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ABSTRACT

We consider the problem of modelling the effects of perturbations such as gene
knockdowns or drug combinations on low-level measurements like RNA sequenc-
ing data. Specifically, given data collected under some perturbations, we aim to
predict the distribution of measurements for new perturbations. To address this
challenging extrapolation task, we posit that perturbations act additively in a suit-
able, unknown embedding space. More precisely, we formulate the generative
process underlying the observed data as a latent variable model, in which pertur-
bations amount to mean shifts in latent space. We prove that the representation
and perturbation effects are identifiable up to affine transformation and use this to
characterize the class of unseen perturbations for which we obtain extrapolation
guarantees. To estimate the model from data, we propose the perturbation distribu-
tion autoencoder (PDAE) which is trained by maximising the distributional simi-
larity between true and predicted perturbation distributions The trained model can
then be used to predict previously unseen perturbation distributions. Preliminary
empirical evidence suggests that PDAE compares favourably to CPA (Lotfollahi
et al., 2023) and other baselines at predicting the effects of unseen perturbations.

1 INTRODUCTION

Due to technological progress, large-scale perturbation data is becoming more abundant across sev-
eral scientific fields. This is particularly the case for single-cell biology, where advancements in gene
editing, sequencing, and mass spectrometry have led to the collection of vast transcriptomic or pro-
teomic databases for various drug and gene perturbations (Dixit et al., 2016; Jinek et al., 2012; Nor-
man et al., 2019; Wang et al., 2009; Weinstein et al., 2013). However, the exponential number of pos-
sible combinations of perturbations renders exhaustive experimentation prohibitive. Observations
are thus typically only available for a subset of perturbations of interest, e.g., some single and dou-
ble gene knockdowns or certain dosages of drugs. This necessitates models capable of extrapolating
to unseen combinations of perturbations, e.g., new multi-gene knockdowns or dosage combinations.

Prior Work. Several recent works leverage machine learning for biological perturbation modelling,
e.g., to generalize to new cell types (Bunne et al., 2023; Lotfollahi et al., 2019), unseen combinations
of perturbations (Lotfollahi et al., 2023), or entirely new perturbations by leveraging the molecular
structure of the involved compounds (Hetzel et al., 2022; Qi et al., 2024; Yu & Welch, 2022) or prior
knowledge about gene-gene interactions (Kamimoto et al., 2023; Roohani et al., 2024). A common
theme is the use of representation learning techniques such as autoencoders (Hinton & Salakhutdi-
nov, 2006; Kingma & Welling, 2014; Rumelhart et al., 1986) to embed observations in a latent space,
in which the effects of perturbations are assumed to take on a simpler (e.g., additive) form. However,
existing studies are purely empirical and lack theoretical underpinning. Despite promising results,
the capabilities and fundamental limitations of existing methods thus remain poorly understood.

Overview and Contributions. In this work, we present a principled, theoretically-grounded ap-
proach for perturbation extrapolation. Given the unpaired nature of the available data (each cell is
only measured under one experimental condition), we consider the task of predicting population-
level effects of perturbations, which we formalize as a distributional regression problem (§ 2). We
then postulate a generative model (§ 3) which, similar to prior works, assumes that perturbations
act as mean shifts in a suitable latent space, see Fig. 1 for an overview. We analyse this model
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(a) Simulated Multi-Domain Perturbation Data

zbase
e,i

zpert
e,i

le

εe,i

xe,i

NeM

(b) Graphical Model Representation

Figure 1: Task Description and Assumed Data Generating Process. (a) During training, we are given M=
5 training data sets in observation space (right, grey), each of which is generated under a known combination
of K = 3 elementary perturbations. The corresponding perturbation labels le are shown below the plots.
During testing, we are given a new perturbation label and the task is to predict the corresponding distribution
in observation space (right, blue and orange). We tackle this task by assuming that the effect of perturbations
is linear additive in a suitable latent space (left). Both plots show kernel density estimates of the distributions.
(b) Each dataset comprises a perturbation label le and Ne observations xe,i. Perturbations act as mean-shifts on
a latent basal state, zpert

e,i = zbase
e,i +Wle. A stochastic nonlinear decoder with noise εe,i then yields the observed

xe,i = f(zpert
e,i , εe,i). Shaded and white nodes indicate observed and unobserved/latent variables, respectively.

class theoretically (§ 4), proving that the latent representation and the relative training perturbation
effects are identifiable up to affine transformation (Thm. 4.1). This result implies extrapolation guar-
antees for unseen perturbations that can be expressed as linear combinations of training perturba-
tions (Thm. 4.6). Based on these insights, we devise an autoencoder-based estimation method (§ 5)
which uses the energy score (Gneiting & Raftery, 2007) to assess the distributional similarity be-
tween predicted and ground-truth perturbation data. In preliminary simulations (§ 6), our approach
compares favourably to the compositional perturbation autoencoder (CPA; Lotfollahi et al., 2023)
in terms of mean prediction and distributional fit.

Notation. We write scalars as a, column-vectors as a, and matrices as A. We use uppercase for
random variables and lowercase for their realizations. Equality in distribution is denoted by d

= and
the pushforward of a distribution P by a measurable function f is denoted by f#P. The Euclidean
(L2) norm is denoted by ∥·∥. Further, we use the shorthands [n] = {1, ..., n} and [n]0 = [n] ∪ {0}.

2 PROBLEM SETTING: DISTRIBUTIONAL PERTURBATION EXTRAPOLATION

Let x ∈ RdX be an observation (e.g., omics data) that is obtained under one of several possi-
ble experimental conditions. We model these conditions as combinations of K elementary pertur-
bations, each of which we assume can be encoded by a real number. Further, let l ∈ RK be a
perturbation label that indicates if, or how much of, each perturbation was applied before collecting
the corresponding x.
Example 2.1 (Gene perturbations). For data arising from gene knockouts, a perturbationcan be rep-
resented by a binary l ∈ {0, 1}K , where K denotes the number of potential targets and lk = 1 if
and only if target k was subject to a knockout experiment. For example, l = (1, 0, 1, 0, 0) indicates
a multi-gene knockout on targets one and three.
Example 2.2 (Drug perturbations). For data arising from applying varying amounts of K differ-
ent drugs, perturbations can be represented by continuous, non-negative labels l ∈ RK

+ , where lk
indicates the (relative or absolute) amount of drug k that was administered.

We have access to M+1 experimental datasets D0,D1, ...,DM , each comprising a sample of Ne ob-
servations x and a perturbation label l, i.e., for all experiments or environments e ∈ [M ]0,

De =
({

xe,i

}Ne

i=1
, le

)
. (2.1)
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Given data in the form of (2.1), the task we consider is to predict the effects of new perturbations
ltest ̸∈ {l0, l1, ..., lM} without observing any data from this condition (“zero-shot”). In particular,
we are interested in the distribution over observations resulting from ltest. That is, we aim to leverage
the training domains (2.1) to learn a map

l 7→ PX|l (2.2)

which extrapolates beyond the training support of l, i.e., the predictions should remain reliable for
new inputs ltest. Since (2.2) targets the full conditional distribution—rather than, say, the condi-
tional mean E[X|l]—it constitutes a (multi-variate) distributional regression task (Koenker, 2005;
Koenker & Bassett Jr, 1978), also referred to as probabilistic forecasting (Gneiting & Raftery, 2007)
or conditional generative modelling (Mirza, 2014; Sohn et al., 2015; Winkler et al., 2019). We
therefore refer to our problem setting as distributional perturbation extrapolation.

Formally, extrapolation means that the value of the function (2.2) at ltest is determined by its values
on the training support {l0, l1, ..., lM}. Intuitively, for this to be feasible, ltest must be somehow
related to the training perturbations le. For example, given data resulting from individual perturba-
tions, predict the effects of combinations thereof. This type of extrapolation to new combinations of
inputs is also called compositional generalization (Goyal & Bengio, 2022; Lake et al., 2017). It is
known to be challenging (Montero et al., 2022; 2021; Schott et al., 2022) and requires assumptions
that sufficiently constrain the model class (Brady et al., 2023; 2025; Dong & Ma, 2022; Lachapelle
et al., 2023; Lippl & Stachenfeld, 2024; Wiedemer et al., 2024a;b).

3 MODEL: PERTURBATIONS AS MEAN SHIFTS IN LATENT SPACE

We now specify a generative process for the observed data in (2.1). In so doing, we aim to strike
a balance between imposing sufficient structure on (2.2) to facilitate extrapolation, while remain-
ing flexible enough to model the complicated, nonlinear effects which perturbations may have on
the distribution of observations. Similar to Lotfollahi et al. (2023), we therefore model the ef-
fect of perturbations in a latent space with perturbation-relevant latent variables z ∈ RdZ , which
are related to the observations x via a nonlinear (stochastic) mixing function or generator f . The
full generative process amounts to a hierarchical latent variable model, which additionally contains
noise variables ε that capture other variation underlying the observations x, and which is represented
as a graphical model in Fig. 1b. Specifically, we posit for all e ∈ [M ]0 ∪ {test} and all i ∈ [Ne]:

zbase
e,i ∼ PZ , (3.1)

zpert
e,i := zbase

e,i +Wle, (3.2)

εe,i ∼ Qε, (3.3)

xe,i := f
(
zpert
e,i , εe,i

)
, (3.4)

where (zbase
e,i )e∈[M ]0,i∈[Ne] are independent and identically distributed (i.i.d.) according to PZ , and

(εbasee,i )e∈[M ]0,i∈[Ne] are i.i.d. according to Qε and jointly independent of (zbase
e,i )e∈[M ]0,i∈[Ne].

The basal state zbase in (3.1) describes the unperturbed state of latent variables, which can, in
principle, be affected by perturbations, and is distributed according to a base distribution PZ . The
perturbation matrix W ∈ RdZ×K in (3.2) captures the effect of the K elementary perturbations en-
coded in l on the latents and turns zbase into perturbed latents zpert. Since the same perturbation le
is applied for all i ∈ [Ne], all intra-dataset variability in zpert is due to PZ . The noise variables
ε ∈ Rdϵ in (3.3) capture all other variation in the observed data that is unaffected by perturbations.
It is distributed according to a fixed, uninformative distribution Qε such as a standard isotropic
Gaussian. The noise serves as an additional input to the (stochastic) mixing function or generator
f : RdZ × Rdϵ → RdX in (3.4), which produces observations for the perturbed latent. This gener-
ative model allows us to model any conditional distribution PX|z and is more flexible than, e.g., a
Gaussian decoder with mean and covariance parametrised by f as used by Lotfollahi et al. (2023).

For a given e and le, the generative process in (3.1)–(3.4) induces a distribution Pe over observa-
tions x, which we also denote by PX|le , defined as the push-forward of PZ and Qε through (3.2)
and (3.4), such that:

∀e ∈ [M ]0 : (xe,i)i∈[Ne]
i.i.d.∼ Pe . (3.5)
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4 THEORY: IDENTIFIABILITY AND EXTRAPOLATION GUARANTEES

In this section, we present our theoretical analysis for the model class introduced in § 3.

Identifiability. We first study identifiability, that is, the question under what assumptions and up
to what ambiguities certain parts of the postulated generative process can be provably recovered
assuming access to the full distributions. As established by the following results, our model class
is identifiable up to affine transformation, provided that the training perturbations are sufficiently
diverse, the dimension of the latent space is known and some additional technical assumptions hold.
Theorem 4.1 (Affine identifiability for Gaussian latents). For M ∈ Z≥0, let l0, ..., lM ∈ RK be
M+1 perturbation labels. Let f , f̃ : RdZ → RdX , W , W̃ ∈ RdZ×K , and P, P̃ be distributions
on RdZ such that the models (f ,W ,P) and (f̃ , W̃ , P̃) induce the same observed distributions, i.e.,

∀e ∈ [M ]0 : f (Z +Wle)
d
= f̃

(
Z̃ + W̃ le

)
, where Z ∼ P and Z̃ ∼ P̃. (4.1)

Assume further that:

(i) [invertibility] f and f̃ are C2-diffeomorphisms onto their respective images;

(ii) [Gaussianity] Z and Z̃ are non-degenerate multi-variate Gaussians, i.e., P = N (µ,Σ)

and P̃ = N
(
µ̃, Σ̃

)
for some µ, µ̃ ∈ RdZ and positive-definite Σ, Σ̃ ∈ RdZ×dZ ;

(iii) [sufficient diversity] the matrix W̃L ∈ RdZ×M , where L ∈ RK×M is the matrix with
columns (le − l0) for e ∈ [M ], has full row rank, i.e., rank(W̃L) = dZ .

Then the latent representation and the effects of the observed perturbation combinations relative
to l0 (as captured by WL) are identifiable up to affine transformation in the following sense:

∀z : f̃−1 ◦ f(z) = Az + b, (4.2)

W̃L = AWL, (4.3)

where A := Σ̃
1
2Σ− 1

2 and b := µ̃−Aµ+ (W̃ −AW )l0.

Corollary 4.2 (Affine recovery of the perturbation matrix). If, in addition to the assumptions
of Thm. 4.1, L ∈ RK×M has full row rank (i.e., rank(L) = K ≤ M ), then the perturbation
matrix W is identifiable up to affine transformation in the sense that

W̃ = AW , (4.4)

for A := Σ̃
1
2Σ− 1

2 . In this case, the expression for b in (4.2) simplifies to b = µ̃−Aµ.

The proofs of Thm. 4.1 and Cor. 4.2 are provided in Appx. B.1 and B.2.

Discussion. Thm. 4.1 can be interpreted as follows. Fix a set of perturbation labels (l0, ..., lM )

and a data generating process parametrised by (f ,W ,µ,Σ). Then, for all µ̃ and Σ̃, and for
all W̃ such that (4.3) holds for A = Σ̃

1
2Σ− 1

2 , there exists a unique f̃ , characterized by (4.2),
such that (f̃ , W̃ , µ̃, Σ̃) gives rise to the same observed distributions of Xe. At the same time, any
(f̃ , W̃ , µ̃, Σ̃) for which this holds for all e ∈ [M ]0 is of this form. In other words, the mean µ
and covariance Σ of the basal state are completely unidentifiable, but the mixing function f and the
relative shift matrix WL are identifiable up to affine transformation—provided that the observed
training perturbation conditions are sufficiently diverse, as formalised by assumption (iii).
Remark 4.3 (Sufficient diversity). The matrix product WL ∈ RdZ×M captures the relative effects
of the observed perturbations. Specifically, (WL)je corresponds to the shift in the jth latent Zj

resulting from le, relative to a reference condition l0. Moreover, assumption (iii) of Thm. 4.1 implies

min

{
rank

(
W̃

)
, rank(L)

}
≥ rank(W̃L) = dZ . (4.5)

Hence, sufficient diversity requires at least dZ elementary perturbations whose associated shift vec-
tors wk ∈ RdZ are linearly independent, and we must observe at least dZ perturbation conditions le
other than l0 such that the relative perturbation vectors (le − l0) ∈ RK are linearly independent.
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Remark 4.4 (Choice of reference). Since the environments are unordered, the choice of reference
environment is arbitrary. Here, we choose e = 0 as reference without loss of generality. Intuitively,
if a perturbation is always present (e.g., le,1 = 1 for all e), then its effects cannot be discerned from
the basal state. Therefore, only the effects of the relative perturbations (le− l0) can be recovered. In
practice, we often have access to an unperturbed, purely observational control condition with l0 = 0.
Remark 4.5 (Deterministic vs noisy mixing.). The mixing function f in Thm. 4.1 is deterministic,
i.e., does not take a separate noise variable ε as input, cf. (3.4). In principle, noise can be appended to
zpert as additional dimensions that are not influenced by perturbations. However, this increases dZ
and thus makes it harder to satisfy sufficient diversity (see Remark 4.3). Alternatively, the setting of
additive noise, f(Z) + ε, can be reduced to the noiseless case (Khemakhem et al., 2020).

From Identifiability to Extrapolation. Since we aim to make distributional predictions for new
perturbations ltest, identifiability is only of intermediary interest. The following result highlights
the usefulness of the affine identifiability established in Thm. 4.1 for extrapolation. In particular, it
shows that this allows us to uniquely predict the observable effects of certain unseen perturbations—
specifically, those which can be expressed as linear combinations of the observed perturbations.

Theorem 4.6 (Extrapolation to span of relative perturbations). Under the same setting and assump-
tions as in Thm. 4.1, let ltest ∈ RK be an unseen perturbation label such that

(ltest − l0) ∈ span
(
{le − l0}e∈[M ]

)
. (4.6)

Then the effect of ltest is uniquely identifiable in the sense that

Xtest = f(Z +Wltest)
d
= f̃

(
Z̃ + W̃ ltest

)
= X̃test. (4.7)

The proof of Thm. 4.6 is provided in Appx. B.3.
Remark 4.7 (Additive vs linear perturbations). For our affine identifiability result (Thm. 4.1), it is
not necessary that the mean shifts Wle are linear in le. If we replace Wle and W̃ le in (4.1) with
arbitrary shift vectors ce, c̃e ∈ RdZ , the same result can be shown to hold with WL and W̃L

replaced by C and C̃, defined as the matrices with columns (ce − c0) and (c̃e − c̃0), respectively.
That is, the relative shift vectors are identifiable up to affine transformation, regardless of whether
they are linear in l. This has implications, e.g., for the CPA model of Lotfollahi et al. (2023) which
includes element-wise nonlinear dose-response functions applied to l, see Appx. C.4 for details.
However, linearity is leveraged in the proof of our extrapolation result (Thm. 4.6) where it is used
in (4.6) to establish a link between ltest and the training perturbations. Since only ltest is observed
at test time, the above argument thus cannot easily be extended to the extrapolation setting, as this
would require establishing a link between ctest and the training shifts, all of which are unobserved.

5 ESTIMATION METHOD: PERTURBATION DISTRIBUTION AUTOENCODER

To leverage the extrapolation guarantees of Thm. 4.6, we seek to estimate the parts of the generative
process that are identifiable according to Thm. 4.1 from the available data in (2.1). To this end, we
build on an autoencoder framework and adapt it for multi-domain perturbation modelling and dis-
tributional regression. Our method, the perturbation distribution autoencoder (PDAE), comprises
an encoder, a perturbation matrix, and a (stochastic) decoder, trained to maximise the similarity
between pairs of true and simulated perturbation distributions, see Fig. 2 for an overview.

Encoder. The encoder ĝ : RdX → RdZ maps observations x to the space of perturbation-relevant la-
tents z. Ideally, it should invert the stochastic mixing function in (3.4) in the sense of recovering the
perturbed latent state zpert

e,i in (3.2) from observation xe,i. We therefore denote the encoder output by

ẑpert
e,i := ĝ(xe,i), (5.1)

and refer to it as estimated perturbed latent. This is a key difference to the CPA method of Lotfollahi
et al. (2023), which seeks an encoder that maps to the latent basal state, regardless of the domain e.

Perturbation Model. If the encoder recovers the perturbed latents up to affine transformation, the
additivity of perturbation effects assumed in (3.2) allows us to map between the latent distributions

5
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𝜺~ℚ𝜺

𝒍!

𝒍#

𝑿#~ℙ#
Distribution Loss

(Energy Score)

Figure 2: Overview of the Perturbation Distribution Autoencoder (PDAE). The distribution of a target
perturbation condition h (purple) is simulated by encoding, perturbing, and decoding data from a source condi-
tion e (blue). Dashed arrows indicate model inputs and green boxes model components with learnable parame-
ters, trained to maximise the similarity (orange) between the empirical true and simulated target distributions for
all pairs of training domains (e, h). At test time, the target perturbation label lh is replaced with an unseen ltest.

underlying different perturbation conditions. Specifically, we use a perturbation model parametrised
by a perturbation matrix Ŵ ∈ RdZ×K to create synthetic perturbed latents from domain h as:

ẑpert
e→h,i := ẑpert

e,i + Ŵ (lh − le). (5.2)

which can be interpreted as undoing the effects of perturbation le (i.e., mapping back to the latent
basal state) and then simulating perturbation lh. (For h = e, this has no effect and zpert

e→h,i = zpert
e,i .)

Decoder. The decoder f̂ : RdZ × Rdϵ → RdX maps estimated latents ẑ and noise ε ∼ Qε back
to observations. When viewed as a function of ẑ only, it is stochastic and induces the distribution
f̂(ẑ, · )#Qε from which we can sample synthetic observations,

X̂e→h,i = f̂
(
ẑpert
e→h,i, ε

)
where ε ∼ Qε . (5.3)

Simulating Perturbation Distributions. Given a distribution Pe and the corresponding perturba-
tion label le, our model facilitates sampling synthetic observations for another perturbation condition
with label lh. We denote the resulting distribution by P̂e→h, formally defined as the distribution of

f̂
(
ĝ (Xe) + Ŵ (lh − le) , ε

)
where Xe ∼ Pe and ε ∼ Qε. (5.4)

Learning Objective. To learn
(
ĝ, f̂ , Ŵ

)
, we propose to minimise the pairwise distribution loss

L
(
ĝ, f̂ , Ŵ ;

{
(Pe, le)

}
e∈[M ]0

)
=

∑
e,h∈[M ]0

d
(
P̂e→h,Ph

)
(5.5)

where P̂e→h depends on (Pe, le, lh) and the model parameters via (5.4); and d is a measure of
dissimilarity between distributions. Here, we use the negative expected energy score for d, i.e.,

d
(
P̂e→h,Ph

)
= −EXh∼Ph

[
ESβ

(
P̂e→h,Xh

)]
, (5.6)

where ESβ denotes the energy-score (Gneiting & Raftery, 2007), defined for β ∈ (0, 2) as

ESβ(P,x) =
1

2
E
X,X′ i.i.d.∼ P

∥∥X −X ′∥∥β − EX∼P ∥X − x∥β . (5.7)

It is a strictly proper scoring rule, meaning that the expected energy score EX [ESβ(P,X)] is
maximised if and only if X ∼ P, see Appx. C.1 for details on probabilistic forecasting and scoring
rules. Combined with its computational simplicity, this property makes the negative expected
energy score a popular loss function for distributional regression (Shen & Meinshausen, 2024a;b).

Corollary 5.1. The objective in (5.5) is minimised if and only if Ph = P̂e→h for all e, h ∈ [M ]0.

6
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Training. Since we only have access to empirical distributions, we approximate the expectations
in (5.6) and (5.7) with Monte Carlo samples based on the available data (2.1). Moreover, for a
fixed encoder, the optimal perturbation matrix is available in closed form and given by the ordinary
least squares solution to regressing the domain-specific means of ẑpert

e,i on the corresponding

perturbation labels le. We, therefore, write Ŵ as a function of ĝ and optimise (5.5) with respect to
the parameters of ĝ and f̂ using stochastic gradient descent (Kingma & Ba, 2015).

Prediction. To simulate the distribution for a new perturbation label ltest, we use our model to com-
pute the synthetic perturbed test latents ẑpert

e→test,i for all e ∈ [M ]0 and all i ∈ [Ne] via (5.2), and then

sample the corresponding synthetic test observations X̂e→test,i according to (5.3). In other words,
our estimate of Ptest is the pooled version of the domain-specific empirical synthetic distributions,

P̂test =
1

M + 1

∑
e∈[M ]0

P̂e→test (5.8)

6 EXPERIMENTS

We present preliminary empirical evidence that our approach can outperform existing methods at
distributional perturbation extrapolation. As we focus on a simple, controlled setting with synthetic
data, our results should be viewed as proof of concept, rather than as comprehensive empirical study.

Data. For ease of visualisation, we consider dZ = dX = 2-dimensional latents and observations.
The base distribution PZ is a zero-mean, isotropic Gaussian with standard deviation σ=0.25. We
consider K =3 elementary perturbations with associated shift vectors w1 =(1, 0)⊤, w2 =(0, 1)⊤,
and w3=(1, 1)⊤. We create M+1= 4 training domains with labels l0=(0, 0, 0)⊤, l1=(1, 0, 0)⊤,
l2 = (0, 1, 0)⊤, and l3 = (0, 0, 1)⊤, and test on lID

test = (1, 1, 0)⊤ and lOOD
test = (1, 0, 1)⊤. By

construction, lID
test results in the same mean shift of (1, 1)⊤ as l3, whereas lOOD

test results in a different
shift not seen during training. We, therefore, refer to the respective test cases as in-distribution
(ID) and out-of-distribution (OOD) relative to the decoder inputs seen during training. To generate
observations, we use the complex exponential x = f(z) = ez1(cos z2, sin z2) as a deterministic
nonlinear mixing function, which was also used to generate Fig. 1a (where both test cases are
partially OOD). The resulting datasets are in shown in Fig. 3 (left) in Appx. A.

Methods. We compare our approach with CPA (Lotfollahi et al., 2023) and the following baselines:
Pooled Mean: pool all training observations, then output the mean;

Pseudobulked Mean: pool only data arising from individual perturbations involved in the combi-
nation to be predicted (e.g., l1 and l2 for lID

test), then output the mean;
Linear Regression: linearly regress the environment-specific means of observations µe

x on le
and use the resulting model to predict the test means µtest

x from ltest.
The former two were used by Lotfollahi et al. (2023); we propose the latter as an additional baseline.

Metrics. To assess distributional fit, we use the energy distance (ED; Székely & Rizzo, 2013), i.e.,
twice the normalized negative expected energy score, and the maximum mean discrepancy (MMD;
Gretton et al., 2012) with Gaussian kernel and bandwidth chosen by the median heuristic,
see Appx. C.2 for more on measures of distributional similarity. Since some methods only predict the
mean, we also report the L2 norm of the difference between predicted and true mean, ∥µx − µ̂x∥.

Experimental Details. We generate Ne = 214 observations for each domain. Both CPA and PDAE
use 4-hidden layer MLPs with 64 hidden units as encoders and decoders and are trained for 2000
epochs using a batch size of 212. For CPA, all other hyperparameters are set to their default values.
For PDAE, we set β = 1 in (5.7) and use a learning rate of 0.005.

Results. The quantitative results are summarized in Tab. 1, see also Fig. 3 in Appx. A for qual-
itative results. For the ID test setting, PDAE performs best, achieving near-perfect distributional
fit. CPA outperforms linear regression but does substantially worse than PDAE at both mean and
distributional prediction. For the OOD test setting, all methods perform much worse, with PDAE
yielding the least bad performance. This failure for the OOD case is expected. Despite learning a
good representation and perturbation model (as evident from the strong ID test performance), the
decoder did not encounter inputs similar to the perturbed test latents during training and has thus not
learnt which part of the observation space to map them to.
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Table 1: Results on Simulated Data. For all metrics, lower is better. Best results highlighted in bold.
Brackets indicate distributional similarities calculated using only the mean, i.e., a sample size of one.

Method In-Distribution Test Out-of-Distribution Test
ED MMD ∥µx − µ̂x∥2 ED MMD ∥µx − µ̂x∥2

Pooled Mean (1.23) (4.85) 0.82 (2.80) (5.98) 1.74
Pseudobulked Mean (1.49) (5.43) 0.96 (2.45) (5.56) 1.57
Linear Regression (0.81) (3.42) 0.60 (1.22) (3.35) 0.88

CPA (Lotfollahi et al., 2023) 0.17 0.57 0.36 3.09 5.02 2.15
PDAE (Ours) 0.001 0.005 0.03 0.45 1.33 0.61

7 DISCUSSION

Single-Cell vs Population-Level Effects. Since cells are typically destroyed during measurement,
each unit is only observed for one perturbation condition. As a result, we do not have access to paired
data, which would be required to establish ground-truth single-cell level effects. Instead, we can only
observe the effects of perturbations at the population level. We, therefore, formulate the perturbation
extrapolation task, our theoretical guarantees, and our learning objective in distributional terms.
This contrasts with some prior works, which, despite a lack of ground truth training data, pursue
the seemingly infeasible task of making counterfactual predictions at the single-cell level. While
our model can, in principle, also make such predictions, we stress that they are not falsifiable from
empirical data and that our guarantees do not extend to the single-cell resolution. For this reason, we
consider distributional perturbation extrapolation a more meaningful and feasible task formulation.

Relation to Causal Models. In the field of causal inference, experimental data resulting from
perturbations is modelled via interventions in an underlying causal model. For example, in the struc-
tural causal model (SCM; Pearl, 2009) framework, interventions modify a set of assignments, which
determine each variable from its direct causes and unexplained noise. In general, our model for
the effect of perturbations in latent space (§ 3) differs from how interventions are treated in SCMs.
However, as detailed in Appx. D, if we restrict our attention to linear SCMs, then the class of shift
interventions can be viewed as a special case of our model with K = dZ elementary perturbations
and a particular choice of perturbation matrix W . In this sense, our approach may be interpreted as
causal representation learning (Schölkopf et al., 2021) with a linear latent causal model (Buchholz
et al., 2024; Squires et al., 2023) and generalized shift interventions (Zhang et al., 2024).

Is Gaussianity Necessary? In Thm. 4.1, Gaussianity of PZ is assumed to prove identifiability.
While this is a sufficient condition, it may not be necessary and can possibly be relaxed. Indeed,
our method does not explicitly enforce any particular latent distribution. Moreover, preliminary
empirical evidence suggests that training on simulated data generated from a Laplacian or Uniform
basal state distribution also yields identifiable latent spaces and perturbation effects.

Open Problems. We consider the requirement for the decoder to generalize to new inputs the biggest
open problem for distributional perturbation extrapolation. While this issue is absent from our the-
ory, where PZ is Gaussian and thus has full support, it can pose major challenges in practice when
learning from finite data. As discussed at the end of § 6, the issue of decoder extrapolation is orthog-
onal to learning the correct representation and perturbation model and thus appears fundamental.
Besides addressing decoder extrapolation, future work should evaluate the proposed approach on
more complex, noisy real-world data, extend our theoretical results to partially identifiable settings,
and pursue extensions that incorporate covariates and nonlinear dose-response functions.

MEANINGFULNESS STATEMENT

We consider a “meaningful representation of life” an embedding of biological data that facilitates
drawing non-trivial inferences, such as predicting the effects of new (combinations of) interventions
or generalizing to new cell types or species. In the present work, we focus on a class of represen-
tations which we show to be provably meaningful in this sense and propose a principled estimation
method to learn such representations from multi-domain perturbation data.
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Appendix

A ADDITIONAL RESULTS
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Figure 3: Comparison of PDAE and CPA on Synthetic Data. Shown are the results of our experiment
described in § 6. Rows correspond to latent space (top) and observation space (bottom). Columns show the
ground truth data (left), PDAE predictions (center), and CPA predictions (right). Training domains are shown
in grey, the in-distribution (ID) test domain (which overlaps with one of the training domains) in blue, and the
out-of-distribution (OOD) test domain in orange. All plots show kernel density estimates of the distributions.
As can be seen, PDAE recovers an affine transformation of the true latents (top, center) leading to accurate
distributional predictions for the training and ID test domain (bottom, center). However, the OOD test domain is
mapped to a part of the latent space not seen during training (top, center). As a result, the corresponding decoder
output does not accurately match the true OOD distribution (bottom left vs center). CPA appears to learn a latent
space, in which all perturbed latent distributions are co-linear (top right), and the predicted distributions do not
match the ground truth particularly well, particularly for the test conditions (bottom left vs right). However,
recall that—unlike PDAE—CPA is not trained for distributional reconstruction, see Appx. C.4 for details.
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B PROOFS

B.1 PROOF OF THM. 4.1

Theorem 4.1 (Affine identifiability for Gaussian latents). For M ∈ Z≥0, let l0, ..., lM ∈ RK be
M+1 perturbation labels. Let f , f̃ : RdZ → RdX , W , W̃ ∈ RdZ×K , and P, P̃ be distributions
on RdZ such that the models (f ,W ,P) and (f̃ , W̃ , P̃) induce the same observed distributions, i.e.,

∀e ∈ [M ]0 : f (Z +Wle)
d
= f̃

(
Z̃ + W̃ le

)
, where Z ∼ P and Z̃ ∼ P̃. (4.1)

Assume further that:

(i) [invertibility] f and f̃ are C2-diffeomorphisms onto their respective images;

(ii) [Gaussianity] Z and Z̃ are non-degenerate multi-variate Gaussians, i.e., P = N (µ,Σ)

and P̃ = N
(
µ̃, Σ̃

)
for some µ, µ̃ ∈ RdZ and positive-definite Σ, Σ̃ ∈ RdZ×dZ ;

(iii) [sufficient diversity] the matrix W̃L ∈ RdZ×M , where L ∈ RK×M is the matrix with
columns (le − l0) for e ∈ [M ], has full row rank, i.e., rank(W̃L) = dZ .

Then the latent representation and the effects of the observed perturbation combinations relative
to l0 (as captured by WL) are identifiable up to affine transformation in the following sense:

∀z : f̃−1 ◦ f(z) = Az + b, (4.2)

W̃L = AWL, (4.3)

where A := Σ̃
1
2Σ− 1

2 and b := µ̃−Aµ+ (W̃ −AW )l0.

Proof. Let pe and p̃e denote the densities of

Ze := Z +Wle (B.1)

and
Z̃e := Z̃ + W̃ le, (B.2)

respectively. Due to (4.1), f and f̃ have the same image. Thus, by the invertibility assumption (i),
the function h := f̃−1 ◦ f : RdZ → RdZ is a well-defined C2-diffeomorphism. The change of
variable formula applied to

Z̃e
d
= h(Ze) (B.3)

then yields for all e and all z:

pe(z) = p̃e
(
h(z)

) ∣∣detJh(z)
∣∣ , (B.4)

where Jh(z) denotes the Jacobian of h. By taking logarithms of (B.4) and contrasting domain e
with a reference domain with e = 0, the determinant terms cancel and we obtain for all e and all z:

log pe(z)− log p0(z) = log p̃e
(
h(z)

)
− log p̃0

(
h(z)

)
. (B.5)

Next, denote the densities of Z and Z̃ by p and p̃, respectively. From (B.1) and (B.2) it then follows
that, for all e and all z, pe and p̃e can respectively be expressed in terms of p and p̃ as follows:

pe(z) = p (z −Wle) , (B.6)

p̃e(z) = p̃
(
z − W̃ le

)
. (B.7)

By substituting these expressions in (B.5), we obtain for all e and all z:

log p(z −Wle)− log p(z −Wl0) = log p̃
(
h(z)− W̃ le

)
− log p̃

(
h(z)− W̃ l0

)
. (B.8)
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By the Gaussianity assumption (ii), the contrast of log-densities in (B.8) takes the following form
for all e and all z:

(le − l0)
⊤W⊤Σ−1(z − µ) −1

2
(le − l0)

⊤W⊤Σ−1W (le + l0) (B.9)

=(le − l0)
⊤W̃⊤Σ̃−1

(
h(z)− µ̃

)
−1

2
(le − l0)

⊤W̃⊤Σ̃−1W̃ (le + l0) (B.10)

We aim to show that the two representations are related by an affine transformation, i.e., that all
second-order derivatives of h are zero everywhere. Taking gradients w.r.t. z yields for all e and
all z:

(le − l0)
⊤W⊤Σ−1 = (le − l0)

⊤W̃⊤Σ̃−1Jh(z). (B.11)

Let L ∈ RK×M be the matrix with columns le − l0 for e ∈ [M ]. Then, for all z:

L⊤W⊤Σ−1 = L⊤W̃⊤Σ̃−1Jh(z). (B.12)

Differentiating once more w.r.t. z yields for all z:

0 = L⊤W̃⊤Σ̃−1Hh(z), (B.13)

where the 3-tensor Hh(z) ∈ RdZ×dZ×dZ denotes the Hessian of h, i.e., for all i, j ∈ [dZ ] and all z

0 = L⊤W̃⊤Σ̃−1 ∂2

∂zi∂zj
h(z). (B.14)

By assumption (iii), the matrix L⊤W̃⊤ has full column rank and thus a left inverse, i.e., there exists
V ∈ RdZ×M such that V L⊤W̃⊤ = IdZ

. Multiplying (B.14) on the left by Σ̃V then yields for all
i, j ∈ [dZ ] and all z:

∂2

∂zi∂zj
h(z) = 0. (B.15)

This implies that h must be affine, i.e., there exist A ∈ RdZ×dZ and b ∈ RdZ such that for all z:

h(z) = Az + b. (B.16)

Further, since h is invertible, A must be invertible.

Recall that Z̃e
d
= h(Ze) = AZe + b. It follows from (B.1), (B.2) and assumption (ii) that for all e:

N
(
µ̃+ W̃ le, Σ̃

)
= N

(
A(µ+Wle) + b,AΣA⊤

)
. (B.17)

By equating the covariances, we find

AΣA⊤ = Σ̃ =⇒ A = Σ̃
1
2Σ− 1

2 , (B.18)

where the matrix square roots exist and are unique since Σ and Σ̃ are symmetric and positive defi-
nite. By equating the means, we obtain for all e:

µ̃+ W̃ le = A(µ+Wle) + b ⇐⇒ (W̃ −AW )le = Aµ+ b− µ̃. (B.19)

By contrasting (B.19) for all e ∈ [M ] with e = 0 as before, we obtain

(W̃ −AW )L = 0 ⇐⇒ W̃L = AWL. (B.20)

Finally, by choosing e = 0 in (B.19) we obtain the desired expression for b,

b = µ̃−Aµ+ (W̃ −AW )l0. (B.21)

This completes the proof.
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B.2 PROOF OF COR. 4.2

Corollary 4.2 (Affine recovery of the perturbation matrix). If, in addition to the assumptions
of Thm. 4.1, L ∈ RK×M has full row rank (i.e., rank(L) = K ≤ M ), then the perturbation
matrix W is identifiable up to affine transformation in the sense that

W̃ = AW , (4.4)

for A := Σ̃
1
2Σ− 1

2 . In this case, the expression for b in (4.2) simplifies to b = µ̃−Aµ.

Proof. If rank(L) = K, then L has a right inverse, i.e., there exists K ∈ RM×K such that LK =
IK . Right multiplication of (B.20) by K then yields

W̃ = AW (B.22)

Finally, substitution of (B.22) into (B.21) yields

b = µ̃−Aµ. (B.23)

B.3 PROOF OF THM. 4.6

Theorem 4.6 (Extrapolation to span of relative perturbations). Under the same setting and assump-
tions as in Thm. 4.1, let ltest ∈ RK be an unseen perturbation label such that

(ltest − l0) ∈ span
(
{le − l0}e∈[M ]

)
. (4.6)

Then the effect of ltest is uniquely identifiable in the sense that

Xtest = f(Z +Wltest)
d
= f̃

(
Z̃ + W̃ ltest

)
= X̃test. (4.7)

Proof. With h = f̃−1 ◦ f , the condition in (4.7) is equivalent to

h(Z +Wltest)
d
= Z̃ + W̃ ltest. (B.24)

By Thm. 4.1, we have h(z) = Az + b for

A = Σ̃
1
2Σ− 1

2 , (B.25)

b = µ̃−Aµ+ (W̃ −AW )l0. (B.26)

Together with Z ∼ N (µ,Σ), this lets us compute the distribution of the LHS of (B.24) as:

h(Z +Wltest) = A(Z +Wltest) + b ∼ N
(
Aµ+AWltest + b,AΣA⊤

)
. (B.27)

Similarly, since Z̃ ∼ N
(
µ̃, Σ̃

)
, the distribution of the RHS of (B.24) is given by

Z̃ + W̃ ltest ∼ N
(
µ̃+ W̃ ltest, Σ̃

)
. (B.28)

From (B.25), it follows directly that
AΣA⊤ = Σ̃. (B.29)

To complete the proof, it thus remains to show that the means of (B.27) and (B.28) are equal, i.e.,

Aµ+AWltest + b = µ̃+ W̃ ltest. (B.30)

Starting from the LHS of (B.30), by substituting the expression for b from (B.26) we obtain:

Aµ+AWltest + b = Aµ+AWltest + µ̃−Aµ+ (W̃ −AW )l0 (B.31)

= µ̃+AW (ltest − l0) + W̃ l0 (B.32)

15
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Next, by (4.6), i.e., the assumption that (ltest − l0) lies in the span of {le − l0}e∈[M ], there exists
α ∈ RM such that

ltest − l0 =
∑

e∈[M ]

αe(le − l0) = Lα (B.33)

where, as before, L ∈ RK×M is the matrix with columns (le − l0). Substituting (B.33) into (B.32)
yields

Aµ+AWltest + b = µ̃+AWLα+ W̃ l0. (B.34)

Finally, it follows from Thm. 4.1 that

AWL = W̃L. (B.35)

which upon substituion into (B.34) yields the desired equality from (B.30)

Aµ+AWltest + b = µ̃+ W̃Lα+ W̃ l0 (B.36)

= µ̃+ W̃ (Lα+ l0) (B.37)

= µ̃+ W̃ ltest. (B.38)

This completes the proof.

C ADDITIONAL BACKGROUND MATERIAL AND RELATED WORK

Since the problem of interest (§ 2) involves making distributional predictions for new perturbation
conditions, we review some basics of probabilistic forecasting (Appx. C.1) and measuring the simi-
larity between two distributions (Appx. C.2), in our case typically between an empirical distribution
and its predicted counterpart. We then turn to representation learning with encoder-decoder archi-
tectures (Appx. C.3), in particular a recent approach that also targets distributional reconstruction.
Finally, we cover some prior efforts on perturbation modelling and extrapolation (Appx. C.4), which
we draw inspiration from.

C.1 PROBABILISTIC FORECASTING AND SCORING RULES

Let Ω be a sample space, A a σ-algebra of subsets of Ω, and P a convex class of probability
measures on (Ω,A). A probabilistic prediction or probabilistic forecast is a mapping into P , which
outputs predictive distributions P over over outcomes x ∈ Ω. Probabilistic forecasting can thus be
viewed as a distributional generalization point prediction (i.e., deterministic forecasting), which
maps directly into Ω.

To evaluate, compare, or rank different forecasts, it is useful to assign them a numerical score re-
flecting their quality. A scoring rule is a function S : P × Ω → R that assigns a score S(P, x) to
forecast P if event x materializes, with higher scores corresponding to better forecasts—akin to (neg-
ative) loss or cost functions for point predictions. If x is distributed according to Q, we denote the ex-
pected score by S(P,Q) = Ex∼Q[S(P, x)]. The scoring rule is called proper if S(Q,Q) ≥ S(P,Q)
for all P, and strictly proper if equality holds if and only if P = Q.

CRPS. For continuous scalar random variables (i.e., Ω = R), a popular scoring rule is the contin-
uous ranked probability score (CRPS; Matheson & Winkler, 1976). When P is the space of Borel
probability measures on R with finite first moment, it is strictly proper and given by:1

CRPS(P, x) =
1

2
E
X,X′ i.i.d.∼ P

∣∣X −X ′∣∣− EX∼P |X − x| . (C.1)

If P is a point mass, the negative CRPS reduces to the absolute error loss function; it can thus be
viewed as a generalization thereof to probabilistic forecasts.

1The original definition by Matheson & Winkler (1976) is CRPS(F, x) = −
∫∞
−∞(F (y)− 1{y ≥ x})2dy

where F is the CDF of P, but the simpler form in (C.1) has been shown to be equivalent (Baringhaus & Franz,
2004, Lemma 2.2).
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Energy Score. Gneiting & Raftery (2007) propose the energy score as a multi-variate generaliza-
tion of the CRPS for vector-valued x ∈ Ω = RdX . For β ∈ (0, 2), it is defined by

ESβ(P,x) =
1

2
E
X,X′ i.i.d.∼ P

∥∥X −X ′∥∥β
2
− EX∼P ∥X − x∥β2 , (C.2)

where ∥ · ∥2 denotes the Euclidean (L2) norm. ESβ is strictly proper w.r.t. Pβ , the set of Borel
probability measures P for which EX∼P ∥X∥β2 is finite (Gneiting & Raftery, 2007).

C.2 ASSESSING DISTRIBUTIONAL SIMILARITY

Energy Distance. The expected energy score ESβ(P,Q) = EY ∼Q[ESβ(P,Y )] consitutes a mea-
sure of similarity between P and Q and is closely linked to the energy distance (Székely & Rizzo,
2013):

EDβ(P,Q) = 2EX∼P,Y ∼Q ∥X − Y ∥β2 − E
X,X′iid∼P

∥∥X −X ′∥∥β
2
− E

Y ,Y ′iid∼Q

∥∥Y − Y ′∥∥β
2

(C.3)

= 2
(
ESβ(Q,Q)− ESβ(P,Q)

)
≥ 0 (C.4)

with equality if and only if P = Q, since ESβ is a strictly proper scoring rule.

Maximum Mean Discrepancy (MMD). Another well-known distance between probability mea-
sures that is rooted in kernel methods (Schölkopf & Smola, 2002) is the maximum mean discrep-
ancy (MMD; Gretton et al., 2012), which for a positive definite kernel k : Ω × Ω → R is given
by

MMD2
k(P,Q) = E

X,X′iid∼P
[k(X,X ′)]− 2EX∼P,Y∼Q[k(X,Y )] + E

Y,Y ′iid∼Q
[k(Y, Y ′)] . (C.5)

Energy Distance as a Special Case of MMD. As shown by Sejdinovic et al. (2013), if k in (C.5)
is chosen to be the positive-definite distance kernel2

kβ(X,Y ) =
1

2

(
∥X∥β2 + ∥Y ∥β2 − ∥X − Y ∥β2

)
(C.6)

then the energy distance is recovered as a special case of MMD,

EDβ(P,Q) = 2MMD2
kβ
(P,Q) . (C.7)

C.3 REPRESENTATION LEARNING

Many modern data sources of interest contain high-dimensional and unstructured observations x,
such as audio, video, images, or text. Representation learning aims to transform such data into
a more compact, lower-dimensional set of features z (the representation) which preserves most
of the relevant information while making it more easily accessible, e.g., for use in downstream
tasks (Bengio et al., 2013).3 For example, a representation of images of multi-object scenes could
be a list of the contained objects, along with their size, position, colour, etc. A key assumption
underlying this endeavour is the so-called manifold hypothesis which posits that high-dimensional
natural data tends to lie near a low-dimensional manifold embedded in the high-dimensional ambient
space; this idea is also at the heart of several (nonlinear) dimension reduction techniques (Belkin &
Niyogi, 2001; Cayton, 2005; Saul & Roweis, 2003; Tenenbaum et al., 2000).

Autoencoder (AE). An autoencoder (AE; Hinton & Salakhutdinov, 2006; Rumelhart et al., 1986)
is a pair of functions (g,f), consisting of an encoder g : RdX → RdZ mapping observations X ∼ P
to their representation Z := g(X), and a decoder f : RdZ → RdX mapping representations Z to

2induced by the negative-definite semi-metric ρ(X,Y ) = ∥X − Y ∥β2 on Ω = RdX (centered at the
origin),

3Representation learning is thus closely related to the classical task of dimension reduction. The former
usually refers to nonlinear settings, involves some form of machine learning, and tends to be more focused on
usefulness in terms of downstream tasks, rather than, say, explained variance.
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their reconstructions in observation space, X̂ := f(Z) = f(g(X)). Typically, dZ < dX , such
that there is a bottleneck and perfect reconstruction is not feasible. Autoencoders are usually trained
with a (point-wise, mean) reconstruction objective, i.e., the aim is to minimise the mean squared
error

LAE(g,f ;P) := EX∼P

∥∥∥X − X̂
∥∥∥2
2
= EX∼P

∥∥X − f(g(X))
∥∥2
2
, (C.8)

w.r.t. both g and f . As a result, the optimal decoder f∗
AE for any fixed encoder choice g is given by

the conditional mean
f∗

AE(z; g,P) = EX∼P[X|g(X) = z] . (C.9)

Distributional Principal Autoencoder (DPA). Since the objective of a standard AE is mean re-
construction, the distribution of reconstructions X̂ is typically not the same as the distribution of X
(unless the encoder is invertible, i.e, the compression is lossless and perfect reconstruction is feasi-
ble, which is usually not the case in practice). To address this, Shen & Meinshausen (2024a) pro-
posed the distributional principal autoencoder (DPA) which targets distributional (rather than mean)
reconstruction. A DPA also consists of an encoder-decoder pair (g,f). However, unlike in a stan-
dard AE, the DPA decoder f : RdZ × Rdϵ → RdX is stochastic and receives an additional noise
term ε as input, which is sampled from a fixed distribution Qε such as a standard isotropic Gaussian.
The DPA loss function is constructed such that for a fixed encoder g, the optimal DPA decoder f∗

DPA

maps a given latent embedding z, to the distribution of X , given g(X) = z, i.e.,

f∗
DPA(z, ε; g)

d
=

(
X|g(X) = z

)
, (C.10)

where d
= denotes equality in distribution. This means that the decoder evaluated at z should match

the distribution of all realizations of X that are mapped by the encoder to z. At the same time,
the DPA encoder aims to minimise the variability in the distributions in (C.10) by encoding the first
dZ “principal” components. As shown by Shen & Meinshausen (2024a), both of these goals are
achieved by the following DPA objective,

LDPA(g,f ;P) = EX∼P,ε∼Qε

∥∥X − f(g(X), ε)
∥∥β
2
− 1

2
E
X∼P,ε,ε′iid∼Qε

∥∥f(g(X), ε)− f(g(X), ε′)
∥∥β
2

= −EX∼P

[
ESβ

(
f
(
g(X), ·

)
#
Qε,X

)]
,

(C.11)
where f (z, · )# Qε denotes the pushforward distribution of Qε through the function f(z, · ), i.e.,
the distribution of f(z, ε) for a fixed z when ε ∼ Qε. In other words, a DPA minimizes the negative
expected energy score between X and the corresponding (stochastic) decoder output, conditional on
the encoding of X . Due to this conditioning, the DPA objective differs from an energy distance by
a “normalization constant” which depends on the encoder and encourages capturing principal (i.e.,
variation-minimizing) components, rather than random latent dimensions.

C.4 PERTURBATION MODELLING

Compositional Perturbation Autoencoder (CPA). Lotfollahi et al. (2023) propose the compo-
sitional perturbation autoencoder (CPA) as a model for compositional extrapolation of perturbation
data. Specifically, they assume the following model:

zpert = zbase +W pert

 h1(l1)
. . .

hK(lK)

+

J∑
j=1

W cov
j cj , (C.12)

where zbase ∼ PZ denotes an unperturbed basal state; the matrix W pert ∈ RdZ×K encodes the
additive effect of each elementary perturbation; {hk : R → R}k∈[K] are unknown, possibly non-
linear dose-response curves; {cj ∈ RKj}j∈[J] are observed one-hot vectors capturing J additional
discrete covariates, such as cell-types or species; and the matrices {W cov

j ∈ RdZ×Kj}j∈[J] encode
additive covariate-specific effects. Further, the basal state zbase is assumed to be independent of
the perturbation labels l and covariates C = (c1, . . . , cJ). Observations x are then drawn from a
Gaussian whose mean and variance are determined by the perturbed latent state zpert,

x ∼ N
(
µ
(
zpert

)
, σ2

(
zpert

)
I
)
. (C.13)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review for LMRL Workshop at ICLR 2025

To fit this model, Lotfollahi et al. (2023) employ an adversarial autoencoder (Lample et al., 2017).
First, an encoder g estimates the basal state

ẑbase = g(x) . (C.14)

The estimated perturbed latent state ẑpert is then computed according to (C.12) using (C.14) and
learnt estimates Ŵ pert, {ĥk}, and {Ŵ cov

l }. Finally, a (deterministic) decoder f uses ẑpert to com-
pute estimates of the mean and variance in (C.13), i.e., (µ̂, σ̂2) = f(ẑpert). All learnable compo-
nents of the model are trained by minimizing the (Gaussian) negative log-likelihood of the observed
data D = {(xi, li,Ci)}i∈[N ]. To encourage the postulated independence of ẑbase and (l,C), an
additional adversarial loss is used, which minimizes the predictability of the latter from the former.

D RELATION TO CAUSAL MODELS

In the field of causal inference, experimental data resulting from perturbations is typically modelled
via interventions in an underlying causal model. In the structural causal model (SCM) framework
of Pearl (2009), interventions modify a set of assignments, which determine each variable as a
function of its direct causes and unexplained noise.
Definition D.1 (Acyclic SCM). An acyclic structural causal model (SCM) M = (S,PU ) with
endogenous variables V = {V1, ..., Vn} and exogenous variables U = {U1, ..., Um} consists of:

(i) a set of structural equations

S =

{
Vi := fi

(
Vpa(i),Ui

)}n

i=1

, (D.1)

where fi are deterministic functions; Ui ⊆ U ; and Vpa(i) ⊆ V \ {Vi} is the set of causal
parents of Vi, such that the induced causal graph with vertices [n] and edges j → i iff.
j ∈ pa(i) is acyclic;

(ii) a joint distribution PU over the exogenous variables.

The induced distribution PV of M is given by the push-forward of PU via S. An intervention
replaces S by a new set of assignments S ′ such the graph induced by S ′ is acyclic. The interventional
distribution is the induced distribution M′ = (S ′,PU ).4

Our assumed generative process for the effect of perturbations (§ 3) is, in general, different from
interventions in an SCM. However, as we show next, certain types of SCMs and interventions are
recovered as a special case of our model.

D.1 SHIFT INTERVENTIONS IN LINEAR SCMS AS A SPECIAL CASE

Consider a linear SCM with dZ endogenous variables Z and dZ exogenous variables U of the form

Z := AZ +U , (D.2)

where A is a (lower-triangular) weighted adjacency matrix. The observational (i.e., non-intervened)
distribution of Z induced by (D.2) is most easily understood via the reduced form expression

Z = (I −A)−1U (D.3)

and thus given by PZ = (I −A)−1
# PU . Now consider the class of shift interventions parametrised

by constant shift vectors ce ∈ RdZ , which modify the original SCM in (D.2) to

Ze := AZe +U + ce. (D.4)

Analogous to (D.3), the reduced form of (D.4) is given by

Ze = (I −A)−1U +(I −A)−1ce

= Z +(I −A)−1ce,
(D.5)

4Interventions can also introduce new sources of randomness U ′, which, for sake of simplicity, we do not
consider here.
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where the second equality follows from (D.3).

Thus, if we take the shift vectors as perturbation labels (i.e., K = dZ and le = ce) and use a linear
perturbation model of the form

Zpert
e = ϕ(Zbase

e , le) = Zbase
e +Wle (D.6)

with W = (I − A)−1, then our perturbation model captures shift interventions in a linear SCM
with adjacency matrix A.
Remark D.2. The above argument does not require causal sufficiency: it still holds if PU is not
factorized (e.g., due to hidden confounding).
Remark D.3. When trained on data generated according to (D.4), the adjacency matrix associated
with the learnt perturbation matrix Ŵ is given by Â = I − Ŵ−1.
Remark D.4. The correspondence between mean shift perturbations and shift interventions appears
to only hold for linear SCMs. Consider, for example, a nonlinear additive noise model,

Z := f(Z) +U , (D.7)

with reduced form given by
Z = g(U), (D.8)

where g is the inverse of the mapping z 7→ z − f(z). For shift interventions in (D.7) to match our
perturbation model, we then must have

Ze = g(U + ce) = g
(
g−1(Z) + ce

)
= ϕ (Z, le) (D.9)

for suitable ϕ and le. Thus, if f is nonlinear, so is g and therefore ϕ. In other words, shift interven-
tions in a nonlinear SCM do not, in general, amount to mean shift perturbations (i.e., linear ϕ).
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