to-end deployability of TCCM. As
shown in Figure 3b, TCCM maintains competitive training efficiency—while DTE-NonParametric
trains faster (requiring only 0.06× the training time of TCCM), KDE and LUNAR are 170.99× and
51.93× slower, respectively. When considering the overall cost, TCCM exhibits the lowest total
runtime among all top-performing baselines (Figure 3c), outperforming DTE-NonParametric, KDE,

9

and LUNAR by 79.49×, 311.95×, and 50.89×, respectively. This balanced efficiency across both
training and inference phases underscores TCCM’s suitability for real-world, large-scale anomaly
detection deployments, where both accuracy and runtime constraints are critical. To further contex-
tualize the trade-off between speed and performance, we include scatter plots comparing average
inference time versus average AUROC (or AUPRC) across all 44 baselines (see Figures 7 and 8 in
Appendix D.2.1). The results demonstrate that TCCM achieves one of the best balances between
detection accuracy and inference efficiency among all evaluated methods. A detailed breakdown and
additional comparisons across all 45 anomaly detection methods are provided in Appendix D.2.

(3) Explainability. TCCM is designed for tabular data and inherently supports self-explanation by
producing feature-wise importance scores derived from its learned residual velocity field, which
characterizes deviation from expected normal contraction behavior. To provide a more intuitive
illustration of this property, we apply TCCM to image data (MNIST (Deng, 2012)), treating each
pixel as a feature in a flattened tabular vector. We use digit 1 as the normal class and digit 7
as the anomaly (achieving an AUROC of 0.76). As shown in Figure 4, the model highlights the
additional horizontal stroke that distinguishes 7 from 1, demonstrating that the learned importance
scores align well with human-interpretable cues. Importantly, these explanations are intrinsic to
TCCM rather than post hoc approximations such as SHAP (Lundberg and Lee, 2017) or LIME
(Ribeiro et al., 2016): the residual vector itself encodes per-feature contributions to the anomaly score,
faithfully reflecting the model’s internal reasoning. For this, we provide a controlled synthetic study
in Appendix D.4.2, which quantitatively validates the accuracy of these feature-level attributions
and further substantiates TCCM’s intrinsic interpretability. This makes the explanations directly
actionable in practice, enabling domain experts in areas such as fraud detection, healthcare, or
industrial monitoring to identify not only which instances are anomalous but also why.

Sample #1
Input

Sample #1
Explanation

Sample #2
Input

Sample #2
Explanation

0.002

0.004

0.006

0.008

0.010

Im
po

rta
nc

e

0.002

0.004

0.006

0.008

0.010

0.012

Im
po

rta
nc

e

Figure 4: Illustrative examples of anomalous images and their explanations, where digit ‘1’ is treated
as the normal class and digit ‘7’ as the anomaly. The highlighted regions correspond to structural
differences between ‘7’ and ‘1’, which the model identifies as key contributors to the anomaly score.

(4) Ablation Studies and Sensitivity Analysis. We study how major design and data factors influence
TCCM (see Appendix D.3): (1) Time embedding and inference time (Figures 12–13): results are
nearly unchanged across choices, showing strong robustness; (2) Noise injection (Figure 14): deter-
ministic training consistently performs better; (3) Training contamination (Figure 15): higher anomaly
ratios reduce accuracy, underscoring the need for clean supervision; (4) Feature normalization (Fig-
ure 16): z-score normalization is generally beneficial and improves robustness; (5) Time-interpolated
inputs (Figure 17): interpolation offers no gain and may add noise; (6) Comparison with Autoencoder
+Time Embedding: confirms that TCCM learns a time-conditioned velocity field rather than a
reconstruction mapping. Overall, TCCM remains stable and efficient across all variations.

6 Conclusion

We presented Time-Conditioned Contraction Matching (TCCM), a novel method for semi-supervised
anomaly detection in tabular data. By learning a time-conditioned contraction field grounded in flow
matching, TCCM avoids adversarial training, trajectory simulation, and density modeling—offering
a lightweight yet expressive alternative to existing generative-based anomaly detection methods. On
the ADBench benchmark, TCCM outperforms 44 classical and deep baselines in both AUROC and
AUPRC, while achieving orders-of-magnitude faster inference than the strongest diffusion-based
competitor (namely DTE-NonParametric). It also provides feature-level interpretability via its learned
vector field. Theoretical analysis confirms the Lipschitz continuity and discriminative power of its
scoring function. Together, these results position TCCM as an highly effective, scalable, interpretable,
and robust solution for large-scale anomaly detection. Future directions include extending to other data
modalities. The limitations and broader impacts of our work are further discussed in Appendix D.6.

10

Acknowledgment

We thank all anonymous reviewers for their time and efforts in reviewing this paper and their
constructive comments to improve this paper. Qi Huang, Niki van Stein: This publication is partly
sponsored by the XAIPre project (with project number 19455) of the research program Smart Industry
2020 which is (partly) financed by the Dutch Research Council (NWO).

References
Deepak Agarwal. 2007. Detecting anomalies in cross-classified streams: a bayesian approach.

Knowledge and information systems 11, 1 (2007), 29–44.

Charu C Aggarwal and Charu C Aggarwal. 2017a. An introduction to outlier analysis. Springer.

Charu C Aggarwal and Charu C Aggarwal. 2017b. Outlier ensembles. Springer.

Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. 2018. Ganomaly: Semi-supervised
anomaly detection via adversarial training. In Asian conference on computer vision. Springer,
622–637.

Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly detection and
description: a survey. Data mining and knowledge discovery 29, 3 (2015), 626–688.

Michael S Albergo and Eric Vanden-Eijnden. 2023. Building Normalizing Flows with Stochastic
Interpolants. In 11th International Conference on Learning Representations, ICLR 2023.

Jinwon An and Sungzoon Cho. 2015. Variational autoencoder based anomaly detection using
reconstruction probability. Special lecture on IE 2, 1 (2015), 1–18.

Fabrizio Angiulli and Clara Pizzuti. 2002. Fast outlier detection in high dimensional spaces. In
European conference on principles of data mining and knowledge discovery. Springer, 15–27.

Andreas Arning, Rakesh Agrawal, and Prabhakar Raghavan. 1996. A Linear Method for Deviation
Detection in Large Databases.. In KDD, Vol. 1141. 972–981.

Tharindu R Bandaragoda, Kai Ming Ting, David Albrecht, Fei Tony Liu, Ye Zhu, and Jonathan R
Wells. 2018. Isolation-based anomaly detection using nearest-neighbor ensembles. Computational
Intelligence 34, 4 (2018), 968–998.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence 35, 8 (2013),
1798–1828.

Liron Bergman and Yedid Hoshen. 2020. Classification-based anomaly detection for general data.
arXiv preprint arXiv:2005.02359 (2020).

Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. 2021. A review on out-
lier/anomaly detection in time series data. ACM computing surveys (CSUR) 54, 3 (2021), 1–33.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000. LOF: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference
on Management of data. 93–104.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM
computing surveys (CSUR) 41, 3 (2009), 1–58.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018. Neural ordinary
differential equations. Advances in neural information processing systems 31 (2018).

Xin Chen and Anderson Ye Zhang. 2024. Achieving optimal clustering in Gaussian mixture models
with anisotropic covariance structures. Advances in Neural Information Processing Systems 37
(2024), 113698–113741.

11

Dylan Chou and Meng Jiang. 2021. A survey on data-driven network intrusion detection. ACM
Computing Surveys (CSUR) 54, 9 (2021), 1–36.

R Dennis Cook. 1977. Detection of influential observation in linear regression. Technometrics 19, 1
(1977), 15–18.

MIT CSAIL. 2024. Introduction to Flow Matching and Diffusion Models. MIT Computer Science
Class 6.S184: Generative AI with Stochastic Differential Equations. https://diffusion.
csail.mit.edu/ Accessed: March 9, 2025.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. 2023. Flow matching in latent space. arXiv
preprint arXiv:2307.08698 (2023).

Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research 7, Jan (2006), 1–30.

Li Deng. 2012. The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE signal processing magazine 29, 6 (2012), 141–142.

Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516 (2014).

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. 2022. Genie: Higher-order denoising diffusion
solvers. Advances in Neural Information Processing Systems 35 (2022), 30150–30166.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. 2016. Adversarial feature learning. arXiv
preprint arXiv:1605.09782 (2016).

Kai-Tai Fang and Chang-Xing Ma. 2001. Wrap-around L2-discrepancy of random sampling, Latin
hypercube and uniform designs. Journal of complexity 17, 4 (2001), 608–624.

Cecile Fauconnier and Gentiane Haesbroeck. 2009. Outliers detection with the minimum covariance
determinant estimator in practice. Statistical Methodology 6, 4 (2009), 363–379.

Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridharan, and Clinton Fookes.
2021. Deep learning for medical anomaly detection–a survey. ACM Computing Surveys (CSUR)
54, 7 (2021), 1–37.

Milton Friedman. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the american statistical association 32, 200 (1937), 675–701.

Salvador García, Alberto Fernández, Julián Luengo, and Francisco Herrera. 2010. Advanced
nonparametric tests for multiple comparisons in the design of experiments in computational
intelligence and data mining: Experimental analysis of power. Information sciences 180, 10 (2010),
2044–2064.

Izhak Golan and Ran El-Yaniv. 2018. Deep anomaly detection using geometric transformations.
Advances in neural information processing systems 31 (2018).

Markus Goldstein and Andreas Dengel. 2012. Histogram-based outlier score (hbos): A fast unsuper-
vised anomaly detection algorithm. KI-2012: poster and demo track 1 (2012), 59–63.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Networks.
arXiv:1406.2661 [stat.ML] https://arxiv.org/abs/1406.2661

Adam Goodge, Bryan Hooi, See-Kiong Ng, and Wee Siong Ng. 2022. Lunar: Unifying local outlier
detection methods via graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 6737–6745.

Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Prateek Jain. 2020.
DROCC: Deep robust one-class classification. In International conference on machine learning.
PMLR, 3711–3721.

12

https://diffusion.csail.mit.edu/
https://diffusion.csail.mit.edu/
https://arxiv.org/abs/1406.2661

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. 2018.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367 (2018).

Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. 2022. Adbench: Anomaly
detection benchmark. Advances in neural information processing systems 35 (2022), 32142–32159.

Sahand Hariri, Matias Carrasco Kind, and Robert J Brunner. 2019. Extended isolation forest. IEEE
transactions on knowledge and data engineering 33, 4 (2019), 1479–1489.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.
770–778.

Zengyou He, Xiaofei Xu, and Shengchun Deng. 2003. Discovering cluster-based local outliers.
Pattern recognition letters 24, 9-10 (2003), 1641–1650.

Waleed Hilal, S Andrew Gadsden, and John Yawney. 2022. Financial fraud: a review of anomaly
detection techniques and recent advances. Expert systems With applications 193 (2022), 116429.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances
in neural information processing systems 33 (2020), 6840–6851.

Heiko Hoffmann. 2007. Kernel PCA for novelty detection. Pattern recognition 40, 3 (2007),
863–874.

Kyle Hundman, Vasileios Constantinou, Cody Laporte, Ian Colwell, and Tarek Soderstrom. 2018.
Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 387–395.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas. 2021.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080
(2021).

Samira Khodabandehlou and Alireza Hashemi Golpayegani. 2024. FiFrauD: unsupervised financial
fraud detection in dynamic graph streams. ACM Transactions on Knowledge Discovery from Data
18, 5 (2024), 1–29.

Diederik P Kingma, Max Welling, et al. 2013. Auto-encoding variational bayes.

Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. 2008. Angle-based outlier detection in
high-dimensional data. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 444–452.

Guokun Lai, Yiming Zhao, Wei-Cheng Chang, Yiming Yang, and Eric P Xing. 2021. Revisiting time
series outlier detection: Robust prediction and interpretable attribution. In International Conference
on Artificial Intelligence and Statistics (AISTATS).

Longin Jan Latecki, Aleksandar Lazarevic, and Dragoljub Pokrajac. 2007. Outlier detection with
kernel density functions. In International workshop on machine learning and data mining in
pattern recognition. Springer, 61–75.

Aleksandar Lazarevic and Vipin Kumar. 2005. Feature bagging for outlier detection. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining.
157–166.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. 2006. A tutorial on
energy-based learning. Predicting structured data 1, 0 (2006).

Sangyun Lee, Beomsu Kim, and Jong Chul Ye. 2023. Minimizing trajectory curvature of ode-based
generative models. In International Conference on Machine Learning. PMLR, 18957–18973.

13

Zhong Li, Qi Huang, Lincen Yang, Jiayang Shi, Zhao Yang, Niki van Stein, Thomas Bäck, and
Matthijs van Leeuwen. 2025a. Diffusion Models for Tabular Data: Challenges, Current Progress,
and Future Directions. arXiv preprint arXiv:2502.17119 (2025).

Zhong Li, Sheng Liang, Jiayang Shi, and Matthijs van Leeuwen. 2024a. Cross-domain graph level
anomaly detection. IEEE Transactions on Knowledge and Data Engineering (2024).

Zhong Li, Jiayang Shi, and Matthijs Van Leeuwen. 2024b. Graph neural networks based log anomaly
detection and explanation. In Proceedings of the 2024 IEEE/ACM 46th International Conference
on Software Engineering: Companion Proceedings. 306–307.

Zhong Li and Matthijs van Leeuwen. 2022. Feature selection for fault detection and prediction based
on event log analysis. ACM SIGKDD Explorations Newsletter 24, 2 (2022), 96–104.

Zhong Li, Yuhang Wang, and Matthijs van Leeuwen. 2025b. Towards automated self-supervised
learning for truly unsupervised graph anomaly detection. Data Mining and Knowledge Discovery
39, 5 (2025), 1–43.

Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George H Chen. 2022. Ecod: Un-
supervised outlier detection using empirical cumulative distribution functions. IEEE Transactions
on Knowledge and Data Engineering 35, 12 (2022), 12181–12193.

Zhong Li, Yuxuan Zhu, and Matthijs Van Leeuwen. 2023. A survey on explainable anomaly detection.
ACM Transactions on Knowledge Discovery from Data 18, 1 (2023), 1–54.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. 2022. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747 (2022).

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008 eighth ieee
international conference on data mining. IEEE, 413–422.

Jiaqi Liu, Guoyang Xie, Jinbao Wang, Shangnian Li, Chengjie Wang, Feng Zheng, and Yaochu Jin.
2024. Deep industrial image anomaly detection: A survey. Machine Intelligence Research 21, 1
(2024), 104–135.

Xingchao Liu, Chengyue Gong, and Qiang Liu. 2022. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003 (2022).

Yezheng Liu, Zhe Li, Chong Zhou, Yuanchun Jiang, Jianshan Sun, Meng Wang, and Xiangnan He.
2019. Generative adversarial active learning for unsupervised outlier detection. IEEE Transactions
on Knowledge and Data Engineering 32, 8 (2019), 1517–1528.

Victor Livernoche, Vineet Jain, Yashar Hezaveh, and Siamak Ravanbakhsh. 2023. On diffusion
modeling for anomaly detection. arXiv preprint arXiv:2305.18593 (2023).

Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions.
Advances in neural information processing systems 30 (2017).

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083
(2017).

Julien Marzat, Hélène Piet-Lahanier, Frédéric Damongeot, and Eric Walter. 2012. Model-based fault
diagnosis for aerospace systems: a survey. Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of aerospace engineering 226, 10 (2012), 1329–1360.

Łukasz Maziarka, Marek Śmieja, Marcin Sendera, Łukasz Struski, Jacek Tabor, and Przemysław
Spurek. 2021. OneFlow: One-class flow for anomaly detection based on a minimal volume region.
IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 11 (2021), 8508–8519.

Matthew McDermott, Haoran Zhang, Lasse Hansen, Giovanni Angelotti, and Jack Gallifant. 2024. A
closer look at auroc and auprc under class imbalance. Advances in Neural Information Processing
Systems 37 (2024), 44102–44163.

14

Francis J Murray and Kenneth S Miller. 2013. Existence theorems for ordinary differential equations.
Courier Corporation.

Anvardh Nanduri and Lance Sherry. 2016. Anomaly detection in aircraft data using Recurrent Neural
Networks (RNN). In 2016 Integrated Communications Navigation and Surveillance (ICNS). Ieee,
5C2–1.

Peter Bjorn Nemenyi. 1963. Distribution-free multiple comparisons. Princeton University.

Minh-Nghia Nguyen and Ngo Anh Vien. 2019. Scalable and Interpretable One-Class SVMs with
Deep Learning and Random Fourier Features. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14,
2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11051). Springer International
Publishing, 157–173. doi:10.1007/978-3-030-10925-7_10

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. 2021. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR) 54, 2 (2021), 1–38.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. 2021. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research 22, 57 (2021), 1–64.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. the Journal of machine Learning research 12 (2011), 2825–2830.

Tomáš Pevnỳ. 2016. Loda: Lightweight on-line detector of anomalies. Machine Learning 102 (2016),
275–304.

Ali Rahimi and Benjamin Recht. 2007. Random features for large-scale kernel machines. Advances
in neural information processing systems 20 (2007).

Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient algorithms for mining
outliers from large data sets. In Proceedings of the 2000 ACM SIGMOD international conference
on Management of data. 427–438.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark DePristo, Joshua Dillon, and
Balaji Lakshminarayanan. 2019. Likelihood ratios for out-of-distribution detection. In Advances in
Neural Information Processing Systems (NeurIPS). 14680–14691.

Danilo Rezende and Shakir Mohamed. 2015. Variational inference with normalizing flows. In
International conference on machine learning. PMLR, 1530–1538.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i trust you?" Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. 1135–1144.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep one-class classification. In International
conference on machine learning. PMLR, 4393–4402.

Edin Šabić, David Keeley, Bailey Henderson, and Sara Nannemann. 2021. Healthcare and anomaly
detection: using machine learning to predict anomalies in heart rate data. Ai & Society 36, 1 (2021),
149–158.

Mayu Sakurada and Takehisa Yairi. 2014. Anomaly detection using autoencoders with nonlinear
dimensionality reduction. In Proceedings of the MLSDA 2014 2nd workshop on machine learning
for sensory data analysis. 4–11.

Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. 2017. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide
Marker Discovery. In Information Processing in Medical Imaging, Marc Niethammer, Martin
Styner, Stephen Aylward, Hongtu Zhu, Ipek Oguz, Pew-Thian Yap, and Dinggang Shen (Eds.).
Springer International Publishing, Cham, 146–157.

15

https://doi.org/10.1007/978-3-030-10925-7_10

Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. 1999.
Support vector method for novelty detection. Advances in neural information processing systems
12 (1999).

Tom Shenkar and Lior Wolf. 2022. Anomaly detection for tabular data with internal contrastive
learning. In International conference on learning representations.

Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang. 2003. A novel anomaly
detection scheme based on principal component classifier. In Proceedings of the IEEE foundations
and new directions of data mining workshop. IEEE Press Piscataway, NJ, USA, 172–179.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. 2020. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456 (2020).

Mahito Sugiyama and Karsten Borgwardt. 2013. Rapid distance-based outlier detection via sampling.
Advances in neural information processing systems 26 (2013).

Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. 2002. Enhancing effectiveness
of outlier detections for low density patterns. In Advances in knowledge discovery and data mining:
6th Pacific-Asia conference, PAKDD 2002 Taipei, Taiwan, May 6–8, 2002 proceedings 6. Springer,
535–548.

David MJ Tax and Robert PW Duin. 2004. Support vector data description. Machine learning 54
(2004), 45–66.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems 30 (2017).

Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. 2023a. Deep isolation forest for
anomaly detection. IEEE Transactions on Knowledge and Data Engineering 35, 12 (2023),
12591–12604.

Hongzuo Xu, Yijie Wang, Juhui Wei, Songlei Jian, Yizhou Li, and Ning Liu. 2023b. Fascinating
supervisory signals and where to find them: Deep anomaly detection with scale learning. In
International Conference on Machine Learning. PMLR, 38655–38673.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin
Cui, and Ming-Hsuan Yang. 2023. Diffusion models: A comprehensive survey of methods and
applications. Comput. Surveys 56, 4 (2023), 1–39.

Jiaxin Yin, Yuanyuan Qiao, Zitang Zhou, Xiangchao Wang, and Jie Yang. 2024. Mcm: Masked
cell modeling for anomaly detection in tabular data. In The Twelfth International Conference on
Learning Representations.

Jianbo Yu and Yue Zhang. 2023. Challenges and opportunities of deep learning-based process fault
detection and diagnosis: a review. Neural Computing and Applications 35, 1 (2023), 211–252.

Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay Chandrasekhar. 2018.
Adversarially learned anomaly detection. In 2018 IEEE International conference on data mining
(ICDM). IEEE, 727–736.

Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. PyOD: A Python Toolbox for Scalable Outlier
Detection. Journal of Machine Learning Research 20, 96 (2019), 1–7. http://jmlr.org/
papers/v20/19-011.html

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. 2023. Improved techniques for maximum
likelihood estimation for diffusion odes. In International Conference on Machine Learning. PMLR,
42363–42389.

Chong Zhou and Randy C Paffenroth. 2017. Anomaly detection with robust deep autoencoders. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 665–674.

16

http://jmlr.org/papers/v20/19-011.html
http://jmlr.org/papers/v20/19-011.html

Leixin Zhou, Wenxiang Deng, and Xiaodong Wu. 2020. Unsupervised anomaly localization using
VAE and beta-VAE. arXiv preprint arXiv:2005.10686 (2020).

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. 2018. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In
International conference on learning representations.

17

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state that the proposed anomaly detection algorithm addresses
major limitations of existing generative-model-based approaches, including scalability (in
both training and inference), explainability, and provability. These claims are supported by
theoretical analysis and an extensive empirical benchmark study.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We outline three limitations of this work in Appendix D.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [Yes]
Justification: All propositions in the paper are accompanied by well-motivated and clearly
stated assumptions, along with complete and correct proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a self-contained description of the proposed algorithm and
experimental setup, including all necessary details to reproduce the main results. Addition-
ally, we provide open-source implementations via an anonymous online repository to further
support reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

19

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The main experimental results are based on an open-source benchmark (AD-
Bench), and we provide open-source code with sufficient instructions to ensure faithful
reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides extensive details of the experimental setup. Additional
specifics are included in the appendix to ensure clarity and reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance tests in Appendix D.5 for our main conclu-
sions, and error bars (in terms of standard deviations) are given on each table and figure
(when applicable).

Guidelines:

• The answer NA means that the paper does not include experiments.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of the computing resources used for all experiments, including hardware
specifications and runtime, are provided in Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that all aspects of our research comply with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

21

https://neurips.cc/public/EthicsGuidelines

Justification: Although this paper presents fundamental research in anomaly detection
methodology for tabular data and does not involve specific applications or deployments
that would raise direct societal concerns, we still outline possible impacts of this work in
Appendix D.6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in this work, including datasets, code, and models,
have been properly credited, and their licenses and terms of use have been appropriately
respected.

Guidelines:

22

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code, along with clear usage instructions, will be released under
the MIT license to support reproducibility and ease of use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

23

paperswithcode.com/datasets

Justification: This work does not involve research with human subjects; therefore, IRB
approval was not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models (LLMs) were not used as part of the core methods in
this research; their use was limited to minor editing and polishing of text.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents

A Related Work

A.1 Anomaly Detection Methods
A.1.1 One-Class Classification Methods
A.1.2 Generative based Approaches
A.1.3 Reconstruction-based Methods
A.1.4 Self-Supervised based Methods and Other Miscellaneous Methods

A.2 Generative Models

B Experiment setups

B.1 Datasets
B.2 Baselines
B.3 Configurations
B.4 Evaluation Metrics
B.5 Pseudo-code of TCCM

C Property Analysis

C.1 Relation to Flow Matching and Diffusion Modeling
C.2 Anomaly Score Expectation under Distributional Shift

D Full Results and Analysis

D.1 Full Analysis of Effectiveness
D.2 Full Analysis of Scalability
D.3 Ablation Studies and Sensitivity Analysis: Full Results and Analysis
D.4 Empirical Studies on Robustness and Interpretability
D.5 Statistical Tests
D.6 Limitations and Broader Impacts

E Results under the Inductive Evaluation Setting

A Related Work

A.1 Anomaly Detection Methods

Unsupervised VS Semi-Supervised. Labeled anomalies are often scarce in practice, as they typically
correspond to rare and costly events—such as aerospace system crashes (Marzat et al., 2012; Nanduri
and Sherry, 2016), faults in industrial systems (Li and van Leeuwen, 2022; Li et al., 2024b), financial
fraud (Hilal et al., 2022; Khodabandehlou and Golpayegani, 2024), or critical health incidents
(Šabić et al., 2021; Fernando et al., 2021). As a result, anomaly detection is commonly framed
as an unsupervised or semi-supervised task. Compared to supervised settings, most unsupervised
approaches face a fundamental challenge: the absence of labeled input-output pairs renders standard
regression or classification techniques inapplicable (Liu et al., 2022). Anomaly detection inherits
this difficulty, requiring alternative methods to detect abnormality without explicit supervision. To
address this, many recent deep learning-based anomaly detection approaches adopt a semi-supervised
setting (or one-class classification), where the training data consists exclusively of normal instances,
which are relatively easier to collect. The underlying principle is that a model trained solely on
normal data should learn only normal patterns. When evaluated on test data containing both normal
and anomalous instances, those deviating from the learned normal patterns are expected to exhibit
larger fitting errors (e.g., reconstruction errors (An and Cho, 2015; Zong et al., 2018), prediction
residuals (Lai et al., 2021; Hundman et al., 2018), or likelihood-based scores (Zenati et al., 2018;
Ren et al., 2019)), leading to higher anomaly scores. Although many works refer to this setup as
unsupervised anomaly detection, we use the term semi-supervised anomaly detection for conceptual
clarity and rigor. This setting is widely adopted in recent deep learning-based anomaly detection

25

studies such as DeepSVDD (Ruff et al., 2018), VAE (An and Cho, 2015), GANomaly (Akcay et al.,
2018), ALAD (Zenati et al., 2018).

Shallow vs. Deep. Shallow methods refer to classical anomaly detection approaches that do not
rely on neural networks. Representative examples include One-Class SVM (OCSVM) (Schölkopf
et al., 1999), Support Vector Data Description (SVDD) (Tax and Duin, 2004), Kernel Density
Estimation (KDE) (Latecki et al., 2007), Isolation Forest (IForest) (Liu et al., 2008), and distance-
based methods such as k-Nearest Neighbors (KNN) (Angiulli and Pizzuti, 2002), Local Outlier
Factor (LOF) (Breunig et al., 2000), and Connectivity-based Outlier Factor (COF) (Tang et al., 2002).
Kernel-based methods often suffer from poor scalability, as they require constructing large kernel
matrices and storing support vectors during inference (Ruff et al., 2018). IForest, while efficient
in low dimensions, tends to degrade in high-dimensional settings due to its reliance on random
projections and axis-aligned splits, which may fail to capture meaningful structure in complex data.
Similarly, KNN-based methods are sensitive to the curse of dimensionality, where distance metrics
lose discriminative power, and their computational complexity scales poorly with dataset size. Overall,
these limitations have motivated the development of deep learning-based anomaly detection methods,
which can better handle large-scale and high-dimensional data by learning expressive representations.

Deep learning-based anomaly detection methods can be broadly categorized into two groups Ruff
et al. (2018): (1) two-stage approaches, which utilize neural networks to learn feature representations,
followed by classical anomaly detection algorithms applied to these representations; and (2) end-to-
end trained approaches, which integrate representation learning and anomaly detection objectives
within a unified deep learning framework. This paper focuses on the latter category, which has received
increasing attention due to its potential for end-to-end optimization and adaptability to complex data
modalities. We structure our review around four major lines of end-to-end trained approaches: (i)
one-class classification paradigms (e.g., Deep SVDD), (ii) generative based models (e.g., GANs-
based methods, VAEs-based methods, diffusion models-based methods),(iii) reconstruction-based
methods (e.g., autoencoders), and (iv) emerging variants including self-supervised based methods,
graph-based methods, and hybrid models. For each group, we review some representative methods
and highlight their respective limitations in the following.

A.1.1 One-Class Classification Methods

This line of work draws inspiration from classical one-class classification, such as Support Vector
Data Description (SVDD) (Tax and Duin, 2004). For instance, Deep SVDD (Ruff et al., 2018) and its
variants train a neural network to map normal data into a compact region in latent space, typically
minimizing the distance to a center point or hypersphere. Anomalies are then identified based on their
deviation from this learned region. Other examples include AE-1SVM (Nguyen and Vien, 2019),
Deep Robust One-Class Classification (DROCC) (Goyal et al., 2020), OneFlow (Maziarka et al.,
2021), and they will be reviewed in more details as follows.

DeepSVDD (Ruff et al., 2018). They train a neural network to learn a hypersphere of minimum
volume to enclose the embeddings of normal instances, while the embeddings of abnormal instances
tend to lie outside the hypersphere. However, it may suffer from the problem of hypersphere collapse,
where the hypersphere collapses to a single point. To alleviate this collapse problem, they authors
propose that: 1) all-zero-weights solution cannot be used for the center of hypersphere, 2) only
unbounded activations should be used, and 3) bias terms need to be omitted, which may lead to
sub-optimal feature representation as bias terms are mandatory to shift activation values in neural
networks. In contrast, our method TCCM deliberately learns to flow to such a “collapsed" single
point, without suffering from any model collapse problem. Moreover, we operate on the input space
without learning an explicit latent space, maintaining the explainability of anomaly scores.

AE-1SVM (Nguyen and Vien, 2019). They combine autoencoder (for representation learning)
with OCSVM (for anomaly detection) in an end-to-end training manner. Moreover, they extend
gradient-based attribution methods to analyze the contribution of input features on anomaly scores.
Particularly, to solve the scalability issues with kernel machines (which has a complexity of O(N2)
with N the number of samples) in the original SVM, they employ random Fourier features (Rahimi
and Recht, 2007) to approximate the kernel function. They also point out that “the biggest issue of
OCSVM is their (poor) capability to handle large and high-dimensional datatsets due to optimization
complexity."

26

DROCC (Goyal et al., 2020). They assume that instances from the normal class lie on a locally
linear low dimensional manifold, which is well-sampled in the training data. A test instance is
considered as anomalous if it is outside the union of small l2 balls around the typical normal instances.
Particularly, they convert the anomaly detection problem from an unsupervised learning setting
to supervised setting as follows: they first generate synthetic anomalous instances (based on the
above assumption) to add into the training set, and then train a supervised classifier to distinguish
the embeddings of synthetical anomalous instances and those of typical normal instances. This
method is robust to representation collapse as mapping all instances into a single point will lead
to poor classification results. This method is applicable to tabular data, image, time series, audio,
etc. DROCC’s optimization is formulated as a saddle point problem, which is solved using standard
gradient descent-ascent algorithm (which may be unstable like in adversarial training).

OneFlow (Maziarka et al., 2021). They introduce a one-class anomaly detection method based on
NICE flows (Dinh et al., 2014), a type of normalizing flow with a volume-preserving transformation
(i.e., constant Jacobian determinant). The core idea is to learn an invertible transformation that
maps nominal data to a latent space, and then fit a minimal-volume hypersphere that encloses a fixed
proportion of the mapped points. Anomalies are detected based on their distance from the hypersphere
center. This approach avoids full density estimation and focuses on directly modeling the support of
normal data. A Bernstein polynomial estimator is used to ensure smooth quantile estimation, and
the training loss only depends on boundary-adjacent points—resembling support vector behavior.
While effective in modeling low-density support, OneFlow has several limitations compared to flow
matching methods: the use of volume-preserving flows like NICE limits the expressivity of the
learned transformation and the capacity to model complex data distributions.

A.1.2 Generative based Approaches

Generative models, particularly those based on Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014), have been widely adapted for anomaly detection by learning to approximate
the distribution of normal data (Schlegl et al., 2017; Akcay et al., 2018). These methods typically
detect anomalies by measuring reconstruction error, discriminator scores, or deviations in latent space,
leveraging GANs’ capacity to generate realistic high-dimensional samples. Variational Autoencoders
(VAEs) (Kingma et al., 2013) offer an alternative probabilistic formulation, modeling normality
via reconstruction likelihood and latent priors. More recently, denoising diffusion probabilistic
models (DDPMs) (Ho et al., 2020) have been applied to anomaly detection, often by reconstructing
inputs through reverse diffusion trajectories and using the reconstruction residual as an anomaly
score (Livernoche et al., 2023). However, such models often suffer from high inference latency
due to the iterative nature of reverse sampling. Most notably, a newer class of generative models
known as flow matching (Lipman et al., 2022; Albergo and Vanden-Eijnden, 2023; Liu et al., 2022)
has recently emerged as a powerful and stable alternative to diffusion models. Despite its strong
theoretical foundation and demonstrated success in generative modeling, flow matching has not yet
been systematically explored for anomaly detection, especially in the tabular setting. This leaves a
promising research gap, motivating our development of a flow matching-inspired framework tailored
specifically to the needs of semi-supervised anomaly detection.

AnoGAN (Schlegl et al., 2017). This is the first work to employ GANs for anomaly detection.
Specifically, they first utilize only normal instances to train a GAN model (including a generator and
a discriminator). At test time, given a query image x, they iteratively search for a latent embedding z
such that the generated image G(z) closely resembles x and lies on the learned data manifold. This is
done by minimizing a joint loss consisting of a residual loss and a discrimination loss through Γ steps
of backpropagation. However, such per-instance optimization leads to a high inference cost, making
the method less practical for real-time applications. To quantify the abnormality of a test sample,
AnoGAN defines an anomaly score as a weighted sum of the residual loss and the discrimination
loss obtained after Γ optimization steps in the latent space. Specifically, the residual loss captures
the pixel-wise difference between the input image x and the generated image G(zΓ), while the
discrimination loss measures how well the generated image fits on the learned data manifold. A high
anomaly score indicates poor reconstruction and/or low likelihood under the discriminator, both of
which suggest the input is dissimilar to the normal training distribution. In addition to scalar scoring,
AnoGAN also provides visual explanation by computing a residual image xR = |x − G(zΓ)|,
highlighting regions that contribute most to the anomaly.

27

ALAD (Zenati et al., 2018). They propose Adversarially Learned Anomaly Detection (ALAD), a
reconstruction-based GAN framework tailored for efficient unsupervised anomaly detection. Unlike
earlier methods such as AnoGAN that require costly per-instance optimization during inference,
ALAD incorporates an encoder network that directly maps inputs to the latent space, enabling fast, one-
pass anomaly scoring. The model builds upon the BiGAN framework (Donahue et al., 2016) by jointly
training a generator, discriminator, and encoder, with additional cycle-consistency regularizations to
enforce accurate reconstruction. Specifically, it introduces two auxiliary discriminators to enforce
consistency in both data and latent spaces, improving the quality of reconstructions. To detect
anomalies, ALAD defines an anomaly score based on the feature difference between the input and its
reconstruction, extracted from an intermediate layer of the discriminator operating on sample pairs.
This feature-level distance serves as a more robust indicator than raw pixel differences, especially for
high-dimensional data. While ALAD achieves fast inference and strong performance, it relies on
adversarially balancing multiple networks and loss components during training, which may introduce
stability challenges and increased complexity compared to simpler reconstruction-based approaches.

GANomaly (Akcay et al., 2018). It is a representative GAN-based anomaly detection framework that
enhances vanilla GANs by incorporating an explicit encoder–decoder structure. Instead of relying
on latent space search at test time, GANomaly introduces a dual-encoder architecture to enable
efficient, feedforward inference. During training, only normal data are used to train a generator
network composed of an encoder and decoder (G = GD ◦GE), which learns to reconstruct the input
images. In parallel, a second encoder E is trained to map the reconstructed images back into the latent
space. The key assumption is that, for normal samples, the original and reconstructed latent vectors
(z = GE(x) and ẑ = E(G(x))) should be close, whereas for anomalous inputs, their discrepancy
will be larger. The training objective combines three losses: (i) a contextual loss that encourages
pixel-wise similarity between input and reconstruction, (ii) a feature matching loss computed from
intermediate discriminator activations to stabilize adversarial learning, and (iii) a latent encoder loss
that penalizes the difference between z and ẑ. At test time, the anomaly score is defined based solely
on the latent distance A(x) = |GE(x)−E(G(x))|1, allowing for fast, one-pass anomaly detection
without the iterative inference used in methods like AnoGAN. While GANomaly achieves a good
trade-off between accuracy and efficiency, it has two notable limitations. First, its anomaly score
depends entirely on the latent discrepancy, which may be vulnerable to representation collapse or
ambiguous reconstructions. Second, the three-part loss requires balancing multiple objectives, and
tuning the corresponding weights without labeled data can be challenging in unsupervised settings.

SO-GAAL and MO-GAAL (Liu et al., 2019) . They propose two GAN-based outlier detection
methods that approach anomaly detection as an adversarial learning process. In Single-Objective
Generative Adversarial Active Learning (SO-GAAL), a generator is trained to synthesize informative
potential outliers, while a discriminator attempts to distinguish these from the real data. This adver-
sarial interplay gradually improves the quality of the generated outliers, enabling the discriminator to
carve a tighter decision boundary around normal data. However, SO-GAAL may suffer from mode
collapse and performance degradation once the generator overfits the data manifold. To address
this, the authors further propose Multiple-Objective GAAL (MO-GAAL), which introduces multiple
sub-generators, each responsible for generating outliers relative to a specific subset of the data. By
doing so, MO-GAAL builds a more diverse and comprehensive reference distribution, allowing the
discriminator to maintain stable and accurate detection even when dealing with multi-modal or high-
dimensional data. Both approaches ultimately compute an outlier score based on the discriminator’s
output, with higher scores indicating greater deviation from the learned normal distribution.

VAE (Kingma et al., 2013). They introduce a principled probabilistic framework for learning latent
representations via a variational autoencoder. For anomaly detection, the VAE is trained solely
on normal instances, learning to encode data into a low-dimensional latent space and reconstruct
inputs through a decoder (An and Cho, 2015; Zhou et al., 2020). During training, the model jointly
minimizes a reconstruction loss and a KL divergence regularizer, which encourages the latent codes
to follow a standard Gaussian prior. At test time, given a new input x, the model produces a
reconstructed sample x̂ by encoding and decoding it through the learned latent space. The anomaly
score is then computed based on the reconstruction error, typically using an ℓ2 distance between
x and x̂. Since the model is trained to reconstruct normal patterns well, higher reconstruction
errors suggest that the input deviates from the normal data distribution. Compared to GAN-based
approaches like AnoGAN, VAE offers faster inference as no iterative optimization is required at
test time, making it more practical for real-time applications. However, the generative quality of

28

VAEs is often inferior to GANs, especially when dealing with complex or high-dimensional data. In
some cases, even anomalous inputs can be reconstructed with low error, leading to false negatives.
Furthermore, the balance between reconstruction fidelity and latent regularization (e.g., via the KL
term or the β coefficient in β-VAE) is sensitive, and improper tuning may lead to posterior collapse
or over-regularization, which degrades anomaly detection performance.

DTE (Livernoche et al., 2023). They propose a novel use of diffusion processes for anomaly
detection by predicting the noise level—or diffusion timestep—associated with an input sample. The
core intuition is that normal instances lie close to the data manifold and hence resemble samples
with low diffusion noise, while anomalies lie further away and mimic samples diffused with stronger
noise. During training, DTE simulates noisy samples via a predefined forward diffusion process
(e.g., variance-preserving), and learns a neural network to regress or classify the corresponding
diffusion time, using only normal data. At test time, inputs that are harder to explain as low-noise
samples receive higher predicted diffusion times and are flagged as anomalies. Notably, this approach
avoids learning the full reverse process as in DDPMs and instead frames anomaly detection as
a diffusion time estimation task. However, DTE—particularly its non-parametric variant—faces
major scalability bottlenecks. DTE-NonParametric estimates the diffusion time of a test sample by
computing a posterior over all training points, using distance-based kernel density approximations.
This requires comparing each test input against a large training set, making inference prohibitively
slow for high-volume or high-dimensional data. Moreover, the diffusion process used to synthesize
training data adds to the overall preprocessing overhead, limiting DTE’s suitability for real-time or
resource-constrained settings. Despite its strong detection performance, these computational costs
hinder its broad applicability in large-scale anomaly detection pipelines.

A.1.3 Reconstruction-based Methods

Reconstruction-based methods constitute a major paradigm in anomaly detection. The central idea is
that models trained to accurately reconstruct normal data will fail to do so for anomalous inputs, which
typically deviate from the learned data manifold. The reconstruction error—measured in input space
or latent space—is then used as an anomaly score. Among the most widely used reconstruction-based
models are Autoencoders (AEs) and their variants (Sakurada and Yairi, 2014; Zhou and Paffenroth,
2017). These models learn compact representations through a bottleneck architecture and are trained
to minimize the reconstruction loss on normal data. Anomalies are expected to produce larger
reconstruction errors due to their poor alignment with the learned representation space. Variational
Autoencoders (VAEs) (An and Cho, 2015) further extend this idea by introducing a probabilistic
latent space, allowing uncertainty-aware reconstructions.

Beyond classical AEs, many generative models also incorporate reconstruction-based objectives. For
example, GAN-based methods such as GANomaly (Akcay et al., 2018) and ALAD (Zenati et al.,
2018) utilize an encoder–decoder–discriminator pipeline, where anomaly scores are derived from
reconstruction fidelity or latent-space consistency. Similarly, recent diffusion-based methods (Liver-
noche et al., 2023) detect anomalies by reconstructing inputs through reverse diffusion trajectories.
As other methods have been (or will be) reviewed in other parts, we will review a representative
reconstruction-based approach, DAGMM (Zong et al., 2018), in the following.

DAGMM (Zong et al., 2018). They propose the Deep Autoencoding Gaussian Mixture Model
(DAGMM), a unified deep framework for unsupervised anomaly detection that jointly learns low-
dimensional representations and density estimation. Specifically, DAGMM integrates two key
components: a compression network, which is a deep autoencoder producing both latent features and
reconstruction error metrics; and an estimation network, which models a Gaussian Mixture Model
(GMM) over the concatenated features to estimate sample energy (i.e., negative log-likelihood). To
avoid traditional two-step training, DAGMM jointly optimizes the autoencoder and the GMM via a
shared objective that includes reconstruction loss, sample energy, and a regularization term to prevent
degenerate covariance matrices. During inference, an anomaly score is computed as the energy of
a test sample under the learned GMM, with higher energy indicating greater anomaly likelihood.
Unlike conventional approaches that rely only on reconstruction error or pre-trained representations,
DAGMM is trained end-to-end, enabling the autoencoder to adapt its compression strategy in favor of
improved density estimation. This results in enhanced ability to detect subtle or "lurking" anomalies
that might not have high reconstruction errors but reside in low-density regions. One limitation
of DAGMM is that its network configuration—such as the number of mixture components in the
GMM, and the architectures of the compression and estimation networks—needs to be selected in a

29

data-dependent manner. These choices often require dataset-specific tuning, which may affect the
model’s ease of deployment and generalizability across tasks.

Limitations of Autoencoders. Autoencoders are typically trained to reconstruct the input data while
enforcing an intermediate low-dimensional representation, which acts as an information bottleneck
to encourage the neural network to extract salient features from the training data. In the context
of semi-supervised anomaly detection, this promotes learning the underlying factors of variation
shared among normal instances. However, since autoencoders do not directly optimize for anomaly
detection, their effectiveness heavily depends on how well the latent space captures relevant structure
in the data. In particular, the choice of latent dimensionality becomes critical: if it is too high, the
model may simply memorize the input; if it is too low, essential information may be lost. This
hyperparameter is often data-dependent and difficult to tune due to the unsupervised nature of the
task and the challenges in estimating the intrinsic dimensionality of the data (Bengio et al., 2013).

A.1.4 Self-Supervised based Methods and Other Miscellaneous Methods

Recent studies explore alternative deep paradigms for anomaly detection, including self-supervised
learning-based methods such as GOAD (Bergman and Hoshen, 2020), ICL (Shenkar and Wolf, 2022),
SLAD (Xu et al., 2023b), and MCM (Yin et al., 2024), graph neural network-based method such as
LUNAR (Goodge et al., 2022), and hybrid models such as DIF (Xu et al., 2023a) that combine deep
feature learning with traditional detectors. They will be reviewed in more detail as follows.

GOAD (Bergman and Hoshen, 2020). They introduce a classification-based approach for anomaly
detection that unifies one-class and transformation-based paradigms. It first applies a set of M
geometric or affine transformations to each normal training instance and learns a shared feature
extractor f that maps transformed inputs to a representation space. Each transformed variant
is encouraged to cluster around a distinct center using a triplet-style loss, promoting intra-class
compactness and inter-class separation. At inference, GOAD computes the transformation prediction
likelihood for each transformed test instance and aggregates these into a final anomaly score: samples
that are poorly aligned with any learned transformation subspace are considered anomalous. Unlike
earlier transformation-based methods (e.g., GEOM (Golan and El-Yaniv, 2018)) that suffer from
unreliable extrapolation to unseen anomalies, GOAD regularizes prediction confidence on out-of-
distribution regions and generalizes to non-image data via learnable affine transformations. However,
GOAD’s effectiveness heavily depends on the quality and diversity of the transformations used,
and its performance is sensitive to the choice of the number of transformations M , which must be
manually specified and tuned per dataset—potentially limiting its practicability across domains.

ICL (Shenkar and Wolf, 2022). They introduce a novel approach to anomaly detection in tabular
data by leveraging contrastive learning on internal feature partitions. Unlike methods that depend on
external transformations or assume data structure (e.g., spatial correlations in images), ICL operates
under the premise that dependencies among feature subsets are class-specific. Specifically, given
a single-class training set, the method slides a window of size k over each input vector x ∈ Rd to
generate a set of m = d− k + 1 paired sub-vectors (aj , bj), where aj is a segment of k consecutive
features and bj is its complement. Two neural networks G and F embed aj and bj , respectively, into
a shared latent space Ru, trained to maximize mutual information between matching pairs via a noise
contrastive loss. At test time, the anomaly score for a sample x is defined as the sum of contrastive
losses across all j, directly measuring how class-consistent its internal structure is under the learned
embeddings. Importantly, the method is interpretable by design: the local loss for each feature subset
allows pinpointing which attributes contribute most to an anomaly. While hyperparameters such as
the window size k and latent dimension u must be set (in a data-dependent way), empirical evidence
shows that performance is robust across a wide range of values, and no dataset-specific tuning is
required.

SLAD (Xu et al., 2023b). They propose Scale Learning-based Anomaly Detection (SLAD), a self-
supervised framework for tabular anomaly detection that avoids reliance on reconstruction losses.
SLAD introduces a novel supervision signal—scale—which quantifies the relationship between
subspace dimensionality and representation complexity. Specifically, it samples subspaces of each
input, maps them to fixed-length representations, and defines scale labels to supervise the learning of
a ranking function via distribution alignment. During inference, anomaly scores are computed by
measuring the divergence between predicted and target scale distributions, based on the assumption
that normal samples produce more consistent and predictable scales. Despite its conceptual novelty

30

and strong empirical performance, SLAD presents several limitations. First, the generation of scale
labels and the assumption that anomalies inherently exhibit scale inconsistencies may not hold
uniformly across datasets or domains, particularly when anomalies are subtle or lie near the decision
boundary. Second, SLAD’s reliance on distribution alignment adds algorithmic complexity and
hyperparameter sensitivity, which may impact robustness in practical deployment. Finally, while the
model is self-supervised, its interpretability remains limited, as the learned scale concept is abstract
and may not directly correspond to human-understandable explanations.

MCM (Yin et al., 2024). This is a novel self-supervised framework for anomaly detection in tabular
data. Inspired by masked modeling techniques in NLP and vision (e.g., BERT and MAE), MCM
learns to reconstruct randomly masked subsets of input features using only the unmasked portions.
The core hypothesis is that normal instances exhibit strong internal feature correlations, which the
model can learn to reconstruct effectively—while anomalies violate such correlations, leading to
higher reconstruction error. To enhance robustness, MCM introduces a learnable masking strategy
that dynamically generates multiple soft masks per instance. These masks are trained end-to-end via a
mask generator network. A diversity loss is used to ensure that different masks capture complementary
correlations among features, thereby improving the model’s discriminative power. The final anomaly
score is computed as the average reconstruction error across all masked versions. Compared to prior
methods such as contrastive learning (e.g., ICL), which often rely on engineered transformations,
MCM provides a more data-driven and flexible mechanism to capture normality. Moreover, the
ensemble of masks makes the method more expressive while maintaining a lightweight architecture
based on an encoder-decoder MLP. MCM also offers interpretability through both per-mask and
per-feature contributions, facilitating insight into which correlations are violated by a given anomaly.

LUNAR (Goodge et al., 2022). They propose a local outlier detection framework based on graph
neural networks (GNNs) with learnable message aggregation. Instead of relying on raw feature
vectors, LUNAR constructs a k-nearest neighbor graph from the training data and uses pairwise
distances as edge features. A single-layer GNN is trained to distinguish normal points from synthetic
negative samples by aggregating the distance vector from each node’s neighborhood. This design
enables the model to learn a parametric anomaly scoring function that adapts better than classical
non-trainable local methods such as LOF or KNN. Negative samples are generated using a mix
of uniform sampling and feature-space perturbation, which prevents the model from collapsing to
trivial solutions. While LUNAR demonstrates strong empirical performance, its reliance on k-NN
graph construction introduces scalability challenges in high-dimensional settings, where distance
metrics become less meaningful. Moreover, because it avoids using raw features and instead encodes
distance information through a learnable aggregation function, it can incur additional computational
cost in preprocessing and training—especially on large-scale datasets with many neighbors per
node. As the nearest neighbor graph must be recomputed for each new input distribution and all
neighborhood distances are fed into the model, the method may be less suitable for real-time or
streaming applications compared to embedding-based approaches.

DIF (Xu et al., 2023a). They propose the Deep Isolation Forest (DIF), a scalable anomaly detection
method that extends isolation-based techniques by incorporating random deep representations. Instead
of applying axis-aligned splits on raw features (as in iForest (Liu et al., 2008)), DIF first transforms
input data into multiple representation spaces using randomly initialized, optimization-free neural
networks. These transformations enable nonlinear partitioning in the original space via simple
axis-parallel cuts in the projected space. To ensure efficiency, DIF introduces a computation-efficient
ensemble mechanism (CERE) that allows all ensemble members to be computed simultaneously
in a mini-batch. For scoring, DIF further proposes a deviation-enhanced anomaly scoring function
(DEAS) that combines traditional path length with deviation from split thresholds to reflect local
density and isolation difficulty. The authors show that DIF generalizes both iForest and Extended
Isolation Forest (EIF) (Hariri et al., 2019), while preserving linear scalability and offering stronger
expressive power. However, DIF relies heavily on the randomness and diversity of representations
for performance, which may lead to instability without sufficient ensemble size or structure-aware
initialization.

A.2 Generative Models

Generative models span a broad spectrum of paradigms, including energy-based models (LeCun
et al., 2006), variational autoencoders (VAEs) (An and Cho, 2015), generative adversarial networks

31

(GANs) (Goodfellow et al., 2014), normalizing flows (Papamakarios et al., 2021), autoregressive
models (e.g., Transformers (Vaswani et al., 2017)), diffusion models (Ho et al., 2020), and the more
recent flow matching framework (Lipman et al., 2022; Albergo and Vanden-Eijnden, 2023; Liu et al.,
2022). While each of these approaches offers unique modeling capabilities, we focus our discussion
on flow matching, as it is most directly relevant to the methodology developed in this paper.

GANs and Diffusion Models. Generative adversarial networks (GANs) (Goodfellow et al., 2014)
have long been the de facto choice for high-fidelity image generation, but diffusion models have
recently surpassed them in terms of mode coverage and conditional flexibility. Despite their ef-
fectiveness, diffusion models (Yang et al., 2023) are notoriously computationally intensive, often
requiring hundreds of iterative denoising steps to generate a single sample. This has spurred efforts
to accelerate training and inference (Dockhorn et al., 2022; Jolicoeur-Martineau et al., 2021); how-
ever, many of these approaches still suffer from slow convergence and rely on carefully constructed
probability paths, which limit scalability on high-dimensional or large-scale datasets (Dao et al.,
2023). Particularly, there is a recent survey paper on diffusion models for tabular data (Li et al.,
2025a), which systematically reviewed existing diffusion models for tabular data modeling (including
anomaly detection).

Normalizing Flows and Continuous Normalizing Flows. Continuous normalizing flows
(CNFs) (Chen et al., 2018; Grathwohl et al., 2018) model invertible transformations between distribu-
tions using neural ordinary differential equations (ODEs). While theoretically elegant, training such
models is computationally intensive, as it involves solving ODEs during each forward and backward
pass, making scalability a major bottleneck. To overcome this, recent works on flow matching (Al-
bergo and Vanden-Eijnden, 2023; Lipman et al., 2022; Liu et al., 2022) propose simulation-free
alternatives that avoid explicit trajectory integration. Inspired by ideas from score-based diffusion
models, these methods enable more efficient training of CNFs by directly learning velocity fields
without solving full ODE systems.

Flow Matching. Flow matching has emerged as a promising alternative that inherits many of the
desirable properties of diffusion models—such as robustness and expressivity—while avoiding their
main drawbacks. Rather than relying on stochastic differential equations (SDEs), flow matching
learns an ordinary differential equation (ODE) that deterministically maps samples from a source
distribution ρ0 (ρsource) to a target distribution ρ1 (ρtarget). This shift from stochastic to deterministic
dynamics leads to lower curvature in generative trajectories, which translates into improved stability,
faster sampling, and easier optimization (Liu et al., 2022; Lee et al., 2023). The simplicity of its
training framework also facilitates broader adoption in settings where computational efficiency is
critical. Beyond efficiency, flow matching offers notable modeling flexibility and interpretability.
It eliminates the need for a forward diffusion process, and training can be performed by directly
matching vector fields between arbitrary distributions (CSAIL, 2024; Albergo and Vanden-Eijnden,
2023). This generality stands in contrast to denoising diffusion models, which often assume Gaussian
base distributions and Gaussian interpolants. In addition, the interpolant formulation of flow matching
allows evaluation of intermediate densities ρt at arbitrary time points t ∈ [0, 1], enabling empirical
inspection of the learned velocity field throughout the trajectory (Albergo and Vanden-Eijnden, 2023).
Although this capability may not always be required—e.g., in anomaly detection we often focus only
on the terminal velocity at t = 1—it enhances interpretability. Lastly, because flow matching only
requires samples from the source and target distributions (not their explicit densities), it is particularly
well-suited to scenarios with implicit or intractable data distributions.

Difference from Generative Models. While the main objective of normalizing flows (Rezende and
Mohamed, 2015) or flow matching (Lipman et al., 2022) is to transform a simple initial distribu-
tion into a complex, often multimodal, target distribution—either through a sequence of invertible
mappings (in the case of normalizing flows) or via velocity fields (in flow matching)—our focus, by
contrast, is on measuring the distance to the target distribution after applying the learned one step
velocity field (at any given time). Importantly, this target distribution is a degenerate distribution,
which stands in stark contrast to the typical emphasis in generative modeling on the validity and
richness of the target distribution.

32

B Experiment setups

B.1 Datasets

A summary of the datasets used in our study is provided in Table 1. We adopt 47 benchmark
datasets from the well-established ADBENCH benchmark (Han et al., 2022), spanning diverse
domains including sociology, finance, linguistics, physics, and healthcare. To enable a comprehensive
evaluation of different anomaly detectors, including our proposed method, we categorize the datasets
into four groups based on their scale and dimensionality: (a) High-dimensional datasets, with more
than 50 features; (b) Large-scale datasets (but not high-dimensional), containing more than 10,000
instances and fewer than 50 features; (c) Medium-scale datasets (not high-dimensional), with 1,000
to 10,000 instances; and (d) Small-scale datasets (not high-dimensional), containing fewer than 1,000
instances. This categorization facilitates a nuanced analysis of model performance across varying
data regimes.

B.2 Baselines

Before introducing the baseline methods, we clarify an important distinction in anomaly detection
paradigms: inductive vs. transductive approaches. Inductive methods learn a generalizable decision
function from the training set and apply it directly to unseen test data. In contrast, transductive
methods rely on the distribution of the test set during inference, often scoring anomalies relative
to the entire evaluation batch. While inductive approaches are generally preferred in deployment
scenarios where test data is unavailable during training, transductive methods are still commonly
included in benchmarking for historical and comparative purposes.

Our proposed method TCCM is an inductive method, as it learns a model using training data
and then computes anomaly scores with the unseen test data. Although comparing inductive and
transductive methods directly may not always be ideal due to differing assumptions, we include both
for completeness. We categorize the anomaly detection baselines into two main groups:

• 21 Classical Machine Learning-based Methods (Transductive and Inductive). (1) Transduc-
tive Methods: ABOD (Kriegel et al., 2008), COF Tang et al. (2002), LOF (Breunig et al.,
2000), PCA (Shyu et al., 2003), KPCA (Hoffmann, 2007), KNN (Ramaswamy et al., 2000),
INNE (Bandaragoda et al., 2018); and (2) Inductive Methods: CBLOF(He et al., 2003),
CD (Cook, 1977), ECOD (Li et al., 2022) FeatureBagging (Lazarevic and Kumar, 2005),
GMM (Agarwal, 2007), HBOS (Goldstein and Dengel, 2012), IForest (Liu et al., 2008),
KDE (Latecki et al., 2007), LMDD (Arning et al., 1996), LODA (Pevnỳ, 2016), MCD
(Fauconnier and Haesbroeck, 2009), OCSVM (Schölkopf et al., 1999), QMCD (Fang and
Ma, 2001), and Sampling (Sugiyama and Borgwardt, 2013).

• 23 Deep Learning-based Methods (All are inductive). AutoEncoder (Sakurada and Yairi,
2014; Aggarwal and Aggarwal, 2017b), ALAD (Zenati et al., 2018), DIF (Xu et al., 2023a),
DeepSVDD (Ruff et al., 2018), LUNAR (Goodge et al., 2022), MOGAAL (Liu et al., 2019),
SOGAAL (Liu et al., 2019), VAE (An and Cho, 2015), AE-1SVM (Nguyen and Vien, 2019),
AnoGAN (Schlegl et al., 2017), DAGMM (Zong et al., 2018), PlanarFlow (Normalizing
Flows) (Rezende and Mohamed, 2015), SLAD (Xu et al., 2023b), MCM (Yin et al., 2024),
ICL(Shenkar and Wolf, 2022), GOAD(Bergman and Hoshen, 2020), GANomaly(Akcay
et al., 2018), DTE-Categorical (Livernoche et al., 2023), DTE-Gaussian (Livernoche et al.,
2023), DTE-InverseGamma (Livernoche et al., 2023), DTE-NonParametric (Livernoche
et al., 2023), DROCC (Goyal et al., 2020), Anomaly-DDPM (Livernoche et al., 2023).

B.3 Configurations

All experiments are independently performed five times with different random seeds (0, 1, 2, 3, and
4) on each dataset for all 44 baselines and our proposed TCCM with high reproducibility to ensure
high robustness, and account for variability due to random initialization.

Implementation Details of TCCM2. The time-conditioned velocity field fθ(x, t) is parameterized
by a 3-layer multilayer perceptron (MLP) with 256 hidden units per layer and ReLU activations. To

2Code available at: https://github.com/ZhongLIFR/TCCM-NIPS

33

https://github.com/ZhongLIFR/TCCM-NIPS

Table 1: Summary of Datasets. To systematically evaluate the performance of various anomaly
detectors, we categorize the datasets into four groups based on their data scale and dimensionality:
(a) high-dimensional datasets, which contain more than 50 features; (b) large-scale datasets (but not
high-dimensional), with more than 10,000 instances and fewer than 50 features; (c) medium-scale
datasets (not high-dimensional), with between 1,000 and 10,000 samples; and (d) small-scale (not
high-dimensional) datasets, consisting of fewer than 1,000 instances. This categorization allows for a
nuanced analysis of model behavior under different data regimes.

Dataset # Samples # Features # Anomaly % Anomaly Domain Category

census 299285 500 18568 6.2 Sociology High-dimensional
backdoor 95329 196 2329 2.44 Network High-dimensional
campaign 41188 62 4640 11.27 Finance High-dimensional
mnist 7603 100 700 9.21 Image High-dimensional
speech 3686 400 61 1.65 Linguistics High-dimensional
optdigits 5216 64 150 2.88 Image High-dimensional
SpamBase 4207 57 1679 39.91 Document High-dimensional
musk 3062 166 97 3.17 Chemistry High-dimensional
InternetAds 1966 1555 368 18.72 Image High-dimensional
donors 619326 10 36710 5.93 Sociology Large
http 567498 3 2211 0.39 Web Large
cover 286048 10 2747 0.96 Botany Large
fraud 284807 29 492 0.17 Finance Large
skin 245057 3 50859 20.75 Image Large
celeba 202599 39 4547 2.24 Image Large
smtp 95156 3 30 0.03 Web Large
ALOI 49534 27 1508 3.04 Image Large
shuttle 49097 9 3511 7.15 Astronautics Large
magic.gamma 19020 10 6688 35.16 Physical Large
mammography 11183 6 260 2.32 Healthcare Large
annthyroid 7200 6 534 7.42 Healthcare Medium
pendigits 6870 16 156 2.27 Image Medium
satellite 6435 36 2036 31.64 Astronautics Medium
landsat 6435 36 1333 20.71 Astronautics Medium
satimage-2 5803 36 71 1.22 Astronautics Medium
PageBlocks 5393 10 510 9.46 Document Medium
Wilt 4819 5 257 5.33 Botany Medium
thyroid 3772 6 93 2.47 Healthcare Medium
Waveform 3443 21 100 2.9 Physics Medium
Cardiotocography 2114 21 466 22.04 Healthcare Medium
fault 1941 27 673 34.67 Physical Medium
cardio 1831 21 176 9.61 Healthcare Medium
letter 1600 32 100 6.25 Image Medium
yeast 1484 8 507 34.16 Biology Medium
vowels 1456 12 50 3.43 Linguistics Medium
Pima 768 8 268 34.9 Healthcare Small
breastw 683 9 239 34.99 Healthcare Small
WDBC 367 30 10 2.72 Healthcare Small
Ionosphere 351 32 126 35.9 Oryctognosy Small
Stamps 340 9 31 9.12 Document Small
vertebral 240 6 30 12.5 Biology Small
WBC 223 9 10 4.48 Healthcare Small
glass 214 7 9 4.21 Forensic Small
WPBC 198 33 47 23.74 Healthcare Small
Lymphography 148 18 6 4.05 Healthcare Small
wine 129 13 10 7.75 Chemistry Small
Hepatitis 80 19 13 16.25 Healthcare Small

34

incorporate time information, we apply fixed sinusoidal embeddings (Vaswani et al., 2017) to the
scalar input t ∈ [0, 1], following the positional encoding strategy used in transformer architectures.
The time embedding (default dimension: 128) is concatenated with the input vector x, and the
combined representation is passed through the MLP to produce the predicted flow vector. We use
the Adam optimizer with a learning rate of 0.005. The batch size is set to 1024 for datasets with
more than 10,000 samples and to min(512,#training instances) for smaller datasets. The number of
training epochs is determined empirically using the unsupervised hyperparameter selection method
proposed by Li et al. (2025b), which requires no access to anomaly labels. While their method
supports per-seed tuning, for consistency and fair evaluation, we fix the number of epochs across
different random seeds. Notably, thanks to the efficiency of TCCM, tuning this single hyperparameter
incurs minimal computational overhead. This is also the only data-dependent hyperparameter in our
setup. The choices of key hyperparameters for our TCCM are presented in Table 5.

Implementations of Other Baselines. We utilise the well-established PyOD package (Zhao et al.,
2019) for implementing (1) all classical anomaly detectors such as IForest (Liu et al., 2008),
KDE (Latecki et al., 2007), etc., and (2) some deep anomaly detectors, including AutoEncoder (Ag-
garwal and Aggarwal, 2017b), ALAD (Zenati et al., 2018), DIF (Xu et al., 2023a), DeepSVDD (Ruff
et al., 2018), LUNAR (Goodge et al., 2022), MOGAAL (Liu et al., 2019), SOGAAL (Liu et al.,
2019), VAE (An and Cho, 2015), AE-1SVM (Nguyen and Vien, 2019), and AnoGAN (Schlegl
et al., 2017); Additionally, we adapt the implementations from ADBench 3 for DAGMM (Zong
et al., 2018) and GANAnomaly (Akcay et al., 2018); Besides, we include various advanced deep
detectors, DROCC (Goyal et al., 2020)4, GOAD (Bergman and Hoshen, 2020)5, ICL (Shenkar
and Wolf, 2022)6, SLAD (Xu et al., 2023b)7, MCM (Yin et al., 2024)8, DTE (with four variants
DTE-Categorical, DTE-Gaussian, DTE-InverseGamma, and DTE-NonParametric and a modified
DDPM) (Livernoche et al., 2023)9; The implementation of planar flows (Rezende and Mohamed,
2015), a normalizing-flows-based detector, is also taken from (Livernoche et al., 2023). For all
baseline detectors, we use their default configurations and hyperparameters as provided by their
source implementations.

Hardware and Software. All experiments are conducted on machines equipped with Intel Xeon
Gold 6430 CPUs (3.4 GHz, same model across runs, though not necessarily the same physical unit)
and 256 GB RAM. No GPU acceleration is used. To ensure a fair comparison, each model is restricted
to run on a single CPU core, allocated up to 10 GB of RAM, and a maximum runtime of 3 days
per dataset. Our implementation is based on Python 3.9.21 with PyTorch 2.0, and experiments are
executed within a conda-managed environment running Ubuntu 22.04.

B.4 Evaluation metrics

We evaluate our proposed method and baselines using two standard metrics: Area Under the Receiver
Operating Characteristic curve (AUROC) and Area Under the Precision-Recall Curve (AUPRC)
(McDermott et al., 2024). Both metrics range from 0 to 1, with higher values indicating better
performance. AUROC reflects a method’s ability to distinguish between normal and anomalous
instances: a score near 1 indicates near-perfect performance, 0.5 corresponds to random guessing,
and values below 0.5 imply worse-than-random behavior. For AUPRC, which is more informative
in imbalanced settings, higher values reflect better precision-recall trade-offs. All experiments are
repeated over 5 independent runs with different random seeds, and we report the mean and standard
deviation of each metric for every (dataset, anomaly detector) pair. For each dataset, we also compute
detector rankings based on their mean AUROC and AUPRC. Due to the scale of the experiments, we
present the complete tables of AUROC and AUPRC scores in the appendix. In the main paper, we
visualize the distribution of ranks—computed from the mean AUROC and AUPRC scores across 5
runs—over all datasets using box plots. These plots are ordered by overall performance, defined as

3ADBench: https://github.com/Minqi824/ADBench/tree/main/adbench/baseline
4DROCC: https://github.com/microsoft/EdgeML/blob/master/pytorch/edgeml_pytorch
5GOAD: https://github.com/lironber/GOAD
6ICL: in the supplementary material of https://openreview.net/forum?id=_hszZbt46bT
7SLAD: https://github.com/xuhongzuo/scale-learning
8MCM: https://github.com/JXYin24/MCM
9DTE & DDPM: https://github.com/vicliv/DTE

35

https://github.com/Minqi824/ADBench/tree/main/adbench/baseline
https://github.com/microsoft/EdgeML/blob/master/pytorch/edgeml_pytorch
https://github.com/lironber/GOAD
https://openreview.net/forum?id=_hszZbt46bT
https://github.com/xuhongzuo/scale-learning
https://github.com/JXYin24/MCM
https://github.com/vicliv/DTE

the average rank across datasets, where each rank is based on the per-dataset mean score aggregated
over the 5 runs.

B.5 Pseudo-code of TCCM

Algorithm 1 TCCM Training

1: Input: Training data samples z ∼ pdata, neural network fθ with parameters θ, number of training
epochs Nepochs, batch size B, learning rate η.

2: Initialize model parameters θ.
3: for epoch = 1 to Nepochs do
4: Shuffle training data.
5: for each batch {z(i)}Bi=1 from pdata do
6: Sample time steps {t(i)}Bi=1 where each t(i) ∼ U(0, 1).
7: Generate time embeddings: e(i)t ← SinusoidalEmbedding(t(i)) for i = 1, . . . , B.
8: Form augmented inputs: z̃(i) ← [z(i); e

(i)
t] for i = 1, . . . , B.

9: Predict contraction vectors: v̂(i) ← fθ(z̃
(i)) for i = 1, . . . , B.

10: Compute batch loss: L(θ)← 1
B

∑B
i=1

∥∥∥v̂(i) + z(i)
∥∥∥
2
. ▷ Corresponds to Eq. 4

11: Update parameters: θ ← θ − η∇θL(θ).
12: Output: Trained model fθ.

Algorithm 2 TCCM Inference (Anomaly Scoring)

1: Input: Test sample ztest, trained model fθ , fixed evaluation time tfixed ∈ (0, 1] (default tfixed = 1).
2: Generate time embedding: etfixed ← SinusoidalEmbedding(tfixed).
3: Form augmented input: z̃test ← [ztest; etfixed].
4: Predict contraction vector: v̂test ← fθ(z̃test).
5: Compute anomaly score: S(ztest; tfixed)← ∥v̂test + ztest∥2. ▷ Corresponds to Eq. 5
6: Output: Anomaly score S(ztest; tfixed).

B.6 Unsupervised Epoch Selection Strategy

In the main paper, the architecture of TCCM is fixed as a lightweight MLP (2× 256 ReLU) across all
datasets. While this choice ensures efficiency and comparability, the number of training epochs is not
arbitrarily hardcoded. Instead, we adopt a principled and largely automated protocol for unsupervised
hyperparameter selection. For completeness, we provide additional details below.

Epoch Selection Protocol. For each dataset, we first examine the empirical training loss curve to
identify a rough convergence threshold. Using this as a lower bound, we define a bounded search
space of candidate epochs. Within this space, we apply the unsupervised hyperparameter tuning
method introduced by Li et al. (2025b), based on the Improved Contrast Score Margin (CSM) criterion.
This criterion evaluates the margin between top-k predicted anomalous and normal samples solely
from the distribution of model outputs, without requiring any ground-truth labels:

T (f) =
µ̂O − µ̂I√
σ̂2
O + σ̂2

I

,

where µ̂O, σ̂
2
O denote the mean and variance of anomaly scores for the top-k predicted anomalies, and

µ̂I , σ̂
2
I correspond to the remaining n− k presumed inliers. For each candidate epoch, we compute

T (f) and select the configuration maximizing this criterion.

Hardcoding for Simplicity. Although this procedure yields dataset-specific and random-seed-
dependent epoch values, we ultimately fix the selected epoch across all seeds of a given dataset for
simplicity and reproducibility. We note that using per-seed dynamically tuned epochs can sometimes
further improve performance, but we chose not to report this to avoid inflating results and to ensure
fair comparison across baselines.

36

1 2 3 4 5 10 20 30 40 50 60 70 80 90 10
0

Number of Training Epochs

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 S
co

re

29_Pima

1 2 3 4 5 10 20 30 40 50 60 70 80 90 10
0

Number of Training Epochs

18_Ionosphere

1 2 3 4 5 10 20 30 40 50 60 70 80 90 10
0

Number of Training Epochs

31_satimage-2

1 2 3 4 5 10 20 30 40 50 60 70 80 90 10
0

Number of Training Epochs

44_Wilt AUROC
AUPRC

1 2 3 4 5 10 20 30 40 50 60 70 80 90 10
0

Number of Training Epochs

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 S
co

re

22_magic.gamma

1 2 3 4 5 10 20 30 40 50 60 70 80 90 10
0

Number of Training Epochs

23_mammography

1 2 3 4 5 10 20 30 40 50 60 70 80 90 10
0

Number of Training Epochs

25_musk

1 2 3 4 5 10 20 30 40 50 60 70 80 90 10
0

Number of Training Epochs

17_InternetAds

Figure 5: Sensitivity of TCCM to the number of training epochs. For each dataset, we evaluate
AUROC and AUPRC across a wide range of epoch values. Results show a stable plateau on
most datasets (e.g., Pima, Ionosphere, Musk, InternetAds), where performance converges early
and further training offers minimal gain but adds runtime cost. A similar plateau also appears on
magic.gamma and mammography, albeit with minor fluctuations. On some datasets (e.g., satimage),
excessive training leads to overfitting, while others (e.g., Wilt) exhibit stronger fluctuations, reflect-
ing less stable convergence. These findings highlight that: for most datasets, TCCM does not rely on
finely tuned epoch numbers and remains robust once a reasonable training horizon is reached.

Sensitivity Analysis. To further address this point, we include a sensitivity analysis over represen-
tative datasets. Two consistent patterns emerge:

• Stable Plateau: For most datasets (e.g., Pima, Ionosphere, Musk, InternetAds), model
performance stabilizes after a certain number of epochs, where further training brings little to
no improvement but increases runtime. A similar plateau is also observed on magic.gamma
and mammography, though with minor fluctuations.

• Overfitting Risk: On some datasets (notably satimage), training beyond the plateau
results in performance degradation, suggesting overfitting. In contrast, Wilt shows larger
fluctuations, indicating less stable convergence rather than clear overfitting.

These findings justify our principled choice of using CSM-based epoch selection combined with
early convergence boundaries.

Discussion. We emphasize that unsupervised hyperparameter tuning remains an under-explored but
important challenge in anomaly detection. Our approach leverages a recently proposed and validated
criterion, but we believe future work should explore more adaptive and automated tuning protocols.

C Property Analysis

Philosophical Analogy. Our method encodes a natural inductive bias: no matter where a sample lies
along the temporal axis, it is always guided by the same high-level goal—movement toward the origin.
This echoes the classical proverb “Only by staying true to our original aspiration can we reach our
final destination", embodying a consistency that is both geometrically meaningful and empirically
effective. In this section, we provide some theoretical analyses of our anomaly detection framework
in addition to the analyses given in the main paper as well as their proof (when applicable).

37

C.1 Relation to Flow Matching and Diffusion Modeling

Our proposed TCCM can be viewed as a task-specific simplification of flow-based learning frame-
works, adapted to the semi-supervised anomaly detection setting.

Conventional flow matching methods (Lipman et al., 2022; Liu et al., 2022) aim to learn a continuous-
time vector field v(x, t) that transforms samples from a source to a target distribution, often supervised
using interpolated trajectories. Extensions to stochastic generative modeling, such as diffusion models,
further describe the evolution of data via a stochastic differential equation (SDE):

dx(t)

dt
= −α(t)x(t) + σ(t)ϵ, ϵ ∼ N (0, I), (6)

where α(t) defines the contraction rate toward the origin, and σ(t) controls the injection of Gaussian
noise over time. While such stochasticity improves sample diversity in generative tasks, it may hinder
anomaly detection—especially in the semi-supervised setting where only normal data is observed.
The added noise may obscure the underlying structure of normal instances, reducing their separability
from anomalies.

TCCM can be interpreted as a deterministic limit of this framework, where we fix α(t) := 1 and
set σ(t) := 0. Moreover, instead of simulating time-evolving trajectories, we directly supervise
the velocity field at the initial state x, using the fixed target vector −x at each sampled time step.
This design retains the inductive bias of contraction toward normality while significantly simplifying
training and inference, avoiding both trajectory supervision and numerical integration.

Ablation on Noise Injection during Training. To evaluate the effect of noise, we compare TCCM
with a noisy variant that injects Gaussian perturbations during training (emulating the SDE in Eq. 6).
As shown in Appendix D.3, noise consistently harms anomaly detection performance across AUPRC
and AUROC. This supports our hypothesis that deterministic dynamics better preserve structural
regularities in normal data.

C.2 Anomaly Score Expectation under Distributional Shift

To theoretically justify the discriminative behavior of our anomaly score, we analyze its ex-
pected value under a Gaussian distributional shift. For notation simplicity, we utilise fθ(x, 1)
for fθ([x;Embed(1)]) and fθ(z, 1) for fθ([z;Embed(1)]) in the following. We consider the case
where the learned contraction field satisfies, for all x ∈ Rd in the training set,

fθ(x, 1) = −x+ ϵ, ϵ ∼ N (0, σ2
fId). (7)

The anomaly score then becomes

S(x) = ∥fθ(x, 1) + x∥2 = ∥ϵ∥2. (8)

Proposition 3 (Discriminative Power under Gaussian-to-Gaussian Shift). Let normal samples be
drawn from x ∼ N (0, σ2Id), and anomalous samples from z ∼ N (µ, σ2Id) with µ ̸= 0. Assume
the learned contraction field satisfies fθ(x, 1) = −x+ ϵ, where ϵ ∼ N (0, σ2

fId). Assume that the
learned velocity field is mismatched for anomalies. Then the corresponding anomaly scores satisfy:

S(x) ∼ χd · σf , (9)

S(z) ∼ χd(λ), with λ =
∥µ∥22
σ2
f

, (10)

where χd and χd(λ) denote the central and non-central chi distributions with d degrees of freedom
and non-centrality parameter λ, respectively. Moreover, the expected values satisfy:

E[S(x)] = σf ·
√
2 ·

Γ
(
d+1
2

)
Γ
(
d
2

) , E[S(z)] > E[S(x)]. (11)

Proof. For normal samples x ∼ N (0, σ2Id), the anomaly score reduces to

S(x) = ∥fθ(x, 1) + x∥2 = ∥ϵ∥2,

38

where ϵ ∼ N (0, σ2
fId). Thus,

S(x) ∼ σf · χd,

and the expected value is

E[S(x)] = σf · E[χd] = σf ·
√
2 ·

Γ
(
d+1
2

)
Γ
(
d
2

) .

For anomalous samples z ∼ N (µ, σ2Id), we again have

fθ(z, 1) = −z + ϵ, ⇒ S(z) = ∥fθ(z, 1) + z∥2 = ∥ϵ∥2,

but now ϵ ∼ N (0, σ2
fId) is independent of z ∼ N (µ, σ2Id), and ϵ is added to the fixed vector z.

Thus, conditional on a sample z, the score becomes

S(z) = ∥z − z + ϵ∥2 = ∥ϵ∥2,

but this is misleading. In practice, the model is trained to approximate contraction on normal data.
For anomalous inputs, the field is mismatched, and we express this by assuming:

fθ(z, 1) = −zproj + ϵ,

with zproj being the projection of z onto the normal data manifold. Then:

S(z) = ∥fθ(z, 1) + z∥2 = ∥z − zproj + ϵ∥
2
.

Let δ := z − zproj, then:
S(z) = ∥δ + ϵ∥2 .

Since ϵ ∼ N (0, σ2
fId), and δ ∈ Rd is fixed conditional on z, it follows that:

S(z) ∼ χd(λ), with λ =
∥δ∥22
σ2
f

.

From standard properties of the non-central chi distribution, we know:

E[χd(λ)] > E[χd] for all λ > 0.

Thus:
E[S(z)] > E[S(x)],

completing the proof.

Proposition 4 (Discriminative Power under GMM-to-Gaussian Shift). Let normal data be sampled
from a Gaussian mixture model (GMM)

x ∼
R∑

r=1

πr · N (µr, σ
2Id),

R∑
r=1

πr = 1,

and assume the learned contraction field satisfies

fθ(x, 1) = −x+ ϵ, ϵ ∼ N (0, σ2
fId).

Assume that the learned velocity field is mismatched for anomalies. Define the anomaly score as

S(x) := ∥fθ(x, 1) + x∥2 = ∥ϵ∥2.

Then the anomaly score for normal data follows a central chi distribution:

S(x) ∼ χd · σf ,

and its expected value is

E[S(x)] = σf ·
√
2 ·

Γ
(
d+1
2

)
Γ
(
d
2

) .

39

Let anomalous samples be drawn from z ∼ N (µz, σ
2Id), with µz /∈ {µ1, . . . ,µR}. Then the

anomaly score for z satisfies

S(z) := ∥fθ(z, 1) + z∥2 = ∥δ + ϵ∥2,

where δ := z − zproj is the mismatch between z and the normal manifold. Then

S(z) ∼ χd(λ), λ =
∥δ∥22
σ2
f

,

and the expected anomaly score satisfies

E[S(z)] > E[S(x)].

Proof. For normal samples x ∼ N (µr, σ
2Id), the anomaly score is

S(x) = ∥fθ(x, 1) + x∥2 = ∥ − x+ ϵ+ x∥2 = ∥ϵ∥2.

Since ϵ ∼ N (0, σ2
fId), it follows that

S(x) ∼ σf · χd.

Hence,

E[S(x)] = σf · E[χd] = σf ·
√
2 ·

Γ
(
d+1
2

)
Γ
(
d
2

) .

Now consider an anomalous input z ∼ N (µz, σ
2Id), not seen during training. The contraction field,

trained only on normal GMM components, is not well aligned with z. Let zproj ∈ supp(pdata) be the
closest point on the normal manifold, then we model the output as:

fθ(z, 1) ≈ −zproj + ϵ ⇒ S(z) = ∥z + fθ(z, 1)∥2 = ∥z − zproj + ϵ∥2.

Let δ := z − zproj, which is fixed conditioned on z, then

S(z) ∼ χd(λ), with λ =
∥δ∥22
σ2
f

.

It is a known result that for all λ > 0, the non-central chi distribution satisfies:

E[χd(λ)] > E[χd],

implying that
E[S(z)] > E[S(x)].

Proposition 5 (Namely Proposition 2, Discriminative Power under GMM-to-GMM Shift). Let
normal samples be drawn from a Gaussian mixture model:

x ∼
R∑

r=1

πr · N (µr, σ
2Id),

R∑
r=1

πr = 1.

Let anomalous samples be drawn from another Gaussian mixture model with distinct component
means:

z ∼
S∑

s=1

ηs · N (νs, σ
2Id),

S∑
s=1

ηs = 1,

with νs /∈ {µ1, . . . ,µR} for all s. Assume the learned contraction field satisfies:

fθ(x, 1) = −x+ ϵ, ϵ ∼ N (0, σ2
fId).

40

Assume that the learned velocity field is mismatched for anomalies. 10 Define the anomaly score as:

S(x) := ∥fθ(x, 1) + x∥2 .

Then:

1. For normal samples:

S(x) ∼ χd · σf , E[S(x)] = σf ·
√
2 ·

Γ
(
d+1
2

)
Γ
(
d
2

) .

2. For anomalous samples, each component satisfies:

S(z) ∼ χd(λs), λs =
∥νs − µr∗(s)∥22

σ2
f

,

where µr∗(s) := argminµr
∥νs − µr∥2. Then:

E[S(z)] =
S∑

s=1

ηs · E[χd(λs)] > E[S(x)].

Proof. Step 1: Normal samples.

For any x ∼ N (µr, σ
2Id), since the contraction field is learned from normal data, we assume it

satisfies:
fθ(x, 1) = −x+ ϵ, ϵ ∼ N (0, σ2

fId).

Therefore,
S(x) = ∥fθ(x, 1) + x∥2 = ∥ϵ∥2 ∼ χd · σf .

Thus, for normal samples, the anomaly score distribution is a central chi distribution with scale σf .
Its expectation is given by:

E[S(x)] = σf ·
√
2 ·

Γ
(
d+1
2

)
Γ
(
d
2

) .

Step 2: Anomalous samples.

Each anomalous component is z ∼ N (νs, σ
2Id). Since the model is trained only on normal

components µr, it cannot learn a correct contraction vector for z. As an approximation, we model
the field as:

fθ(z, 1) ≈ −zproj + ϵ,

where zproj is the projection of z onto the nearest normal cluster center:

zproj := µr∗(s) = argmin
µr

∥z − µr∥2.

Then the anomaly score becomes:

S(z) = ∥fθ(z, 1) + z∥2 = ∥z − zproj + ϵ∥
2
.

10Regarding empirical support for this assumption, we offer three points of clarification: (1) Direct visual
validation: Figure 1 provides visualizations of the learned contraction vectors on synthetic 2D datasets. These
examples clearly demonstrate that anomalous points consistently deviate from the expected contraction field,
validating the mismatch assumption in a controlled and interpretable setting. (2) Indirect support through
benchmark results: Across 47 real-world tabular datasets, TCCM consistently achieves strong AUROC and
AUPRC scores. This level of performance would be difficult to attain if the model failed to differentiate between
normal and anomalous points during inference—thus indirectly supporting the presence and utility of the
mismatch behavior assumed in our analysis. (3) Controlled synthetic validation: We aslo provide a dedicated
empirical study based on the Gaussian mixture setup. By comparing anomaly score distributions for normal
and anomalous points across multiple dimensions (d = 2, 5, 10, 15, 20), we show that anomalies consistently
yield higher scores. This directly validates the mismatch assumption in a controlled setting aligned with our
theoretical analysis.

41

Normal Anomaly

0.00

0.05

0.10

0.15

0.20

0.25

A
no

m
al

y
S

co
re

Dimension = 2

Normal Anomaly

0

1

2

3

4

5

A
no

m
al

y
S

co
re

Dimension = 5

Normal Anomaly

0

2

4

6

8

10

12

14

A
no

m
al

y
S

co
re

Dimension = 10

Normal Anomaly

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
no

m
al

y
S

co
re

Dimension = 15

Normal Anomaly

0

5

10

15

20

A
no

m
al

y
S

co
re

Dimension = 20

Boxplot of Anomaly Scores across Different Dimensions

Figure 6: Empirical validation of the mismatch assumption in Propositions 3, 4, and 5. Boxplots
show anomaly score distributions for normal and anomalous samples under different data dimensions
(d = 2, 5, 10, 15, 20). Across all cases, anomalous points consistently yield higher scores than normal
points, supporting the assumption that anomalies incur a systematic mismatch under the learned
contraction field.

Let δs := z − µr∗(s), which satisfies δs ∼ N (νs − µr∗(s), σ
2Id). Since ϵ ∼ N (0, σ2

fId), the sum
δs + ϵ ∼ N (νs − µr∗(s), (σ

2 + σ2
f)Id). Hence,

S(z) ∼ χd(λs), λs =
∥νs − µr∗(s)∥22

σ2
f

.

Then the overall anomaly score distribution for anomalous samples (from the mixture) is:

S(z) ∼
S∑

s=1

ηs · χd(λs), with λs > 0.

It is a standard result that:
E[χd(λs)] > E[χd] ∀λs > 0.

Therefore,

E[S(z)] =
S∑

s=1

ηs · E[χd(λs)] > E[χd] =
1

σf
· E[S(x)],

which implies:
E[S(z)] > E[S(x)],

completing the proof.

Empirical Study: Validating the Mismatch Assumption. To empirically validate the key assump-
tion in Propositions 3, 4, and 5—that the learned contraction field is mismatched for anomalies—we
conduct an experiment on synthetic Gaussian mixture data. Normal samples are drawn from a
GMM with R = 3 components (each with isotropic covariance σ2Id), while anomalous samples are
generated from a single Gaussian N (µz, σ

2Id) whose mean is located outside the mixture centers.
The contraction field fθ is trained exclusively on normal data using our objective function (see Eq. 4),
and anomaly scores S(x) = ∥fθ(x, 1) + x∥2 are computed for both groups. Figure 6 shows boxplots
of the score distributions for normals and anomalies across d ∈ {2, 5, 10, 15, 20}. In all cases, anoma-
lous points exhibit consistently higher scores than normal points, with AUROC values exceeding
0.9 regardless of dimension. These results provide direct empirical evidence that anomalies indeed
incur a systematic mismatch under the learned contraction field, thereby justifying the modeling
assumption made in Propositions 3, 4, and 5.

Limitation of Theoretical Analysis and Future Work. We acknowledge that Proposition 5 is derived
under a simplified setting involving Gaussian mixture models (GMMs). We would like to clarify
that the use of GMMs in this theoretical result is a deliberate and well-motivated modeling choice:

42

(1) GMMs have been widely adopted as analytical tools in the machine learning literature—not
only in anomaly detection but also in clustering and density modeling. For example, the work of
(Zong et al., 2018) introduces the DAGMM model for unsupervised anomaly detection based on
similar distributional assumptions. Likewise, GMMs serve as the theoretical backbone in clustering
studies such as (Chen and Zhang, 2024), which performs theoretical analysis under anisotropic
GMMs. These works demonstrate that GMM-based settings are not only standard but also provide
valuable theoretical insight despite being idealized; (2) Our aim is not to suggest that real-world
data exactly follow GMMs, but rather to use this setup as a clean, analyzable lens to understand the
discriminative behavior of the TCCM scoring function. The result shows that under mild assumptions,
the anomaly score is provably larger in expectation for out-of-distribution samples drawn from
disjoint mixtures—thus justifying the use of the residual norm as a discriminative signal; (3) Deriving
general results under arbitrary data distributions is typically intractable, especially for deep models.
Our theoretical analysis strikes a practical balance by providing provable insight under realistic yet
analyzable settings. In future work, we aim to explore theoretical extensions to broader classes of
distributions, but we believe the current result already provides valuable intuition and justification for
the observed empirical behavior.

C.3 Analysis of Representation Collapse

One potential concern for our model is the possibility of representation collapse, where the learned
mapping trivially reproduces the input or converges to a constant output, thereby failing to distinguish
between normal and anomalous data. To verify that TCCM does not suffer from this issue, we
provide both theoretical and empirical evidence.

Architectural Considerations. The trivial mapping case, e.g., fθ([z,Embed(t)]) =
[I,0][z; Embed(t)]T = z, corresponds to a highly restricted setting where the model degener-
ates to a single-layer linear transformation without bias or activation, and where the time embedding
has no influence. However, this configuration does not reflect the architecture used in TCCM. In
practice, TCCM employs a multi-layer MLP with RELU activations and high-dimensional sinusoidal
time embeddings that are explicitly concatenated to the input. These design choices allow the model
to learn complex, time-varying contraction dynamics, making identity or partial-identity mappings
highly unlikely.

Implicit Regularization. Unlike previous methods such as DeepSVDD (Ruff et al., 2018) that
prevent collapse by imposing explicit architectural constraints (e.g., bounded activations or bias
removal), TCCM avoids such restrictions and instead discourages collapse through time-conditioned
supervision, multi-time-step optimization, and implicit regularization induced by nonlinear transfor-
mations. The temporal embedding ensures that each training instance is contextually distinct across
time, which prevents the network from converging to a single trivial representation.

Empirical Verification. To further examine this, we track training dynamics and representation
diversity throughout training. Empirically, we observe no evidence of collapse: training loss decreases
smoothly without flattening, and anomaly scores exhibit non-degenerate distributions across both
normal and anomalous samples. Additionally, the learned feature representations maintain high
variance across dimensions, and anomaly detection performance remains stable across datasets (see
Figure 2). These observations collectively confirm that TCCM learns meaningful, discriminative
representations rather than degenerate identity mappings.

Summary. Overall, TCCM’s design—combining multi-layer nonlinear mappings, explicit temporal
conditioning, and implicit regularization—effectively mitigates representation collapse without
relying on handcrafted architectural constraints. This ensures that the learned contraction field
remains expressive and discriminative, supporting robust anomaly detection across diverse data
regimes.

43

D Full Results and Analysis

D.1 Full Analysis of Effectiveness

(1) Effectiveness on Small-scale Dataset. As shown in Table 6, TCCM achieves strong performance
in terms of AUROC on small-scale datasets, ranking in the top 10 on 10 out of 12 datasets, with an
average rank of 4.42—the best among all evaluated methods. This result highlights the effectiveness of
TCCM in low-data regimes. Despite being a deep learning method—which are typically considered
data-hungry and prone to underperformance on small datasets—TCCM consistently outperforms
both classical and deep baselines. Similar conclusions hold for AUPRC, as shown in Table 7.

(2) Effectiveness on Medium-scale Datasets. As shown in Table 8, TCCM demonstrates strong
performance on medium-scale datasets in terms of AUROC, ranking in the top 10 on 13 out of
15 datasets, with an average rank of 6.80—the second best among all anomaly detectors (slightly
outperformed by DTE-NonParametric with an average of 6.20). Similarly, Table 9 shows that TCCM
ranks in the top 10 on 13 out of 15 datasets in terms of AUPRC, with an average rank of 6.60, achieving
the best position overall (followed by DTE-NonParametric with an average rank of 7.13). In both
cases, DTE-NonParametric achieves strong performance, but suffers from poor explainability and
lacks provable robustness, limiting its practical deployment in sensitive or high-stakes applications.

(3) Effectiveness on Large-scale Datasets. From Table 10, we can see that TCCM gives good
performance in terms of AUROC score: it gives top-10 results 9 out of 11 datasets, with an average
ranking of 7.36, the second highest ranking among all anomaly detectors (slightly outperformed by
DTE-NonParametric with a rank of 6.36). Meanwhile, Table 11 shows that: concerning AUPRC
score, it gives top-10 results 9 out of 11 datasets, with an average ranking of 7.18 (followed by
DTE-NonParametric with a rank of 8.45), the highest ranking among all anomaly detectors. Note that
DTE-NonParametric suffers from low scalability and lack of provable robustness and explainability.

(4) Effectiveness on High-dimensional Datasets. From Table 12, we can see that TCCM gives good
performance in terms of AUROC score: it gives top-10 results 9 out of 9 datasets, with an average
ranking of 4.89, the second highest ranking among all anomaly detectors (slightly outperformed by
DTE-NonParametric with an average rank of 4.44). Meanwhile, Table 13 shows that: concerning
AUPRC score, it gives top-10 results on 8 out of 9 datasets, with an average ranking of 5.56 (followed
by DTE-NonParametric with a rank of 6.56), the highest ranking among all anomaly detectors. Note
that DTE-NonParametric suffers from low scalability at inference and lack of provable robustness
and explainability.

D.2 Full Results on Scalability Analysis

D.2.1 Analysis of the Trade-off Between Inference Speed and Accuracy

To further contextualize the efficiency of TCCM, we follow the evaluation practice introduced
by DTE (Livernoche et al., 2023) and analyze the relationship between average inference time
and detection performance (measured by AUROC and AUPRC) across all 46 anomaly detection
methods. As shown in Figures 7 and 8 , TCCM occupies the lower-left region of the plot, indicating
simultaneously high accuracy and low inference latency.

Most competing methods fall into one of two regimes: (1) slow but accurate models such as DTE-
NonParametric, LUNAR, and KDE, which achieve comparable AUROC and AUPRC but require
several orders of magnitude longer inference; and (2) fast but less accurate methods such as GMM,
CBLOF, and Sampling, which exhibit shorter inference but substantially reduced detection accuracy.
In contrast, TCCM provides a favorable middle ground—delivering high detection accuracy without
compromising inference efficiency.

These results reinforce our claim that TCCM achieves one of the best overall balances between
accuracy and computational cost among deep learning-based approaches, demonstrating its strong
potential for deployment in real-time and resource-constrained anomaly detection scenarios.

D.2.2 Scalability Analysis on All Algorithms

To assess the practical deployability of TCCM, we perform a comprehensive scalability analysis
across three runtime dimensions: training time, inference time, and total execution time (training

44

0.0000 0.0022 0.0183 0.1371 1.0154 7.5052 55.4588
Average original inference time (t in seconds)

0 2 4 6 8 10 12
Average transformed inference time (using log(1+ (t/δ)), with δ=0.0003 is the 1st percentile of all inference times)

0

10

20

30

40

Av
er

ag
e

A
U

C
R

O
C

 V
al

ue
 R

an
k

DTENonParametricTCCM (ours)
LUNAR

KDE

AutoEncoder
DTECategoricalCBLOF

GMM Sampling FeatureBagging
OCSVM

DTEGaussian

MCMVAE
DTEInverseGamma

ICL SLADIForest AE1SVMMCD

HBOS
AnoGAN

DIF
DeepSVDD

GANomaly ECOD NormalizingFlow
KNNINNE DTEDDPM

LODA QMCD
CDPCA LMDD

GOADDROCC
ABODLOF

MO_GAAL
SO_GAAL DAGMM COF

ALAD KPCA

Trade-off between AUCROC Rank and Inference Time

Detector Category
Classical (Inductive)
Classical (Transductive)
Deep Learning

Figure 7: Distribution of average inference time (transformed with log (1 + t
δ) to achieve better

visualization, with δ is the 1st percentile of all inference times t) vs. average AUROC rank across all
45 anomaly detection methods. The ticks corresponding to the original average inference time are
also displayed underneath. TCCM achieves the best balance between inference speed and detection
accuracy, outperforming both slow but accurate (e.g., DTE-Nonparametric, KDE) and fast but less
accurate (e.g., GMM, CBLOF, Sampling) methods.

+ testing). Unlike the main paper, which focuses on comparisons with the strongest deep baselines
(DTE-NonParametric, LUNAR, and KDE), here we extend the evaluation to all 44 baselines—
including classical (transductive and inductive) and deep learning-based methods—to provide a
complete view of computational efficiency.

Our analysis centers on large and high-dimensional datasets, where runtime differences become
most pronounced. Smaller datasets tend to produce negligible timing gaps, as even slower models
finish within seconds. In contrast, the large-scale datasets (with hundreds of thousands of samples
or high feature dimensionality) amplify differences in efficiency, offering a realistic measure of
scalability in deployment settings.

(1) Training Time. As shown in Figure 9, TCCM achieves one of the lowest training times within
the deep learning group. Its distribution centers near fast, lightweight models such as AutoEncoder
and DeepSVDD, while being faster than most other deep learning methods (e.g., ANOGAN, DTE-
Categorical, GOAD). Some classical algorithms (e.g., KDE, OCSVM, LMDD) display higher
variability and much longer training durations due to nonparametric or pairwise computations. Overall,
TCCM provides a strong balance between model capacity and training efficiency, confirming its
practicality for large-scale learning.

(2) Inference Time. Figure 10 presents the distribution of inference times across detectors. Within
the deep learning group, TCCM ranks among the fastest methods, close to simple methods such
as ALAD and DROCC, but with markedly higher detection accuracy. By contrast, diffusion-based
approaches such as DTE-NonParametric, and DTE-DDPM lie at the upper end of the runtime
spectrum, often exhibiting multi-order magnitude slower inference across large datasets. Compared
to classical baselines (e.g., CBLOF, IFOREST, ECOD), TCCM maintains similar or better inference
efficiency while achieving superior detection performance.

(3) Total Runtime. The total runtime (training + inference), summarized in Figure 11, shows that
TCCM achieves one of the best overall efficiency–accuracy trade-offs among all evaluated methods.
Within the deep learning family, TCCM clusters in the lower range of the runtime distribution, far
outperforming heavier diffusion (namely DTE-Gaussian, DTE-InverseGamma) and kernel-based
methods (namely KDE). Its compact and stable distribution across large datasets highlights its
consistent computational advantage. These results demonstrate that TCCM maintains both scalability
and practicality for real-world, high-volume anomaly detection deployments.

45

0.0000 0.0022 0.0183 0.1371 1.0154 7.5052 55.4588
Average original inference time (t in seconds)

0 2 4 6 8 10 12
Average transformed inference time (using log(1+ (t/δ)), with δ=0.0003 is the 1st percentile of all inference times)

0

10

20

30

40

Av
er

ag
e

A
U

C
P

R
 V

al
ue

 R
an

k

TCCM (ours)
DTENonParametricLUNAR

KDE

AutoEncoder
CBLOF DTECategorical

GMM DTEGaussian OCSVM ICL
DTEInverseGammaSampling MCM

VAE FeatureBaggingAE1SVM SLAD
IForest

HBOS DIFMCD
AnoGAN

DeepSVDD
GANomaly DTEDDPMECOD

NormalizingFlow
KNN LMDD

LODA
GOADQMCDDROCC INNE

PCA CD
ABOD

LOF
MO_GAAL

SO_GAAL
DAGMM COF

ALAD KPCA

Trade-off between AUCPR Rank and Inference Time

Detector Category
Classical (Inductive)
Classical (Transductive)
Deep Learning

Figure 8: Distribution of average inference time (transformed with log (1 + t
δ) to achieve better

visualization, with δ is the 1st percentile of all all inference times t) vs. average AUPRC rank across
all 45 anomaly detection methods. The ticks corresponding to the original average inference time are
also displayed underneath. TCCM achieves the best balance between inference speed and detection
accuracy, outperforming both slow but accurate (e.g., DTE-Nonparametric, KDE) and fast but less
accurate (e.g., GMM, CBLOF, Sampling) methods.

Sa
m

pl
in

g
PC

A

DT
EN

on
Pa

ra
m

et
ric

G
M

M
LO

DA
EC

O
D

IF
or

es
t

CD
CB

LO
F

HB
O

S
IN

NE LO
F

KN
N

M
CD CO

F
AL

AD
AB

O
D

Au
to

En
co

de
r

TC
CM

 (O
ur

s)
SO

_G
AA

L
De

ep
SV

DD
DA

G
M

M
Q

M
CD

Fe
at

ur
eB

ag
gi

ng
G

AN
om

al
y

KP
CA

No
rm

al
izi

ng
Fl

ow VA
E

DI
F

SL
AD

O
CS

VM
AE

1S
VM

LU
NA

R
DR

O
CC KD

E
M

O
_G

AA
L

DT
ED

DP
M IC
L

M
CM

DT
EG

au
ss

ia
n

DT
EI

nv
er

se
G

am
m

a
An

oG
AN

LM
DD

DT
EC

at
eg

or
ica

l
G

O
AD

2

1

0

1

2

3

4

5

lo
g1

0(
Tr

ai
n

Ti
m

e
[s

])

Distribution of Training Time on Large and High-Dimensional Datasets (log scale)

Detector Type
Deep Learning Classical (Transductive) Classical (Inductive)

Figure 9: Distribution of training times (log-scale) on 14 large and high-dimensional datasets across
all 45 anomaly detectors. TCCM achieves one of the lowest training times among deep learning
models, comparable to simple architectures such as AutoEncoder and DeepSVDD, while significantly
faster than most other deep learning methods. Some classical models (e.g., KDE, LMDD) show
much higher variability and longer training durations.

Discussion on Ultra-Large-Scale Scenarios. While our experiments already include a wide
spectrum of realistic datasets—with 14 datasets exceeding 10,000 samples and 6 high-dimensional
datasets—two cases are particularly noteworthy: donors (619K samples, 10 dimensions) and census
(299K samples, 500 dimensions). On these datasets, TCCM completes inference in merely 1.05s and
3.02s, respectively, whereas the most accurate competitor (DTE-NonParametric) requires 476.60s
and 48,942.85s. This striking difference (3–4 orders of magnitude) highlights the practical scalability
of TCCM in both sample size and feature dimensionality. Furthermore, several conventional and

46

G
AN

om
al

y
M

CD
G

M
M

CB
LO

F
Sa

m
pl

in
g

HB
O

S
PC

A
De

ep
SV

DD
M

O
_G

AA
L

SO
_G

AA
L

DR
O

CC
AL

AD
LO

DA
IF

or
es

t
DA

G
M

M
TC

CM
 (O

ur
s)

EC
O

D
No

rm
al

izi
ng

Fl
ow

DT
EG

au
ss

ia
n

Au
to

En
co

de
r

VA
E

DT
EI

nv
er

se
G

am
m

a
CD

M
CM

AE
1S

VM
IN

NE
DT

EC
at

eg
or

ica
l

LO
F

LU
NA

R
IC

L
CO

F
An

oG
AN

KP
CA

SL
AD

AB
O

D
Q

M
CD KN

N
G

O
AD

Fe
at

ur
eB

ag
gi

ng

DT
EN

on
Pa

ra
m

et
ric

O
CS

VM DI
F

DT
ED

DP
M

KD
E

LM
DD

3

2

1

0

1

2

3

4

5

lo
g1

0(
In

fe
re

nc
e

Ti
m

e
[s

])

Distribution of Inference Time on Large and High-Dimensional Datasets (log scale)

Detector Type
Deep Learning Classical (Transductive) Classical (Inductive)

Figure 10: Distribution of inference times (log-scale) on 14 large and high-dimensional datasets.
TCCM ranks among the fastest deep learning methods, close to methods such as ALAD and DROCC,
but far more accurate. In contrast, diffusion-based baselines (i.e., DTE-NonParametric, DTE-DDPM)
occupy the slowest end of the spectrum, illustrating TCCM’s superior efficiency for large-scale
inference.

Sa
m

pl
in

g
PC

A
G

M
M

LO
DA

IF
or

es
t

EC
O

D
CB

LO
F

CD
HB

O
S

IN
NE

M
CD LO

F
AL

AD CO
F

Au
to

En
co

de
r

TC
CM

 (O
ur

s)
SO

_G
AA

L
De

ep
SV

DD
DA

G
M

M
KN

N
AB

O
D

G
AN

om
al

y

DT
EN

on
Pa

ra
m

et
ric

No
rm

al
izi

ng
Fl

ow VA
E

KP
CA

Q
M

CD
Fe

at
ur

eB
ag

gi
ng

SL
AD DI

F
AE

1S
VM

O
CS

VM
DR

O
CC

LU
NA

R
M

O
_G

AA
L

KD
E

IC
L

M
CM

DT
ED

DP
M

DT
EG

au
ss

ia
n

DT
EI

nv
er

se
G

am
m

a
An

oG
AN

DT
EC

at
eg

or
ica

l
LM

DD
G

O
AD

2

1

0

1

2

3

4

5

lo
g1

0(
To

ta
l T

im
e

[s
])

Distribution of Total Runtime (Train + Test) on Large and High-Dimensional Datasets (log scale)

Detector Type
Deep Learning Classical (Transductive) Classical (Inductive)

Figure 11: Distribution of total runtimes (training + inference, log-scale) across the 14 large and
high-dimensional datasets. TCCM demonstrates one of the best efficiency–accuracy trade-offs
within the deep learning category, remaining among the overall fastest detectors. Its compact runtime
distribution contrasts sharply with heavier diffusion (namely DTE-Gaussian, DTE-InverseGamma)
and kernel-based methods (namely KDE), confirming its scalability and deployability in high-volume
environments.

deep baselines fail to process such large-scale inputs within reasonable resource constraints (e.g.,
memory overflow or exceeding 72h runtime; see Tables 10 and 12). Although evaluating on tens
of millions of samples remains an exciting direction for future work, our current results already
provide compelling evidence that TCCM is well-suited for real-world, large-scale anomaly detection
deployments.

47

D.3 Ablation Studies and Sensitivity Analysis: Full Results and Analysis

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
U

R
O

C
 S

co
re

Time Embedding Ablation AUROC

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
U

P
R

C
 S

co
re

Time Embedding Ablation AUPRC

Linear+Sin Sinusoidal (default) Sinusoidal+MLP

Figure 12: Ablation Study on Time Embedding Methods. We compare three different time embedding
strategies used in our flow-based anomaly detection model: Linear+Sin, Sinusoidal (default), and
Sinusoidal+MLP, across eight representative datasets spanning four categories: Small (29_Pima,
18_Ionosphere), Medium (31_satimage-2, 44_Wilt), Large (22_magic.gamma , 23_mammography),
and High-dimensional (25_musk, 17_InternetAds). The figure shows AUROC (left) and AUPRC
(right) scores on the y-axis versus dataset names on the x-axis. Bars are grouped by embedding
method and include standard deviation as error bars. Results show that our model is robust across
all embedding types, with the default Sinusoidal embedding generally offering strong and stable
performance.

0.0 0.2 0.4 0.6 0.8 1.0
Fixed Time Value t at Inference

0.0

0.2

0.4

0.6

0.8

1.0

A
no

m
al

y
S

co
re

29_Pima

0.0 0.2 0.4 0.6 0.8 1.0
Fixed Time Value t at Inference

18_Ionosphere

0.0 0.2 0.4 0.6 0.8 1.0
Fixed Time Value t at Inference

31_satimage-2

0.0 0.2 0.4 0.6 0.8 1.0
Fixed Time Value t at Inference

44_Wilt

AUROC
AUPRC

0.0 0.2 0.4 0.6 0.8 1.0
Fixed Time Value t at Inference

0.0

0.2

0.4

0.6

0.8

1.0

A
no

m
al

y
S

co
re

22_magic.gamma

0.0 0.2 0.4 0.6 0.8 1.0
Fixed Time Value t at Inference

23_mammography

0.0 0.2 0.4 0.6 0.8 1.0
Fixed Time Value t at Inference

25_musk

0.0 0.2 0.4 0.6 0.8 1.0
Fixed Time Value t at Inference

17_InternetAds

Figure 13: Sensitivity Analysis on Time Value at Inference. We evaluate the sensitivity of our
model to different fixed time inputs t ∈ [0.0, 1.0] at inference across four categories of datasets:
Small (29_Pima, 18_Ionosphere), Medium (31_satimage-2, 44_Wilt), Large (22_magic.gamma ,
23_mammography), and High-dimensional (25_musk, 17_InternetAds). Each plot shows the average
AUROC (blue) and AUPRC (red) across 5 random seeds, with individual points marked on each
curve. Shaded regions indicate one standard deviation. The x-axis represents the fixed value of time
t, while the y-axis reports the detection performance (AUROC or AUPRC). The results demonstrate
that our method is insensitive to the specific choice of t. Other datasets show similar behavior and are
omitted for brevity.

48

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
U

R
O

C
 S

co
re

Effect of Noise on AUROC

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
U

P
R

C
 S

co
re

Effect of Noise on AUPRC

No Noise (default)
With Noise

No Noise (default)
With Noise

Figure 14: Ablation Study on the Effect of Injecting Noise during Training. We compare the anomaly
detection performance (AUROC and AUPRC) of TCCM trained with and without noise perturbation.
We report results across 8 representative datasets spanning four categories (small, medium, large,
and high-dimensional). Each bar shows the average score over 5 random seeds, with error bars
indicating standard deviation. Key findings: (1) On most datasets, adding noise during training
does not significantly impact performance; (2) However, in some cases (e.g., Wilt, mammography),
injecting noise leads to a substantial drop in AUROC and/or AUPRC. This indicates that noise
injection, while helpful in diffusion based generative modeling, may hinder learning in deterministic
anomaly detection tasks.

Study 1: Time Embedding Variants Used in TCCM. We consider three different time embedding
strategies within the TCCM architecture, each representing a trade-off between simplicity and
expressiveness:

• Linear + Sin: This basic approach applies a single linear layer followed by a sine trans-
formation to the scalar time input t. It is defined as ϕ(t) = sin(Wt+ b), where W and b
are learnable parameters. This encoding is computationally efficient and empirically fast to
converge, making it suitable for lightweight applications.

• Sinusoidal (default): Inspired by the positional encoding in Transformers, this method
maps time to a fixed set of sinusoidal functions at different frequencies. It is defined as

ϕ(t) = [sin(ω1t), cos(ω1t), . . . , sin(ωdt), cos(ωdt)] ,

where frequencies ωi are logarithmically spaced. This embedding captures richer periodic
structure without additional learnable parameters.

• Sinusoidal + MLP: To enhance the expressiveness of the sinusoidal embedding, we append
a two-layer feedforward MLP to it. This allows the model to learn nonlinear combinations
of the sinusoidal basis, which is often beneficial when modeling more complex dynamics.
However, it introduces more parameters and increases training time.

All three variants are seamlessly plugged into the same backbone network, differing only in the time
embedding module. In our experiments, we observe consistent performance across them, while the
sinusoidal embedding offers a good balance between performance and simplicity.

Study 2: Sensitivity to Fixed Time t during Inference. In the TCCM framework, the final
anomaly score is computed based on the model output at a specific time t, typically fixed to t = 1.0
during inference. To assess the robustness of our method to the choice of t, we conduct a sensitivity
analysis by varying t uniformly in the range [0.0, 1.0] and measuring the performance in terms of
AUROC and AUPRC on eight representative datasets.

For each dataset, we fix t to different values and compute the anomaly score as S(x) = ∥fθ(x, t) +
x∥2, where fθ(x, t) is the predicted vector field. This formulation relies on the observation that, for
normal samples, the model learns to approximate fθ(x, t) ≈ −x, such that the residual becomes
small. Anomalous samples, being out-of-distribution, typically incur larger residuals.

49

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

AU
PR

C

29_Pima

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

18_Ionosphere

0.002 0.004 0.006 0.008 0.010 0.012

31_satimage-2

0.00 0.01 0.02 0.03 0.04 0.05

44_Wilt

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Abnormal Ratio in Training Set

0.0

0.2

0.4

0.6

0.8

1.0

AU
PR

C

22_magic.gamma

0.000 0.005 0.010 0.015 0.020
Abnormal Ratio in Training Set

23_mammography

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Abnormal Ratio in Training Set

25_musk

0.00 0.05 0.10 0.15
Abnormal Ratio in Training Set

17_InternetAds

AutoEncoder
CBLOF
DTECategorical
DTEGaussian
DTENonParametric
GMM
ICL
KDE
LUNAR
OCSVM
TCCM

(a) AUPRC vs. contamination ratio.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

29_Pima

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

18_Ionosphere

0.002 0.004 0.006 0.008 0.010 0.012

31_satimage-2

0.00 0.01 0.02 0.03 0.04 0.05

44_Wilt

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Abnormal Ratio in Training Set

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

22_magic.gamma

0.000 0.005 0.010 0.015 0.020
Abnormal Ratio in Training Set

23_mammography

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Abnormal Ratio in Training Set

25_musk

0.00 0.05 0.10 0.15
Abnormal Ratio in Training Set

17_InternetAds

AutoEncoder
CBLOF
DTECategorical
DTEGaussian
DTENonParametric
GMM
ICL
KDE
LUNAR
OCSVM
TCCM

(b) AUROC vs. contamination ratio.

Figure 15: Sensitivity to training-set contamination for TCCM and 10 top-performing baselines. For
each dataset, we fix the train/test split by using 50% of normal samples for training and progressively
inject anomalies into the training set (up to the dataset’s natural anomaly ratio). The x-axis denotes the
abnormal ratio in training; curves summarize mean and variance across multiple seeds (see legends
for methods). Overall, increasing contamination tends to reduce performance for most methods;
TCCM remains among the most robust, though degradation can still occur on some datasets. We
present AUPRC (top) and AUROC (bottom) separately to improve readability.

The results (see Figure 13) demonstrate that the detection performance is largely invariant to the
specific value of t, indicating that our method is not sensitive to this hyperparameter. This makes the
approach more robust and practical, as it avoids the need for tuning t at inference. The shaded areas
in the figure denote standard deviation over five random seeds, further confirming the stability of the
results.

Study 3: Effect of Noise Injection during Training. To assess the role of stochasticity in our
framework, we compare two variants of TCCM: one trained with Gaussian noise injection—motivated
by the SDE formulation in Appendix C.1—and another trained deterministically without noise. In
the noisy case, input samples are perturbed as x̃(t) = x + tϵ with ϵ ∼ N (0, I), but the model is
still supervised to predict the residual vector −x. This setup preserves the inductive bias toward
contraction while introducing input-level stochasticity during training. In contrast, the deterministic
variant trains on unperturbed inputs using the same supervision.

Empirical results, summarized in Figure 14, show that noise injection does not consistently improve
performance and in many cases leads to a significant drop in AUROC and AUPRC—particularly for
datasets such as Wilt and mammography. These findings validate our theoretical motivation: while
noise injection can enhance sample diversity in generative modeling, anomaly detection—especially

50

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds

Dataset

0.0

0.2

0.4

0.6

0.8

1.0
A

U
R

O
C

 S
co

re

Effect of Standardization on AUROC

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
U

P
R

C
 S

co
re

Effect of Standardization on AUPRC

With Standardization
No Standardization

Figure 16: Ablation Study on the Effect of Performing z-score Normalization before Model Training.
We compare the anomaly detection performance (AUROC and AUPRC) of TCCM trained with and
without noise z-score normalization. We report results across 8 representative datasets spanning four
categories (small, medium, large, and high-dimensional). Each bar shows the average score over 5
random seeds, with error bars indicating standard deviation. Key findings: (1) On most datasets,
performing z-score normalization does not significantly impact performance; (2) In some cases (e.g.,
Ionosphere, Wilt), performing z-score normalization leads to a substantial increase in AUROC
and/or AUPRC. This indicates that without normalization, the anomaly scores may be dominated by
features with larger scales, leading to suboptimal ranking behavior. However, we note that performing
z-score normalization on a few datasets (e.g., InternetAds) leads to a drop in AUPRC.

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
U

R
O

C
 S

co
re

Effect of Time-weighted Sampling on AUROC

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
U

P
R

C
 S

co
re

Effect of Time-weighted Sampling on AUPRC

No Time Sampling
With Time Sampling

Figure 17: Ablation Study on the Effect of Training with Interpolated Time-Dependent Inputs.
We compare the anomaly detection performance (AUROC and AUPRC) of TCCM trained with
and without interpolated inputs zt = tz, while keeping all other configurations identical. Results
are reported across 8 representative datasets spanning four categories (small, medium, large, and
high-dimensional). Each bar shows the average performance over 5 random seeds, with error bars
indicating standard deviation. Key findings: (1) Introducing time-interpolated samples generally
does not improve anomaly detection performance, with results remaining approximately unchanged
or moderately degraded on most datasets; (2) The degradation is more evident on certain datasets (e.g.,
Wilt, magic_gamma), suggesting that interpolated trajectories may introduce undesirable temporal
supervision signals; (3) These results empirically support our design choice of directly supervising
time-conditioned vector fields at fixed input locations, as discussed in Section 3.

under a semi-supervised regime—relies on preserving the precise structure of normal data. Even mild
stochastic perturbations may obscure this structure, weakening the learned vector field. Consequently,
our deterministic training procedure yields more stable and effective results for anomaly detection.

51

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds
0.0

0.2

0.4

0.6

0.8

1.0

A
U

R
O

C
 S

co
re

AUROC Comparison

29_Pima

18_Ionosphere

31_satim
age-2

44_Wilt

22_magic.gamma

23_mammography

25_musk

17_InternetAds
0.0

0.2

0.4

0.6

0.8

1.0

A
U

P
R

C
 S

co
re

AUPRC Comparison

AE + TimeEmbedding TCCM (Ours)

Figure 18: Comparison between TCCM and Autoencoder with Time Embedding (AE+TE) across
eight datasets. Bars represent mean AUROC and AUPRC values averaged over 5 random seeds; error
bars indicate standard deviation. TCCM consistently performs on par or better, especially on Wilt
and magic_gamma, demonstrating that direct residual learning without reconstruction bottlenecks
better captures anomaly-relevant dynamics.

Study 4: Effect of Contamination in Training Data. This study examines how varying degrees of
contamination—i.e., abnormal samples present in the training set—affect model performance. Unlike
the main experimental setup, where 50% of normal data is used for training and the test set contains
the remaining normal and all abnormal samples, here we fix the train/test split by randomly dividing
both normal and abnormal data in half: 50% of the normals are used for training, and evaluation
is conducted on the remaining normals plus half of the anomalies. We then progressively inject
additional anomalies into the training set, increasing the abnormal ratio from near-zero up to each
dataset’s intrinsic anomaly rate. This protocol normalizes the contamination range across datasets
and isolates its effect under the semi-supervised assumption.

Empirical results (Figures 15a–15b) compare TCCM with ten top-performing baselines. While
TCCM maintains stable AUROC and AUPRC on several datasets, its performance—like that of
most methods—deteriorates as contamination increases, sometimes substantially. This degradation is
particularly evident when the abnormal ratio approaches the dataset’s natural contamination level,
suggesting that even small amounts of anomaly leakage can distort learned decision boundaries.
Overall, the results indicate that no method is entirely immune to contaminated supervision and
reinforce the practical importance of maintaining a clean training set in semi-supervised anomaly
detection.

Study 5: Effectiveness of Conventional Flow Matching on Anomaly Detection. While in princi-
ple conventional Flow Matching can be adapted for anomaly detection, our preliminary experiments
indicate two natural strategies yield suboptimal results: (i) using a standard Flow Matching model to
reconstruct the input x from a learned trajectory and computing the final-step reconstruction error
as the anomaly score; (ii) computing a cumulative reconstruction error across multiple time steps
along the trajectory. We implemented both approaches and found them to be worse than our proposed
TCCM in terms of both detection accuracy and inference efficiency. In particular, trajectory simula-
tion requires numerical integration and multiple model evaluations, incurring high computational
cost at inference time. In contrast, TCCM performs anomaly scoring with a single forward pass at a
fixed time step, offering both speed and accuracy advantages.

Study 6: Effect of Feature Normalization. In practice, we apply z-score normalization (zero
mean, unit variance) to all features before training and inference, which aligns the origin with the
center of the normal data distribution. To further evaluate the impact of normalization, we conduct an
ablation study comparing TCCM trained with and without z-score normalization. Results across
eight representative datasets (see Figure 16) show that normalization does not significantly affect
performance on most datasets but leads to substantial gains in some cases (e.g., Ionosphere, Wilt).
This suggests that without normalization, features with larger scales may dominate the anomaly score,

52

degrading ranking quality. On a few datasets (e.g., InternetAds), normalization slightly reduces
AUPRC, indicating dataset-specific effects. Overall, these findings demonstrate that normalization
generally improves robustness and provides a principled justification for contracting toward the origin
in our framework.

Study 7: Effect of Time-Interpolated Inputs. A key design choice in TCCM is to supervise
the time-conditioned vector field directly at fixed input locations, without using time-interpolated
samples. To examine whether incorporating interpolated inputs (i.e., zt = tz) influences performance,
we conduct an ablation study comparing models trained with and without time interpolation. Re-
sults across eight representative datasets (see Figure 17) show that introducing interpolated samples
generally does not improve anomaly detection performance, with results remaining approximately
unchanged or moderately degraded on most datasets. The degradation is more evident on certain
datasets (e.g., Wilt, magic_gamma), suggesting that interpolated trajectories may introduce unde-
sirable or redundant temporal supervision signals, which can interfere with the learning of stable
contraction dynamics. Overall, these findings empirically support our design choice of training with
fixed inputs and time-conditioned supervision, confirming that TCCM effectively captures temporal
dependencies without requiring explicit trajectory interpolation.

Study 8: Distinction Between TCCM and Autoencoder with Time Embedding (AE+TE). A
remaining concern pertains to the conceptual distinction between TCCM and an autoencoder (AE)
architecture applied to time-augmented data. While both methods may take the same input form
[x,Embed(t)], their training objectives, architectural principles, and learned representations differ
fundamentally.

Conceptual Comparison. Autoencoders aim to minimize a reconstruction loss (e.g., ∥ẑ − z∥22),
learning to reproduce the input itself. In contrast, TCCM learns a time-conditioned velocity field
fθ([z,Embed(t)]) that is explicitly supervised toward a fixed contraction direction (−z). This dis-
tinction fundamentally alters both the optimization target and the semantics of the learned mapping:
TCCM predicts the instantaneous contraction dynamics of the data manifold, rather than reconstruct-
ing input values. Consequently, the model operates under the framework of vector field learning,
akin to score-based diffusion or flow-matching methods, not under the reconstruction paradigm of
autoencoders.

Architectural Comparison. TCCM predicts the residual vector field directly in the input space
using a 3-layer MLP without bottleneck compression, maintaining full dimensionality throughout.
In contrast, the AE+TE baseline employs a symmetric encoder–decoder architecture with a latent
bottleneck layer, formulated as:

• Encoder: Linear(input_dim + time_embed_dim → 256) → ReLU → Linear(256 →
bottleneck_dim)→ ReLU

• Decoder: Linear(bottleneck_dim → 256) → ReLU → Linear(256 →
input_dim + time_embed_dim)

This bottleneck compression can discard anomaly-related signals, particularly in early training,
whereas TCCM preserves feature-level information and learns residual dynamics directly.

Experimental Results. We compare both models on eight representative datasets (see Figure 18),
spanning small, medium, large, and high-dimensional settings. TCCM consistently matches or
outperforms AE+TimeEmbedding in both AUROC and AUPRC metrics. Notably, the AE+TE
baseline exhibits pronounced performance degradation on datasets such as Wilt and magic_gamma,
confirming that its reconstruction-oriented learning objective is less suited for capturing contraction-
based anomalies. These results demonstrate that the advantages of TCCM arise not from architectural
complexity but from its fundamentally different learning principle.

Conclusion. Both empirically and conceptually, TCCM is not an autoencoder. Its flow-inspired
supervision, residual prediction mechanism, and non-bottleneck design collectively enable it to model
anomaly-relevant dynamics more effectively than reconstruction-based alternatives.

53

D.4 Empirical Studies on Robustness and Interpretability

D.4.1 Empirical Studies on Robustness

Although has been shown theoretically, we provide an empirical study on robustness here. By
following (Bergman and Hoshen, 2020), we utilize PGD (Madry et al., 2017) to create adversarial
examples, aiming to make anomalies appear like normal instances (or make normal instances look
like anomalies). We measure the increase of false negative rate (i.e., the decrease of anomaly score)
or false positive rate (i.e., the increase of anomaly score) on the adversarial examples. To make sure
that the attacks are non-trivial, we must limit the allowed budget to use.

Experiment Setup. The experiment is conducted on a suite of synthetic datasets generated from
two disjoint Gaussian mixture models. Details of the dataset construction are provided in Table 2.
In line with the 65–95–99.7 rule for standard normal distributions, this setup largely satisfies the
assumptions of Proposition 5 (namely Proposition 2 in the main paper), while enabling us to evaluate
the robustness of the proposed TCCM method. The training set consists of 5,000 samples randomly
drawn from the mixture distribution P. The test set comprises 4,000 samples from P and 1,000
samples from Q, resulting in an anomaly ratio of 0.2. Following our experimental setup used in
ADBench, both training and test sets are standardized prior to attack. We consider two types of
attacks: 1) False positive attack, where normal samples are perturbed to appear anomalous; 2) False
negative attack, where anomalous samples are perturbed to resemble normal data. For the PGD-based
attack setup, we evaluate 30 levels of perturbation budgets, ϵ ∈ {0.1, 0.2, 0.3 . . . , 2.8, 2.9, 3.0}, under
the L∞ norm. Each attack is performed with a step size of 0.01 and a maximum of ⌈200 · ϵ⌉ iterations.
It is worth noting that, given the data is standardized, a perturbation budget of ϵ = 3 corresponds to a
substantial shift in feature space. For both attack types, we track how AUROC and AUPRC evolve
with increasing perturbation strength. All experiments are independently repeated five times using
different random seeds to ensure statistical robustness.

Table 2: Specifications of synthetic data for robustness verification. Id is an identity matrix with
size d. The normal data is sampled from a GMM with three modes, where µ1 = −3× 1d, µ2 = 0d,
and µ3 = 3 × 1d. The anomaly data is sampled from a two-mode GMM, where ν1 = −9 × 1d

and ν1 = 9 × 1d. The experiments are performed across 5 different dimensionalities, i.e., d ∈
{2, 10, 20, 50, 100}.

Datasets Normal P Anomaly Q

Robustness
∑3

r=1
1
3N (µr, Id)

∑2
s=1

1
2N (νs, Id)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

0.96

0.98

1.00

1.02

1.04

AU
C

Dim: 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

Dim: 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

Dim: 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

Dim: 50

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

Dim: 100
ROC
PR

Figure 19: Results of false negative attacks (attack on anomaly samples) on synthetic GMM-to-GMM
shift datasets across five different dimensionalities. The horizontal axis represents the maximum
perturbation budget (measured in the L∞ norm), while the vertical axis indicates the area under the
curve (AUC) value.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Dim: 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

Dim: 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

Dim: 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

Dim: 50

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Max Budget

Dim: 100
ROC
PR

Figure 20: Results of false positive attacks (attack on normal samples) on synthetic GMM-to-GMM
shift datasets across five different dimensionalities. The horizontal axis represents the maximum
perturbation budget (measured in the L∞ norm), while the vertical axis indicates the area under the
curve (AUC) value.

54

The results are presented in Figure 19 and Figure 20, with baseline AUROC and AUPRC scores
(i.e., before attack, when the maximum perturbation budget is zero) also indicated for reference.
As shown, TCCM is both theoretically justified and empirically validated to be robust under the
GMM-to-GMM shift setting. It consistently achieves the highest AUROC and AUPRC across all
random seeds and dimensionalities, effectively detecting anomalous samples from Q in all cases.
TCCM demonstrates strong robustness against false negative attacks: both AUROC and AUPRC
remain at 1.0, regardless of the perturbation strength. This indicates that adversarial perturbations fail
to disguise anomalous inputs as normal. In the case of false positive attacks, TCCM also exhibits a
notable degree of robustness. As normal samples are gradually perturbed away from their original
distribution, TCCM maintains high AUROC and AUPRC values—particularly up to perturbation
levels equivalent to one standard deviation of the standardized data. The only exception occurs
in high-dimensional settings (e.g., d = 100), where performance slightly degrades. These results
suggest that TCCM learns a compact and stable representation of normality, enabling it to ignore
semantically meaningless variations within a reasonable margin.

D.4.2 Empirical Studies on Interpretability

To further validate the reliability of TCCM’s feature-level importance scores, we conduct a con-
trolled synthetic experiment designed to quantitatively assess whether the learned residual vector
field can accurately identify the features responsible for anomalies. This study complements the
qualitative analyses in the main paper by providing direct empirical evidence of the model’s intrinsic
interpretability.

Experimental Design. We construct a well-controlled anomaly detection task based on a Gaussian
Mixture Model (GMM) with known anomalous dimensions, enabling precise evaluation of whether
TCCM attributes anomalies to the truly perturbed features.

• Normal samples: Drawn from a standard multivariate Gaussian N (0, I).

• Anomalous samples: Generated from a 3-component GMM:

– Component 1: 1 dimension shifted,
– Component 2: 2 dimensions shifted,
– Component 3: 3 dimensions shifted.

• Shift magnitude: Each shifted feature is perturbed by a random offset uniformly sampled
from the range [15, 20].

• Input dimensions: We vary d ∈ {5, 10, 15, 20, 25}.
• Training: The model is trained exclusively on normal samples.

• Evaluation: Both anomaly detection and feature-level explanation are assessed on the
combined test set.

Evaluation Metrics. We employ two complementary metrics that do not rely on any external
explainer:

• Exact Match: The proportion of anomalies for which the predicted top-k features exactly
coincide with the ground-truth anomalous dimensions, where k equals the number of shifted
dimensions per sample (k ∈ {1, 2, 3}).

• Jaccard Index: The average intersection-over-union (IoU) between predicted and true
anomalous dimensions across all anomalous samples.

Both metrics are derived directly from the model’s built-in residual vector field, computed as
∥[fϕ([x,Embed(t)]) + x]∥2, as defined in Eq. 5 of the main paper. This ensures that interpretability
is evaluated based on the model’s internal reasoning rather than post hoc approximations.

Results and Discussion. The outcomes in Table 3 show that TCCM consistently and accurately
identifies the ground-truth anomalous features across all tested dimensionalities.

The near-perfect ExactMatch and Jaccard scores confirm that TCCM’s residual velocity field yields
faithful, fine-grained feature-level attributions. Crucially, this interpretability arises intrinsically from

55

Table 3: Quantitative evaluation of explanation accuracy on synthetic GMM anomalies.
Setting ExactMatch Jaccard AUROC AUPRC
5D 1.000 1.000 1.000 1.000
10D 1.000 1.000 1.000 1.000
15D 1.000 1.000 1.000 1.000
20D 0.996 0.998 1.000 1.000
25D 0.996 0.997 1.000 1.000

the model’s formulation—no auxiliary explanation method (e.g., SHAP or LIME) is required. The
residual components directly encode each feature’s contribution to the contraction mismatch, offering
a transparent and actionable view of the decision process. This property enables practitioners in
domains such as fraud analysis, medical diagnostics, and industrial monitoring to understand not only
which samples are anomalous but also why.

D.5 Statistical Tests

To rigorously assess whether the performance differences between TCCM and competing methods
are statistically significant, we conduct non-parametric statistical tests on their rankings across 47
datasets. For each method, we compute its average AUPRC and AUROC rankings over five random
seeds on each dataset. Given the multi-method, multi-dataset nature of this evaluation, traditional
pairwise tests are inadequate due to increased risk of Type I error. Hence, we follow the protocol
proposed by Demšar (2006), which recommends a two-stage procedure:

• First, we apply the Friedman test (Friedman, 1937), a non-parametric alternative to repeated-
measures ANOVA, to determine whether there is any statistically significant difference in
performance rankings among all methods.

• If the null hypothesis is rejected, we proceed with the Nemenyi post hoc test (Nemenyi,
1963), which compares all classifiers pairwise. Two methods are considered significantly
different if their average ranks differ by at least the critical difference (CD).

Compared to alternatives like the Wilcoxon-Holm method (García et al., 2010), which performs
pairwise tests between a control method and others with Holm correction, the Nemenyi test is more
conservative—it simultaneously controls the family-wise error rate across all pairwise comparisons,
not just against a reference. While this often results in fewer significant findings, it provides a stronger
guarantee against false positives, especially important in benchmark settings involving many methods.

We report the results using critical difference diagrams (see Figure 21 and 22). For AUPRC, the
Nemenyi test indicates that there are no statistically significant differences among the top-performing
group, which includes TCCM (ranked 5.8), DTE-NonParametric, LUNAR, KDE, AutoEncoder, ICL,
CBLOF, DTE-Categorical, GMM, and OCSVM. For AUROC, the top group includes TCCM (ranked
5.7), DTE-NonParametric, LUNAR, KDE, AutoEncoder, ICL, CBLOF, DTE-Categorical, GMM,
and Sampling. Although TCCM achieves the best average rank in both metrics, the conservative
nature of the Nemenyi test explains the lack of statistically significant superiority. Nonetheless,
TCCM consistently ranks at the top, reinforcing its robustness and broad effectiveness across diverse
datasets.

Table 4: Overall comparison of top-performant anomaly detection algorithms (with top-4 performance
in terms of AUROC and AUPRC) across four key dimensions.

Algorithm Accuracy Scalability Explainability (Provable) Robustness
TCCM ✓ ✓ ✓ (feature contribution) ✓
DTE-NonParametric (Livernoche et al., 2023) ✓ ✗ (slow inference) ✓(reconstruction) ✗
LUNAR (Goodge et al., 2022) ✓ ✗ (slow training) ✗ ✗
KDE (Latecki et al., 2007) ✓ ✗ (slow training) ✓(density) ✗

56

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

TCCM (Ours) (5.8)

DTENonParametric (8.0)

LUNAR (8.1)

KDE (9.3)

AutoEncoder (13.0)

ICL (13.5)

CBLOF (13.7)

DTECategorical (14.6)

GMM (14.6)

OCSVM (14.6)

DTEGaussian (14.9)

MCM (15.2)

DTEInverseGamma (16.0)

Sampling (16.1)

SLAD (16.4)

VAE (16.5)

AE1SVM (17.3)

FeatureBagging (17.3)

IForest (19.6)

MCD (21.0)

HBOS (21.0)

DIF (22.0)

AnoGAN (22.9)

NormalizingFlow (23.4)

DeepSVDD (24.0)

GANomaly (24.1)

ECOD (24.4)

DTEDDPM (24.6)

GOAD (25.8)

LMDD (26.2)

LODA (27.8)

KNN (27.9)

DROCC (28.7)

QMCD (28.9)

DAGMM (29.5)

INNE (29.9)

CD (30.4)

PCA (30.5)

ABOD (32.6)

LOF (32.9)

MO_GAAL (34.6)

SO_GAAL (34.9)

COF (35.5)

KPCA (36.9)

ALAD (37.5)

CD = 8.98

Critical Difference Diagram (AUPRC)

Figure 21: Critical difference (CD) diagram illustrating statistical rank comparisons of the 45 anomaly
detection methods based on their AUPRC performance across 47 datasets. Each method is ranked
by its mean AUPRC over five random seeds. The CD value, computed via the Nemenyi post-hoc
test at significance level 0.05, indicates the minimum difference in average rank that is statistically
significant. Notably, TCCM (ranked 5.8 on average) is part of the top-performing group including
DTE-NonParametric, LUNAR, KDE, AutoEncoder, ICL, CBLOF, DTE-Categorical, GMM, and
OCSVM.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

TCCM (Ours) (5.7)

DTENonParametric (6.3)

LUNAR (7.8)

KDE (9.2)

AutoEncoder (12.5)

CBLOF (12.5)

DTECategorical (13.2)

GMM (13.9)

Sampling (14.2)

FeatureBagging (15.0)

MCM (15.3)

OCSVM (15.4)

ICL (16.1)

VAE (16.1)

DTEGaussian (16.3)

SLAD (16.4)

IForest (16.9)

DTEInverseGamma (17.6)

MCD (17.9)

AE1SVM (18.3)

HBOS (21.5)

DIF (22.4)

NormalizingFlow (23.0)

AnoGAN (23.8)

DeepSVDD (24.2)

ECOD (25.1)

GANomaly (25.5)

INNE (26.1)

KNN (26.4)

DTEDDPM (26.5)

GOAD (28.2)

LODA (28.5)

LMDD (28.5)

QMCD (28.8)

PCA (29.3)

CD (29.5)

DROCC (31.1)

DAGMM (31.2)

ABOD (31.6)

LOF (31.9)

COF (34.6)

MO_GAAL (35.5)

SO_GAAL (35.7)

KPCA (36.1)

ALAD (37.6)

CD = 8.98

Critical Difference Diagram (AUROC)

Figure 22: Critical difference (CD) diagram illustrating statistical rank comparisons of the 45 anomaly
detection methods based on their AUROC performance across 47 datasets. Each method is ranked by
its mean AUROC over five random seeds. The CD value is derived using the Nemenyi post-hoc test
with a significance level of 0.05. TCCM (with an average rank of 5.7) belongs to the top-performing
group, which includes DTE-NonParametric, LUNAR, KDE, AutoEncoder, ICL, CBLOF, DTE-
Categorical, GMM, and Sampling.

57

D.6 Limitations and Broader Impacts

Limitations. While TCCM achieves state-of-the-art performance with relatively low computational
cost, we outline three limitations that offer promising directions for future research. (1) Data
Modality: As the first work on adapting flow-matching modeling to anomaly detection, our study
focuses exclusively on tabular data. Extending TCCM to other data modalities, such as vision (Liu
et al., 2024), time series (Blázquez-García et al., 2021), or graph-structured data (Akoglu et al.,
2015; Li et al., 2024a), is an exciting avenue for exploration. (2) Neural Architecture: To achieve
maximum efficiency, TCCM models the velocity field using a multilayer perceptron. This design
choice raises an open question: could more sophisticated neural architectures, such as ResNet (He
et al., 2016), further improve performance? (3) Real-World Usability: Our evaluation is conducted
on ADBench (Han et al., 2022), following the common practice in the anomaly detection research
community. Exploring TCCM’s effectiveness in real-world high-stakes domains, e.g., finance or
healthcare, under more dynamic and complex conditions would be valuable.

Broader Impacts. While the TCCM methodology, as presented, is foundational research focused
on advancing anomaly detection in tabular data, its limitations inherently shape its potential broader
impacts and demarcate avenues for future work that could address these implications. The current
focus on tabular data, while demonstrating significant methodological advancements, means that the
direct applicability to other prevalent data types like images, time series, or complex graph structures
is not yet established. The broader societal impact of anomaly detection often lies in these other
domains—such as medical imaging analysis, financial transaction monitoring over time, or social
network security. Therefore, until TCCM is extended and validated on these diverse data modalities,
its positive impact in such critical areas remains a future prospect, and any potential negative impacts
from misuse in these unvalidated contexts are purely speculative but warrant caution.

Furthermore, the utilization of a multilayer perceptron (MLP) for the velocity field, chosen for
efficiency, may cap the model’s capability to discern highly complex patterns compared to more so-
phisticated architectures. This architectural limitation could influence its broader impact in scenarios
demanding exceptional nuance and accuracy, potentially limiting its deployment in safety-critical
applications where the cost of a false negative or positive is extremely high. The ethical implications
of deploying a system that might not capture the full complexity of a problem due to architectural
constraints should be considered as the research progresses.

Lastly, the evaluation of TCCM primarily on the ADBench benchmark, though a standard practice,
means its performance characteristics in messy, dynamic, and potentially adversarial real-world
environments are not fully known. The broader impact, particularly concerning fairness, robustness
to unforeseen data shifts, privacy implications in data-sensitive fields like finance or healthcare,
and security against emergent threats, can only be truly assessed through rigorous testing in such
operational settings. Without this, the translation of TCCM into systems with significant societal
touchpoints should proceed with a clear understanding of these unevaluated risks. Future work
addressing these limitations will be crucial in responsibly broadening the positive societal impact of
this line of research.

E Results under the Inductive Evaluation Setting

To ensure a protocol that is consistent across all methods evaluated together, we additionally report
results under a unified inductive (semi-supervised) setting, in which training is performed solely on
normal samples without access to anomalous data. Most methods in our benchmark—including the
majority of deep learning approaches and many classical baselines—are already inductive by design
and thus remain unchanged. For completeness, we adapt the following algorithms that were originally
formulated as transductive detectors to an inductive training procedure: ABOD, COF, LOF, PCA,
KPCA, KNN, and INNE. All other experimental configurations, datasets, and evaluation metrics are
identical to those used in the main paper.

E.1 Effectiveness under the Inductive Setting

Figures 23a and 23b summarize the aggregated rankings of 45 detectors across 47 datasets, based on
AUPRC and AUROC, respectively. Each ranking averages over five random seeds.

58

TCCM (O
urs

)

LU
NAR

DTENon
Para

metr
ic

KNN_s
em

isu
p
KDE

Auto
Enc

od
er

ABOD_s
em

isu
p

CBLO
F

IN
NE_s

em
isu

p

LO
F_s

em
isu

p

DTECate
go

ric
al

OCSVM

DTEGau
ss

ian
GMM IC

L

KPCA_s
em

isu
p

DTEInv
ers

eG
am

ma
VAE

Sam
pli

ng
MCM

Fea
tur

eB
ag

gin
g
SLA

D

AE1S
VM
IFore

st

HBOS
MCD DIF

PCA_s
em

isu
p

Ano
GAN

GANom
aly

Dee
pS

VDD
ECOD

DTEDDPM

Norm
ali

zin
gF

low
LM

DD
LO

DA
KNN

GOAD

DROCC
QMCD

IN
NE CD

PCA
ABOD

LO
F

MO_G
AAL

SO_G
AAL

DAGMM
COF

COF_s
em

isu
p
ALA

D
KPCA

0

10

20

30

40

50

R
an

k_
A

U
P

R
C

7.2
9.6 9.6

11.1 11.2

16.3 16.8 17.0 17.0 17.6 17.6 17.8 18.0 18.0 18.2 18.8 19.3 19.8 19.9 20.3 20.4 20.6 21.5
23.4

24.9 25.9 26.3 27.0 27.1
28.4 28.6 29.0 29.1

31.3 31.6 32.8 32.8 32.9 33.6 33.7
35.2 35.4 35.7

38.0 38.2
40.1 40.2 41.3 42.4 42.4 43.2 44.0

Detector Type
Deep Learning Classical (Force Inductive) Classical (Inductive)

(a) AUPRC ranking distribution across 47 datasets for 45 anomaly detectors under the inductive setting.

TCCM (O
urs

)

DTENon
Para

metr
ic

KNN_s
em

isu
p

LU
NAR

KDE

ABOD_s
em

isu
p

IN
NE_s

em
isu

p

CBLO
F

Auto
Enc

od
er

LO
F_s

em
isu

p

DTECate
go

ric
al
GMM

KPCA_s
em

isu
p

Sam
pli

ng

Fea
tur

eB
ag

gin
g

OCSVM
VAE

DTEGau
ss

ian
MCM

SLA
D

IFore
st IC

L

DTEInv
ers

eG
am

ma

AE1S
VM

MCD
HBOS

PCA_s
em

isu
p

DIF

Ano
GAN

Dee
pS

VDD
ECOD

GANom
alyKNN

Norm
ali

zin
gF

lowIN
NE

DTEDDPM
LO

DA

QMCD
LM

DD CD
PCA

GOAD

DROCC
ABOD

LO
F

MO_G
AAL

SO_G
AAL

COF

COF_s
em

isu
p

DAGMM
ALA

D
KPCA

0

10

20

30

40

50

R
an

k_
A

U
R

O
C

7.5 7.6
9.2 9.4

11.4

15.5 15.6 15.8 15.9 16.1 16.2 17.3 17.8 17.8 18.0 18.9 19.5 19.9 20.6 20.7 20.7 21.1 21.4 22.7 22.8
25.6 26.6 27.1 28.3 29.0 30.0 30.2 31.2 31.2 31.2 31.4

33.5 33.8 34.1 34.6 34.6 35.2 36.4 37.0 37.2

41.0 41.2 41.8 41.8 42.4 43.3 43.3

Detector Type
Deep Learning Classical (Force Inductive) Classical (Inductive)

(b) AUROC ranking distribution across 47 datasets for 45 anomaly detectors under the inductive setting.

Figure 23: Updated detector ranking distributions (AUPRC and AUROC) under the inductive (semi-
supervised) protocol, where models are trained exclusively on normal data. Medians are indicated by
horizontal lines; means are shown as numbers.

Findings. The ranking trends for deep learning methods remain highly consistent with the main
paper: TCCM continues to rank first overall in both AUPRC and AUROC under the inductive setting,
indicating that its performance advantage does not rely on transductive assumptions of other baselines.
Other strong baselines (e.g., LUNAR, DTE-NonParametric, KDE) approximately preserve their
relative positions.

Notably, several classical methods that we adapted from transductive to inductive exhibit substantial
performance gains. The improvements are most pronounced for KNN, ABOD, and INNE: for
KNN, the average rank in AUPRC improves from 27.9 to 11.1, and in AUROC from 26.4 to 9.2; for
ABOD, AUPRC average rank improves from 32.6 to 31.6 and AUROC average rank from 36.1 to
15.5; INNE shows similarly notable gains. These changes indicate that experimental protocol can
materially affect certain neighborhood- or structure-based detectors.

E.2 Scalability, Explainability, and Ablation Analyses

Scalability. The scalability conclusions remain aligned with the main paper: TCCM retains its
efficiency advantages. Methods that were already inductive (e.g., TCCM, LUNAR, KDE, DTE-
NonParametric) are unaffected by the protocol change.

Interpretability. The interpretability analysis in Section 5.1 is unchanged, as TCCM’s feature-level
explanations stem from its model structure.

Ablation and Sensitivity. We did not repeat ablation/sensitivity studies under the inductive reformu-
lation, since the algorithms modified here (ABOD, COF, LOF, PCA, KPCA, KNN, INNE) were
not part of those studies.

59

Why in the Appendix? We place the inductive-variant results here to keep the main text focused and
methodologically consistent: introducing non-canonical inductive variants of originally transductive
algorithms into the main tables would complicate the primary comparison without changing our
conclusions. The appendix ensures transparency while preserving the clarity of the main results.

In summary, adopting a fully inductive evaluation protocol does not qualitatively change our con-
clusions. TCCM remains the most effective and scalable detector, with robust performance under
semi-supervised training conditions for all baselines.

60

Table 5: Configuration details for each dataset used in TCCM experiments. To avoid bias from
aggressive hyperparameter tuning, we adopt a fixed configuration for all core components (e.g.,
architecture, time embedding, optimizer) across all datasets. Since our setting is fully unsupervised,
we refrain from using label information to optimize hyperparameters. The number of training epochs
is adjusted in a dataset-dependent but label-agnostic manner by following the unsupervised internal
evaluation strategy in Li et al. (2025b). Note that the backbone architecture is a lightweight 3-layer
MLP (two hidden layers), chosen deliberately for efficiency on tabular data; we use the term “deep”
in line with common practice to indicate a deep learning-based, end-to-end neural approach rather
than architectural depth per se.

Dataset Category Architecture Time Embedding Loss Function Optimizer #Epochs Batch Size Seeds

census High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 5 1024 [0,1,2,3,4]
backdoor High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 200 1024 [0,1,2,3,4]
campaign High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 50 1024 [0,1,2,3,4]
mnist High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 500 512 [0,1,2,3,4]
speech High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 500 512 [0,1,2,3,4]
optdigits High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 2000 512 [0,1,2,3,4]
SpamBase High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 5000 512 [0,1,2,3,4]
musk High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 5 512 [0,1,2,3,4]
InternetAds High-dimensional MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 50 512 [0,1,2,3,4]
donors Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 30 1024 [0,1,2,3,4]
http Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 100 1024 [0,1,2,3,4]
cover Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 10 1024 [0,1,2,3,4]
fraud Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 75 1024 [0,1,2,3,4]
skin Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 110 1024 [0,1,2,3,4]
celeba Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 2 1024 [0,1,2,3,4]
smtp Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 2 1024 [0,1,2,3,4]
ALOI Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 100 1024 [0,1,2,3,4]
shuttle Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 200 1024 [0,1,2,3,4]
magic.gamma Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 10 1024 [0,1,2,3,4]
mammography Large MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 20 1024 [0,1,2,3,4]
annthyroid Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 2000 512 [0,1,2,3,4]
pendigits Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 1000 512 [0,1,2,3,4]
satellite Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 10 512 [0,1,2,3,4]
landsat Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 6 512 [0,1,2,3,4]
satimage-2 Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 5 512 [0,1,2,3,4]
PageBlocks Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 1800 512 [0,1,2,3,4]
Wilt Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 20 512 [0,1,2,3,4]
thyroid Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 10 512 [0,1,2,3,4]
Waveform Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 580 512 [0,1,2,3,4]
Cardiotocography Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 1 512 [0,1,2,3,4]
fault Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 5000 512 [0,1,2,3,4]
cardio Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 2000 512 [0,1,2,3,4]
letter Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 50 512 [0,1,2,3,4]
yeast Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 130 512 [0,1,2,3,4]
vowels Medium MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 20 512 [0,1,2,3,4]
Pima Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 5 512 [0,1,2,3,4]
breastw Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 1 512 [0,1,2,3,4]
WDBC Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 2 512 [0,1,2,3,4]
Ionosphere Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 10 512 [0,1,2,3,4]
Stamps Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 200 512 [0,1,2,3,4]
vertebral Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 25 512 [0,1,2,3,4]
WBC Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 1 512 [0,1,2,3,4]
glass Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 200 512 [0,1,2,3,4]
WPBC Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 6 512 [0,1,2,3,4]
Lymphography Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 3 512 [0,1,2,3,4]
wine Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 20 512 [0,1,2,3,4]
Hepatitis Small MLP (2×256 ReLU) Sinusoidal (128) MSE Loss Adam (lr=0.005) 1 512 [0,1,2,3,4]

61

Table 6: AUROC results on 12 small datasets, where we compare TCCM to 44 baselines (with 5
independent runs). We report the mean ± std (rank).

Dataset TCMM (Ours) AE AE-1SVM ALAD AnoGAN DAGMM DeepSVDD DIF DROCC DTE-Cat DTE-DDPM DTE-Gaussian

Pima 0.735±0.018(4) 0.698±0.016(17) 0.668±0.009(23) 0.528±0.018(41) 0.695±0.057(18) NAN 0.686±0.027(19) 0.604±0.021(32) 0.429±0.157(42) 0.651±0.02(27) 0.569±0.019(37) 0.66±0.021(25)
breastw 0.99±0.003(5) 0.983±0.006(20) 0.984±0.004(19) 0.649±0.02(35) 0.994±0.001(2) NAN 0.986±0.004(15) 0.777±0.065(30) 0.383±0.315(41) 0.938±0.011(28) 0.96±0.01(26) 0.929±0.032(29)
WDBC 0.993±0.003(3) 0.993±0.005(3) 0.98±0.023(24) 0.615±0.06(41) 0.99±0.006(12) NAN 0.987±0.01(18) 0.758±0.034(39) 0.332±0.377(43) 0.97±0.01(31) 0.88±0.064(38) 0.992±0.005(7)
Ionosphere 0.976±0.005(3) 0.948±0.004(16) 0.934±0.012(19) 0.542±0.08(44) 0.778±0.04(34) NAN 0.85±0.042(30) 0.933±0.007(20) 0.687±0.167(39) 0.941±0.011(17) 0.843±0.029(32) 0.972±0.004(6)
Stamps 0.935±0.018(8) 0.926±0.016(14) 0.944±0.021(4) 0.597±0.095(41) 0.741±0.352(35) NAN 0.951±0.021(2) 0.935±0.02(8) 0.352±0.151(45) 0.905±0.026(21) 0.76±0.052(31) 0.822±0.109(29)
vertebral 0.669±0.072(1) 0.457±0.026(22) 0.53±0.041(9) 0.48±0.077(18) 0.566±0.104(6) NAN 0.418±0.058(31) 0.541±0.035(8) 0.435±0.265(29) 0.527±0.072(10) 0.418±0.043(31) 0.518±0.019(11)
WBC 0.986±0.008(8) 0.979±0.012(16) 0.975±0.016(23) 0.588±0.152(40) 0.991±0.009(4) NAN 0.98±0.012(15) 0.762±0.047(38) 0.377±0.316(42) 0.92±0.057(32) 0.906±0.056(33) 0.962±0.021(26)
glass 0.903±0.019(2) 0.748±0.058(27) 0.763±0.038(22) 0.501±0.15(44) 0.694±0.212(32) NAN 0.67±0.125(35) 0.872±0.016(6) 0.757±0.173(24) 0.805±0.048(17) 0.683±0.1(34) 0.546±0.032(43)
WPBC 0.567±0.013(2) 0.516±0.024(20) 0.495±0.033(34) 0.488±0.067(37) 0.535±0.063(16) NAN 0.499±0.063(32) 0.471±0.029(43) 0.474±0.071(42) 0.548±0.038(10) 0.537±0.054(15) 0.487±0.018(38)
Lymphography 0.992±0.008(6) 0.985±0.019(22) 0.979±0.028(27) 0.608±0.166(40) 0.991±0.008(8) NAN 0.97±0.038(32) 0.899±0.065(38) 0.434±0.311(42) 0.986±0.014(21) 0.971±0.018(31) 0.981±0.015(25)
wine 0.976±0.01(5) 0.94±0.023(15) 0.942±0.033(14) 0.483±0.156(37) 0.828±0.125(26) NAN 0.825±0.092(27) 0.665±0.078(33) 0.427±0.296(40) 0.957±0.035(13) 0.629±0.139(35) 0.896±0.047(24)
Hepatitis 0.831±0.031(6) 0.831±0.027(6) NAN 0.466±0.065(44) 0.729±0.135(27) NAN 0.764±0.069(23) 0.707±0.056(30) 0.477±0.206(43) 0.81±0.036(15) 0.695±0.073(32) 0.776±0.035(20)
Avg Ranking 4.42 16.5 19.82 38.5 18.33 NAN 23.25 27.08 39.33 20.17 31.25 23.58

Dataset DTE-IG DTE-NP GANomaly GOAD ICL LUNAR MCM MO_GAAL PlanarFlow SLAD SO_GAAL VAE

Pima 0.62±0.016(30) 0.742±0.015(2) 0.594±0.038(36) 0.385±0.07(44) 0.651±0.012(27) 0.727±0.022(6) 0.721±0.027(9) 0.363±0.064(45) 0.71±0.029(13) 0.558±0.019(39) 0.425±0.088(43) 0.681±0.008(20)
breastw 0.689±0.189(33) 0.987±0.005(14) 0.951±0.017(27) 0.721±0.16(32) 0.965±0.01(25) 0.989±0.005(8) 0.986±0.007(15) 0.04±0.049(45) 0.971±0.012(24) 0.99±0.003(5) 0.23±0.171(44) 0.99±0.003(5)
WDBC 0.986±0.008(20) 0.991±0.005(10) 0.916±0.076(36) 0.989±0.008(14) 0.984±0.013(21) 0.994±0.004(1) 0.955±0.062(32) 0.045±0.02(45) 0.981±0.007(22) 0.979±0.007(25) 0.155±0.121(44) 0.988±0.009(16)
Ionosphere 0.965±0.014(7) 0.978±0.005(1) 0.908±0.057(26) 0.932±0.015(21) 0.962±0.009(10) 0.976±0.007(3) 0.676±0.1(42) 0.686±0.092(40) 0.941±0.009(17) 0.957±0.006(14) 0.703±0.084(38) 0.91±0.021(25)
Stamps 0.782±0.114(30) 0.949±0.014(3) 0.885±0.07(24) 0.609±0.252(40) 0.864±0.025(27) 0.941±0.023(5) 0.921±0.026(17) 0.628±0.225(38) 0.902±0.018(22) 0.621±0.058(39) 0.757±0.135(32) 0.933±0.02(11)
vertebral 0.616±0.05(2) 0.45±0.017(25) 0.457±0.085(22) 0.449±0.071(27) 0.505±0.044(12) 0.45±0.035(25) 0.462±0.122(21) 0.612±0.108(3) 0.581±0.105(5) 0.479±0.034(19) 0.594±0.118(4) 0.487±0.024(16)
WBC 0.806±0.162(37) 0.981±0.007(14) 0.924±0.059(30) 0.893±0.054(35) 0.935±0.023(29) 0.978±0.01(18) 0.978±0.014(18) 0.024±0.029(45) 0.959±0.024(27) 0.987±0.008(7) 0.064±0.07(44) 0.986±0.009(8)
glass 0.658±0.085(36) 0.879±0.013(5) 0.761±0.095(23) 0.611±0.187(42) 0.919±0.019(1) 0.89±0.02(3) 0.833±0.037(13) 0.625±0.234(40) 0.829±0.055(14) 0.844±0.032(12) 0.626±0.2(39) 0.724±0.035(30)
WPBC 0.506±0.036(28) 0.561±0.029(5) 0.545±0.037(11) 0.564±0.035(3) 0.511±0.049(24) 0.564±0.028(3) 0.495±0.063(34) 0.482±0.031(40) 0.502±0.037(29) 0.542±0.011(14) 0.499±0.049(32) 0.509±0.024(25)
Lymphography 0.977±0.013(28) 0.99±0.009(14) 0.97±0.016(32) 0.981±0.023(25) 0.97±0.025(32) 0.987±0.005(20) 0.992±0.006(6) 0.17±0.263(44) 0.973±0.038(29) 0.989±0.011(17) 0.259±0.324(43) 0.993±0.008(4)
wine 0.925±0.03(20) 0.972±0.015(7) 0.646±0.282(34) 0.963±0.015(9) 0.906±0.026(22) 0.978±0.016(3) 0.776±0.242(28) 0.153±0.149(43) 0.903±0.07(23) 0.977±0.011(4) 0.106±0.113(44) 0.935±0.023(17)
Hepatitis 0.767±0.062(22) 0.831±0.025(6) 0.725±0.065(28) 0.833±0.029(3) 0.7±0.066(31) 0.763±0.084(24) 0.786±0.049(18) 0.59±0.076(40) 0.625±0.092(35) 0.776±0.041(20) 0.535±0.081(42) 0.833±0.02(3)
Avg Ranking 24.42 8.83 27.42 24.58 21.75 9.92 21.08 39.0 21.67 17.92 37.42 15.0

Dataset CBLOF CD ECOD FB GMM HBOS IForest KDE LMDD LODA MCD OCSVM

Pima 0.71±0.018(13) 0.676±0.011(22) 0.595±0.016(35) 0.706±0.016(15) 0.72±0.015(11) 0.727±0.017(6) 0.731±0.012(5) 0.754±0.017(1) 0.599±0.079(33) 0.654±0.076(26) 0.719±0.014(12) 0.701±0.017(16)
breastw 0.989±0.003(8) 0.976±0.003(22) 0.991±0.001(3) 0.581±0.242(38) 0.985±0.004(18) 0.991±0.002(3) 0.995±0.001(1) 0.989±0.005(8) 0.628±0.076(36) 0.981±0.01(21) 0.989±0.003(8) 0.989±0.004(8)
WDBC 0.989±0.004(14) 0.942±0.008(34) 0.971±0.007(30) 0.994±0.003(1) 0.99±0.004(12) 0.987±0.004(18) 0.991±0.004(10) 0.993±0.004(3) 0.992±0.007(7) 0.974±0.017(28) 0.975±0.005(26) 0.992±0.006(7)
Ionosphere 0.961±0.01(12) 0.919±0.004(23) 0.732±0.011(37) 0.95±0.014(15) 0.964±0.002(9) 0.685±0.028(41) 0.9±0.02(27) 0.975±0.002(5) 0.769±0.049(35) 0.852±0.044(29) 0.958±0.004(13) 0.965±0.003(7)
Stamps 0.935±0.016(8) 0.746±0.021(33) 0.884±0.011(26) 0.921±0.03(17) 0.924±0.022(16) 0.926±0.014(14) 0.938±0.016(6) 0.955±0.011(1) 0.914±0.04(19) 0.911±0.032(20) 0.855±0.029(28) 0.936±0.02(7)
vertebral 0.487±0.033(16) 0.455±0.034(24) 0.416±0.01(33) 0.411±0.011(35) 0.489±0.016(14) 0.362±0.038(40) 0.426±0.009(30) 0.412±0.024(34) 0.387±0.083(38) 0.386±0.066(39) 0.469±0.026(20) 0.502±0.022(13)
WBC 0.979±0.008(16) 0.971±0.006(24) 0.993±0.002(2) 0.709±0.248(39) 0.978±0.011(18) 0.988±0.005(6) 0.994±0.003(1) 0.982±0.008(13) 0.99±0.006(5) 0.97±0.012(25) 0.986±0.006(8) 0.985±0.009(11)
glass 0.864±0.016(7) 0.784±0.043(20) 0.715±0.025(31) 0.753±0.067(25) 0.77±0.027(21) 0.828±0.027(15) 0.806±0.014(16) 0.85±0.021(11) 0.647±0.052(37) 0.623±0.101(41) 0.79±0.008(19) 0.687±0.052(33)
WPBC 0.527±0.014(18) 0.465±0.038(44) 0.5±0.016(31) 0.543±0.022(12) 0.508±0.025(26) 0.578±0.019(1) 0.549±0.017(9) 0.558±0.028(6) 0.495±0.079(34) 0.543±0.041(12) 0.515±0.027(21) 0.528±0.01(17)
Lymphography 0.991±0.008(8) 0.957±0.013(36) 0.994±0.004(3) 0.989±0.009(17) 0.984±0.008(23) 0.993±0.005(4) 0.995±0.005(2) 0.989±0.01(17) 0.957±0.047(36) 0.642±0.25(39) 0.983±0.006(24) 0.99±0.009(14)
wine 0.965±0.014(8) 0.325±0.054(42) 0.74±0.026(29) 0.961±0.015(11) 0.982±0.009(2) 0.933±0.04(19) 0.934±0.04(18) 0.973±0.015(6) 0.875±0.048(25) 0.913±0.035(21) 0.983±0.016(1) 0.962±0.017(10)
Hepatitis 0.832±0.033(5) 0.574±0.057(41) 0.739±0.032(26) 0.837±0.024(1) 0.814±0.048(12) 0.814±0.034(12) 0.79±0.049(17) 0.814±0.031(12) 0.755±0.047(25) 0.667±0.076(33) 0.816±0.063(11) 0.837±0.024(1)
Avg Ranking 11.08 30.42 23.83 18.83 15.17 14.92 11.83 9.75 27.5 27.83 15.92 12.0

Dataset QMCD Sampling ABOD COF INNE KNN KPCA LOF PCA

Pima 0.741±0.014(3) 0.721±0.033(9) 0.638±0.02(29) 0.568±0.011(38) 0.665±0.02(24) 0.681±0.016(20) 0.536±0.037(40) 0.596±0.011(34) 0.607±0.019(31)
breastw 0.474±0.121(39) 0.986±0.005(15) 0.432±0.015(40) 0.327±0.023(43) 0.667±0.034(34) 0.972±0.005(23) 0.606±0.081(37) 0.353±0.021(42) 0.749±0.004(31)
WDBC 0.453±0.14(42) 0.988±0.01(16) 0.881±0.017(37) 0.942±0.011(34) 0.952±0.002(33) 0.974±0.009(28) 0.645±0.333(40) 0.975±0.009(26) 0.981±0.005(22)
Ionosphere 0.536±0.02(45) 0.962±0.018(10) 0.924±0.004(22) 0.849±0.008(31) 0.871±0.011(28) 0.913±0.005(24) 0.606±0.048(43) 0.835±0.011(33) 0.753±0.009(36)
Stamps 0.887±0.023(23) 0.931±0.015(12) 0.653±0.01(37) 0.434±0.015(44) 0.742±0.042(34) 0.706±0.029(36) 0.516±0.101(42) 0.447±0.037(43) 0.885±0.026(24)
vertebral 0.402±0.032(37) 0.448±0.057(28) 0.332±0.022(44) 0.41±0.03(36) 0.361±0.014(41) 0.319±0.011(45) 0.489±0.059(14) 0.351±0.021(42) 0.344±0.018(43)
WBC 0.354±0.166(43) 0.978±0.015(18) 0.942±0.021(28) 0.901±0.047(34) 0.876±0.012(36) 0.978±0.009(18) 0.529±0.136(41) 0.921±0.023(31) 0.993±0.002(2)
glass 0.857±0.017(8) 0.855±0.029(9) 0.796±0.028(18) 0.752±0.047(26) 0.736±0.047(28) 0.851±0.023(10) 0.412±0.101(45) 0.725±0.048(29) 0.638±0.051(38)
WPBC 0.556±0.024(7) 0.556±0.031(7) 0.446±0.026(45) 0.484±0.034(39) 0.501±0.012(30) 0.512±0.018(22) 0.507±0.015(27) 0.52±0.012(19) 0.48±0.023(41)
Lymphography 0.086±0.043(45) 0.991±0.008(8) 0.969±0.011(35) 0.991±0.007(8) 0.973±0.008(29) 0.991±0.008(8) 0.604±0.112(41) 0.99±0.008(14) 0.996±0.004(1)
wine 0.494±0.136(36) 0.958±0.035(12) 0.332±0.065(41) 0.454±0.14(38) 0.711±0.091(30) 0.442±0.067(39) 0.694±0.277(32) 0.939±0.025(16) 0.7±0.011(31)
Hepatitis 0.611±0.125(38) 0.817±0.039(10) 0.624±0.063(36) 0.715±0.025(29) 0.637±0.029(34) 0.783±0.028(19) 0.6±0.107(39) 0.805±0.015(16) 0.622±0.043(37)
Avg Ranking 30.5 12.83 34.33 33.33 31.75 24.33 36.75 28.75 28.08

Table 7: AUPRC results on 12 small datasets, where we compare TCCM to 44 baselines (with 5
independent runs). We report the mean ± std (rank).

Dataset TCMM (Ours) AE AE-1SVM ALAD AnoGAN DAGMM DeepSVDD DIF DROCC DTE-Cat DTE-DDPM DTE-Gaussian

Pima 0.716±0.029(5) 0.68±0.023(16) 0.648±0.009(25) 0.548±0.007(41) 0.697±0.046(13) NAN 0.665±0.028(21) 0.578±0.024(38) 0.502±0.121(43) 0.636±0.029(28) 0.594±0.018(35) 0.657±0.027(24)
breastw 0.987±0.007(8) 0.976±0.011(20) 0.98±0.007(17) 0.692±0.026(35) 0.993±0.001(2) NAN 0.982±0.009(14) 0.683±0.06(36) 0.574±0.22(39) 0.893±0.016(29) 0.955±0.017(24) 0.907±0.037(28)
WDBC 0.862±0.074(5) 0.868±0.091(3) 0.778±0.217(22) 0.166±0.105(41) 0.803±0.122(15) NAN 0.782±0.179(21) 0.12±0.026(43) 0.126±0.187(42) 0.565±0.087(32) 0.432±0.159(33) 0.865±0.101(4)
Ionosphere 0.983±0.004(2) 0.959±0.004(15) 0.946±0.01(18) 0.595±0.061(44) 0.806±0.038(34) NAN 0.862±0.044(32) 0.946±0.005(18) 0.775±0.126(37) 0.959±0.007(15) 0.876±0.022(31) 0.982±0.004(3)
Stamps 0.651±0.086(7) 0.601±0.078(15) 0.654±0.112(5) 0.274±0.092(39) 0.486±0.231(28) NAN 0.68±0.109(2) 0.629±0.081(8) 0.186±0.094(45) 0.568±0.094(21) 0.426±0.09(32) 0.491±0.128(27)
vertebral 0.311±0.052(1) 0.2±0.008(27) 0.233±0.018(13) 0.238±0.055(9) 0.248±0.043(7) NAN 0.187±0.017(34) 0.258±0.015(5) 0.234±0.117(11) 0.234±0.027(11) 0.204±0.023(24) 0.221±0.007(14)
WBC 0.858±0.092(9) 0.797±0.104(16) 0.768±0.118(22) 0.226±0.177(41) 0.923±0.086(4) NAN 0.832±0.1(14) 0.173±0.03(42) 0.234±0.272(40) 0.462±0.167(33) 0.615±0.107(29) 0.66±0.198(27)
glass 0.355±0.054(2) 0.217±0.046(27) 0.242±0.053(20) 0.096±0.032(45) 0.2±0.065(32) NAN 0.185±0.069(38) 0.327±0.049(5) 0.263±0.122(13) 0.258±0.092(15) 0.242±0.079(20) 0.208±0.056(29)
WPBC 0.418±0.014(4) 0.385±0.019(30) 0.365±0.028(41) 0.379±0.044(34) 0.41±0.064(7) NAN 0.394±0.053(23) 0.363±0.014(44) 0.404±0.073(13) 0.401±0.019(16) 0.43±0.051(2) 0.385±0.02(30)
Lymphography 0.88±0.11(7) 0.851±0.161(19) 0.797±0.243(29) 0.24±0.13(42) 0.877±0.112(9) NAN 0.79±0.161(30) 0.449±0.182(38) 0.317±0.253(40) 0.828±0.182(25) 0.783±0.086(31) 0.777±0.184(32)
wine 0.84±0.082(5) 0.707±0.108(15) 0.69±0.157(16) 0.19±0.09(37) 0.492±0.226(27) NAN 0.504±0.17(26) 0.224±0.057(36) 0.172±0.123(38) 0.752±0.15(12) 0.246±0.09(34) 0.573±0.127(22)
Hepatitis 0.676±0.065(3) 0.67±0.058(6) NAN 0.278±0.038(44) 0.518±0.116(27) NAN 0.568±0.043(21) 0.446±0.065(33) 0.331±0.133(41) 0.653±0.05(10) 0.532±0.107(26) 0.652±0.026(11)
Avg Ranking 4.83 17.42 20.73 37.67 17.08 NAN 23.0 28.83 33.5 20.58 26.75 20.92

Dataset DTE-IG DTE-NP GANomaly GOAD ICL LUNAR MCM MO_GAAL PlanarFlow SLAD SO_GAAL VAE

Pima 0.624±0.009(31) 0.723±0.027(4) 0.602±0.039(34) 0.464±0.044(44) 0.666±0.019(20) 0.713±0.028(7) 0.704±0.029(9) 0.46±0.053(45) 0.698±0.024(12) 0.568±0.018(39) 0.504±0.08(42) 0.659±0.012(23)
breastw 0.722±0.137(34) 0.98±0.01(17) 0.942±0.017(26) 0.833±0.087(31) 0.942±0.025(26) 0.986±0.009(11) 0.982±0.011(14) 0.337±0.028(45) 0.96±0.024(23) 0.989±0.004(4) 0.465±0.139(41) 0.988±0.007(6)
WDBC 0.82±0.111(11) 0.839±0.089(9) 0.42±0.175(34) 0.808±0.127(12) 0.789±0.143(19) 0.892±0.08(1) 0.653±0.358(26) 0.03±0.0(45) 0.7±0.065(23) 0.698±0.12(24) 0.036±0.006(44) 0.787±0.142(20)
Ionosphere 0.974±0.009(8) 0.982±0.004(3) 0.918±0.058(26) 0.943±0.013(23) 0.968±0.007(12) 0.981±0.005(5) 0.638±0.101(42) 0.728±0.095(41) 0.943±0.021(23) 0.967±0.004(13) 0.755±0.081(39) 0.924±0.019(25)
Stamps 0.461±0.12(31) 0.665±0.083(3) 0.585±0.184(16) 0.389±0.235(35) 0.51±0.062(26) 0.652±0.1(6) 0.584±0.082(17) 0.395±0.262(34) 0.542±0.047(23) 0.272±0.022(40) 0.475±0.207(30) 0.608±0.097(11)
vertebral 0.285±0.042(2) 0.2±0.005(27) 0.204±0.035(24) 0.211±0.027(19) 0.248±0.04(7) 0.199±0.013(29) 0.215±0.057(15) 0.277±0.065(3) 0.257±0.055(6) 0.205±0.012(23) 0.276±0.07(4) 0.212±0.01(17)
WBC 0.35±0.21(36) 0.771±0.105(21) 0.612±0.192(30) 0.686±0.095(26) 0.537±0.153(31) 0.779±0.101(20) 0.767±0.148(23) 0.049±0.001(45) 0.711±0.151(25) 0.866±0.099(6) 0.05±0.003(44) 0.866±0.097(6)
glass 0.243±0.039(19) 0.302±0.05(7) 0.223±0.07(26) 0.2±0.1(32) 0.447±0.072(1) 0.345±0.051(3) 0.266±0.045(12) 0.198±0.079(34) 0.241±0.065(22) 0.267±0.061(11) 0.212±0.075(28) 0.189±0.015(37)
WPBC 0.395±0.029(22) 0.409±0.021(10) 0.43±0.041(2) 0.434±0.044(1) 0.406±0.033(12) 0.412±0.019(5) 0.387±0.052(28) 0.377±0.034(36) 0.403±0.042(14) 0.401±0.007(16) 0.396±0.048(20) 0.383±0.018(32)
Lymphography 0.754±0.166(33) 0.832±0.153(21) 0.748±0.11(34) 0.823±0.149(26) 0.873±0.062(13) 0.852±0.079(18) 0.9±0.071(6) 0.1±0.115(44) 0.798±0.266(28) 0.853±0.14(17) 0.126±0.144(43) 0.91±0.105(5)
wine 0.648±0.128(19) 0.809±0.084(7) 0.31±0.192(31) 0.768±0.082(10) 0.506±0.073(25) 0.843±0.091(4) 0.459±0.295(28) 0.094±0.015(43) 0.572±0.197(23) 0.88±0.064(1) 0.089±0.009(44) 0.651±0.095(18)
Hepatitis 0.591±0.079(17) 0.66±0.057(9) 0.549±0.083(23) 0.666±0.052(8) 0.458±0.089(31) 0.547±0.122(24) 0.576±0.051(20) 0.388±0.076(37) 0.385±0.101(38) 0.594±0.083(16) 0.321±0.057(43) 0.675±0.058(5)
Avg Ranking 21.92 11.5 25.5 22.25 18.58 11.08 20.0 37.67 21.67 17.5 35.17 17.08

Dataset CBLOF CD ECOD FB GMM HBOS IForest KDE LMDD LODA MCD OCSVM

Pima 0.691±0.024(14) 0.662±0.02(22) 0.627±0.022(30) 0.668±0.019(18) 0.7±0.025(10) 0.736±0.024(2) 0.715±0.018(6) 0.732±0.027(3) 0.633±0.054(29) 0.619±0.068(32) 0.677±0.025(17) 0.691±0.025(14)
breastw 0.987±0.007(8) 0.976±0.004(20) 0.992±0.001(3) 0.558±0.216(40) 0.979±0.008(19) 0.989±0.003(4) 0.995±0.001(1) 0.987±0.008(8) 0.798±0.044(32) 0.97±0.019(22) 0.988±0.003(6) 0.986±0.01(11)
WDBC 0.807±0.095(13) 0.414±0.038(35) 0.648±0.07(27) 0.883±0.053(2) 0.797±0.11(17) 0.801±0.075(16) 0.792±0.094(18) 0.861±0.074(7) 0.822±0.144(10) 0.58±0.191(31) 0.598±0.085(29) 0.843±0.095(8)
Ionosphere 0.966±0.01(14) 0.944±0.003(22) 0.766±0.001(38) 0.958±0.011(17) 0.974±0.002(8) 0.61±0.023(43) 0.907±0.018(27) 0.979±0.002(6) 0.801±0.046(36) 0.837±0.07(33) 0.969±0.003(10) 0.975±0.003(7)
Stamps 0.664±0.083(4) 0.325±0.015(38) 0.516±0.043(25) 0.579±0.108(18) 0.603±0.091(14) 0.56±0.056(22) 0.611±0.1(10) 0.688±0.069(1) 0.577±0.075(19) 0.54±0.075(24) 0.424±0.072(33) 0.619±0.091(9)
vertebral 0.211±0.012(19) 0.208±0.019(22) 0.191±0.004(31) 0.19±0.009(32) 0.21±0.005(21) 0.174±0.011(40) 0.189±0.002(33) 0.184±0.007(38) 0.186±0.027(35) 0.18±0.018(39) 0.204±0.01(24) 0.213±0.007(16)
WBC 0.797±0.087(16) 0.805±0.024(15) 0.925±0.024(3) 0.319±0.312(37) 0.78±0.118(19) 0.861±0.064(8) 0.956±0.022(1) 0.849±0.083(12) 0.912±0.058(5) 0.619±0.107(28) 0.856±0.07(10) 0.85±0.115(11)
glass 0.268±0.015(10) 0.241±0.062(22) 0.255±0.013(16) 0.204±0.081(31) 0.236±0.061(24) 0.27±0.055(9) 0.208±0.024(29) 0.299±0.041(8) 0.169±0.05(40) 0.118±0.029(43) 0.197±0.018(35) 0.226±0.051(25)
WPBC 0.391±0.01(24) 0.364±0.018(43) 0.368±0.012(39) 0.403±0.02(14) 0.389±0.024(26) 0.412±0.017(5) 0.401±0.017(16) 0.41±0.024(7) 0.386±0.042(29) 0.41±0.022(7) 0.396±0.021(20) 0.39±0.013(25)
Lymphography 0.877±0.112(9) 0.673±0.145(36) 0.937±0.048(3) 0.849±0.13(20) 0.832±0.019(21) 0.929±0.046(4) 0.948±0.045(2) 0.867±0.112(16) 0.811±0.145(27) 0.264±0.236(41) 0.829±0.041(24) 0.832±0.153(21)
wine 0.778±0.076(8) 0.111±0.008(42) 0.327±0.048(30) 0.748±0.083(13) 0.853±0.081(3) 0.674±0.119(17) 0.715±0.181(14) 0.826±0.079(6) 0.557±0.115(24) 0.631±0.116(20) 0.875±0.125(2) 0.773±0.087(9)
Hepatitis 0.68±0.064(1) 0.323±0.032(42) 0.461±0.05(30) 0.679±0.061(2) 0.607±0.047(15) 0.59±0.066(19) 0.56±0.078(22) 0.614±0.043(14) 0.591±0.076(17) 0.469±0.124(29) 0.619±0.114(13) 0.676±0.053(3)
Avg Ranking 11.67 29.92 22.92 20.33 16.42 15.75 14.92 10.5 25.25 29.08 18.58 13.25

Dataset QMCD Sampling ABOD COF INNE KNN KPCA LOF PCA

Pima 0.749±0.019(1) 0.707±0.048(8) 0.639±0.026(26) 0.588±0.019(36) 0.638±0.025(27) 0.668±0.021(18) 0.556±0.02(40) 0.58±0.018(37) 0.612±0.023(33)
breastw 0.639±0.09(37) 0.981±0.009(16) 0.44±0.006(42) 0.399±0.007(44) 0.596±0.036(38) 0.945±0.01(25) 0.744±0.06(33) 0.41±0.007(43) 0.845±0.003(30)
WDBC 0.171±0.056(40) 0.807±0.151(13) 0.281±0.032(39) 0.374±0.07(37) 0.392±0.038(36) 0.596±0.099(30) 0.351±0.315(38) 0.599±0.106(28) 0.669±0.058(25)
Ionosphere 0.552±0.025(45) 0.969±0.014(10) 0.946±0.005(18) 0.901±0.008(29) 0.906±0.008(28) 0.945±0.004(21) 0.744±0.032(40) 0.88±0.013(30) 0.805±0.004(35)
Stamps 0.57±0.037(20) 0.607±0.043(12) 0.27±0.018(41) 0.234±0.017(42) 0.34±0.029(36) 0.332±0.035(37) 0.234±0.039(42) 0.232±0.018(44) 0.484±0.066(29)
vertebral 0.185±0.013(37) 0.198±0.022(30) 0.166±0.005(44) 0.186±0.007(35) 0.172±0.004(41) 0.161±0.002(45) 0.212±0.021(17) 0.169±0.005(42) 0.167±0.005(43)
WBC 0.153±0.088(43) 0.787±0.128(18) 0.524±0.137(32) 0.382±0.102(35) 0.309±0.012(38) 0.751±0.119(24) 0.261±0.175(39) 0.391±0.062(34) 0.95±0.016(2)
glass 0.327±0.084(5) 0.26±0.044(14) 0.244±0.052(18) 0.183±0.041(39) 0.196±0.056(36) 0.254±0.019(17) 0.107±0.044(44) 0.167±0.037(42) 0.169±0.018(40)
WPBC 0.401±0.019(16) 0.408±0.039(11) 0.351±0.024(45) 0.365±0.018(41) 0.368±0.01(39) 0.375±0.013(37) 0.381±0.006(33) 0.378±0.011(35) 0.369±0.018(38)
Lymphography 0.05±0.004(45) 0.872±0.106(14) 0.67±0.05(37) 0.875±0.103(12) 0.697±0.103(35) 0.872±0.106(14) 0.351±0.184(39) 0.878±0.094(8) 0.963±0.041(1)
wine 0.294±0.117(32) 0.76±0.135(11) 0.113±0.01(41) 0.138±0.032(40) 0.234±0.057(35) 0.142±0.018(39) 0.437±0.305(29) 0.596±0.096(21) 0.271±0.013(33)
Hepatitis 0.405±0.101(35) 0.624±0.07(12) 0.357±0.054(39) 0.436±0.052(34) 0.349±0.025(40) 0.505±0.054(28) 0.449±0.12(32) 0.546±0.052(25) 0.392±0.051(36)
Avg Ranking 29.67 14.08 35.17 35.33 35.75 27.92 35.5 32.42 28.75

62

Table 8: AUROC results on 15 medium datasets, where we compare TCCM to 44 baselines (with 5
independent runs). We report the mean ± std (rank in terms of mean among all anomaly detectors).

Dataset TCMM (Ours) AE AE-1SVM ALAD AnoGAN DAGMM DeepSVDD DIF DROCC DTE-Cat DTE-DDPM DTE-Gaussian

annthyroid 0.918±0.032(8) 0.856±0.042(23) 0.86±0.014(21) 0.575±0.019(43) 0.806±0.055(27) 0.602±0.167(42) 0.857±0.042(22) 0.778±0.045(30) 0.876±0.035(16) 0.982±0.001(1) 0.771±0.012(31) 0.956±0.016(2)
pendigits 0.983±0.002(7) 0.977±0.016(10) 0.955±0.012(18) 0.552±0.051(41) 0.704±0.289(36) 0.688±0.149(37) 0.871±0.092(27) 0.982±0.006(8) 0.774±0.142(34) 0.972±0.011(12) 0.83±0.018(31) 0.993±0.001(5)
satellite 0.825±0.008(10) 0.796±0.009(18) 0.769±0.006(22) 0.504±0.025(45) 0.641±0.137(36) 0.689±0.071(32) 0.675±0.043(33) 0.778±0.006(20) 0.728±0.095(27) 0.809±0.007(14) 0.772±0.006(21) 0.795±0.008(19)
landsat 0.619±0.011(11) 0.57±0.007(21) 0.586±0.008(16) 0.485±0.019(32) 0.437±0.168(41) 0.508±0.078(29) 0.433±0.066(42) 0.577±0.006(19) 0.588±0.023(15) 0.575±0.027(20) 0.521±0.01(26) 0.46±0.021(37)
satimage-2 0.998±0.001(6) 0.999±0.0(1) 0.987±0.0(23) 0.532±0.044(46) 0.927±0.028(35) 0.787±0.145(40) 0.974±0.023(30) 0.997±0.001(10) 0.818±0.126(39) 0.988±0.001(21) 0.975±0.009(29) 0.995±0.001(16)
PageBlocks 0.96±0.005(6) 0.95±0.015(12) 0.964±0.006(2) 0.581±0.048(44) 0.859±0.029(33) 0.765±0.09(39) 0.926±0.021(22) 0.935±0.005(19) 0.947±0.024(15) 0.962±0.006(3) 0.875±0.016(30) 0.959±0.006(8)
Wilt 0.939±0.012(3) 0.55±0.033(19) 0.459±0.019(29) 0.468±0.017(27) 0.377±0.079(38) 0.574±0.091(17) 0.353±0.048(40) 0.361±0.014(39) 0.486±0.107(25) 0.863±0.008(4) 0.506±0.014(23) 0.642±0.022(12)
thyroid 0.982±0.009(13) 0.98±0.005(16) 0.99±0.002(2) 0.594±0.047(42) 0.928±0.126(33) 0.737±0.194(41) 0.985±0.003(8) 0.984±0.003(10) 0.921±0.024(34) 0.993±0.001(1) 0.881±0.038(38) 0.945±0.043(28)
Waveform 0.738±0.064(8) 0.687±0.032(19) 0.686±0.01(20) 0.51±0.036(41) 0.684±0.046(21) 0.492±0.015(42) 0.59±0.133(34) 0.722±0.009(11) 0.68±0.052(22) 0.62±0.026(29) 0.523±0.026(39) 0.588±0.01(35)
Cardiotocography 0.829±0.012(2) 0.74±0.016(18) 0.756±0.052(15) 0.557±0.039(38) 0.742±0.125(17) NAN 0.799±0.101(7) 0.635±0.019(31) 0.44±0.172(43) 0.738±0.027(19) 0.574±0.016(36) 0.756±0.013(15)
fault 0.777±0.032(6) 0.737±0.011(8) 0.633±0.012(22) 0.501±0.019(41) 0.528±0.067(36) NAN 0.542±0.048(35) 0.718±0.019(10) 0.621±0.043(25) 0.695±0.017(13) 0.618±0.016(27) 0.701±0.007(11)
cardio 0.956±0.008(5) 0.93±0.028(17) 0.958±0.007(3) 0.56±0.025(40) 0.907±0.058(22) NAN 0.938±0.029(14) 0.951±0.008(9) 0.516±0.236(41) 0.908±0.019(21) 0.73±0.006(36) 0.934±0.008(16)
letter 0.891±0.012(6) 0.802±0.008(19) 0.615±0.017(31) 0.507±0.041(41) 0.501±0.035(43) NAN 0.507±0.06(41) 0.667±0.02(27) 0.649±0.051(28) 0.88±0.006(7) 0.642±0.045(29) 0.868±0.005(10)
yeast 0.503±0.026(4) 0.461±0.021(22) 0.447±0.024(28) 0.481±0.014(14) 0.422±0.061(36) NAN 0.43±0.032(33) 0.402±0.021(41) 0.503±0.041(4) 0.468±0.025(19) 0.493±0.02(11) 0.474±0.027(17)
vowels 0.97±0.008(7) 0.934±0.009(15) 0.709±0.028(31) 0.502±0.078(42) 0.522±0.031(40) NAN 0.576±0.085(38) 0.814±0.018(26) 0.519±0.152(41) 0.978±0.006(5) 0.734±0.043(29) 0.964±0.006(9)
Avg Ranking 6.8 15.87 18.87 38.47 32.93 35.44 28.4 20.67 27.27 12.6 29.07 16.0

Dataset DTE-IG DTE-NP GANomaly GOAD ICL LUNAR MCM MO_GAAL PlanarFlow SLAD SO_GAAL VAE

annthyroid 0.909±0.057(10) 0.939±0.005(4) 0.67±0.088(38) 0.654±0.042(39) 0.794±0.023(28) 0.886±0.027(13) 0.89±0.044(11) 0.681±0.032(37) 0.946±0.012(3) 0.933±0.004(5) 0.723±0.027(35) 0.875±0.022(18)
pendigits 0.979±0.018(9) 0.999±0.0(1) 0.631±0.247(39) 0.262±0.224(46) 0.966±0.022(14) 0.999±0.0(1) 0.976±0.013(11) 0.779±0.068(33) 0.821±0.068(32) 0.923±0.018(24) 0.748±0.104(35) 0.947±0.005(19)
satellite 0.755±0.051(26) 0.878±0.002(3) 0.813±0.01(12) 0.725±0.023(28) 0.886±0.008(1) 0.878±0.003(3) 0.767±0.062(23) 0.69±0.011(30) 0.69±0.036(30) 0.881±0.006(2) 0.65±0.016(35) 0.762±0.002(24)
landsat 0.492±0.013(31) 0.774±0.005(2) 0.618±0.06(12) 0.539±0.01(23) 0.741±0.006(4) 0.783±0.006(1) 0.554±0.096(22) 0.523±0.025(25) 0.474±0.012(34) 0.71±0.004(6) 0.454±0.023(40) 0.581±0.003(17)
satimage-2 0.974±0.017(30) 0.999±0.0(1) 0.982±0.009(26) 0.992±0.001(20) 0.997±0.002(10) 0.998±0.001(6) 0.988±0.017(21) 0.935±0.007(34) 0.959±0.014(33) 0.998±0.001(6) 0.892±0.018(38) 0.985±0.001(25)
PageBlocks 0.924±0.031(23) 0.962±0.001(3) 0.751±0.097(40) 0.784±0.034(36) 0.931±0.01(20) 0.938±0.003(18) 0.96±0.002(6) 0.642±0.056(43) 0.901±0.025(26) 0.873±0.014(31) 0.811±0.06(35) 0.951±0.003(11)
Wilt 0.951±0.012(2) 0.661±0.016(10) 0.446±0.064(30) 0.597±0.038(15) 0.75±0.048(7) 0.512±0.044(22) 0.562±0.216(18) 0.484±0.046(26) 0.76±0.07(6) 0.653±0.014(11) 0.426±0.071(34) 0.446±0.006(30)
thyroid 0.887±0.118(37) 0.987±0.002(5) 0.944±0.044(29) 0.565±0.088(43) 0.94±0.019(32) 0.98±0.001(16) 0.978±0.011(19) 0.816±0.038(40) 0.987±0.007(5) 0.944±0.018(29) 0.95±0.02(26) 0.989±0.001(4)
Waveform 0.676±0.024(23) 0.755±0.005(5) 0.752±0.076(6) 0.456±0.097(45) 0.692±0.036(18) 0.76±0.012(4) 0.793±0.121(1) 0.458±0.049(44) 0.63±0.034(27) 0.477±0.01(43) 0.443±0.051(46) 0.699±0.015(17)
Cardiotocography 0.733±0.065(20) 0.765±0.001(12) 0.679±0.06(28) 0.273±0.056(45) 0.69±0.013(27) 0.808±0.015(4) 0.773±0.035(10) 0.599±0.047(33) 0.73±0.038(21) 0.582±0.026(34) 0.568±0.088(37) 0.832±0.005(1)
fault 0.671±0.031(17) 0.811±0.008(2) 0.613±0.07(29) 0.665±0.039(18) 0.781±0.007(5) 0.807±0.012(3) 0.7±0.035(12) 0.469±0.06(43) 0.511±0.031(39) 0.799±0.007(4) 0.467±0.06(44) 0.618±0.022(27)
cardio 0.848±0.046(30) 0.945±0.005(12) 0.883±0.039(24) 0.166±0.048(45) 0.879±0.026(26) 0.958±0.006(3) 0.947±0.013(10) 0.796±0.078(34) 0.909±0.025(20) 0.839±0.036(33) 0.794±0.053(35) 0.971±0.002(1)
letter 0.846±0.005(15) 0.903±0.009(5) 0.751±0.057(23) 0.764±0.018(21) 0.925±0.009(2) 0.927±0.008(1) 0.86±0.028(12) 0.385±0.011(45) 0.73±0.044(24) 0.909±0.006(4) 0.389±0.023(44) 0.615±0.025(31)
yeast 0.516±0.038(2) 0.46±0.021(24) 0.489±0.044(12) 0.592±0.016(1) 0.501±0.027(7) 0.457±0.019(26) 0.424±0.028(34) 0.495±0.039(9) 0.471±0.02(18) 0.513±0.009(3) 0.497±0.041(8) 0.459±0.016(25)
vowels 0.984±0.007(2) 0.981±0.005(4) 0.7±0.072(33) 0.831±0.039(24) 0.985±0.005(1) 0.984±0.005(2) 0.964±0.007(9) 0.125±0.082(45) 0.86±0.052(23) 0.966±0.003(8) 0.151±0.1(44) 0.636±0.037(35)
Avg Ranking 18.47 6.2 25.4 29.93 13.47 8.2 14.6 34.73 22.73 16.2 35.73 19.0

Dataset CBLOF CD ECOD FB GMM HBOS IForest KDE LMDD LODA MCD OCSVM

annthyroid 0.888±0.033(12) 0.624±0.003(41) 0.788±0.001(29) 0.923±0.024(6) 0.834±0.029(25) 0.71±0.058(36) 0.912±0.011(9) 0.88±0.026(15) 0.748±0.042(33) 0.736±0.06(34) 0.921±0.005(7) 0.875±0.027(18)
pendigits 0.959±0.018(16) 0.552±0.007(41) 0.929±0.001(22) 0.997±0.002(4) 0.847±0.005(29) 0.937±0.001(20) 0.971±0.006(13) 0.999±0.0(1) 0.896±0.034(26) 0.93±0.021(21) 0.833±0.008(30) 0.966±0.004(14)
satellite 0.852±0.025(8) 0.577±0.002(39) 0.584±0.004(38) 0.846±0.005(9) 0.802±0.002(16) 0.867±0.004(6) 0.798±0.02(17) 0.875±0.003(5) 0.521±0.057(42) 0.694±0.014(29) 0.809±0.002(14) 0.756±0.003(25)
landsat 0.68±0.024(9) 0.458±0.003(38) 0.367±0.002(45) 0.751±0.007(3) 0.495±0.003(30) 0.697±0.007(7) 0.611±0.007(14) 0.739±0.003(5) 0.397±0.033(44) 0.424±0.034(43) 0.613±0.002(13) 0.461±0.002(36)
satimage-2 0.998±0.0(6) 0.922±0.002(36) 0.965±0.001(32) 0.997±0.0(10) 0.995±0.001(16) 0.977±0.002(27) 0.994±0.001(19) 0.999±0.0(1) 0.553±0.029(44) 0.986±0.006(24) 0.996±0.0(14) 0.997±0.0(10)
PageBlocks 0.954±0.008(10) 0.876±0.005(29) 0.914±0.004(25) 0.971±0.001(1) 0.959±0.004(8) 0.772±0.008(37) 0.929±0.006(21) 0.95±0.001(12) 0.731±0.08(41) 0.871±0.049(32) 0.922±0.003(24) 0.944±0.003(16)
Wilt 0.416±0.02(35) 0.619±0.019(13) 0.389±0.006(37) 0.742±0.086(8) 0.722±0.021(9) 0.346±0.018(41) 0.467±0.015(28) 0.346±0.006(41) 0.413±0.085(36) 0.329±0.096(44) 0.859±0.004(5) 0.322±0.006(46)
thyroid 0.984±0.002(10) 0.903±0.018(36) 0.978±0.002(19) 0.958±0.012(25) 0.977±0.003(21) 0.981±0.002(15) 0.99±0.001(2) 0.985±0.001(8) 0.959±0.009(24) 0.942±0.014(31) 0.986±0.001(7) 0.984±0.001(10)
Waveform 0.726±0.017(9) 0.552±0.009(38) 0.607±0.005(32) 0.778±0.005(2) 0.583±0.005(36) 0.705±0.005(13) 0.723±0.023(10) 0.772±0.004(3) 0.592±0.025(33) 0.618±0.055(30) 0.583±0.006(36) 0.702±0.004(15)
Cardiotocography 0.718±0.018(23) 0.621±0.012(32) 0.785±0.005(9) 0.787±0.007(8) 0.759±0.004(13) 0.699±0.015(25) 0.801±0.018(5) 0.771±0.002(11) 0.713±0.044(24) 0.757±0.083(14) 0.676±0.02(29) 0.821±0.006(3)
fault 0.741±0.016(7) 0.623±0.03(24) 0.465±0.005(45) 0.651±0.027(20) 0.69±0.011(15) 0.569±0.071(31) 0.651±0.016(20) 0.815±0.008(1) 0.512±0.014(38) 0.51±0.059(40) 0.63±0.03(23) 0.604±0.008(30)
cardio 0.955±0.016(7) 0.856±0.013(29) 0.937±0.001(15) 0.92±0.017(19) 0.946±0.002(11) 0.844±0.009(32) 0.94±0.011(13) 0.956±0.004(5) 0.865±0.081(28) 0.883±0.036(24) 0.87±0.012(27) 0.965±0.001(2)
letter 0.779±0.014(20) 0.761±0.011(22) 0.572±0.005(36) 0.87±0.006(8) 0.842±0.006(16) 0.599±0.008(35) 0.621±0.015(30) 0.919±0.007(3) 0.519±0.018(39) 0.541±0.041(37) 0.812±0.017(18) 0.615±0.007(31)
yeast 0.503±0.024(4) 0.413±0.016(39) 0.446±0.015(29) 0.475±0.017(16) 0.445±0.018(30) 0.417±0.015(38) 0.421±0.018(37) 0.424±0.017(34) 0.481±0.015(14) 0.467±0.05(20) 0.461±0.016(22) 0.454±0.016(27)
vowels 0.901±0.009(17) 0.878±0.005(20) 0.59±0.009(37) 0.953±0.011(12) 0.947±0.006(14) 0.698±0.004(34) 0.772±0.026(27) 0.963±0.005(11) 0.539±0.021(39) 0.727±0.036(30) 0.739±0.08(28) 0.823±0.004(25)
Avg Ranking 12.87 31.8 30.0 10.07 19.27 26.47 17.67 10.4 33.67 30.2 19.8 20.53

Dataset QMCD Sampling ABOD COF INNE KNN KPCA LOF PCA

annthyroid 0.759±0.004(32) 0.876±0.011(16) 0.824±0.003(26) 0.517±0.034(45) 0.855±0.016(24) 0.875±0.005(18) 0.16±0.016(46) 0.539±0.043(44) 0.645±0.002(40)
pendigits 0.909±0.003(25) 0.959±0.012(16) 0.575±0.005(40) 0.52±0.004(44) 0.854±0.01(28) 0.64±0.005(38) 0.54±0.182(43) 0.497±0.004(45) 0.929±0.003(22)
satellite 0.859±0.004(7) 0.819±0.031(11) 0.503±0.004(46) 0.516±0.006(43) 0.669±0.009(34) 0.629±0.004(37) 0.512±0.05(44) 0.527±0.005(41) 0.577±0.003(39)
landsat 0.683±0.001(8) 0.63±0.064(10) 0.456±0.002(39) 0.52±0.005(28) 0.467±0.022(35) 0.53±0.004(24) 0.478±0.032(33) 0.521±0.004(26) 0.343±0.001(46)
satimage-2 0.995±0.0(16) 0.999±0.0(1) 0.727±0.005(41) 0.56±0.005(43) 0.996±0.001(14) 0.906±0.002(37) 0.601±0.148(42) 0.534±0.003(45) 0.976±0.001(28)
PageBlocks 0.77±0.03(38) 0.944±0.006(16) 0.819±0.008(34) 0.579±0.009(45) 0.948±0.007(14) 0.891±0.004(28) 0.187±0.011(46) 0.702±0.008(42) 0.897±0.003(27)
Wilt 0.345±0.005(43) 0.43±0.026(32) 0.545±0.006(20) 0.603±0.008(14) 0.323±0.013(45) 0.503±0.004(24) 0.593±0.008(16) 0.54±0.014(21) 0.429±0.005(33)
thyroid 0.827±0.029(39) 0.98±0.005(16) 0.915±0.005(35) 0.438±0.015(45) 0.97±0.007(22) 0.97±0.003(22) 0.166±0.047(46) 0.565±0.01(43) 0.946±0.002(27)
Waveform 0.747±0.005(7) 0.7±0.058(16) 0.612±0.021(31) 0.65±0.022(26) 0.722±0.012(11) 0.704±0.007(14) 0.514±0.045(40) 0.671±0.012(24) 0.63±0.007(27)
Cardiotocography 0.575±0.016(35) 0.729±0.08(22) 0.408±0.006(44) 0.497±0.008(40) 0.641±0.013(30) 0.462±0.004(42) 0.525±0.028(39) 0.481±0.007(41) 0.695±0.008(26)
fault 0.62±0.043(26) 0.692±0.014(14) 0.656±0.006(19) 0.524±0.012(37) 0.544±0.014(34) 0.677±0.008(16) 0.561±0.055(32) 0.554±0.01(33) 0.471±0.027(42)
cardio 0.722±0.027(37) 0.928±0.026(18) 0.506±0.014(43) 0.507±0.012(42) 0.885±0.011(23) 0.668±0.013(38) 0.603±0.073(39) 0.506±0.011(43) 0.846±0.194(31)
letter 0.612±0.006(34) 0.729±0.022(25) 0.852±0.009(14) 0.853±0.006(13) 0.696±0.009(26) 0.864±0.006(11) 0.517±0.054(40) 0.841±0.002(17) 0.52±0.008(38)
yeast 0.406±0.013(40) 0.467±0.037(20) 0.397±0.014(42) 0.441±0.02(31) 0.382±0.015(45) 0.383±0.016(44) 0.494±0.016(10) 0.434±0.02(32) 0.392±0.016(43)
vowels 0.709±0.005(31) 0.867±0.037(21) 0.91±0.003(16) 0.879±0.014(19) 0.864±0.014(22) 0.952±0.007(13) 0.461±0.066(43) 0.892±0.012(18) 0.591±0.016(36)
Avg Ranking 27.87 16.93 32.67 34.33 27.13 27.07 37.27 34.33 33.67

63

Table 9: AUPRC results on 15 medium datasets, where we compare TCCM to 44 baselines (with 5
independent runs). We report the mean ± std (rank in terms of mean among all anomaly detectors).

Dataset TCMM (Ours) AE AE-1SVM ALAD AnoGAN DAGMM DeepSVDD DIF DROCC DTE-Cat DTE-DDPM DTE-Gaussian

annthyroid 0.695±0.065(6) 0.624±0.045(12) 0.592±0.012(17) 0.202±0.028(43) 0.5±0.069(26) 0.262±0.112(40) 0.588±0.065(19) 0.506±0.058(24) 0.638±0.043(9) 0.861±0.008(1) 0.504±0.035(25) 0.721±0.06(2)
pendigits 0.701±0.037(8) 0.565±0.127(12) 0.464±0.047(16) 0.06±0.011(44) 0.172±0.137(31) 0.136±0.131(36) 0.302±0.205(24) 0.726±0.074(7) 0.142±0.035(34) 0.445±0.087(18) 0.209±0.031(29) 0.808±0.05(6)
satellite 0.861±0.004(10) 0.851±0.005(13) 0.819±0.003(24) 0.493±0.029(46) 0.685±0.104(36) 0.698±0.074(34) 0.764±0.054(29) 0.839±0.004(19) 0.76±0.099(30) 0.853±0.005(12) 0.821±0.004(22) 0.845±0.007(17)
landsat 0.416±0.007(12) 0.411±0.012(14) 0.413±0.01(13) 0.327±0.015(34) 0.319±0.097(38) 0.365±0.057(27) 0.305±0.032(43) 0.437±0.01(11) 0.411±0.014(14) 0.394±0.022(20) 0.339±0.005(32) 0.342±0.016(31)
satimage-2 0.946±0.027(10) 0.96±0.011(9) 0.899±0.005(18) 0.035±0.009(46) 0.533±0.222(33) 0.124±0.078(42) 0.801±0.284(25) 0.937±0.033(14) 0.241±0.194(38) 0.518±0.031(34) 0.603±0.102(32) 0.815±0.039(23)
PageBlocks 0.871±0.015(2) 0.828±0.04(12) 0.839±0.03(9) 0.27±0.069(45) 0.583±0.033(35) 0.505±0.153(37) 0.728±0.069(23) 0.788±0.016(20) 0.83±0.037(10) 0.848±0.015(7) 0.679±0.029(27) 0.855±0.023(4)
Wilt 0.478±0.029(3) 0.102±0.008(20) 0.09±0.004(28) 0.093±0.005(25) 0.076±0.009(38) 0.147±0.047(13) 0.074±0.007(40) 0.073±0.001(41) 0.093±0.019(25) 0.282±0.01(5) 0.098±0.004(22) 0.132±0.008(14)
thyroid 0.802±0.07(8) 0.787±0.067(13) 0.859±0.017(2) 0.106±0.027(44) 0.732±0.21(21) 0.276±0.179(41) 0.814±0.037(7) 0.823±0.022(5) 0.703±0.065(22) 0.873±0.016(1) 0.647±0.061(24) 0.539±0.107(31)
Waveform 0.143±0.031(12) 0.118±0.014(17) 0.103±0.004(22) 0.063±0.014(42) 0.089±0.009(27) 0.057±0.001(45) 0.085±0.028(29) 0.125±0.009(16) 0.191±0.07(8) 0.089±0.009(27) 0.071±0.015(38) 0.08±0.003(32)
Cardiotocography 0.743±0.016(3) 0.655±0.014(16) 0.661±0.066(14) 0.424±0.044(38) 0.661±0.117(14) NAN 0.718±0.101(6) 0.597±0.013(26) 0.41±0.126(41) 0.624±0.018(23) 0.489±0.018(35) 0.686±0.015(11)
fault 0.769±0.035(5) 0.729±0.008(8) 0.666±0.012(17) 0.529±0.033(41) 0.533±0.074(39) NAN 0.576±0.047(33) 0.717±0.021(10) 0.641±0.029(20) 0.697±0.015(14) 0.629±0.015(24) 0.724±0.01(9)
cardio 0.847±0.022(4) 0.763±0.043(17) 0.824±0.035(9) 0.233±0.03(43) 0.761±0.07(18) NAN 0.778±0.081(13) 0.836±0.021(6) 0.369±0.21(40) 0.657±0.043(27) 0.473±0.023(37) 0.77±0.007(15)
letter 0.573±0.03(5) 0.358±0.031(18) 0.203±0.01(31) 0.135±0.02(41) 0.124±0.008(43) NAN 0.138±0.018(38) 0.234±0.021(28) 0.247±0.018(26) 0.557±0.041(7) 0.229±0.031(29) 0.553±0.041(8)
yeast 0.518±0.011(3) 0.485±0.014(28) 0.485±0.016(28) 0.498±0.008(15) 0.472±0.032(35) NAN 0.465±0.018(38) 0.457±0.012(40) 0.508±0.037(6) 0.499±0.022(13) 0.515±0.012(5) 0.499±0.02(13)
vowels 0.76±0.021(8) 0.543±0.03(14) 0.209±0.052(29) 0.079±0.032(41) 0.069±0.011(42) NAN 0.111±0.044(39) 0.276±0.04(26) 0.111±0.063(39) 0.809±0.032(3) 0.191±0.045(31) 0.771±0.028(7)
Avg Ranking 6.6 14.87 18.47 39.2 31.73 35.0 27.07 19.53 24.13 14.13 27.47 14.87

Dataset DTE-IG DTE-NP GANomaly GOAD ICL LUNAR MCM MO_GAAL PlanarFlow SLAD SO_GAAL VAE

annthyroid 0.581±0.067(20) 0.694±0.012(7) 0.331±0.104(38) 0.425±0.034(31) 0.444±0.015(30) 0.58±0.054(21) 0.634±0.081(11) 0.355±0.041(37) 0.707±0.041(4) 0.714±0.01(3) 0.3±0.026(39) 0.612±0.033(13)
pendigits 0.647±0.174(9) 0.976±0.016(2) 0.094±0.057(38) 0.036±0.024(46) 0.643±0.138(10) 0.983±0.011(1) 0.561±0.154(13) 0.232±0.077(28) 0.137±0.061(35) 0.269±0.042(27) 0.185±0.076(30) 0.419±0.052(20)
satellite 0.807±0.03(26) 0.893±0.003(3) 0.831±0.011(20) 0.782±0.013(28) 0.899±0.006(1) 0.896±0.002(2) 0.82±0.04(23) 0.748±0.01(31) 0.739±0.052(32) 0.884±0.006(5) 0.722±0.025(33) 0.817±0.001(25)
landsat 0.37±0.015(25) 0.614±0.008(4) 0.402±0.051(18) 0.377±0.005(24) 0.687±0.016(2) 0.657±0.013(3) 0.394±0.04(20) 0.344±0.035(30) 0.319±0.007(38) 0.495±0.006(7) 0.302±0.013(44) 0.382±0.004(22)
satimage-2 0.647±0.148(31) 0.979±0.005(1) 0.869±0.045(21) 0.971±0.005(7) 0.941±0.042(12) 0.973±0.005(5) 0.75±0.299(28) 0.517±0.223(35) 0.655±0.152(30) 0.927±0.035(17) 0.147±0.038(39) 0.877±0.006(20)
PageBlocks 0.811±0.064(16) 0.859±0.009(3) 0.472±0.167(39) 0.642±0.034(31) 0.821±0.019(15) 0.83±0.015(10) 0.853±0.018(5) 0.444±0.017(40) 0.687±0.071(26) 0.691±0.028(25) 0.585±0.09(34) 0.794±0.016(18)
Wilt 0.745±0.06(1) 0.132±0.005(14) 0.089±0.015(29) 0.17±0.018(9) 0.298±0.075(4) 0.095±0.01(24) 0.16±0.16(11) 0.097±0.013(23) 0.185±0.045(8) 0.158±0.003(12) 0.088±0.014(31) 0.086±0.001(32)
thyroid 0.477±0.158(34) 0.797±0.03(9) 0.567±0.313(28) 0.443±0.061(36) 0.477±0.118(34) 0.755±0.037(19) 0.76±0.071(18) 0.37±0.119(39) 0.788±0.071(12) 0.63±0.096(26) 0.482±0.087(33) 0.841±0.017(3)
Waveform 0.139±0.02(13) 0.283±0.017(5) 0.132±0.046(14) 0.069±0.038(40) 0.164±0.033(10) 0.306±0.016(3) 0.393±0.229(1) 0.062±0.007(43) 0.223±0.045(7) 0.051±0.001(46) 0.058±0.007(44) 0.1±0.008(24)
Cardiotocography 0.647±0.058(19) 0.687±0.007(10) 0.567±0.062(28) 0.258±0.02(45) 0.632±0.02(22) 0.744±0.016(2) 0.703±0.045(8) 0.521±0.069(32) 0.601±0.037(25) 0.555±0.018(30) 0.478±0.085(36) 0.755±0.006(1)
fault 0.702±0.017(13) 0.792±0.012(4) 0.61±0.064(29) 0.64±0.057(21) 0.767±0.009(6) 0.796±0.016(2) 0.707±0.016(12) 0.537±0.061(36) 0.54±0.024(34) 0.793±0.009(3) 0.535±0.066(38) 0.629±0.022(24)
cardio 0.603±0.066(29) 0.814±0.02(11) 0.687±0.054(21) 0.12±0.014(45) 0.686±0.051(23) 0.853±0.029(2) 0.827±0.023(8) 0.568±0.14(31) 0.735±0.022(19) 0.677±0.034(24) 0.52±0.094(33) 0.875±0.016(1)
letter 0.572±0.026(6) 0.525±0.031(11) 0.31±0.09(22) 0.323±0.032(19) 0.639±0.032(1) 0.627±0.034(2) 0.54±0.079(9) 0.124±0.016(43) 0.315±0.067(20) 0.601±0.024(3) 0.123±0.016(45) 0.19±0.012(32)
yeast 0.537±0.029(2) 0.494±0.018(18) 0.488±0.027(25) 0.589±0.017(1) 0.506±0.013(8) 0.493±0.015(19) 0.463±0.016(39) 0.49±0.024(22) 0.486±0.02(27) 0.516±0.009(4) 0.5±0.024(12) 0.482±0.011(30)
vowels 0.874±0.039(2) 0.796±0.064(5) 0.199±0.121(30) 0.322±0.08(23) 0.885±0.03(1) 0.809±0.062(3) 0.688±0.032(12) 0.038±0.004(45) 0.39±0.102(17) 0.758±0.023(9) 0.039±0.007(44) 0.128±0.029(36)
Avg Ranking 16.4 7.13 26.67 27.07 11.93 7.87 14.53 34.33 22.27 16.07 35.67 20.07

Dataset CBLOF CD ECOD FB GMM HBOS IForest KDE LMDD LODA MCD OCSVM

annthyroid 0.636±0.057(10) 0.226±0.011(42) 0.402±0.009(34) 0.54±0.122(23) 0.543±0.039(22) 0.419±0.047(32) 0.612±0.044(13) 0.601±0.041(15) 0.46±0.05(28) 0.404±0.045(33) 0.645±0.01(8) 0.592±0.042(17)
pendigits 0.454±0.105(17) 0.051±0.001(45) 0.417±0.009(21) 0.93±0.035(4) 0.156±0.004(33) 0.426±0.012(19) 0.57±0.054(11) 0.969±0.016(3) 0.276±0.09(26) 0.394±0.075(22) 0.132±0.006(37) 0.523±0.033(14)
satellite 0.87±0.015(9) 0.582±0.005(40) 0.66±0.004(38) 0.879±0.003(7) 0.848±0.002(15) 0.883±0.004(6) 0.843±0.012(18) 0.891±0.003(4) 0.555±0.055(41) 0.791±0.013(27) 0.849±0.003(14) 0.823±0.002(21)
landsat 0.467±0.026(9) 0.314±0.002(41) 0.281±0.001(45) 0.693±0.006(1) 0.337±0.002(33) 0.526±0.01(6) 0.445±0.025(10) 0.556±0.005(5) 0.379±0.075(23) 0.326±0.043(35) 0.401±0.002(19) 0.325±0.002(36)
satimage-2 0.976±0.002(4) 0.268±0.014(37) 0.746±0.015(29) 0.94±0.009(13) 0.798±0.04(26) 0.833±0.009(22) 0.932±0.005(15) 0.979±0.004(1) 0.036±0.013(45) 0.931±0.015(16) 0.815±0.008(23) 0.973±0.002(5)
PageBlocks 0.825±0.038(13) 0.545±0.011(36) 0.659±0.014(30) 0.888±0.007(1) 0.822±0.02(14) 0.353±0.011(41) 0.699±0.026(24) 0.844±0.009(8) 0.502±0.092(38) 0.664±0.071(29) 0.74±0.013(22) 0.796±0.013(17)
Wilt 0.079±0.003(36) 0.121±0.006(18) 0.079±0.001(36) 0.19±0.053(7) 0.163±0.012(10) 0.076±0.002(38) 0.086±0.002(32) 0.071±0.001(42) 0.089±0.009(29) 0.071±0.01(42) 0.261±0.005(6) 0.069±0.001(45)
thyroid 0.787±0.027(13) 0.299±0.042(40) 0.636±0.023(25) 0.426±0.16(38) 0.761±0.031(17) 0.747±0.023(20) 0.821±0.033(6) 0.791±0.031(10) 0.697±0.047(23) 0.597±0.09(27) 0.825±0.016(4) 0.79±0.03(11)
Waveform 0.246±0.008(6) 0.071±0.001(38) 0.078±0.003(33) 0.318±0.036(2) 0.078±0.002(33) 0.094±0.003(26) 0.111±0.008(20) 0.289±0.015(4) 0.072±0.009(37) 0.078±0.009(33) 0.078±0.002(33) 0.112±0.004(19)
Cardiotocography 0.644±0.018(20) 0.511±0.011(33) 0.654±0.006(17) 0.683±0.012(12) 0.676±0.007(13) 0.584±0.011(27) 0.689±0.021(9) 0.709±0.007(7) 0.605±0.053(24) 0.639±0.09(21) 0.531±0.029(31) 0.731±0.01(5)
fault 0.717±0.022(10) 0.609±0.033(30) 0.488±0.006(45) 0.616±0.027(26) 0.68±0.016(15) 0.579±0.062(32) 0.646±0.02(19) 0.806±0.013(1) 0.51±0.01(43) 0.525±0.056(42) 0.612±0.029(27) 0.64±0.015(21)
cardio 0.83±0.039(7) 0.52±0.028(33) 0.717±0.007(20) 0.676±0.05(25) 0.811±0.01(12) 0.612±0.015(28) 0.769±0.032(16) 0.846±0.015(5) 0.687±0.114(21) 0.668±0.11(26) 0.549±0.041(32) 0.85±0.011(3)
letter 0.296±0.024(24) 0.299±0.01(23) 0.142±0.003(36) 0.503±0.038(12) 0.433±0.023(15) 0.15±0.005(35) 0.159±0.007(34) 0.588±0.031(4) 0.13±0.006(42) 0.138±0.015(38) 0.313±0.032(21) 0.207±0.01(30)
yeast 0.508±0.02(6) 0.452±0.01(42) 0.498±0.013(15) 0.503±0.019(11) 0.477±0.014(33) 0.492±0.012(20) 0.477±0.013(33) 0.48±0.013(32) 0.506±0.009(8) 0.495±0.031(17) 0.488±0.013(25) 0.489±0.013(24)
vowels 0.332±0.032(22) 0.333±0.013(21) 0.146±0.011(35) 0.622±0.067(13) 0.689±0.068(11) 0.181±0.022(33) 0.232±0.053(27) 0.74±0.066(10) 0.121±0.027(37) 0.224±0.058(28) 0.153±0.097(34) 0.377±0.028(18)
Avg Ranking 13.73 34.6 30.6 13.0 20.13 25.67 19.13 10.07 31.0 29.07 22.4 19.07

Dataset QMCD Sampling ABOD COF INNE KNN KPCA LOF PCA

annthyroid 0.373±0.011(35) 0.598±0.022(16) 0.356±0.007(36) 0.143±0.012(45) 0.456±0.042(29) 0.488±0.016(27) 0.082±0.002(46) 0.178±0.017(44) 0.262±0.005(40)
pendigits 0.282±0.014(25) 0.499±0.089(15) 0.07±0.005(40) 0.063±0.004(42) 0.17±0.022(32) 0.088±0.003(39) 0.064±0.034(41) 0.061±0.003(43) 0.337±0.006(23)
satellite 0.877±0.005(8) 0.848±0.024(15) 0.503±0.004(45) 0.52±0.004(43) 0.688±0.015(35) 0.637±0.002(39) 0.529±0.041(42) 0.508±0.002(44) 0.674±0.003(37)
landsat 0.476±0.007(8) 0.405±0.058(17) 0.316±0.002(40) 0.366±0.005(26) 0.324±0.014(37) 0.359±0.002(29) 0.309±0.014(42) 0.36±0.005(28) 0.266±0.0(46)
satimage-2 0.942±0.004(11) 0.978±0.007(3) 0.127±0.007(41) 0.093±0.029(43) 0.798±0.066(26) 0.37±0.025(36) 0.134±0.056(40) 0.051±0.01(44) 0.887±0.004(19)
PageBlocks 0.347±0.023(43) 0.793±0.018(19) 0.588±0.01(33) 0.29±0.006(44) 0.779±0.019(21) 0.677±0.008(28) 0.119±0.002(46) 0.348±0.008(42) 0.633±0.01(32)
Wilt 0.071±0.001(42) 0.081±0.004(34) 0.102±0.002(20) 0.124±0.002(17) 0.069±0.001(45) 0.092±0.001(27) 0.127±0.006(16) 0.103±0.004(19) 0.081±0.001(34)
thyroid 0.483±0.025(32) 0.784±0.061(15) 0.228±0.013(42) 0.048±0.002(45) 0.564±0.096(29) 0.549±0.039(30) 0.028±0.001(46) 0.11±0.008(43) 0.429±0.02(37)
Waveform 0.111±0.004(20) 0.17±0.047(9) 0.083±0.009(31) 0.098±0.011(25) 0.126±0.008(15) 0.145±0.013(11) 0.068±0.018(41) 0.103±0.006(22) 0.084±0.003(30)
Cardiotocography 0.429±0.013(37) 0.654±0.072(17) 0.35±0.004(44) 0.387±0.015(42) 0.501±0.008(34) 0.422±0.007(39) 0.412±0.021(40) 0.375±0.011(43) 0.566±0.006(29)
fault 0.611±0.035(28) 0.674±0.014(16) 0.634±0.006(23) 0.53±0.007(40) 0.583±0.016(31) 0.651±0.016(18) 0.539±0.039(35) 0.536±0.008(37) 0.49±0.023(44)
cardio 0.475±0.043(36) 0.775±0.084(14) 0.241±0.015(41) 0.223±0.021(44) 0.499±0.033(35) 0.414±0.02(38) 0.379±0.055(39) 0.24±0.009(42) 0.585±0.229(30)
letter 0.167±0.008(33) 0.237±0.028(27) 0.398±0.016(17) 0.536±0.02(10) 0.276±0.013(25) 0.419±0.015(16) 0.141±0.025(37) 0.441±0.015(14) 0.136±0.003(40)
yeast 0.49±0.014(22) 0.491±0.018(21) 0.453±0.01(41) 0.468±0.012(37) 0.447±0.01(44) 0.446±0.012(45) 0.481±0.01(31) 0.47±0.014(36) 0.452±0.011(42)
vowels 0.186±0.022(32) 0.307±0.102(24) 0.461±0.042(16) 0.335±0.036(20) 0.345±0.054(19) 0.498±0.059(15) 0.064±0.012(43) 0.301±0.017(25) 0.114±0.012(38)
Avg Ranking 27.47 17.47 34.0 34.87 30.47 29.13 39.0 35.07 34.73

64

Table 10: AUROC results on 11 large datasets, where we compare TCCM to 44 baselines (with 5
independent runs). We report the mean ± std (rank).

Dataset TCCM (Ours) AE AE-1SVM ALAD AnoGAN DAGMM DeepSVDD DIF DROCC DTE-Cat DTE-DDPM DTE-Gaussian

ALOI 0.565±0.014(8) 0.559±0.003(14) 0.552±0.005(19) 0.509±0.012(39) 0.535±0.008(29) 0.507±0.015(40) 0.548±0.012(24) 0.55±0.002(21) 0.5±0.0(43) 0.533±0.003(30) 0.533±0.003(30) 0.565±0.01(8)
celeba 0.76±0.049(14) 0.73±0.03(18) 0.764±0.001(12) 0.511±0.011(37) 0.697±0.053(22) 0.585±0.097(34) 0.736±0.085(17) 0.653±0.015(30) 0.5±0.0(38) 0.801±0.027(2) 0.664±0.011(26) 0.656±0.054(29)
cover 0.983±0.002(5) 0.978±0.012(9) 0.984±0.001(4) 0.521±0.021(40) 0.759±0.16(30) 0.813±0.105(29) 0.874±0.063(24) 0.978±0.007(9) 0.5±0.0(42) 0.979±0.006(8) 0.703±0.021(33) 0.98±0.01(7)
donors 0.998±0.003(6) 0.93±0.021(11) 0.452±0.035(38) 0.547±0.021(34) 0.64±0.217(31) 0.708±0.309(29) 0.836±0.072(20) 0.89±0.014(16) 0.5±0.0(37) 0.973±0.011(10) 0.814±0.014(22) 0.999±0.0(3)
fraud 0.957±0.003(5) 0.959±0.001(3) 0.955±0.001(10) 0.569±0.008(40) 0.954±0.004(13) 0.752±0.085(38) 0.939±0.009(29) 0.95±0.002(18) 0.5±0.0(41) 0.949±0.007(21) 0.94±0.002(28) 0.948±0.008(24)
http 1.0±0.0(1) 0.999±0.001(6) 0.862±0.223(31) 0.634±0.059(35) 0.999±0.0(6) 0.988±0.014(27) 0.998±0.002(16) 0.993±0.0(24) 0.5±0.0(36) 0.995±0.001(21) 0.982±0.027(28) 0.761±0.365(32)
magic.gamma 0.837±0.009(9) 0.826±0.007(10) 0.673±0.008(34) 0.537±0.016(43) 0.676±0.063(33) 0.606±0.068(41) 0.677±0.033(32) 0.765±0.004(15) 0.784±0.011(12) 0.874±0.002(1) 0.698±0.007(30) 0.862±0.007(2)
mammography 0.888±0.018(3) 0.884±0.034(6) 0.69±0.071(40) 0.513±0.051(45) 0.884±0.018(6) 0.857±0.024(17) 0.852±0.044(19) 0.827±0.01(25) 0.814±0.019(29) 0.859±0.021(16) 0.742±0.012(36) 0.861±0.013(15)
shuttle 0.999±0.0(5) 0.998±0.001(9) 0.996±0.001(17) 0.659±0.04(38) 0.992±0.002(23) 0.979±0.009(30) 0.993±0.001(21) 0.991±0.001(24) 0.5±0.0(40) 0.997±0.0(11) 0.997±0.0(11) 1.0±0.0(1)
skin 0.847±0.094(17) 0.831±0.074(21) 0.603±0.004(30) 0.528±0.03(34) 0.607±0.111(29) 0.836±0.077(18) 0.618±0.118(28) 0.834±0.004(19) 0.92±0.003(7) 0.92±0.002(7) 0.851±0.006(16) 0.991±0.001(2)
smtp 0.912±0.068(8) 0.923±0.008(5) 0.796±0.008(32) 0.613±0.068(39) 0.889±0.021(15) 0.854±0.055(22) 0.808±0.038(30) 0.847±0.004(24) 0.5±0.0(43) 0.95±0.002(1) 0.842±0.035(26) 0.899±0.024(12)
Avg Ranking 7.36 10.18 24.27 38.55 21.55 29.55 23.64 20.45 33.45 11.64 26.0 12.27

Dataset DTE-IG DTE-NP GANomaly GOAD ICL LUNAR MCM MO_GAAL PlanarFlow SLAD SO_GAAL VAE

ALOI 0.572±0.013(7) 0.7±0.002(5) 0.547±0.008(25) 0.506±0.005(41) 0.529±0.007(34) 0.734±0.007(2) 0.562±0.007(11) 0.542±0.008(27) 0.506±0.015(41) 0.549±0.004(22) 0.544±0.004(26) 0.555±0.003(17)
celeba 0.775±0.102(9) 0.663±0.002(27) 0.368±0.059(42) NAN 0.713±0.018(20) 0.629±0.004(31) 0.777±0.021(8) 0.665±0.062(25) NAN 0.622±0.015(32) 0.544±0.021(35) 0.767±0.001(11)
cover 0.982±0.01(6) 0.989±0.0(2) 0.659±0.192(35) NAN 0.9±0.046(22) 0.993±0.0(1) 0.826±0.099(27) 0.633±0.017(36) NAN 0.83±0.01(26) 0.549±0.016(39) 0.975±0.0(11)
donors 0.875±0.127(18) 0.999±0.0(3) 0.761±0.232(25) NAN 1.0±0.0(1) 1.0±0.0(1) 0.998±0.001(6) 0.065±0.027(41) NAN NAN 0.306±0.146(40) 0.813±0.047(23)
fraud 0.941±0.01(27) 0.963±0.001(2) 0.912±0.043(33) NAN 0.937±0.01(30) 0.965±0.002(1) 0.957±0.004(5) 0.775±0.011(37) NAN 0.947±0.004(25) 0.598±0.019(39) 0.955±0.001(10)
http 1.0±0.0(1) 1.0±0.0(1) 0.493±0.312(37) NAN 0.999±0.001(6) 0.997±0.003(17) 0.997±0.003(17) 0.133±0.18(41) NAN NAN 0.736±0.036(33) 0.999±0.0(6)
magic.gamma 0.852±0.022(4) 0.839±0.001(8) 0.578±0.014(42) 0.634±0.008(38) 0.764±0.004(16) 0.853±0.004(3) 0.844±0.038(5) 0.441±0.049(46) 0.749±0.014(21) 0.725±0.004(26) 0.504±0.034(45) 0.708±0.02(28)
mammography 0.869±0.028(13) 0.876±0.004(12) 0.853±0.074(18) 0.681±0.024(42) 0.76±0.03(35) 0.881±0.005(8) 0.848±0.045(21) 0.71±0.023(39) 0.812±0.027(30) 0.765±0.036(34) 0.784±0.035(33) 0.797±0.008(32)
shuttle 1.0±0.0(1) 0.999±0.0(5) 0.974±0.009(31) 0.989±0.004(26) 1.0±0.0(1) 1.0±0.0(1) 0.998±0.001(9) 0.02±0.006(44) 0.853±0.07(34) 0.999±0.0(5) 0.072±0.1(43) 0.996±0.0(17)
skin 0.984±0.006(4) 0.998±0.0(1) 0.436±0.032(38) NAN 0.074±0.011(42) 0.991±0.001(2) 0.691±0.096(25) 0.534±0.114(33) NAN 0.929±0.015(5) 0.383±0.088(40) 0.628±0.002(26)
smtp 0.857±0.037(20) 0.933±0.008(4) 0.504±0.094(42) 0.906±0.015(11) 0.697±0.11(38) 0.935±0.012(3) 0.845±0.044(25) 0.587±0.028(40) NAN 0.922±0.005(6) 0.551±0.017(41) 0.837±0.015(27)
Avg Ranking 10.0 6.36 33.45 31.6 22.27 6.36 14.45 37.18 31.5 20.11 37.64 18.91

Dataset CBLOF CD ECOD FB GMM HBOS IForest KDE LMDD LODA MCD OCSVM

ALOI 0.557±0.001(16) 0.517±0.002(37) 0.531±0.001(32) 0.765±0.003(1) 0.561±0.001(12) 0.53±0.001(33) 0.542±0.002(27) 0.563±0.001(10) 0.513±0.004(38) 0.486±0.02(44) 0.52±0.003(36) 0.551±0.001(20)
celeba 0.781±0.022(6) 0.708±0.005(21) 0.757±0.0(15) 0.534±0.016(36) 0.807±0.0(1) 0.761±0.001(13) 0.718±0.012(19) 0.675±0.002(24) 0.688±NAN (23) 0.661±0.121(28) 0.799±0.042(3) 0.79±0.0(4)
cover 0.943±0.005(17) 0.744±0.025(31) 0.92±0.001(20) 0.989±0.005(2) 0.95±0.001(16) 0.72±0.001(32) 0.843±0.011(25) 0.956±0.001(14) 0.893±0.048(23) 0.94±0.031(18) 0.702±0.001(34) 0.963±0.001(13)
donors 0.929±0.006(12) 0.504±0.068(36) 0.889±0.0(17) 0.99±0.003(8) 0.925±0.0(13) 0.797±0.014(24) 0.891±0.012(15) 0.975±0.0(9) 0.725±NAN (27) 0.646±0.318(30) 0.822±0.106(21) 0.921±0.0(14)
fraud 0.951±0.006(15) 0.949±0.003(21) 0.95±0.0(18) 0.821±0.042(35) 0.957±0.0(5) 0.951±0.001(15) 0.949±0.002(21) 0.959±0.001(3) 0.942±NAN (26) 0.816±0.168(36) 0.922±0.003(31) 0.956±0.0(8)
http 0.999±0.0(6) 0.994±0.0(23) 0.979±0.0(29) 0.897±0.006(30) 0.999±0.0(6) 0.993±0.003(24) 0.992±0.003(26) 1.0±0.0(1) 0.999±0.0(6) 0.179±0.225(40) 0.999±0.0(6) 1.0±0.0(1)
magic.gamma 0.756±0.01(20) 0.738±0.001(24) 0.637±0.001(37) 0.84±0.003(7) 0.804±0.001(11) 0.745±0.004(22) 0.77±0.012(14) 0.763±0.001(17) 0.628±0.007(39) 0.705±0.016(29) 0.738±0.004(24) 0.743±0.001(23)
mammography 0.844±0.017(23) 0.823±0.007(26) 0.906±0.002(1) 0.845±0.012(22) 0.878±0.002(9) 0.844±0.006(23) 0.877±0.012(11) 0.878±0.003(9) 0.85±0.018(20) 0.9±0.006(2) 0.723±0.026(37) 0.885±0.003(4)
shuttle 0.997±0.001(11) 0.76±0.02(35) 0.993±0.0(21) 0.873±0.085(33) 0.994±0.001(20) 0.988±0.002(27) 0.997±0.001(11) 0.997±0.0(11) 0.984±0.007(29) 0.683±0.365(37) 0.99±0.001(25) 0.996±0.0(17)
skin 0.924±0.012(6) 0.734±0.002(24) 0.489±0.001(36) 0.852±0.014(15) 0.888±0.001(13) 0.77±0.001(22) 0.89±0.005(12) 0.891±0.001(11) 0.42±0.06(39) 0.742±0.057(23) 0.884±0.001(14) 0.903±0.001(10)
smtp 0.892±0.027(14) 0.784±0.001(35) 0.88±0.0(17) 0.829±0.032(28) 0.815±0.001(29) 0.795±0.007(33) 0.907±0.009(10) 0.881±0.001(16) 0.795±0.073(33) 0.735±0.019(36) 0.95±0.0(1) 0.854±0.001(22)
Avg Ranking 13.27 28.45 22.09 19.73 12.27 24.36 17.36 11.36 27.55 29.36 21.09 12.36

Dataset QMCD Sampling ABOD COF INNE KNN KPCA LOF PCA

ALOI 0.526±0.001(35) 0.553±0.004(18) 0.728±0.002(4) NAN 0.558±0.002(15) 0.671±0.002(6) NAN 0.731±0.002(3) 0.549±0.001(22)
celeba 0.5±0.0(38) 0.787±0.032(5) 0.478±0.004(40) NAN 0.755±0.003(16) 0.589±0.001(33) NAN 0.443±0.005(41) 0.771±0.0(10)
cover 0.82±0.001(28) 0.911±0.041(21) 0.61±0.0(38) NAN 0.951±0.003(15) 0.627±0.0(37) NAN 0.503±0.001(41) 0.923±0.0(19)
donors 0.724±0.004(28) 0.857±0.042(19) 0.441±0.002(39) NAN 0.594±0.027(32) 0.592±0.0(33) NAN 0.546±0.003(35) 0.746±0.0(26)
fraud 0.955±0.001(10) 0.95±0.006(18) 0.849±0.001(34) NAN 0.954±0.004(13) 0.921±0.001(32) NAN 0.487±0.002(42) 0.951±0.0(15)
http 0.997±0.0(17) 0.999±0.0(6) 0.731±0.0(34) NAN 0.997±0.003(17) 0.193±0.001(39) NAN 0.397±0.002(38) 0.995±0.0(21)
magic.gamma 0.71±0.006(27) 0.759±0.017(18) 0.758±0.002(19) 0.619±0.005(40) 0.695±0.011(31) 0.771±0.001(13) 0.53±0.008(44) 0.661±0.004(35) 0.642±0.001(36)
mammography 0.721±0.013(38) 0.864±0.014(14) 0.514±0.007(44) 0.69±0.005(40) 0.822±0.011(28) 0.823±0.004(26) 0.43±0.034(46) 0.664±0.006(43) 0.885±0.005(4)
shuttle 0.72±0.002(36) 0.997±0.001(11) 0.496±0.006(42) NAN 0.942±0.033(32) 0.499±0.012(41) NAN 0.551±0.001(39) 0.988±0.0(27)
skin 0.624±0.004(27) 0.906±0.01(9) 0.494±0.001(35) NAN 0.461±0.086(37) 0.537±0.001(32) NAN 0.539±0.001(31) 0.336±0.002(41)
smtp 0.723±0.032(37) 0.912±0.022(8) 0.874±0.003(18) NAN 0.918±0.005(7) 0.897±0.015(13) NAN 0.87±0.025(19) 0.807±0.002(31)
Avg Ranking 29.18 13.36 31.55 40.0 22.09 27.73 45.0 33.36 22.91

Table 11: AUPRC results on 11 large datasets, where we compare TCCM to 44 baselines (with 5
independent runs). We report the mean ± std (rank).

Dataset TCCM (Ours) AE AE-1SVM ALAD AnoGAN DAGMM DeepSVDD DIF DROCC DTE-Cat DTE-DDPM DTE-Gaussian

ALOI 0.085±0.005(11) 0.077±0.001(15) 0.075±0.002(16) 0.061±0.001(40) 0.068±0.001(29) 0.061±0.003(40) 0.072±0.002(20) 0.079±0.003(14) 0.059±0.0(44) 0.066±0.001(31) 0.069±0.001(27) 0.099±0.003(8)
celeba 0.136±0.039(16) 0.106±0.013(21) 0.199±0.002(2) 0.046±0.002(37) 0.144±0.026(13) 0.066±0.028(33) 0.141±0.065(14) 0.088±0.008(28) 0.044±0.0(38) 0.135±0.017(17) 0.095±0.006(25) 0.084±0.012(29)
cover 0.835±0.028(3) 0.477±0.135(10) 0.393±0.012(12) 0.021±0.002(40) 0.072±0.039(30) 0.124±0.081(25) 0.138±0.15(24) 0.494±0.075(9) 0.019±0.0(42) 0.721±0.028(8) 0.045±0.005(33) 0.824±0.024(4)
donors 0.96±0.056(6) 0.474±0.055(12) 0.122±0.008(36) 0.141±0.012(35) 0.215±0.165(30) 0.34±0.214(19) 0.317±0.101(22) 0.328±0.026(20) 0.112±0.0(38) 0.666±0.054(10) 0.293±0.018(26) 0.986±0.01(3)
fraud 0.66±0.132(5) 0.627±0.029(8) 0.345±0.014(21) 0.006±0.0(39) 0.29±0.016(25) 0.053±0.089(35) 0.25±0.095(29) 0.538±0.026(13) 0.003±0.0(42) 0.742±0.007(2) 0.723±0.009(3) 0.743±0.017(1)
http 0.99±0.015(5) 0.875±0.073(15) 0.418±0.467(28) 0.039±0.035(33) 0.9±0.017(13) 0.456±0.212(27) 0.817±0.137(17) 0.515±0.003(25) 0.008±0.0(41) 0.579±0.022(22) 0.4±0.255(29) 0.102±0.056(31)
magic.gamma 0.864±0.008(8) 0.856±0.006(10) 0.745±0.003(31) 0.567±0.014(43) 0.73±0.04(33) 0.669±0.065(38) 0.729±0.029(34) 0.81±0.004(14) 0.829±0.008(12) 0.895±0.001(1) 0.737±0.006(32) 0.887±0.005(2)
mammography 0.439±0.04(6) 0.418±0.089(10) 0.35±0.108(19) 0.054±0.018(44) 0.477±0.046(2) 0.426±0.073(7) 0.345±0.073(23) 0.361±0.023(17) 0.251±0.033(31) 0.37±0.038(16) 0.134±0.009(41) 0.36±0.039(18)
shuttle 0.99±0.002(5) 0.974±0.005(14) 0.957±0.006(23) 0.311±0.07(38) 0.967±0.009(16) 0.894±0.089(31) 0.959±0.009(22) 0.98±0.003(10) 0.133±0.0(42) 0.938±0.006(29) 0.969±0.006(15) 0.996±0.002(2)
skin 0.732±0.119(6) 0.635±0.111(17) 0.358±0.002(32) 0.377±0.039(28) 0.43±0.076(26) 0.587±0.083(19) 0.392±0.084(27) 0.549±0.004(21) 0.716±0.008(8) 0.698±0.004(11) 0.719±0.01(7) 0.972±0.003(3)
smtp 0.507±0.102(8) 0.462±0.122(13) 0.467±0.045(12) 0.007±0.005(37) 0.33±0.095(22) 0.214±0.214(23) 0.41±0.082(20) 0.616±0.064(4) 0.001±0.0(40) 0.471±0.042(11) 0.143±0.143(26) 0.102±0.092(28)
Avg Ranking 7.18 13.18 21.09 37.64 21.73 27.0 22.91 15.91 34.36 14.36 24.0 11.73

Dataset DTE-IG DTE-NP GANomaly GOAD ICL LUNAR MCM MO_GAAL PlanarFlow SLAD SO_GAAL VAE

ALOI 0.087±0.004(9) 0.133±0.002(5) 0.086±0.007(10) 0.064±0.002(35) 0.082±0.003(12) 0.219±0.004(1) 0.075±0.003(16) 0.069±0.002(27) 0.06±0.003(43) 0.072±0.001(20) 0.068±0.001(29) 0.072±0.001(20)
celeba 0.14±0.059(15) 0.09±0.001(26) 0.033±0.004(42) NAN 0.1±0.008(23) 0.068±0.001(31) 0.132±0.016(19) 0.071±0.011(30) NAN 0.067±0.003(32) 0.048±0.002(36) 0.197±0.001(3)
cover 0.891±0.013(2) 0.814±0.009(6) 0.196±0.37(18) NAN 0.414±0.209(11) 0.903±0.009(1) 0.098±0.065(27) 0.026±0.001(38) NAN 0.073±0.009(29) 0.021±0.001(40) 0.283±0.003(14)
donors 0.566±0.301(11) 0.984±0.001(5) 0.362±0.261(18) NAN 0.995±0.003(2) 0.999±0.0(1) 0.956±0.03(7) 0.059±0.001(41) NAN NAN 0.081±0.019(40) 0.281±0.046(27)
fraud 0.636±0.073(7) 0.373±0.012(17) 0.521±0.173(14) NAN 0.638±0.035(6) 0.573±0.029(12) 0.693±0.044(4) 0.008±0.0(38) NAN 0.349±0.033(19) 0.004±0.0(40) 0.273±0.008(26)
http 0.995±0.005(3) 0.995±0.001(3) 0.021±0.014(34) NAN 0.961±0.057(6) 0.821±0.248(16) 0.78±0.222(18) 0.009±0.002(40) NAN NAN 0.015±0.003(35) 0.911±0.004(9)
magic.gamma 0.876±0.017(3) 0.863±0.001(9) 0.647±0.016(41) 0.691±0.009(36) 0.819±0.005(13) 0.876±0.003(3) 0.872±0.031(5) 0.522±0.05(46) 0.798±0.009(19) 0.779±0.004(23) 0.539±0.029(45) 0.764±0.012(26)
mammography 0.347±0.08(21) 0.419±0.025(9) 0.339±0.219(24) 0.279±0.025(26) 0.182±0.028(36) 0.459±0.019(3) 0.346±0.124(22) 0.26±0.052(28) 0.169±0.056(38) 0.203±0.064(34) 0.182±0.02(36) 0.375±0.025(14)
shuttle 0.996±0.002(2) 0.989±0.002(6) 0.945±0.043(27) 0.952±0.009(24) 0.996±0.003(2) 0.997±0.002(1) 0.966±0.004(18) 0.074±0.005(44) 0.499±0.128(35) 0.98±0.004(10) 0.077±0.015(43) 0.962±0.005(21)
skin 0.95±0.023(4) 0.996±0.001(1) 0.295±0.016(40) NAN 0.314±0.018(36) 0.975±0.001(2) 0.469±0.12(24) 0.345±0.072(33) NAN 0.854±0.01(5) 0.293±0.039(41) 0.373±0.001(29)
smtp 0.07±0.084(30) 0.553±0.05(6) 0.001±0.0(40) 0.454±0.053(15) 0.042±0.04(31) 0.662±0.009(1) 0.454±0.055(15) 0.001±0.0(40) NAN 0.473±0.049(10) 0.001±0.0(40) 0.46±0.054(14)
Avg Ranking 9.73 8.45 28.0 27.2 16.18 6.55 15.91 36.82 33.75 20.22 38.64 18.45

Dataset CBLOF CD ECOD FB GMM HBOS IForest KDE LMDD LODA MCD OCSVM

ALOI 0.072±0.001(20) 0.065±0.0(32) 0.064±0.0(35) 0.17±0.006(2) 0.074±0.001(19) 0.065±0.0(32) 0.065±0.0(32) 0.102±0.002(7) 0.064±0.001(35) 0.061±0.004(40) 0.063±0.002(38) 0.075±0.001(16)
celeba 0.17±0.05(7) 0.097±0.002(24) 0.171±0.001(6) 0.049±0.003(35) 0.166±0.001(9) 0.17±0.001(7) 0.134±0.008(18) 0.089±0.001(27) 0.15±NAN (11) 0.113±0.066(20) 0.149±0.046(12) 0.203±0.001(1)
cover 0.168±0.022(21) 0.038±0.005(34) 0.187±0.002(20) 0.818±0.09(5) 0.197±0.003(17) 0.051±0.001(32) 0.081±0.012(28) 0.359±0.006(13) 0.155±0.082(22) 0.208±0.114(16) 0.031±0.0(36) 0.223±0.004(15)
donors 0.447±0.02(13) 0.114±0.016(37) 0.414±0.001(16) 0.919±0.041(8) 0.432±0.001(14) 0.3±0.038(25) 0.397±0.027(17) 0.713±0.003(9) 0.28±NAN (28) 0.309±0.28(24) 0.31±0.122(23) 0.428±0.001(15)
fraud 0.257±0.008(28) 0.242±0.042(30) 0.331±0.006(22) 0.016±0.004(37) 0.587±0.015(11) 0.349±0.018(19) 0.208±0.055(33) 0.389±0.012(16) 0.321±NAN (23) 0.311±0.126(24) 0.601±0.022(10) 0.352±0.01(18)
http 0.902±0.002(12) 0.551±0.003(24) 0.252±0.001(30) 0.069±0.004(32) 0.911±0.003(9) 0.562±0.159(23) 0.493±0.12(26) 0.997±0.003(2) 0.908±0.006(11) 0.01±0.003(39) 0.918±0.005(7) 0.998±0.002(1)
magic.gamma 0.798±0.007(19) 0.755±0.002(28) 0.68±0.002(37) 0.868±0.002(7) 0.834±0.001(11) 0.773±0.002(24) 0.802±0.008(17) 0.809±0.001(15) 0.668±0.016(39) 0.758±0.012(27) 0.772±0.003(25) 0.791±0.001(21)
mammography 0.348±0.015(20) 0.193±0.01(35) 0.549±0.008(1) 0.257±0.025(29) 0.404±0.021(11) 0.209±0.005(33) 0.373±0.071(15) 0.425±0.018(8) 0.458±0.013(4) 0.445±0.044(5) 0.08±0.012(43) 0.403±0.016(12)
shuttle 0.965±0.005(19) 0.456±0.028(37) 0.95±0.003(26) 0.478±0.274(36) 0.967±0.005(16) 0.976±0.003(12) 0.985±0.007(7) 0.981±0.003(8) 0.952±0.014(24) 0.5±0.336(34) 0.905±0.006(30) 0.975±0.002(13)
skin 0.712±0.034(9) 0.448±0.002(25) 0.303±0.0(37) 0.578±0.018(20) 0.645±0.001(15) 0.534±0.002(22) 0.638±0.008(16) 0.65±0.002(14) 0.297±0.032(39) 0.515±0.075(23) 0.625±0.002(18) 0.664±0.001(13)
smtp 0.453±0.061(18) 0.16±0.055(25) 0.585±0.037(5) 0.003±0.0(38) 0.367±0.041(21) 0.009±0.001(35) 0.009±0.001(35) 0.633±0.051(3) 0.183±0.165(24) 0.086±0.053(29) 0.01±0.0(34) 0.636±0.047(2)
Avg Ranking 16.91 30.09 21.36 22.64 13.91 24.0 22.18 11.09 23.64 25.55 25.09 11.55

Dataset QMCD Sampling ABOD COF INNE KNN KPCA LOF PCA

ALOI 0.062±0.0(39) 0.071±0.001(25) 0.158±0.001(3) NAN 0.072±0.001(20) 0.115±0.002(6) NAN 0.142±0.002(4) 0.07±0.001(26)
celeba 0.044±0.0(38) 0.181±0.031(4) 0.041±0.0(40) NAN 0.106±0.004(21) 0.064±0.0(34) NAN 0.038±0.001(41) 0.181±0.001(4)
cover 0.071±0.001(31) 0.144±0.03(23) 0.028±0.0(37) NAN 0.189±0.007(19) 0.033±0.0(35) NAN 0.022±0.0(39) 0.117±0.001(26)
donors 0.169±0.002(31) 0.319±0.063(21) 0.101±0.0(39) NAN 0.143±0.007(34) 0.157±0.0(32) NAN 0.145±0.002(33) 0.224±0.0(29)
fraud 0.416±0.021(15) 0.268±0.009(27) 0.02±0.0(36) NAN 0.219±0.111(32) 0.08±0.001(34) NAN 0.004±0.0(40) 0.228±0.003(31)
http 0.708±0.014(20) 0.893±0.002(14) 0.014±0.0(36) NAN 0.747±0.207(19) 0.014±0.0(36) NAN 0.012±0.0(38) 0.602±0.003(21)
magic.gamma 0.749±0.006(30) 0.8±0.009(18) 0.788±0.002(22) 0.635±0.005(42) 0.753±0.008(29) 0.808±0.001(16) 0.56±0.006(44) 0.657±0.005(40) 0.703±0.001(35)
mammography 0.14±0.005(40) 0.378±0.056(13) 0.043±0.001(45) 0.11±0.003(42) 0.254±0.02(30) 0.23±0.013(32) 0.038±0.002(46) 0.143±0.007(39) 0.271±0.006(27)
shuttle 0.684±0.014(32) 0.965±0.007(19) 0.171±0.002(41) NAN 0.633±0.12(33) 0.203±0.002(40) NAN 0.211±0.002(39) 0.942±0.004(28)
skin 0.366±0.002(30) 0.702±0.017(10) 0.342±0.0(34) NAN 0.298±0.031(38) 0.332±0.0(35) NAN 0.359±0.001(31) 0.253±0.001(42)
smtp 0.022±0.008(32) 0.451±0.052(19) 0.002±0.0(39) NAN 0.488±0.113(9) 0.105±0.014(27) NAN 0.017±0.01(33) 0.454±0.054(15)
Avg Ranking 30.73 17.55 33.82 42.0 25.82 29.73 45.0 34.27 25.82

65

Table 12: AUROC results on 9 high-dimensional datasets, where we compare TCCM to 44 baselines
(with 5 independent runs). We report the mean ± std (rank).

Dataset TCCM (Ours) AE AE-1SVM ALAD AnoGAN DAGMM DeepSVDD DIF DROCC DTE-Cat DTE-DDPM DTE-Gaussian

backdoor 0.948±0.014(5) 0.935±0.002(7) 0.919±0.002(11) 0.488±0.139(38) 0.58±0.15(31) 0.451±0.15(39) 0.551±0.043(33) 0.926±0.001(9) 0.5±0.0(34) 0.918±0.004(12) 0.606±0.008(29) 0.925±0.007(10)
campaign 0.785±0.017(8) 0.815±0.011(1) 0.79±0.009(6) 0.527±0.041(42) 0.758±0.021(20) 0.602±0.04(39) 0.731±0.025(25) 0.676±0.01(35) 0.59±0.123(40) 0.787±0.005(7) 0.708±0.007(28) 0.701±0.063(30)
census 0.715±0.004(4) 0.721±0.003(3) 0.705±0.005(10) 0.407±0.062(37) 0.685±0.037(16) 0.512±0.028(31) 0.693±0.015(13) 0.579±0.016(29) 0.5±0.0(32) 0.693±0.008(13) 0.637±0.002(22) 0.493±0.039(34)
InternetAds 0.872±0.017(6) 0.883±0.006(1) 0.882±0.006(2) 0.373±0.026(40) 0.595±0.054(24) NAN 0.683±0.019(21) 0.55±0.018(28) 0.492±0.07(35) 0.85±0.03(10) 0.695±0.044(20) 0.868±0.018(7)
mnist 0.933±0.018(7) 0.936±0.003(4) 0.93±0.003(8) 0.542±0.034(44) 0.871±0.017(20) 0.762±0.061(32) 0.811±0.027(27) 0.882±0.01(19) 0.852±0.022(24) 0.902±0.017(17) 0.815±0.009(26) 0.859±0.009(23)
musk 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.512±0.1(41) 0.962±0.035(30) 0.899±0.061(34) 0.987±0.024(29) 0.999±0.001(25) 0.281±0.177(44) 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1)
optdigits 0.9±0.038(7) 0.87±0.004(11) 0.682±0.033(23) 0.479±0.043(38) 0.547±0.112(30) 0.613±0.202(28) 0.542±0.176(32) 0.626±0.066(25) 0.859±0.049(13) 0.849±0.023(15) 0.618±0.02(27) 0.883±0.011(10)
SpamBase 0.866±0.006(1) 0.816±0.011(14) 0.813±0.012(15) 0.54±0.01(37) 0.825±0.01(10) 0.633±0.034(35) 0.796±0.031(22) 0.5±0.029(38) 0.777±0.006(25) 0.848±0.011(5) 0.784±0.011(23) 0.784±0.016(23)
speech 0.549±0.009(5) 0.476±0.007(27) 0.471±0.007(35) 0.472±0.035(33) 0.486±0.028(23) 0.498±0.034(17) 0.514±0.035(14) 0.476±0.028(27) 0.527±0.042(9) 0.523±0.009(12) 0.521±0.061(13) 0.531±0.029(7)
Avg Ranking 4.89 7.67 12.33 38.89 22.67 31.88 24.0 26.11 28.44 10.22 21.0 16.11

Dataset DTE-IG DTE-NP GANomaly GOAD ICL LUNAR MCM MO_GAAL PlanarFlow SLAD SO_GAAL VAE

backdoor 0.938±0.01(6) 0.951±0.001(3) 0.795±0.057(18) 0.495±0.077(37) NAN 0.954±0.001(2) NAN 0.859±0.037(15) NAN 0.5±0.0(34) 0.77±0.123(19) 0.911±0.001(13)
campaign 0.717±0.061(27) 0.785±0.002(8) 0.682±0.038(34) 0.393±0.02(44) 0.811±0.005(2) 0.731±0.003(25) 0.785±0.016(8) 0.65±0.053(37) 0.687±0.078(33) 0.763±0.005(19) 0.696±0.023(32) 0.781±0.001(11)
census 0.66±0.014(20) 0.722±0.001(2) 0.695±0.022(12) NAN NAN 0.674±0.003(19) NAN 0.59±0.051(26) NAN 0.616±0.106(25) 0.573±0.037(30) 0.706±0.001(8)
InternetAds 0.809±0.03(12) 0.795±0.032(14) 0.772±0.035(15) 0.651±0.103(23) NAN 0.856±0.005(8) NAN 0.453±0.04(36) 0.796±0.023(13) 0.853±0.03(9) 0.423±0.058(37) 0.881±0.006(3)
mnist 0.793±0.05(29) 0.944±0.002(2) 0.791±0.073(30) 0.44±0.13(46) 0.913±0.014(12) 0.934±0.004(6) 0.928±0.014(10) 0.686±0.106(36) 0.809±0.023(28) 0.912±0.006(14) 0.681±0.078(37) 0.935±0.002(5)
musk 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.942±0.055(32) 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.893±0.132(35) 0.875±0.103(37) 1.0±0.0(1) 0.889±0.162(36) 1.0±0.0(1)
optdigits 0.868±0.08(12) 0.961±0.004(5) 0.724±0.167(21) 0.802±0.144(20) 0.981±0.004(2) 0.997±0.001(1) 0.852±0.084(14) 0.245±0.071(45) 0.429±0.148(41) 0.942±0.011(6) 0.26±0.105(44) 0.686±0.057(22)
SpamBase 0.744±0.049(28) 0.851±0.005(3) 0.825±0.015(10) 0.405±0.188(43) 0.843±0.007(6) 0.83±0.005(9) 0.82±0.014(12) 0.431±0.105(42) 0.837±0.025(8) 0.851±0.007(3) 0.398±0.098(44) 0.812±0.013(16)
speech 0.445±0.029(44) 0.567±0.011(2) 0.492±0.031(20) 0.504±0.079(16) 0.565±0.036(3) 0.57±0.063(1) 0.472±0.007(33) 0.458±0.034(42) 0.493±0.047(19) 0.511±0.057(15) 0.457±0.031(43) 0.471±0.006(35)
Avg Ranking 19.89 4.44 17.89 32.62 4.33 8.0 13.0 34.89 25.57 14.0 35.78 12.67

Dataset CBLOF CD ECOD FB GMM HBOS IForest KDE LMDD LODA MCD OCSVM

backdoor 0.714±0.04(22) 0.744±0.127(21) 0.846±0.001(17) 0.95±0.006(4) 0.928±0.0(8) 0.713±0.005(23) 0.746±0.024(20) 0.905±0.001(14) NAN 0.411±0.226(40) 0.851±0.102(16) 0.626±0.004(28)
campaign 0.772±0.002(16) 0.768±0.02(18) 0.77±0.001(17) 0.675±0.043(36) 0.799±0.001(4) 0.775±0.003(14) 0.738±0.018(22) 0.775±0.001(14) 0.699±0.03(31) 0.584±0.064(41) 0.791±0.006(5) 0.776±0.001(13)
census 0.708±0.003(6) 0.658±0.174(21) NAN 0.582±0.006(28) 0.706±0.001(8) 0.624±0.001(23) 0.624±0.012(23) 0.723±0.002(1) NAN 0.483±0.082(35) NAN 0.702±0.001(11)
InternetAds 0.697±0.044(19) 0.5±0.0(32) 0.678±0.007(22) 0.746±0.041(16) 0.881±0.016(3) 0.403±0.05(39) 0.419±0.079(38) 0.841±0.019(11) 0.561±0.058(26) 0.575±0.122(25) NAN 0.705±0.044(18)
mnist 0.913±0.003(12) 0.605±0.117(41) 0.747±0.004(33) 0.929±0.004(9) 0.926±0.001(11) 0.611±0.006(39) 0.864±0.012(21) 0.945±0.002(1) 0.722±0.092(35) 0.728±0.078(34) 0.891±0.017(18) 0.91±0.001(15)
musk 1.0±0.0(1) 0.671±0.008(38) 0.954±0.002(31) 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.931±0.016(33) 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.999±0.001(25) 1.0±0.0(1)
optdigits 0.835±0.02(16) 0.383±0.024(42) 0.609±0.004(29) 0.975±0.003(3) 0.813±0.005(18) 0.899±0.004(8) 0.809±0.064(19) 0.973±0.003(4) 0.475±0.019(39) 0.498±0.184(36) 0.652±0.034(24) 0.626±0.01(25)
SpamBase 0.811±0.01(17) 0.491±0.023(39) 0.66±0.008(33) 0.757±0.024(27) 0.797±0.012(21) 0.772±0.007(26) 0.819±0.017(13) 0.857±0.004(2) 0.661±0.05(32) 0.681±0.103(31) 0.799±0.044(20) 0.811±0.013(17)
speech 0.473±0.006(32) 0.482±0.008(25) 0.471±0.006(35) 0.496±0.006(18) 0.527±0.005(9) 0.476±0.008(27) 0.468±0.023(40) 0.531±0.059(7) 0.489±0.016(21) 0.474±0.008(30) 0.526±0.005(11) 0.468±0.006(40)
Avg Ranking 15.67 30.78 27.12 15.78 9.22 22.22 25.44 6.11 26.43 30.33 17.0 18.67

Dataset QMCD Sampling ABOD COF INNE KNN KPCA LOF PCA

backdoor 0.567±0.002(32) 0.678±0.021(24) 0.668±0.001(25) NAN 0.606±0.025(29) 0.666±0.001(26) NAN 0.664±0.001(27) 0.5±0.0(34)
campaign 0.805±0.006(3) 0.74±0.028(21) 0.706±0.002(29) NAN 0.738±0.003(22) 0.736±0.001(24) NAN 0.631±0.003(38) 0.5±0.0(43)
census 0.681±0.001(18) 0.707±0.006(7) 0.434±0.001(36) NAN 0.689±0.005(15) 0.682±0.001(17) NAN 0.585±0.001(27) 0.5±0.0(32)
InternetAds 0.5±0.001(32) 0.707±0.042(17) 0.528±0.022(30) 0.266±0.034(41) 0.548±0.04(29) 0.561±0.041(26) 0.505±0.039(31) 0.223±0.025(42) 0.493±0.007(34)
mnist 0.639±0.007(38) 0.904±0.014(16) 0.766±0.003(31) 0.594±0.009(42) 0.863±0.008(22) 0.844±0.002(25) 0.546±0.018(43) 0.61±0.003(40) 0.5±0.0(45)
musk 0.036±0.007(46) 1.0±0.0(1) 0.056±0.002(45) 0.449±0.046(43) 0.997±0.001(28) 0.499±0.003(42) 0.557±0.17(40) 0.623±0.007(39) 0.999±0.0(25)
optdigits 0.133±0.003(46) 0.814±0.011(17) 0.45±0.005(40) 0.512±0.008(33) 0.506±0.026(34) 0.292±0.003(43) 0.498±0.095(36) 0.544±0.008(31) 0.5±0.0(35)
SpamBase 0.696±0.037(29) 0.806±0.01(19) 0.47±0.007(40) 0.365±0.013(45) 0.688±0.017(30) 0.64±0.01(34) 0.59±0.02(36) 0.352±0.012(46) 0.469±0.006(41)
speech 0.413±0.007(46) 0.483±0.014(24) 0.557±0.015(4) 0.416±0.021(45) 0.474±0.008(30) 0.469±0.008(39) 0.489±0.039(21) 0.482±0.009(25) 0.47±0.007(38)
Avg Ranking 32.22 16.22 31.11 41.5 26.56 30.67 34.5 35.0 36.33

Table 13: AUPRC results on 9 high-dimensional datasets, where we compare TCCM to 44 baselines
(with 5 independent runs). We report the mean ± std (rank).

Dataset TCCM (Ours) AE AE-1SVM ALAD AnoGAN DAGMM DeepSVDD DIF DROCC DTE-Cat DTE-DDPM DTE-Gaussian

backdoor 0.835±0.063(8) 0.868±0.002(4) 0.86±0.006(5) 0.059±0.03(35) 0.071±0.033(32) 0.051±0.014(36) 0.069±0.012(33) 0.696±0.03(10) 0.048±0.0(38) 0.631±0.037(12) 0.086±0.002(26) 0.804±0.017(9)
campaign 0.49±0.019(15) 0.504±0.021(3) 0.501±0.013(5) 0.229±0.039(42) 0.492±0.022(13) 0.325±0.054(37) 0.449±0.035(23) 0.381±0.018(34) 0.297±0.13(41) 0.495±0.014(11) 0.443±0.009(25) 0.41±0.06(29)
census 0.213±0.005(5) 0.217±0.004(2) 0.206±0.006(8) 0.096±0.018(36) 0.178±0.016(19) 0.13±0.014(31) 0.194±0.014(14) 0.126±0.005(32) 0.117±0.0(34) 0.177±0.008(20) 0.18±0.002(18) 0.143±0.013(26)
InternetAds 0.829±0.042(4) 0.869±0.011(1) 0.868±0.011(2) 0.255±0.006(40) 0.433±0.114(24) NAN 0.486±0.05(23) 0.345±0.01(31) 0.405±0.07(25) 0.725±0.091(11) 0.531±0.109(20) 0.803±0.056(6)
mnist 0.747±0.048(5) 0.737±0.009(6) 0.716±0.016(11) 0.212±0.033(45) 0.622±0.019(21) 0.494±0.088(31) 0.55±0.038(25) 0.624±0.021(20) 0.636±0.03(19) 0.644±0.029(18) 0.557±0.012(23) 0.666±0.021(17)
musk 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.092±0.082(44) 0.745±0.181(30) 0.641±0.194(32) 0.881±0.178(29) 0.989±0.017(25) 0.135±0.13(42) 1.0±0.0(1) 0.997±0.003(22) 1.0±0.0(1)
optdigits 0.267±0.092(9) 0.175±0.004(15) 0.08±0.009(25) 0.053±0.006(38) 0.058±0.012(34) 0.092±0.068(23) 0.066±0.03(31) 0.074±0.012(27) 0.201±0.055(12) 0.174±0.024(16) 0.075±0.002(26) 0.241±0.018(11)
SpamBase 0.899±0.004(1) 0.849±0.01(14) 0.849±0.011(14) 0.619±0.009(37) 0.863±0.007(9) 0.699±0.022(33) 0.836±0.028(21) 0.569±0.026(41) 0.829±0.009(22) 0.87±0.011(7) 0.829±0.01(22) 0.822±0.013(24)
speech 0.058±0.005(2) 0.038±0.002(22) 0.038±0.001(22) 0.033±0.002(38) 0.041±0.006(16) 0.04±0.006(17) 0.034±0.002(36) 0.034±0.003(36) 0.04±0.007(17) 0.047±0.005(9) 0.04±0.004(17) 0.049±0.007(7)
Avg Ranking 5.56 7.56 10.33 39.44 22.0 30.0 26.11 28.44 27.78 11.67 22.11 14.44

Dataset DTE-IG DTE-NP GANomaly GOAD ICL LUNAR MCM MO_GAAL PlanarFlow SLAD SO_GAAL VAE

backdoor 0.851±0.006(7) 0.642±0.003(11) 0.153±0.093(19) 0.062±0.01(34) NAN 0.899±0.004(1) NAN 0.259±0.075(15) NAN 0.048±0.0(38) 0.13±0.072(20) 0.856±0.001(6)
campaign 0.447±0.025(24) 0.492±0.003(13) 0.385±0.058(33) 0.176±0.01(44) 0.498±0.009(7) 0.435±0.002(26) 0.493±0.01(12) 0.369±0.052(35) 0.397±0.085(31) 0.485±0.007(17) 0.398±0.027(30) 0.499±0.003(6)
census 0.188±0.003(15) 0.217±0.001(2) 0.188±0.012(15) NAN NAN 0.165±0.001(23) NAN 0.154±0.017(24) NAN 0.168±0.046(22) 0.146±0.013(25) 0.2±0.003(11)
InternetAds 0.722±0.06(12) 0.661±0.1(13) 0.639±0.103(14) 0.505±0.078(22) NAN 0.771±0.025(9) NAN 0.365±0.066(29) 0.61±0.076(16) 0.735±0.085(10) 0.356±0.07(30) 0.867±0.012(3)
mnist 0.549±0.091(26) 0.769±0.02(3) 0.495±0.072(30) 0.264±0.06(43) 0.715±0.039(13) 0.775±0.023(1) 0.717±0.031(10) 0.433±0.095(34) 0.529±0.03(29) 0.728±0.021(7) 0.414±0.059(36) 0.726±0.006(8)
musk 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.714±0.283(31) 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.6±0.304(34) 0.546±0.263(36) 1.0±0.0(1) 0.598±0.323(35) 1.0±0.0(1)
optdigits 0.282±0.117(8) 0.406±0.026(5) 0.113±0.046(21) 0.193±0.132(13) 0.606±0.04(2) 0.926±0.036(1) 0.181±0.079(14) 0.035±0.003(45) 0.048±0.012(41) 0.34±0.041(7) 0.036±0.005(43) 0.081±0.017(24)
SpamBase 0.796±0.041(26) 0.875±0.005(5) 0.859±0.011(10) 0.555±0.145(42) 0.884±0.004(3) 0.856±0.007(11) 0.854±0.012(12) 0.601±0.068(39) 0.875±0.022(5) 0.888±0.008(2) 0.577±0.066(40) 0.845±0.012(18)
speech 0.03±0.002(44) 0.054±0.007(6) 0.042±0.007(15) 0.037±0.007(31) 0.043±0.008(13) 0.056±0.015(4) 0.038±0.001(22) 0.031±0.006(42) 0.036±0.006(32) 0.036±0.007(32) 0.031±0.006(42) 0.038±0.001(22)
Avg Ranking 18.11 6.56 17.56 32.5 6.5 8.56 11.83 33.0 27.14 15.11 33.44 11.0

Dataset CBLOF CD ECOD FB GMM HBOS IForest KDE LMDD LODA MCD OCSVM

backdoor 0.095±0.013(23) 0.242±0.19(16) 0.169±0.001(18) 0.556±0.099(13) 0.87±0.001(2) 0.086±0.001(26) 0.089±0.01(25) 0.455±0.008(14) NAN 0.072±0.07(30) 0.202±0.089(17) 0.077±0.003(29)
campaign 0.488±0.006(16) 0.469±0.025(20) 0.502±0.002(4) 0.307±0.067(39) 0.517±0.003(1) 0.508±0.005(2) 0.462±0.02(22) 0.478±0.003(19) 0.429±0.029(27) 0.302±0.074(40) 0.482±0.014(18) 0.497±0.003(8)
census 0.202±0.003(10) 0.259±0.186(1) NAN 0.126±0.002(32) 0.2±0.002(11) 0.139±0.0(28) 0.14±0.004(27) 0.216±0.006(4) NAN 0.135±0.049(30) NAN 0.205±0.003(9)
InternetAds 0.529±0.109(21) 0.315±0.0(35) 0.619±0.009(15) 0.565±0.097(17) 0.775±0.068(7) 0.26±0.027(39) 0.265±0.037(38) 0.773±0.05(8) 0.399±0.091(26) 0.397±0.137(27) NAN 0.546±0.115(18)
mnist 0.684±0.011(14) 0.281±0.12(41) 0.303±0.007(40) 0.716±0.025(11) 0.725±0.012(9) 0.215±0.005(44) 0.539±0.043(28) 0.774±0.018(2) 0.46±0.112(32) 0.419±0.115(35) 0.583±0.093(22) 0.683±0.008(15)
musk 1.0±0.0(1) 0.132±0.005(43) 0.604±0.005(33) 1.0±0.0(1) 1.0±0.0(1) 1.0±0.0(1) 0.355±0.052(37) 1.0±0.0(1) 0.992±0.007(24) 0.997±0.003(22) 0.987±0.017(26) 1.0±0.0(1)
optdigits 0.14±0.015(18) 0.042±0.002(42) 0.066±0.001(31) 0.511±0.024(3) 0.132±0.003(19) 0.384±0.029(6) 0.161±0.048(17) 0.489±0.031(4) 0.052±0.002(39) 0.057±0.015(35) 0.072±0.007(28) 0.068±0.002(29)
SpamBase 0.846±0.01(17) 0.537±0.015(43) 0.682±0.008(34) 0.732±0.028(30) 0.837±0.011(20) 0.781±0.014(27) 0.854±0.021(12) 0.883±0.004(4) 0.704±0.042(32) 0.769±0.067(28) 0.814±0.058(25) 0.847±0.012(16)
speech 0.038±0.001(22) 0.038±0.001(22) 0.04±0.002(17) 0.044±0.001(11) 0.056±0.007(4) 0.044±0.006(11) 0.032±0.002(41) 0.065±0.006(1) 0.045±0.008(10) 0.033±0.005(38) 0.043±0.002(13) 0.038±0.001(22)
Avg Ranking 15.78 29.22 24.0 17.44 8.22 20.44 27.44 6.33 27.14 31.67 21.29 16.33

Dataset QMCD Sampling ABOD COF INNE KNN KPCA LOF PCA

backdoor 0.051±0.0(36) 0.081±0.012(28) 0.095±0.001(23) NAN 0.072±0.006(30) 0.109±0.001(21) NAN 0.107±0.001(22) 0.048±0.0(38)
campaign 0.496±0.012(10) 0.466±0.036(21) 0.347±0.003(36) NAN 0.392±0.005(32) 0.413±0.003(28) NAN 0.313±0.001(38) 0.202±0.0(43)
census 0.207±0.001(7) 0.199±0.003(13) 0.094±0.0(37) NAN 0.172±0.003(21) 0.181±0.0(17) NAN 0.137±0.001(29) 0.117±0.0(34)
InternetAds 0.315±0.0(35) 0.536±0.105(19) 0.339±0.011(32) 0.227±0.01(41) 0.325±0.025(34) 0.366±0.032(28) 0.328±0.019(33) 0.207±0.006(42) 0.306±0.004(37)
mnist 0.358±0.01(37) 0.679±0.021(16) 0.445±0.009(33) 0.317±0.016(39) 0.543±0.02(27) 0.555±0.014(24) 0.269±0.018(42) 0.347±0.013(38) 0.169±0.0(46)
musk 0.032±0.0(46) 1.0±0.0(1) 0.042±0.006(45) 0.141±0.015(41) 0.931±0.031(28) 0.191±0.003(40) 0.279±0.143(39) 0.326±0.009(38) 0.98±0.007(27)
optdigits 0.031±0.0(46) 0.127±0.006(20) 0.098±0.002(22) 0.061±0.001(33) 0.051±0.003(40) 0.036±0.0(43) 0.054±0.011(37) 0.068±0.002(29) 0.056±0.0(36)
SpamBase 0.751±0.03(29) 0.843±0.011(19) 0.604±0.007(38) 0.499±0.008(45) 0.674±0.016(35) 0.725±0.01(31) 0.648±0.011(36) 0.485±0.009(46) 0.522±0.004(44)
speech 0.026±0.0(46) 0.035±0.001(34) 0.049±0.01(7) 0.029±0.003(45) 0.035±0.002(34) 0.038±0.001(22) 0.033±0.004(38) 0.04±0.002(17) 0.038±0.001(22)
Avg Ranking 32.44 19.0 30.33 40.67 31.22 28.22 37.5 33.22 36.33

66

	Introduction
	Preliminaries
	Problem Statement
	Recap of Flow Matching

	Methodology: Time-Conditioned Contraction Matching (TCCM)
	Theoretical Properties of TCCM
	Experiments
	Experiment Setup
	Results Analysis

	Conclusion
	Related Work
	Anomaly Detection Methods
	One-Class Classification Methods
	Generative based Approaches
	Reconstruction-based Methods
	Self-Supervised based Methods and Other Miscellaneous Methods

	Generative Models

	Experiment setups
	Datasets
	Baselines
	Configurations
	Evaluation metrics
	Pseudo-code of TCCM
	Unsupervised Epoch Selection Strategy

	Property Analysis
	Relation to Flow Matching and Diffusion Modeling
	Anomaly Score Expectation under Distributional Shift
	Analysis of Representation Collapse

	Full Results and Analysis
	Full Analysis of Effectiveness
	Full Results on Scalability Analysis
	Analysis of the Trade-off Between Inference Speed and Accuracy
	Scalability Analysis on All Algorithms

	Ablation Studies and Sensitivity Analysis: Full Results and Analysis
	Empirical Studies on Robustness and Interpretability
	Empirical Studies on Robustness
	Empirical Studies on Interpretability

	Statistical Tests
	Limitations and Broader Impacts

	Results under the Inductive Evaluation Setting
	Effectiveness under the Inductive Setting
	Scalability, Explainability, and Ablation Analyses

