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ABSTRACT

Imitation learning has been widely used in robotic learning, where policies are de-
rived from expert demonstrations. Recent advances leverage generative models,
such as diffusion and flow-based methods, to better capture multi-modal action
distributions and temporal dependencies. However, these approaches typically
impose conditioning during the forward and reverse process, which inevitably
introduces manifold deviation and estimation error. In this work, we propose
BridgePolicy, a condition-free generative visuomotor policy that explicitly incor-
porates observations into the forward process through a diffusion bridge formu-
lation grounded in stochastic optimal control. By sampling actions from obser-
vation distributions instead of random noise, BridgePolicy reduces stochasticity
and achieves more controllable policy behaviors. However, directly bridging ob-
servations to actions poses new challenges, as the action distribution may exhibit
mismatched data shape, and the robot observations are inherently multi-modal. In
contrast, the diffusion bridge can only connect one-to-one distributions with the
same shape. To address the challenges of aligning distributional endpoints and
handling multi-modal robot observations, we design a semantic aligner for distri-
bution shape alignment, and a modality fusion module for unifying robot states
and visual inputs. Experiments across 52 tasks on 3 benchmarks and 4 real-world
tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art gen-
erative policies.

1 INTRODUCTION

Imitation learning (IL) (Osa et al., 2018) is a widely adopted learning paradigm in robotic learn-
ing (Li et al., 2024; Shafiullah et al., 2023; Bin Peng et al., 2020), where a robot is provided with a
set of expert demonstrations and learns to mimic the provided demonstrations to perform the tasks
effectively. Recently, generative models such as diffusion model (Ho et al., 2020; Song et al., 2020)
and flow matching (Lipman et al., 2024) gains its prominance in IL owing to their capacity to fit
multi-modal distributions and learn sequential correlation (Chi et al., 2023; Ze et al., 2023; Zhang
et al., 2025). These methods share a similar principle: they perturb action trajectories into random
noise via a forward process defined by a stochastic or ordinary differential equation (SDE or ODE),
and then train a neural network conditioned on observations to reverse this process, iteratively trans-
forming noise into executable actions.

Within this learning paradigm, Diffusion Policy (Chi et al., 2023) and 3D Diffusion Policy (Ze et al.,
2023), known as DP and DP3, employ an SDE-defined forward process and train the neural network
conditioned on visual inputs and robot states to control the denoising process to sample actions from
the random noise. FlowPolicy (Zhang et al., 2025), in contrast, employs an ODE-defined forward
process, which reduces the stochasticity during training and inference. Despite their successes in
learning expert policy, current generative policies heavily rely on conditioning mechanisms (Chi
et al., 2023; Ze et al., 2023; Zhang et al., 2025) to steer the sampling process toward observations.
This external correction introduces issues such as manifold deviation (Yang et al., 2024) and fitting
error (Tang & Xu, 2024).

Diffusion Bridge has demonstrated considerable success in the image generation domain (Yue et al.,
2023; Li et al., 2023; Luo et al., 2023; De Bortoli et al., 2021a; Zhou et al., 2023), where it directly
modifies the forward process such that the endpoint distribution of the forward process naturally
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Figure 1: The architecture of BridgePolicy. Its input is the observation consisting of robot state and
3D point cloud. After modality fusion and distribution alignment, BridgePolicy iteratively trans-
forms the observations into actions via the backward SDE.

aligns with the desired conditioned distribution. This modification is accomplished through Doob’s
h-transform, which provides a principled and mathematically exact formulation by modeling the
condition into the forward process, thereby circumventing the manifold deviation (Yang et al., 2024)
and fitting error that typically arise from condition-based corrections. Building upon these insights,
we propose that Diffusion Bridge can also serve as an effective framework for visuomotor policy
learning. Specifically, rather than adopting the conventional diffusion model, we formulate policy
learning as the problem of learning the diffusion bridge, thus enabling a condition-free generative
process. To this end, observations can be explicitly encoded in the forward process via the frame-
work of stochastic optimal control (SOC) (Zhu et al., 2025; Pan et al., 2025), and the corresponding
backward process generates actions by sampling directly from the observation distribution rather
than from random noise, which reduces the stochasticity, thereby leading to more controllable and
reliable policy behaviors.

However, modeling policy learning as the diffusion bridge form raises two key challenges. First, dif-
fusion bridges require the two endpoint distributions to share the same data shape, which is not nat-
urally satisfied between heterogeneous observation and action spaces. Second, robotic observations
are inherently multi-modal—encompassing states, visual inputs, and language instructions—while
the diffusion bridge is of one-to-one structure that is designed to connect only two distributions.

To address these challenges, we introduce BridgePolicy, a new generative policy framework that
directly bridges observations to actions instead of starting from noise. Specifically, we design a
semantic aligner that transforms the distributions of observations and actions into a common shape
while preserving task-relevant semantics. We propose a modality fusion module that unifies multi-
modal inputs into a shared representation, enabling diffusion bridging across heterogeneous obser-
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vation sources. Finally, we construct a diffusion bridge via the framework of SOC (Zhu et al., 2025)
to explicitly model the mapping from observations to actions. Extensive experiments across 52 tasks
on 3 benchmarks and 4 real-world tasks demonstrate that BridgePolicy outperforms existing gen-
erative policies including DP, DP3, and FlowPolicy, achieving state-of-the-art performance. Our
contributions are summarized as follows:

• We propose BridgePolicy, the first condition-free generative policy that directly maps the robot’s
observations to executing actions, avoiding the manifold deviation issue and fitting error of the
conditional diffusion model.

• To address the conflicts between the one-to-one diffusion bridge and the heterogeneous multi-
modal robot data, we introduce two key modules: the distribution aligner and the multi-modal
fusion module. These modules address the shape mismatch between observation and action spaces
and extend the diffusion bridge to multiple heterogeneous modalities, enabling a condition-free
diffusion process.

• Extensive experiments across 52 simulation tasks and 3 real-world tasks show that BridgePolicy
consistently outperforms prior generative policies and achieves state-of-the-art performance.

2 RELATED WORK

2.1 GENERATIVE MODELS IN ROBOTICS

Recent years have witnessed the rise of diffusion models and flow matching as state-of-the-art gen-
erative paradigms, largely driven by their remarkable success in image generation (Ho et al., 2020;
Song et al., 2020; Rombach et al., 2022; Lipman et al., 2022). Due to their capacity of multi-modal
expressiveness, they are widely used in reinforcement learning, imitation learning, and motion plan-
ning (Janner et al., 2022; Reuss et al., 2023; Chi et al., 2023; Pearce et al., 2023; Sridhar et al., 2023;
Xian & Gkanatsios, 2023; Prasad et al., 2024; Saha et al., 2024). In robotics, both diffusion models
and flow matching have been utilized as policy frameworks, where action sequences are generated
from random Gaussian noise under the condition of 2D or 3D observations via SDE or ODE gener-
ative processes, respectively (Chi et al., 2023; Ze et al., 2024; Zhang et al., 2025; Hu et al., 2024).
However, our approach is pioneering in its explicit modeling of the direct transition between obser-
vation and action distributions via SOC, circumventing the need for conditioning and its associated
error sources, thereby enabling robust end-to-end generation of action sequences.

2.2 DIFFUSION BRIDGE FOR GENERATIVE MODELING

The diffusion bridge enables the transition between two arbitrary distributions without the need
to initiate diffusion from a random Gaussian distribution, which is a more advanced and accurate
paradigm for distribution-to-distribution transformation. On the one hand, Diffusion Schrödinger
Bridges (Liu et al., 2023; Shi et al., 2024; De Bortoli et al., 2021b; Somnath et al., 2023) aim to
determine a stochastic process by solving an entropy-regularized optimal transport problem between
two distributions. However, its high computational complexity, particularly pronounced in high-
dimensional settings or constraints, poses significant challenges for direct optimization. On the
other hand, other works (Zhou et al., 2023; Yue et al., 2023) incorporate Doob’s h-transform into
the forward SDE process, delivering remarkable performance on image restoration benchmarks.
UniDB (Zhu et al., 2025) formulates Diffusion Bridge through an SOC-based optimization, proving
that Doob’s h-transform is a special case of SOC theory, thereby unifying and generalizing existing
h-transform-based diffusion bridges. In this work, we leverage the ability of the diffusion bridges
to connect two heterogeneous distributions, specifically the observation distribution and the action
distribution of an expert policy, and harness this mechanism for policy learning.

3 PRELIMINARIES: DIFFUSION BRIDGE VIA STOCHASTIC OPTIMAL
CONTROL

Stochastic Optimal Control (SOC) is a mathematical framework dedicated to deriving optimal con-
trol policies for dynamical systems under uncertainty. It has been successfully applied across
various domains, including finance (Geering et al., 2010), style transfer (Rout et al., 2024), and
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robotics (Rueckert et al., 2014; Elamvazhuthi & Berman, 2015). Denote x0 and xT as the pre-
determined initial state and the terminal respectively, consider the following Linear Quadratic SOC
problem:

min
ut,γ

E

[∫ T

0

1

2
∥ut,γ∥22 dt+

γ

2
∥xu

T − xT ∥22

]
s.t. dxt =

[
θt(xT − xt) + gtut,γ

]
dt+ gtdwt, x

u
0 = x0,

(1)

where xu
t is the controlled state, θt and gt are some scalar-valued functions with the relation g2t =

2λ2θt and the steady variance level λ2 is a given constant, wt denotes the Wiener process, ∥ut,γ∥22
is the instantaneous cost, and γ

2 ∥x
u
T − xT ∥22 is the terminal cost with its penalty coefficient γ.

UniDB (Zhu et al., 2025) provides the closed-form optimal controller u∗
t,γ for the SOC problem (1)

as a specific example of its framework as UniDB-GOU (Zhu et al., 2025), whose forward SDE is
formed as

dxt =
[
θt(xT − xt) + gtu

∗
t,γ

]
dt+ gtdwt, with u∗

t,γ =
gte

−2θ̄t:T

γ−1 + σ̄2
t:T

(xT − xt), (2)

and the transition probability is

p(xt | x0,xT ) = N (µ̄t, σ̄
′2
t I),

µ̄t = ξtx0 + (1− ξt)xT , ξt = e−θ̄t
γ−1 + σ̄2

t:T

γ−1 + σ̄2
T

, σ̄′2
t =

σ̄2
t σ̄

2
t:T

σ̄2
T

,
(3)

where θ̄s:t =
∫ t

s
θzdz, θ̄t =

∫ t

0
θzdz, σ̄2

s:t = λ2(1− e−2θ̄s:t), and σ̄2
t = λ2(1− e−2θ̄t). Meanwhile,

its backward reverse SDE is given by

dxt =
[
θt(xT − xt) + gtu

∗
t,γ + g2t∇xt

log p(xt | xT )
]
dt+ gtdw̃t, (4)

where the score ∇xt
log p(xt | xT ) can be estimated by the noise prediction neural network

−ϵθ(xt,xT , t)/σ̄
′
t and w̃t is the reverse-time Wiener process. As for the sampling process,

UniDB++ (Pan et al., 2025) provides an acceleration algorithm of (4) and the related updating rule
with time steps 0 ≤ t < s is formed as

xt =
ρt
ρs

xs +

(
1− ρt

ρs
+

ρtκs,γ

ρT ρs
− κt,γ

ρT

)
xT +

(
κt,γ

ρT
− ρtκs,γ

ρT ρs

)
xθ(xs,xT , s) + δds:tϵ,

δds:t = λρt

√
1

e2θ̄t − 1
− 1

e2θ̄s − 1
,

(5)

where xθ(xt,xT , t) = (xt − (1 − ξt)xT − σ̄′
tϵθ (xt,xT , t)) /ξt, ρt = eθ̄t(1 − e−2θ̄t), κt,γ =

eθ̄t:T ((γλ2)−1 + 1− e−2θ̄t:T ), and ϵ ∼ N (0, I). For more details, please refer to (Zhu et al., 2025;
Pan et al., 2025).

4 METHOD

The BridgePolicy aims to learn a policy π : O → A, which predict the actions a ∈ A given the
observations o ∈ A. The observations include 3D point cloud as the visual input and robot state
and the actions are chunked into a short sequence of a trajectory finishing the task. The overall
framework of BridgePolicy are illustrated in Figure 1. We begin by introducing the formulation
of the policy learning as a diffusion bridge problem and then discuss how we address the two key
challenges, the multi-modal distribution bridge and the mismatch of the distribution shapes.

4.1 DECISION MAKING VIA DIFFUSION BRIDGE

Prior works such as DP and FlowPolicy that formulate the policy as a conditional generative model,
where the action is generated from random Gaussian noise under the condition of the observation
o (Chi et al., 2023; Ze et al., 2024; Zhang et al., 2025). The observation is treated merely as a
conditional signal to guide the neural network during denoising. This sole reliance on the condition
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Algorithm 1 Training
repeat

Input: Actions a, Observations {os,opc},
and positive weight factors α, β.
zs = MLPs(os), zpc = MLPpc(opc)
zobs = softmax(zs · zT

s /
√
ds)zpc

x0 = a, xT = zobs
t ∼ Uniform({1, ..., T})
Compute µt−1,θ and µt−1,γ from (3)
Compute LDB , Lalign from (6) and (9)
Gradient descent on L = LDB + αLalign

until Converged

Algorithm 2 Inference

Input: Observations o = {os,opc} and pre-
trained ϵθ
zs, zpc = MLPs(os),MLPpc(opc)

xT = zobs = softmax(zs · zT
s /
√
ds)zpc

for t = T to 1 do
xt−1 ← Update(xt,xT , ϵθ, ϵ, t) from (5)

end for
Return Actions ã = x0

injection, however, introduces problems like manifold deviation (Yang et al., 2024) and score-fitting
errors, which may degrade action quality and lead to unexpected behaviors.

To address these limitations, we adopt the diffusion bridge, which explicitly model the observa-
tion in the generation process, directly connecting the observations to the actions and integrating
the observations into the entire generation trajectory. Through such a way, it would eliminate the
conditioning efforts, thereby avoiding some potential problems as mentioned above.

Assuming that the action a and the observation o shares the same dimension, we define the endpoints
of our forward diffusion bridge process (2) as follows:

• The initial state x0: we set the initial state to be the action, i.e., x0 = a.

• The terminal state xT : we set the terminal state to be the observation, i.e., xT = o, which is
a pivotal departure from standard conditional diffusion or flow models, where xT is typically
random Gaussian noise.

Consequently, the goal of our BridgePolicy is to learn a stochastic trajectory that transforms the
observation o into a plausible action a. To learn such a bridge, we adopt the origin maximum log-
likelihood based on the Evidence Lower Bound (ELBO) (Ho et al., 2020) from UniDB (Zhu et al.,
2025) as the main training objective. Given a pair of endpoints (x0,xT ) and the noise prediction
model ϵθ(xt,xT , t), the training objective is, specifically,

LDB = Et,x0,xT ,xt

[
1

2g2t
∥µt−1,θ − µt−1,γ∥

]
,

µt−1,θ = xt −

(
θt +

gte
−2θ̄t:T

γ−1 + σ̄2
t:T

)
(xT − xt)−

g2t
σ̄′
t

ϵθ(xt,xT , t),

µt−1,γ = µ̄t−1 + e−θ̄t−1:t
γ−1 + σ̄2

t:T

γ−1 + σ̄2
t−1:T

σ̄′2
t−1

σ̄′2
t

(xt − µ̄t).

(6)

After we obtain the optimal model ϵ∗θ(xt,xT , t), the decision making module of our BridgePolicy
is implemented as an iterative generation procedure starting from the given observation based on the
backward reverse SDE (4) through specially designed accelerating solvers (5) (Pan et al., 2025). The
advantage lies in that compared to starting from random Gaussian noise and conditional generation,
our sampling process would begin directly from information-rich observations and the observations
are directly and globally integrated into the entire trajectory, enabling more controllable generated
actions.

While conceptually appealing under a same-dimension assumption, it is still infeasible to directly
apply diffusion bridge as the assumption does not exists. We detail how we address the challenges
of multi-modal distribution bridging and data shape mismatch.
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4.2 MODALITY FUSION AND ALIGNMENT

Encoding the Robot State and Point Cloud. Our encoding pipeline begins by converting depth im-
ages into 3D point clouds, chosen for the efficiency. We then downsample them (512/1024 points in
simulation; 2048 in real-world) using farthest point sampling (Qi et al., 2017). Finally, a lightweight
MLP with LayerNorm and an MLP state encoder map the point cloud and robot state into a shared
latent representation for fusion, which can be formulated as:

zs = MLPs(os), zpc = MLPpc(opc), (7)

where os is the robot state and the opc is the point cloud.

Multi-Modality Fusion. To enable the diffusion bridge to map between heterogeneous modalities
effectively, we introduce the multi-modality fusion module that integrates the 3D point cloud and
robot state into a unified representation. This allows the policy to process diverse inputs coherently
within our framework. Specifically, we employ a cross-attention mechanism (Rombach et al., 2022)
to fuse the modalities, formulated as follows:

xT := zobs = softmax(
zsz

T
s√
ds

)zpc, (8)

where zs is the feature vector of the robot state, ds is the dimension of zs, zpc is the feature vector
of the visual input. Here, xT is the unified observation feature vector with the same shape of the
action chunk, representing the unified observation representation.

Modality Alignment. Although multi-modality fusion aligns the observation and action distribu-
tions in shape, significant distributional differences still remain and the learned observation repre-
sentation lacks sampling capability. To address this, we propose using the contrastive learning loss
and the KL divergence loss (Kingma & Welling, 2013) to train the aligner. The contrastive loss
aligns the semantic proximity of the observation and action distributions, while the KL regular-
ization ensures the observation maintains its sampling ability, facilitating effective policy learning.
Specifically, we adopt CLIP loss (Radford et al., 2021) as the contrastive learning loss and use a
control factor β to control the regularization strength:

Lalign =
1

2
(Lclip(a, zobs) + Lclip(zobs,a)) + βDKL(zobs, ε),

Lclip(a, z) = −
1

n

n∑
j=1

log
exp(a⊤j zj/τ)∑n
i=1 exp(a

⊤
i zj/τ)

,
(9)

where ε ∼ N (0, I), n is the batch size, zobs is the output of the cross-attention module, β is some
positive weight, and τ is the temperature parameter. The entire model involves the diffusion bridge
and the modality fusion module and therefore, the overall training objective integrates the diffusion
bridge loss (6) with the alignment loss (9):

L = LDB + αLalign, (10)

where α is a positive weight factor. We provide the pseudo-code Algorithm (1) and (2) for the
training and inference process of our BridgePolicy. During the training phase, the observations are
first fused and reshaped by the modality fusion module and aligner, and then compute alignment
loss and diffusion bridge loss with corresponding equations. After training, the observations are
fused and reshaped into latent vector, then the latent vector is iteratively updated by the designed
accelerating solvers (5) and finally generates the actions.

5 EXPERIMENT

5.1 SIMULATION EXPERIMENT

Simulation Benchmark. We evaluate our BridgePolicy on three benchmarks, Adroit (Rajeswaran
et al., 2017), DexArt (Bao et al., 2023), and MetaWorld (Yu et al., 2020). Adroit and DexArt focus
on dexterous hand manipulation with varying complexity, while MetaWorld offers a broad spectrum
of robotic arm tasks across different difficulty levels.

6
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Table 1: Main Simulation Results. Quantitative comparison on success rates among the baselines
and our BridgePolicy. We evaluate 50 tasks across 3 benchmarks and report the average success
rates of each benchmarks. For MetaWorld, we group the tasks based on their difficulty levels and
report the average success rates.

Adroit DexArt MetaWorld MetaWorld
Methods\Task Avg Avg Easy Medium Hard Very Hard Avg

DP 0.31±0.17 0.45±0.08 0.79±0.27 0.31±0.24 0.10±0.12 0.26±0.25 0.37
DP3 0.68±0.06 0.57±0.08 0.87±0.20 0.61±0.29 0.40±0.37 0.51±0.33 0.60
Simple DP3 0.68±0.05 0.48±0.07 0.86±0.12 0.59±0.22 0.38±0.26 0.47±0.28 0.57
FlowPolicy 0.70±0.12 0.54±0.09 0.86±0.16 0.67±0.21 0.59±0.30 0.76±0.26 0.72
BridgePolicy 0.73±0.10 0.56±0.07 0.87±0.22 0.75±0.28 0.63±0.31 0.79±0.32 0.76

Expert Demonstration Collection. We collect expert data with script policy in MetaWorld and
adopt the VRL3 (Wang et al., 2022) and PPO (Schulman et al., 2017), two reinforcement learning
(RL) algorithms, to collect expert data for Adroit and DexArt, respectively. We collect 10 episodes
for tasks of the Adroit and MetaWorld benchmarks and 100 episodes of the DexArt benchmark to
train the policy.

Baselines. For comparison, we select state-of-the-art 2D-based methods DP (Chi et al., 2023) which
takes the 2D image as its visual input and 3D conditional diffusion-or flow-based approaches includ-
ing DP3 (Ze et al., 2024), simple DP3 (its lightweight version), and FlowPolicy (Zhang et al., 2025)
which generate the action from Gaussian noise and leverage 3D point cloud as the visual condition
in the neural network as baselines.

Evaluation and Implementation. We run 3 random seeds for each experiment to avoid possible
randomness. For each random seed, we train 3000 epochs and evaluate 20 episodes every 200 train-
ing epochs. We pick the five highest success rates per seed and report the mean success rate of the 3
random seeds. For fair comparison, we keep the model architecture consistent with the baselines, the
amount of parameters is comparable, and the shared hyperparameters such as the learning rate and
weight decay of the optimizer, batch size and training epoch the same as the baselines. Our model
is trained on 8 NVIDIA RTX 3090 GPUs. For further details of the implementation of BridgePolicy
and other baselines, please refer to Appendix A.2.

Performance in Simulator. For Adroit and DexArt, we report the average success rates directly.
Particularly for MetaWorld task, it is further categorized into four difficulty levels, with average
rates reported for each. The quantitative results are reported in Table 1. Our proposed BridgePolicy
demonstrates a consistent performance across all evaluated benchmarks, achieving the highest aver-
age success rates. All baseline methods show considerably lower success rates, particularly in more
challenging settings (Hard and Very Hard in MetaWorld), which also showcases the robustness of
our method in tasks with varying complexity. These results validate the effectiveness of BridgePol-
icy in leveraging the diffusion bridge formulation for improved policy learning in diverse simulation
environments. For success rates of individual tasks, please refer to Appendix A.3.

5.2 REAL-WORLD EXPERIMENT

Experiment Setup and Evaluation. We evaluate our method on 4 real-world tasks using the
Franka Emika Panda robot. The point cloud is acquired using the ZED-2i. The Pick-and-Place task
that the gripper pick a bowl and place it in a bucket, the Pouring task that the gripper first grasps the
bowl, moves towards an another bowl, pours out the coffee bean in the bowl, and places the bowl on
the table steadily, the Oven-Opening task that fully open the oven door and the Oven-Closing task
that close the fully opened oven.

We evaluate the policies on 10 episodes of each task. The implementation remains the same as that
in the experiments in simulation. We only increase the number of points of the point cloud to 2048
for a more dense representation of the real-world scenario. Please refer to Figure 4 in the Appendix
A.4 for the experiment environment.

Expert Demonstration Collection. The expert demonstrations are collected by the GELLO human
teleopertation system (Wu et al., 2024), manipulated by an experienced graduate. For each task, we
collect 50 episodes to train the policy.

7
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Table 2: Main Real-world Results. Quantitative comparison of success rates on real-world tasks
among the baselines and BridgePolicy.

Oven-Closing Oven-Opening Pick Place Pour Average

Simple DP3 0.8 0.6 0.6 0.6 0.65
DP3 0.9 0.9 0.7 0.6 0.78
FlowPolicy 1.0 0.7 0.5 0.1 0.58
BridgePolicy 1.0 1.0 0.8 0.8 0.90

Quantitative Comparison on Real-World Task. The success rates of real-world tasks are shown
in Table 2. Under the identical constraint of training with the same dataset of 50 episodes, our
BridgePolicy yields the highest success rate on all the tasks, with an average of 0.9, underscoring its
effectiveness. Meanwhile, FlowPolicy exhibits a significant performance drop in the real world on
tasks requiring location generalization, such as Pouring and Pick-and-Place. DP3 is in the second
place with a success rate of 0.78, and Simple DP3 only achieves a success rate of 0.65, possibly due
to the small number of parameters.

Figure 2: Real-robot comparative visualization of BridgePolicy, FlowPolicy and DP3 at four critical
waypoints for the Oven-Opening task.

Qualitive Comparison on Real-World Task. As depicted in Figure 2, we select three examples of
the real-world task Oven-Opening generated by DP3, FlowPolicy, and BridgePolicy, respectively.
From left to right, the sequence presents the key frames of the Franka arm finishing the task. The
Oven-Opening task consists of 2 key stages: 1) grabbing the door handle of the oven and opening it
halfway; 2) moving the arm upon the half-opened door and pushing it down until it is fully opened.
In this very case, DP3 fails to finish the task while FlowPolicy and BridgePolicy both finish the task
in the end. BridgePolicy exactly finishes the 2 stages and fully opens the oven, while FlowPolicy
fails to half-open the door in the first stage, and it presses down against the door handle directly, leav-
ing the door not fully opened. Videos of the real-world experiments can be found in Supplementary
Material.

5.3 ABLATION STUDY

Number of Expert Demonstrations. The success rate of the agent in accomplishing tasks largely
depends on the number of expert demonstrations. Here, we evaluate how the number of expert
demonstrations would affect the success rate of the agent finishing the tasks. As shown in Figure 3,
we select four tasks for this ablation study: the MetaWorld Pick-place-wall, Box-close, Push, and
the Adroit Door task. For all four tasks, increasing the number of expert demonstrations generally
improves the agent’s success rate. For Pick-place-wall and Push, all policies perform well enough
with greater than 30 demonstrations, reaching near-perfect success. BridgePolicy shows the most
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Table 3: Quantitative evaluation results on different Adroit tasks with different steady variance levels
λ2 and penalty coefficients γ.

Task Hyperparameters (λ, γ)

(30, 107) (50, 107) (70, 107) (30, 105) (50, 105) (70, 105)

Adroit Hammer 0.9 1.0 1.0 0.85 1.0 1.0
Adroit Door 0.75 0.85 0.85 0.65 0.85 0.825
Adroit Pen 0.65 0.75 0.65 0.65 0.65 0.6

Avg Success Rate 0.77 0.87 0.83 0.72 0.83 0.81

stable and robust performance across all demonstration counts. In Box-close, all methods improve
significantly from 10 to 30 episodes, with FlowPolicy and BridgePolicy maintaining high perfor-
mance at 50 demonstrations.
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MetaWorld Pick-place-wall
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10 20 30 40 50
Number of Episodes

0.5

0.6

0.7

0.8

0.9

1.0 Adroit Door
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DP3
BridgePolicy

Figure 3: Ablation on the number of demonstrations. We choose four tasks to explore the impact of
different numbers demonstrations on BridgePolicy, FlowPolicy and DP3.

Parameter Sensitivity. We demonstrate how the key parameters of the BridgePolicy would in-
fluence its performance. Specifically, we evaluated different combinations of two parameters: the
steady variance level λ2 (over 255) and the penalty coefficient γ in UniDB (Zhu et al., 2025) with
the tasks in the Adroit benchmark. The results are summarized in the Table 3. For Adroit tasks, the
combination (λ = 50, γ = 107) emerges as the most robust parameter configuration, achieving the
highest average success rate (0.87) and top-tier performance across all individual tasks. Building
upon this experience, we use this set of hyperparameters for all the simulation and real-world tasks.

6 CONCLUSION

In this work, we introduce BridgePolicy, a generative policy learning paradigm that directly gener-
ates action chunks by sampling from the observation distribution. It eliminates the condition efforts
of traditional diffusion models, avoiding the manifold deviation and fitting error issues. Extensive
experiments on simulation and real-world tasks demonstrate its superiority over the current gen-
erative policy. Despite these advancements, the BridgePolicy tends to require more training and
inference time than FlowPolicy, partly due to its more complex formulation involving the SDE of a
diffusion bridge. In the end, we hope our method helps pave the way towards further research and
applications of the diffusion bridge and visuomotor policy learning.
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A APPENDIX

A.1 THE USE OF LLM

At various stages of this study, we use GitHub Copilot to assist in our code implementation and
DeepSeek to refine the texts. Besides, Grammarly AI is used to check the syntax errors before our
final submission. We confirm that all contents generated by LLM have undergone rigorous review
and necessary modifications by the authors to ensure its accuracy and originality.

A.2 IMPLEMENTATION DETAILS OF BRIDGE POLICY

Model Architecture For fair comparison with the baselines, we maximally keep the implementa-
tion of the model consistent with the baselines. Specifically, we use the conditional U-Net architec-
ture based on CNN with number of 255M parameters.

For the implementation of the BridgePolicy, our additionally designed aligner and modality fusion
modules are significantly lighter than the model itself for predicting the score, with the number of
model parameters in this part being less than 1M.

Training We split a complete trajectory into segments with a horizon of 4 to create a dataset. The
batch size for training is 128. The optimizer is Adam, with a learning rate of 10−4 and a weight
decay of 10−2. With respect to the schedule of θt, we choose a flipped version of cosine noise
schedule,

θt = 1−
cos2( t/T+s

1+s
π
2 )

cos2( s
1+s

π
2 )

(11)

where s = 0.008 is followed from (Yue et al., 2023; Zhu et al., 2025) to achieve a smooth noise
schedule.

For BridgePolicy, we train the aligner and modality fusion module jointly with the noise prediction
neural network. The Diffusion Bridge hyperparameters we use are γ = 107, λ = 30.

A.3 SUCCESS RATES OF INDIVIDUAL TASKS

Adroit DexArt
Alg\Task hammer door pen laptop faucet toilet bucket

DP 0.45±0.05 0.35±0.04 0.15±0.04 0.69±0.08 0.23±0.09 0.63±0.08 0.23±0.08
DP3 1.00±0.00 0.65±0.05 0.40±0.05 0.86±0.08 0.36±0.04 0.73±0.07 0.32±0.07
Simple DP3 1.00±0.00 0.59±0.01 0.45±0.03 0.79±0.07 0.26±0.04 0.63±0.07 0.22±0.07
Flow 1.00±0.00 0.58±0.06 0.53±0.12 0.80±0.06 0.38±0.09 0.70±0.06 0.28±0.05
BridgePolicy 1.00±0.00 0.74±0.07 0.64±0.10 0.83±0.06 0.38±0.07 0.73±0.07 0.28±0.07

MetaWorld (Easy)

Alg\Task button-
press

button-
press-

topdown

button-
press-

topdown-
wall

button-
press-
wall

coffee-
button

dial-
turn

door-
close

DP 0.93±0.01 0.98±0.01 0.96±0.03 0.93±0.03 0.99±0.01 0.63±0.10 1.00±0.00
DP3 1.00±0.00 1.00±0.00 0.99±0.02 0.99±0.01 1.00±0.00 0.66±0.01 1.00±0.00
Simple DP3 1.00±0.00 1.00±0.00 0.98±0.02 0.93±0.02 1.00±0.00 0.59±0.01 0.97±0.00
Flow 1.00±0.00 0.97±0.03 0.98±0.02 1.00±0.00 1.00±0.00 0.88±0.10 0.90±0.08
BridgePolicy 0.93±0.06 0.92±0.04 0.82±0.09 1.00±0.00 1.00±0.00 0.53±0.08 1.00±0.00
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MetaWorld (Easy)

Alg\Task door-
lock

door-
open

door-
unlock

drawer-
close

drawer-
open

window-
close

window-
open

DP 0.75±0.08 0.98±0.03 0.98±0.03 1.00±0.00 0.93±0.03 0.99±0.01 1.00±0.00
DP3 0.98±0.02 0.86±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Simple DP3 0.98±0.02 0.76±0.08 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Flow 1.00±0.00 0.66±0.08 1.00±0.00 0.75±0.01 1.00±0.00 0.76±0.08 0.73±0.05
BridgePolicy 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

MetaWorld (Easy)

Alg\Task hand-
pull

hand-
pull-
side

lever-
pull

peg-
unplug-
side

reach reach-
wall

plate-
slide-
back

DP 0.75±0.08 0.98±0.03 0.98±0.03 1.00±0.00 0.93±0.03 0.99±0.01 1.00±0.00
DP3 0.98±0.02 0.86±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Simple DP3 0.98±0.02 0.76±0.08 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Flow 1.00±0.00 0.66±0.08 1.00±0.00 0.75±0.01 1.00±0.00 0.76±0.08 0.73±0.05
BridgePolicy 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

MetaWorld (Easy) MetaWorld (Medium)

Alg\Task plate-
slide-
back-side

plate-
slide

plate-
slide-side basketball bin-

picking
box-
close hammer

DP 0.99±0.00 0.75±0.04 1.00±0.00 0.85±0.06 0.15±0.04 0.30±0.05 0.15±0.06
DP3 1.00±0.00 1.00±0.01 1.00±0.00 0.98±0.02 0.38±0.30 0.42±0.03 0.72±0.04
Simple DP3 0.99±0.00 1.00±0.01 1.00±0.00 0.95±0.04 0.28±0.16 0.38±0.05 0.62±0.09
Flow 0.65±0.05 1.00±0.00 1.00±0.00 0.66±0.06 0.66±0.14 0.81±0.04 0.98±0.02
BridgePolicy 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.43±0.06 0.61±0.05 1.00±0.00

MetaWorld (Medium)

Alg\Task peg-
insert-
side

push-
wall soccer coffee-

pull
coffee-
push sweep sweep-

into

DP 0.34±0.07 0.20±0.03 0.14±0.04 0.34±0.07 0.67±0.04 0.18±0.08 0.10±0.04
DP3 0.67±0.07 0.51±0.08 0.18±0.03 0.85±0.03 0.94±0.03 0.96±0.03 0.17±0.05
Simple DP3 0.48±0.07 0.38±0.08 0.16±0.03 0.92±0.12 0.86±0.06 0.88±0.03 0.09±0.05
Flow 0.70±0.09 0.63±0.08 0.33±0.05 0.96±0.02 0.61±0.06 0.70±0.04 0.31±0.02
BridgePolicy 0.60±0.08 1.00±0.00 0.38±0.05 0.97±0.01 0.93±0.03 0.92±0.02 0.42±0.02

MetaWorld (Hard)

Alg\Task pick-
out-of-
hole

pick-
place assembly push hand-

insert

DP 0.00±0.00 0.02±0.01 0.15±0.01 0.28±0.03 0.09±0.02
DP3 0.14±0.09 0.12±0.04 0.99±0.01 0.62±0.03 0.14±0.04
Simple DP3 0.08±0.06 0.12±0.06 0.79±0.01 0.32±0.03 0.12±0.05
Flow 0.31±0.04 0.63±0.05 1.00±0.00 0.73±0.05 0.26±0.02
BridgePolicy 0.38±0.06 0.75±0.02 1.00±0.00 0.79±0.03 0.25±0.06
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MetaWorld (Very Hard)

Alg\Task stick-
push

stick-
pull

shelf-
place

pick-
place-wall disassemble

DP 0.63±0.03 0.11±0.02 0.11±0.03 0.05±0.01 0.43±0.07
DP3 0.97±0.04 0.27±0.08 0.19±0.10 0.35±0.08 0.75±0.04
Simple DP3 0.97±0.05 0.15±0.08 0.05±0.01 0.28±0.05 0.50±0.03
Flow 1.00±0.00 0.56±0.03 0.40±0.03 0.95±0.03 0.88±0.03
BridgePolicy 1.00±0.00 0.91±0.03 0.19±0.03 0.96±0.05 0.87±0.03

A.4 REAL-WORLD EXPERIMENT SETUP

The real-world experiment setup is shown in Figure 4, the Franka arm is equipped with the FastUMI
gripper. Our data collection specification is to collect 15 frames of point cloud, robot state and action
per second. To facilitate training, each episode will be padded to a uniform length.

Figure 4: Real-world experiment setup.
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