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ABSTRACT

We investigate the statistical and computational limits of prompt tuning for
transformer-based foundation models. Our key contributions are prompt tuning on
single-head transformers with only a single self-attention layer: (i) is universal,
and (ii) supports efficient (even almost-linear time) algorithms under the Strong
Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning
on such simplest possible transformers are universal approximators for sequence-
to-sequence Lipschitz functions. In addition, we provide an exponential-in-dL
and -in-(1/ϵ) lower bound on the required soft-prompt tokens for prompt tuning
to memorize any dataset with 1-layer, 1-head transformers. Computationally, we
identify a phase transition in the efficiency of prompt tuning, determined by the
norm of the soft-prompt-induced keys and queries, and provide an upper bound
criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt
tuning exists under SETH. Within this criterion, we showcase our theory by proving
the existence of almost-linear time prompt tuning inference algorithms. These
fundamental limits provide important necessary conditions for designing expressive
and efficient prompt tuning methods for practitioners.

1 INTRODUCTION

We investigate the statistical and computational limits of prompt tuning for transformer-based
foundation models. These models are gigantic transformer-based architectures (Bommasani et al.,
2021), pretrained on vast datasets, are pivotal across multiple fields (Touvron et al., 2023b;a; Brown
et al., 2020; Floridi and Chiriatti, 2020; Yang et al., 2023; Wu et al., 2023; Nguyen et al., 2024;
Zhou et al., 2024; 2023; Ji et al., 2021; Thirunavukarasu et al., 2023; Singhal et al., 2023; Moor
et al., 2023). Despite their power, the significant cost of pretraining these models often makes them
prohibitive outside certain industrial labs. Thus, most practitioners resort to fine-tuning methods to
tailor these models to specific needs (Zheng et al., 2024; Ding et al., 2022). However, fine-tuning large
models with billions or trillions of parameters is still often resource-intensive (Minaee et al., 2024).
Prompt tuning mitigates this by adapting a learnable prompt with a limited set of parameters (tokens),
preserving the pretrained model weights and allowing adaptation to new tasks or data without any
retraining (Lester et al., 2021; Liu et al., 2021). It saves substantial computational resources and time.
However, despite its empirical successes (Gao et al., 2024; Shi and Lipani, 2024; Fu et al., 2024;
Chen et al., 2023; Wang et al., 2023b; Khattak et al., 2023; Jia et al., 2022; Liu et al., 2022; 2021),
the theoretical aspects of prompt tuning are still underexplored, relatively (Wang et al., 2023a; Petrov
et al., 2024). This work provides a timely theoretical analysis of the statistical and computational
limits of prompt tuning, aiming to explain its successes and offer principled guidance for future
prompt tuning methods in terms of performance and computational cost.

Let X,Y ∈ Rd×L be the input and the corresponding label sequences, respectively. For i ∈ [L], we
denote X:,i ∈ Rd as the i-th token (column) of X . Let [·, ·] denote sequential concatenation.

Definition 1.1 (Prompt Tuning). Let τ be a pretrained transformer. Let P ∈ Rd×Lp be a length-
Lp prompt weight (termed soft-prompt) prepended to input prompt X such that Xp := [P,X] ∈
Rd×(Lp+L). For any downstream task with finetuning dataset S = {(X(i), Y (i))}i∈[N ], the problem
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of prompt tuning is to find a prompt weight P ⋆ by solving the following optimization problem

P ⋆ := argmin
P

N∑
i=1

ℓ
(
τ
(
X(i)

p

)
:,Lp:

, Y (i)
)
, for some loss ℓ : Rd×L × Rd×L → R+. (1.1)

In this work, we aim to study Definition 1.1 statistically and computationally.

Statistically, we explore the expressive power of prompt tuning a transformer of simplest configuration.
Formally, we investigate whether it is possible to approximate any sequence-to-sequence function f
through prompt tuning with a pretrained single-head, single-layer transformer τ such that

dα
(
τ([P ⋆, ·]):,Lp , f

)
≤ ϵ, for some ϵ > 0, (1.2)

where approximation error ϵ between two functions is dα(f1, f2) := (
∫
∥f1(X)− f2(X)∥ααdX)1/α.

Here, ∥·∥α denotes entrywise ℓα-norm, i.e., ∥X∥α = (
∑d

i=1

∑L
j=1 |Xi,j |α)1/α. Specifically, while

Wang et al. (2023a, Theorem 1) report the universality of prompt tuning transformers with O((Lp +

L)(1/ϵ)d) attention layers with 2 heads of hidden dimension1 1 and O((1/ϵ)d(Lp+L)) FFN layers
with 4 MLP neurons, we ask the following question:

Question 1. Is it possible to improve (Wang et al., 2023a) toward the universality of prompt tuning
on single-head single layer pretrained transformers?

To answer Question 1, we first refine previous results of attention contextual mapping (Lemma 2.2)
and establish a chaining reduction for bounding approximation error of prompt tuning (Section 2.3).

Computationally, we investigate the computational hardness of prompt tuning in transformer-based
foundation models using fine-grained complexity theory (Williams, 2018). We observe that the
computational hardness of prompt tuning ties to the quadratic time complexity of the transformer
attention heads. Although designing algorithms to bypass this Ω(L2) computation time is tempting,
to the best of our knowledge, there lacks formal results to support and describe such approaches in
a comprehensive fashion. To bridge this gap, we pose below questions and develop a foundational
theory to characterize the complexity of prompt tuning for large transformer-based models:

Question 2. Is it possible to improve the Ω(L2) time with a bounded approximation error?

Question 3. More aggressively, is it possible to do such computations in almost linear time L1+o(1)?

In this work, we answer both Questions 2 and 3 for the forward inference of prompt tuning. To answer
them, we explore approximate prompt tuning computations with precision guarantees. To be concrete,
let WK ,WQ,WV ∈ Rd×d be attention weights such that Q = WV X ∈ Rd×L, K = WKX ∈ Rd×L

and V = WV X ∈ Rd×L. Recall the Attention Mechanism
Z = V Softmax

(
KTQβ

)
= (WV X)D−1 exp

(
XTWT

KWQXβ
)
∈ Rd×L, (1.3)

with the inverse temperature β > 0 and D := diag
(
exp
(
X⊤W⊤

KWQXβ
)
1L

)
. Here, exp(·) is

entry-wise exponential function. For simplicity of presentation, we set β = 1 in this work.

Formally, we study the following approximation problem for prompt tuning inference. Let Qp =

WQXp ∈ Rd×(Lp+L), Kp = WKXp ∈ Rd×(Lp+L), and Vp = WKXp ∈ Rd×(Lp+L).

Problem 1 (Approximate Prompt Tuning Inference APTI). Let δF > 0 and B > 0. Given
Qp,Kp, Vp ∈ Rd×(L+Lp) with guarantees that max{∥Qp∥max, ∥Kp∥max, ∥Vp∥max} ≤ B,
we aim to study an approximation problem APTI(d, L, Lp, B, δF ), aiming to approximate
Vp Softmax

(
KT

p Qp

)
with a matrix Z̃ such that ∥Z̃ − Vp Softmax

(
KT

p Qp

)
∥max ≤ δF . Here,

for a matrix M ∈ Ra×b, we write ∥M∥max := maxi,j |Mi,j |.

In this work, we aim to investigate the computational limits of all possible efficient algorithms for
APTI(d, L, Lp, B, δF ) under realistic setting δF = 1/poly(L).

Contributions. We study the fundamental limits of prompt tuning. Our contributions are threefold:

• Universality. We prove that prompt tuning transformers with the simplest configurations —
single-head, single-layer attention — are universal approximators for Lipschitz sequence-to-
1For attention weights WV ,WK ,WQ ∈ Rs×d, hidden dimension is s.
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sequence functions. Additionally, we reduce the required number of FFN layers in the prompt
tuning transformer to 2. These results improve upon (Wang et al., 2023a), which requires deep
transformers with O((Lp + L)(1/ϵ)d) attention layers and O((1/ϵ)d(Lp+L)) FFN layers.

• Memorization. We show that prompt tuning such simple transformers (1-head, 1-layer attention
and 2 FNN layers) is capable of complete memorization of datasets without any assumption on the
data. Moreover, we establish an exponential-in-dL and -in-(1/ϵ) lower bound on the required soft-
prompt tokens for any dataset, where d, L are the data dimension and sequence length, respectively,
and ϵ is the approximation error. Our results improve upon those of (Wang et al., 2023a), which
consider datasets with only two-token sequences and focus solely on memorizing the final token.

• Efficiency. We address Question 2 by identifying a phase transition behavior in efficiency based
on the norm of soft-prompt-induced queries and keys (Theorem 3.1). This establishes an efficiency
criterion for prompt tuning inference, enabling efficient (sub-quadratic) algorithms when the
criterion is met. Additionally, we address Question 3 by pushing the limits of efficiency in prompt
tuning toward nearly-linear time under this criterion (Theorem 3.2).

Organization. Section 2 presents a statistical analysis on prompt tuning’s universality and memory
capacity. Section 3 explore the computational limits of inference with prompt tuning. The appendix
includes the related works (Appendix A.1) and the detailed proofs of the main text.

Notations. We use lower case letters to denote vectors and upper case letters to denote matrices. The
index set {1, ..., I} is denoted by [I], where I ∈ N+. We write ℓα-norm as ∥·∥α. Throughout this
paper, we denote input, label sequences as X,Y ∈ Rd×L and prompt sequences as P ∈ Rd×Lp .

2 STATISTICAL LIMITS OF PROMPT TUNING: UNIVERSALITY AND CAPACITY

To better understand the expressive power of prompt tuning, we explore its universality (Sections 2.3
and 2.4) and memory capacity (Section 2.5) on a transformer of simplest configurations.

Overview of Our Results. Let T h,s,r denote transformers with h heads, s hidden size, and r MLP
neurons, and let ϵ represent the approximation error tolerance. Let X ∈ Rd×L and P ∈ Rd×Lp be
the input and soft-prompt defined in Definition 1.1, respectively. We answer Question 1 affirmatively,
and present three results for transformer models with 1-head, 1-layer attention layers:

Lemma 2.1 (1-Head, 1-Layer Attention with Any-Rank Weight Matrices Is Contextual Mapping,
Informal Version of Lemma 2.2). A 1-head, 1-layer attention mechanism with weight matrices
WK ,WQ,WV of any rank is able to associate each input sequence with a unique label sequence.

Theorem 2.1 (Universality of Prompt Tuning T 1,1,4 Transformers with O(ϵ−d(Lp+L)) FFN Layers,
Informal Version of Theorem 2.3). Prompt tuning transformers with 1 head, a hidden size of 1, and
O(ϵ−d(Lp+L)) FFN layers of width 4 are universal approximators for Lipschitz seq-to-seq functions.

Theorem 2.2 (Universality of Prompt Tuning T 1,1,r=O(ϵ−d(Lp+L)) Transformers with 2 FFN Layers ,
Informal Version of Theorem 2.4). Prompt tuning transformers with 1 head, a hidden size of 1, and 2
FFN layers of width O(ϵ−d(Lp+L)) are universal approximators for Lipschitz seq-to-seq functions.

Comparing with Prior Works. Our results improve previous works in three aspects:

• Any Weight Matrices. While Kajitsuka and Sato (2024) show that a self-attention layer with
rank-1 weight matrices serves is a contextual map, we improve this to weight matrices of any rank.

• Transformers with 1-Head, 1-Layer Attention. While Wang et al. (2023a) show that prompt
tuning on transformers of O((Lp + L)(1/ϵ)d) attention layers with at least 2 attention heads, we
achieve the universality of prompt tuning transformers with only single-head-single-layer attention.

• Only 2 FFN Layers. We identify a width-depth tradeoff of universality. While Wang et al. (2023a)
achieve prompt tuning universality with transformers of O((1/ϵ)d(Lp+L)) FFN layers, we show
that the same universality holds with 1-head, 1-layer transformers of only 2 FFN layers.

Technical Overview. Our proof strategy is to characterize the joint approximation error from different
components of a transformer block via a chained reduction of piece-wise constant approximations.

• Quantized Functions and Piece-Wise Constant Approximations
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(P1) Piece-Wise Constant Approximation. We consider a class of Lipschitz functions as our
target functions fseq2seq, and employ piece-wise constant approximations2. Namely, we first
quantize the input and output domain of the target functions and obtain a class of quantized
target functions. These quantized target functions (denoted by f seq2seq) are piece-wise
constant functions mapping grids of input domain to grids of output domain.

(P2) Surrogate Prompt Tuning Transformer. Next, we construct a surrogate function hseq2seq

for the transformer. This surrogate function takes prompts (i.e., Zp = [P,Z] ∈ Rd×(Lp+L))
as inputs. We approximate each quantized target function f seq2seq with Lp-imputed output
of hseq2seq. Namely, we only use the last L output tokens of hseq2seq to approximate f seq2seq.
This is achieved by associating a unique prompt with each quantized target function.

(P3) Prompting Tuning Transformer Approximate hseq2seq. Then, we construct a transformer
τ on which prompt tuning approximates the surrogate function hseq2seq with bounded error.

• Chained Reduction of Piece-Wise Constant Approximations
– A transformer layer consist of a self-attention layer f (Att) and an FFN layer. We utilize f (Att)

as a contextual mapping. A (δ, γ)-contextual mapping preserves the correspondence of its
input-output pair up to (δ, γ) accuracy (see Definition 2.6 for formal definition). Furthermore,
instead of just token-wise manipulation, contextual mapping allows us to capture the context of
an input sequence as a whole. This allows us to quantify the quality of a mapping in terms of its
ability to perform piece-wise approximation up to any precision.

– Lastly, we use FFN layers to map the outputs of f (Att) to the desired outputs within a bounded
error. This results in a chained reduction of approximation errors; we observe that for each step,
Error[(P3)] ≥ Error[(P2)] ≥ Error[(P1)]. Therefore, we conclude that prompt tuning on the
transformer τ is a universal approximator for our target functions f .

2.1 PRELIMINARIES AND PROBLEM SETUP

We first present the ideas we build on.

Let Z ∈ Rd×L denote the input embeddings of attention layer and s denote the hidden dimension.

Transformer Block. Let h-head self-attention layer as a function f (SA) : Rd×L → Rd×L,

f (SA) (Z) = Z +

h∑
i=1

W i
Of

(Att)
i (Z,Z) ∈ Rd×L, (2.1)

where W i
O ∈ Rd×s and f

(Att)
i is the size-s self-attention mechanism for the i-th head

f
(Att)
i (Z:,k, Z) = (W i

V Z) Softmax
[
(W i

KZ)⊤(W i
QZ:,k)

]
∈ Rs. (2.2)

Here, f (Att)
i : Rd×Rd×L 7→ Rs acts token-wise, and W i

V ,W
i
K ,W i

Q ∈ Rs×d are the weight matrices.
Next, we define the r-neuron feed-forward layer function as f (FF) ∈ F (FF) : Rd×L 7→ Rd×L and the
output at k-th token is

f (FF)(Z):,k = Z:,k +W (2)ReLU(W (1)Z:,k + b(1)) + b(2), (2.3)

where W (1) ∈ Rr×d and W (2) ∈ Rd×r are weight matrices, and b(1), b(2) ∈ Rr are the bias terms.

Definition 2.1 (Transformer Block). We define a transformer block of h-head, s-size and r-neuron
as f (T h,s,r) (Z) = f (FF)

(
f (SA) (Z)

)
: Rd×L 7→ Rd×L.

Now, we define the transformer networks as compositions of transformer blocks.

Definition 2.2 (Transformer Network Function Class). Let T h,s,r denote the transformer network
function class where each function τ ∈ T h,s,r consists of transformer blocks f (T h,s,r) with h heads of
size s and r MLP hidden neurons: T h,s,r := {τ : Rd×L 7→ Rd×L | τ = f (T h,s,r)(f (T h,s,r)(· · · ))}.

Prompt Tuning Pretrained Transformer Models. In this work, we consider the prompt tuning
problem Definition 1.1 with a pretrained transformer network τ ∈ T h,s,r.

2A piece-wise constant approximation approximates a function fseq2seq by a series of constant values across
different segments of its domain. This technique involves discretizing the function’s domain into intervals and
assigning a constant value to the function over each interval. Please see (Yun et al., 2020) for utilizing piece-wise
constant approximations for transformer’s universality.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Problem Setup. To answer Question 1, we focus on the universal approximation of prompt tuning
pretrained transformer models. We start from stating the target functions of our approximation.

Definition 2.3 (Target Function Class). Let FC be the C-Lipschitz (under p-norm) target function
class of continuous sequence-to-sequence. Let fseq2seq ∈ FC : [0, 1]d×L 7→ [0, 1]d×L denote
continuous sequence-to-sequence functions on a compact set of sequence.

Explicitly, for any fseq2seq ∈ FC and two input sequences Z,Z ′ ∈ Rd×L, we have
∥fseq2seq(Z)− fseq2seq (Z

′)∥
α
≤ C∥Z − Z ′∥α. In this work, we adopt fseq2seq as our approximation

target function. Concretely, we investigate whether it is possible to approximate any C-Lipschitz
sequence-to-sequence function fseq2seq through prompt tuning with a pretrained single-head, single-
layer transformer model. Namely, we reformulate Question 1 into the following problem.

Problem 2. Is it possible to find a pretrained transformer model τ ∈ T 1,1,r such that, for any
fseq2seq ∈ FC , prompt tuning τ satisfies dα

(
τ([P, ·]):,Lp:, fseq2seq

)
≤ ϵ for some ϵ > 0? Here,

dα(f1, f2) :=
(∫

∥f1(Z)− f2(Z)∥ααdZ
)1/α

measures the difference between functions f1 and f2
in the token-wise ℓα-norm.

2.2 ANY-RANK SINGLE-LAYER ATTENTION IS A CONTEXTUAL MAPPING FUNCTION

As stated in the previous technical overview, a key element of our proof is the concept of contextual
mapping in attention (Kajitsuka and Sato, 2024; Yun et al., 2020). Contextual mapping enables
transformers to move beyond simple token-wise manipulation and capture the full context of a
sequence. Through this, identical tokens within different input sequences become distinguishable.
In this subsection, we present new results on the contextual mapping property of attention. These
results allow us to use feed-forward neural networks to map each input sequence to its corresponding
label sequence, thereby achieving universal approximation in Section 2.3.

Background: Contextual Mapping. Let Z, Y ∈ Rd×L be the input embeddings and output label
sequences, respectively. Let Z :,i ∈ Rd be the i-th token (column) of each Z embedding sequence.

Definition 2.4 (Vocabulary). We define the i-th vocabulary set for i ∈ [N ] by V(i) =
⋃

k∈[L] Z
(i)
:,k ⊂

Rd, and the whole vocabulary set V is defined by V =
⋃

i∈[N ] V(i) ⊂ Rd.

Note that while “vocabulary” typically refers to the tokens’ codomain, here it refers to the set of
all tokens within a single sequence. To facilitate our analysis, we introduce the idea of input token
separation following (Kajitsuka and Sato, 2024; Kim et al., 2022; Yun et al., 2020).

Definition 2.5 (Tokenwise Separateness). Let Z(1), . . . , Z(N) ∈ Rd×L be embeddings. Then,
Z(1), . . . , Z(N) are called tokenwise (γmin, γmax, δ)-separated if the following conditions hold.

(i) For any i ∈ [N ] and k ∈ [L], ∥Z(i)
:,k∥ > γmin holds.

(ii) For any i ∈ [N ] and k ∈ [L], ∥Z(i)
:,k∥ < γmax holds.

(iii) For any i, j ∈ [N ] and k, l ∈ [L] if Z(i)
:,k ̸= Z

(j)
:,l , then ∥Z(i)

:,k − Z
(j)
:,l ∥ > δ holds.

Note that when only conditions (ii) and (iii) hold, we denote this as (γ, δ)-separateness. Moreover, if
only condition (iii) holds, we denote it as (δ)-separateness.

To clarify condition (iii), we consider cases where there are repeated tokens between different input
sequences. Next, we define contextual mapping. Contextual mapping describes a function’s ability to
capture the context of each input sequence as a whole and assign a unique ID to each input sequence.

Definition 2.6 (Contextual Mapping). A function q : Rd×L → Rd×L is said to be a (γ, δ)-contextual
mapping for a set of embeddings Z(1), . . . , Z(N) ∈ Rd×L if the following conditions hold:
1. Contextual Sensitivity γ. For any i ∈ [N ] and k ∈ [L], ∥q(Z(i)):,k∥ < γ holds.

2. Approximation Error δ. For any i, j ∈ [N ] and k, l ∈ [L] such that V(i) ̸= V(j) or Z(i)
:,k ̸= Z

(j)
:,l ,

∥q(Z(i)):,k − q(Z(j)):,l∥ > δ holds.
Note that q

(
Z(i)

)
for i ∈ [N ] is called a context ID of Z(i).

Any-Rank Attention is Contextual Mapping. Now we present the result showing that a softmax-
based 1-head, 1-layer attention block with any-rank weight matrices is a contextual mapping.
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Lemma 2.2 (Any-Rank Attention as a (γ, δ)-Contextual Mapping, modified from Theorem 2 of
(Kajitsuka and Sato, 2024)). Let Z(1), . . . , Z(N) ∈ Rd×L be embeddings that are (γmin, γmax, ϵ)-
tokenwise separated, with the vocabulary set V =

⋃
i∈[N ] V(i) ⊂ Rd. Additionally, assume no dupli-

cate word tokens in each sequence, i.e., Z(i)
:,k ̸= Z

(i)
:,l for any i ∈ [N ] and k, l ∈ [L]. Then, there exists

a 1-layer, single-head attention mechanism with weight matrices W (O) ∈ Rd×s and WV ,WK ,WQ ∈
Rs×d that serves as a (γ, δ)-contextual mapping for the embeddings Z(1), . . . , Z(N), where:
γ = γmax +

ϵ
4 , and δ = exp

(
−5ϵ−1|V|4dκγmax logL

)
, with κ := γmax/γmin.

Proof Sketch. We generalize (Kajitsuka and Sato, 2024, Theorem 2) where all weight matrices have
to be rank-1. We eliminate the rank-1 requirement by constructing the weight matrices as a outer
product sum

∑ρ
i uiv

⊤
i , where ui ∈ Rs, vi ∈ Rd. This extends (Kajitsuka and Sato, 2024, Theorem

2) holds for attention with weights of any rank. Please see Appendix D.1 for a detailed proof.

Lemma 2.2 indicates that any-rank self-attention function distinguishes input tokens Z(i)
:,k = Z

(j)
:,l

such that V(i) ̸= V(j). In other words, it distinguishes two identical tokens within a different context.
Remark 2.1 (Comparing with Existing Works). In comparison with (Kajitsuka and Sato, 2024),
they provide a proof for the case where all self-attention weight matrices WV ,WK ,WQ ∈ Rs×d are
strictly rank-1. However, this is almost impossible in practice for any pre-trained transformer-based
models. Here, by considering self-attention weight matrices of rank ρ where 1 ≤ ρ ≤ min(d, s), we
show that single-head, single-layer self-attention with matrices of any rank is a contextual mapping,
pushing the universality of (prompt tuning) transformers towards more practical scenarios.

Next, we utilize Lemma 2.2 to prove the universality and memory capacity of prompt tuning on
transformer networks with single layer self-attention.

2.3 UNIVERSALITY OF PROMPT TUNING T 1,1,4
A WITH O((1/ϵ)d(Lp+L)) FFN LAYERS

In this section, we prove the universality of prompt tuning by showing that there exists a simple
transformer of single-layer self-attention τ ∈ T 1,1,4

A such that for any fseq2seq ∈ FC , prompt
tuning on τ approximates this function up to some error ϵ > 0. Consider simple transformers
τ ∈ T 1,1,4

A consisting of a single-head, single-layer, size-one self-attention function f (SA) ∈ F (SA),
and O((1/ϵ)d(Lp+L)) feed-forward layers f (FF) ∈ F (FF), each with 4 MLP hidden neurons:

T 1,1,4
A := {τ : Rd×L 7→ Rd×L | τ = f

(FF)
ℓ1

◦ . . . ◦ f (FF)
1 ◦ f (SA) ◦ f (FF)

ℓ2
◦ . . . ◦ f (FF)

1 }. (2.4)

Proof Strategy. We employs a chained reduction of piece-wise constant approximations:

(A1) We start by quantizing the input and output domain of fseq2seq ∈ FC into a quantized function
f seq2seq : Gδ,L 7→ Gδ,L where Gδ,L = {0, δ, 2δ, . . . , 1 − δ}d×L. Here, f seq2seq,FC denote the
quantized function and function class. This is basically performing a piece-wise constant
approximation with bounded error δ.

(A2) Next, we construct a surrogate quantized sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L), where Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L).

Here hseq2seq takes prompts and embeddings Zp = [P,Z] as inputs. Crucially, its Lp-imputed
output approximates any f seq2seq ∈ FC by using various soft prompts P .

(A3) Finally, we show that there exist transformers τ ∈ T 1,1,4
A approximating hseq2seq to any precision.

By simple reduction from hseq2seq, f seq2seq and fseq2seq, we achieve the universality of prompt
tuning on T 1,1,4

A with O((1/ϵ)d(Lp+L)) FFN layers, where ϵ is the approximation error.

Remark 2.2. We remark that while (A1) shares some similarity with (Wang et al., 2023a) by the
nature of quantization approach to transformer’s universality (Yun et al., 2020), (A2) and (A3) differs
significantly in techniques and results. See the opening of this section for an overview.

For (A1) and (A2), we introduce the next lemma, showing the quantized f seq2seq is approximated by
Lp-imputed version of some quantized sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L), where Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L).
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Lemma 2.3 (Universality of Prompt Tuning Surrogate Function hseq2seq). Consider a C-Lipschitz
sequence-to-sequence function class FC , where each function fseq2seq : [0, 1]d×L → [0, 1]d×L.
There exists a sequence-to-sequence function hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) =

{0, δ, 2δ, . . . , 1 − δ}d×(Lp+L) such that, for any fseq2seq ∈ FC , we can find a prompt P ∈ Rd×Lp

that satisfies: dp
(
h([P, ·]):,Lp:, fseq2seq

)
≤ ϵ/2, where the prompt sequence length Lp ≥ Lλ, with

λ = (2ϵ−1C(dL)1/α)dL.

Proof Sketch. Our proof consists of three steps. Firstly, we approximate each function in FC by a
piece-wise constant function in FC . FC is constructed by quantizing the input and output domain of
FC . This gives us a function class of limited size, so that the further discussion is feasible. Secondly,
we construct a quantized prompt set P . We correspond each quantized function f

(i)
seq2seq ∈ FC to a

prompt P (i) ∈ P . Lastly, we build a sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L),

that takes a soft-prompt P and embeddings Z as input. Most importantly, this function
hseq2seq behaves like f

(i)
seq2seq when taking the corresponding prompt P (i). Namely, it satisfies

hseq2seq([P
(i), ·]):,Lp: = f

(i)
seq2seq(·). See Appendix E.1 for a detailed proof.

For (A3), we present the next lemma demonstrating that τ ∈ T 1,1,4
A approximates hseq2seq up to

any desired precision. The technical contribution involves using the contextual mapping property of
any-rank 1-layer, 1-head attention (Lemma 2.2) to preserve the piece-wise constant approximation.

Lemma 2.4 (Transformer τ ∈ T 1,1,4
A Approximate hseq2seq to Any Precision). For any given

quantized sequence-to-sequence function hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) =

{0, δ, 2δ, . . . , 1 − δ}d×(Lp+L), there exists a transformer τ ∈ T 1,1,4
A with positional embedding

E ∈ Rd×(Lp+L), such that τ = h([P, ·]):,Lp: .

Proof. See Appendix E.2 for a detailed proof.

Combining above leads to our main result: universality of prompt tuning a τ ∈ T 1,1,4
A transformer.

Theorem 2.3 (Prompt Tuning τ ∈ T 1,1,4
A Transformer is Universal Seq2Seq Approximator). Let

1 ≤ p < ∞ and ϵ > 0. There exists a transformer τ ∈ T 1,1,4
A with single self-attention layer, such

that for any fseq2seq ∈ FC there exists a prompt P ∈ Rd×Lp with dα
(
τ([P, ·]):,Lp , fseq2seq

)
≤ ϵ.

Proof Sketch. By Lemmas 2.3 and 2.4, we obtain a τ ∈ T 1,1,4
A , with soft-prompt P ∈ Gδ,Lp , such

that for any fseq2seq ∈ FC , dα
(
τ([P, ·]):,Lp:, fseq2seq

)
≤ ϵ. See Appendix E.3 for a detailed proof.

Intuitively, Theorem 2.3 indicates that even the simplest transformer with 1-head, 1-layer attention
has enough expressive power through prompt tuning to approximate any Lipschitz seq2seq function.

2.4 WIDTH-DEPTH TRADEOFF: UNIVERSALITY OF PROMPT TUNING T 1,1,r=O((1/ϵ)d(Lp+L))

ONLY NEEDS 2 FFN LAYERS

In Section 2.3, we achieve the universality of prompt tuning simple transformers with many FFN
layers. In this section, we explore the possibility of further simplify such transformer block by
reducing the number of FFN layers. Surprisingly, we show that 2 FFN layers are enough.

We start with the required number of FFN layers for τ ∈ T 1,1,4
A transformers to achieve universality

through prompt tuning. For clarity, we denote transformer of 4 MLP neurons by TA (i.e., (2.4)).

Lemma 2.5. (Required Number of FFN Layers) For a transformer τ ∈ T 1,1,4
A , defined in (2.4), to

be a universal approximator through prompt tuning, it requires O((1/ϵ)d(Lp+L)) FFN layers.
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Proof. See Appendix F.1 for a detailed proof.

Now, we prove the universality of prompt tuning on another simple transformer block with signifi-
cantly smaller FFN depth than T 1,1,4

A from Section 2.3. This suggests a trade-off between the depth
and width of the transformer. Let transformers τ ∈ T 1,1,r

B consist of a single-head, single-layer,
size-one self-attention f (SA) and 2 feed-forward layers, f (FF)

1 and f
(FF)
2 , each with r MLP hidden

neurons: T 1,1,r
B := {τ : Rd×L 7→ Rd×L | τ = f

(FF)
2 ◦ f (SA) ◦ f (FF)

1 }.

Proof Strategy. We follow a similar proof strategy as in Section 2.3. However, this section differs
as we use the construction technique from (Kajitsuka and Sato, 2024) to build a transformer with
single-head, single-layer, size-one self-attention, and two FFN layers. This outcome is achieved by
summing multiple shifted ReLU functions to map the inputs to the desired outputs with precision
guarantees. Additionally, this approach allows for a reduction in the number of FFN layers by
compensating with an increase in the number of neurons in the MLP.

Theorem 2.4 (Prompt Tuning Transformers with Single-Head, Single-Layer Attention and Two
Feed-Forward Layers). Let 1 ≤ p < ∞ and ϵ > 0. There exists a transformer τ ∈ T 1,1,r

B with a
single self-attention layer and r = O

(
(1/ϵ)d(Lp+L)

)
MLP neurons, such that for any fseq2seq ∈ FC ,

there exists a prompt P ∈ Rd×Lp satisfying: dp
(
τ([P, ·]):,Lp

, fseq2seq
)
≤ ϵ.

Proof. See Appendix F.2 for a detailed proof.

2.5 MEMORY CAPACITY OF PROMPT TUNING

Based on our universality results, we show the memory capacity of prompt tuning on simple trans-
former networks with single head single layer self attention. We start with definition.

Definition 2.7 (Prompt Tuning Memorization). Given a dataset S = {(X(i), Y (i))}Ni=1 with
X(i), Y (i) ∈ Rd×L, a pretrained transformer τ ∈ T memorizes S through prompt tuning if there
exists a prompt P ∈ Rd×Lp such that: maxi∈[N ]

∥∥τ([P,X(i)]):,Lp − Y (i)
∥∥
α
≤ ϵ for all i ∈ [N ].

We now prove the existence of a transformer τ ∈ T 1,1,r
B that memorizes any dataset S through prompt

tuning. This result is easy to extend to transformers τ ∈ T 1,1,4
A .

Theorem 2.5 (Memorization Capacity of Prompt Tuning). Consider a dataset S = {(X(i), Y (i))}Ni=1,
where X(i), Y (i) ∈ [0, 1]d×L. Assume the coresponding embedding sequences Z(1), . . . , Z(N) are
generated from a C-Lipschitz function. Then, there exists a single-layer, single-head attention
transformer τ ∈ T 1,1,r

B with r = O
(
(1/ϵ)d(Lp+L)

)
and a soft-prompt P ∈ Rd×Lp such that, for any

i ∈ [N ]:
∥∥τ([P,Z(i)]):,Lp

− Y (i)
∥∥
α
≤ ϵ, where Lp ≥ Lλ, with λ =

(
2ϵ−1C(dL)1/α

)dL
.

Proof Sketch. We first find the underlying sequence-to-sequence function of the dataset S, which is
f⋆

seq2seq : [0, 1]d×L 7→ [0, 1]d×L, such that for any i ∈ [N ], f⋆
seq2seq

(
Z(i)

)
= Y (i). Next, we complete

the proof by utilizing the results of Theorem 2.4 to construct a transformer τ ∈ T 1,1,r
B that is capable

of approximating f⋆
seq2seq through prompt tuning. See Appendix G.1 for a detailed proof.

Remark 2.3. Theorem 2.5 shows that a carefully constructed simple transformer is capable of
memorizing any dataset through prompt tuning. In contrast, (Wang et al., 2023a, Theorem 3) is
limited to datasets with only two tokens per example and defines memorization as memorizing only
the last token. Additionally, we provide a lower bound on the prompt sequence length required to
memorize any dataset, based on its dimensions and the desired accuracy.
Remark 2.4. In (Wang et al., 2023a, Theorem 2), they construct a dataset and prove it to be
unmemorizable by prompt tuning on a transformer with single-layer self-attention. However, their
case differs as they require full-rank self-attention weight matrices and a specific form for the feed-
forward layer. They design the dataset by exploiting the invertibility of the weight matrices and using
a weak feed-forward layer, preventing the transformer from mapping contextual embeddings to the
correct labels. We discuss these limitations in the expressive power of prompt tuning in Appendix I.
In contrast, we prove that a transformer with single-layer self-attention and weight matrices of any
rank is capable of achieving memorization through prompt tuning.
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3 COMPUTATIONAL LIMITS OF PROMPT TUNING

We analyze the computational limits of inference of prompt tuning Problem 1 using fine-grained
complexity theory. Specifically, recall that Xp = [P,X] ∈ Rd×(Lp+L) with Qp = WQXp ∈
Rd×(Lp+L), Kp = WKXp ∈ Rd×(Lp+L), and Vp = WKXp ∈ Rd×(Lp+L). We study approximate
prompt tuning inference with precision guarantees under δF = 1/poly(Lp + L).

Problem 1 (Approximate Prompt Tuning Inference APTI). Let δF > 0 and B > 0. Given
Qp,Kp, Vp ∈ Rd×(L+Lp) with guarantees that max{∥Qp∥max, ∥Kp∥max, ∥Vp∥max} ≤ B,
we aim to study an approximation problem APTI(d, L, Lp, B, δF ), aiming to approximate
Vp Softmax

(
KT

p Qp

)
with a matrix Z̃ such that ∥Z̃ − Vp Softmax

(
KT

p Qp

)
∥max ≤ δF . Here,

for a matrix M ∈ Ra×b, we write ∥M∥max := maxi,j |Mi,j |.

3.1 PRELIMINARIES: STRONG EXPONENTIAL TIME HYPOTHESIS (SETH)
Our hardness results are built on a common conjecture. Impagliazzo and Paturi (2001) introduce the
Strong Exponential Time Hypothesis (SETH) as a stronger form of the P ̸= NP conjecture. It suggests
that our current best SAT algorithms are optimal and is a popular conjecture for proving fine-grained
lower bounds for a wide variety of algorithmic problems (Cygan et al., 2016; Williams, 2018).

Hypothesis 1 (SETH). For every ϵ > 0, there is a positive integer k ≥ 3 such that k-SAT on formulas
with n variables cannot be solved in O(2(1−ϵ)n) time, even by a randomized algorithm.

Below, we rely on SETH to facilitate the fine-grained reduction for lower bound result (Theorem 3.1).

3.2 EFFICIENCY CRITERION FOR PROMPT TUNING INFERENCE

We answer Question 2 affirmatively by identifying a phase transition behavior in the efficiency of all
possible algorithms for Prompt Tuning Inference problem APTI (Problem 1), based on on the norm
of Qp = WQXp, Kp = WKXp, and Vp = WV Xp with Xp = [P,X] ∈ Rd×(Lp+L).

Theorem 3.1 (Norm-Based Efficiency Phase Transition). Let ∥Qp∥max ≤ B, ∥Kp∥max ≤ B and
∥Vp∥max ≤ B with B = O(

√
log(Lp + L)). Assuming Hypothesis 1, for every q > 0, there are

constants C,Ca, Cb > 0 such that: there is no O((Lp + L)2−q)-time (sub-quadratic) algorithm for
the problem APTI(L,Lp, d = C log(Lp + L), B = Cb

√
log(Lp + L), δF = (Lp + L)−Ca).

Proof Sketch. Our proof strategy involves connecting APIT to the hardness of attention inference
(ATTC in (Alman and Song, 2023)) via a straightforward reduction. We achieve this by establishing a
correspondence between APIT and ATTC, then applying a reduction with tighter error bounds using
prompt tuning imputation (i.e.,

∣∣[·]:, Lp :
∣∣
max

≤ ∥·∥max). See Appendix H.1 for a detailed proof.

Remark 3.1. Theorem 3.1 suggests an efficiency threshold for the upper bound of ∥Qp∥max,
∥Kp∥max, ∥Vp∥max: B = O(

√
log(Lp + L)). Only below this threshold are efficient algorithms for

Problem 1 possible , i.e. solving APIT in (Lp + L)2−Ω(1) (sub-quadratic) time is possible.

3.3 PROMPT TUNING CAN BE AS FAST AS ALMOST-LINEAR TIME

We answer Question 3 affirmatively by proving the existence of almost-linear time efficient algorithms
for Prompt Tuning Inference problem APTI (Problem 1) based on low-rank approximation.

Theorem 3.2 (Almost-Linear Prompt Tuning Inference). The prompt tuning inference problem
APTI(L,Lp, d = O(log(Lp + L)), B = o(

√
log(Lp + L)), δF = 1/poly(Lp + L)) can be solved

in time Tmat((Lp + L), (Lp + L)o(1), d) = (Lp + L)1+o(1).

Proof Sketch. We prove this using low-degree polynomial approximation of transformer attention.
Consider a matrix A ∈ Rp×q and a function f : R → R. We define f(A) : Rp×q → Rp×q as
the matrix obtained by applying f to each entry of A. The goal of the polynomial method is to
identify a low-rank approximation of f(A). This method is effective if A has a low rank and f can
be closely approximated by a low-degree polynomial, allowing f(A) to also be represented as a
low-rank matrix. This low-rank approximation can be efficiently computed in nearly-linear time using
its low-rank decomposition (Hu et al., 2024b; Alman and Song, 2023; Aggarwal and Alman, 2022).
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Alman and Song (2023) provide bounds on the polynomial degrees necessary for approximating
softmax attention with low rank. Utilizing these results and the structural properties of prompt tuning
imputation (i.e.,

∥∥[·]:,Lp:

∥∥
max

≤ ∥·∥max), we construct a low-rank approximation for the prompt
tuning inference problem APTI. See Appendix H.2 for detailed proof.

Theorem 3.2 provides a formal example of the efficient criterion Theorem 3.1 for APTI using low-rank
approximation within a controllable approximation error. This is applicable under Theorem 3.1 when
the efficiency criterion is met. Specifically, to achieve nearly-linear (Lp + L)1+o(1) time prompt
tuning inference with bounded error ϵ = 1/poly(Lp + L), we require B = o(

√
log (Lp + L)).

4 DISCUSSION AND CONCLUDING REMARKS

We study the fundamental limits of prompt tuning transformer-based pretrained models (i.e., foun-
dation models) in two aspects: statistical and computational. Statistically, we show the universality
of prompt tuning transformer models with 1-head, 1-layer attention layers (Theorem 2.3 and Theo-
rem 2.4). Recall that d is the token dimension, L is the input sequence length, Lp is the soft-prompt
length, and ϵ is the approximation error. Our results significantly relax previous requirements for thick
layers, reducing from (Lp + L)(1/ϵ)d layers to 1 attention layer, and from O((1/ϵ)d(Lp+L)) layers
to 2 FFN layers for prompt tuning universality. In addition, we prove the memorization capacity of
prompt tuning and derive an exponential-in-dL and -in-1/ϵ lower bound on required soft-prompt
tokens (Theorem 2.5). Different from (Wang et al., 2023a) where the analysis of capacity is solely
on datasets of two-token sequences and focuses on only memorizing the last token, we demonstrate
a complete memorization of prompt tuning on any general dataset. Computationally, we establish
an efficient criterion of all possible prompt tuning inference for the norm of soft-prompt induced
keys and queries (Theorem 3.1). In addition, we showcase our theory by proving the existence of
nearly-linear time prompt tuning algorithms (Theorem 3.2).

Practical Implications from Statistical Limits (Section 2). We analyze the universality of prompt
tuning transformers with minimal structures, and its memorization capacity on general datasets.

• Universality (Theorem 2.4). Our results show that the universality of prompt tuning pretrained
transformer is achievable on as simple as a single-layer, single-head attention transformers. This
demonstrates that universality in prompt-tuning isn’t limited to large, complex foundation models.

• Width-Depth Tradeoff (Section 2.4). Our results highlight a trade-off in the design choices for
the depth and width of FFN (MLP) layers: (i) O((1/ϵ)d(L+Lp) FFN layers of width 4 or (ii) 2 FFN
layers of width O((1/ϵ)d(L+Lp). In practice, (i) and (ii) differ in memory usage, parallelization,
and optimization preferences, leading to distinct application scenarios.

• Memorization (Section 2.5). Our memorization results apply to general datasets, whereas prior
results are limited to specialized cases. This makes our results go beyond specialized theoretical
analysis and align more with practical applications with a suggested long soft-prompt length.

Practical Implications from Computational Limits (Section 3). We analyze the O(L2) bottleneck
of prompt tuning transformers and provides useful guidance for designing efficient prompt tuning
(approximation) methods with precision guarantees. Let Qp = WQXp, Kp = WKXp, and Vp =

WV Xp with Xp = [P,X] ∈ Rd×(Lp+L). Here L and Lp are the input and soft-prompt length.

• Self- and Cross-Attention. Our computational results apply to both self-attention and
cross-attention prompt tuning. This is because the norm bound conditions depend on
max{|Qp|, |Kp|, |Vp|}, which are valid for both self- and cross-attention inputs.

• Necessary Conditions for Subquadratic Prompt Tuning (Theorem 3.1). Our result suggests
proper normalization on soft-prompt and weight matrices are required to ensure subquadratic
prompt tuning inference, i.e., max{∥Qp∥max, ∥Kp∥max, ∥Vp∥max} ≤ O(

√
log(Lp + L)).

• Necessary Conditions for Almost Linear Time Prompt Tuning (Theorem 3.2). Our result sug-
gests more strict normalization on soft-prompt and weight matrices are required to ensure almost lin-
ear time prompt tuning inference, i.e., max{∥Qp∥max, ∥Kp∥max, ∥Vp∥max} ≤ o(

√
log(Lp + L)).

Suitable normalizations for the above can be implemented using pre-activation layer normalization
(Xiong et al., 2020; Wang et al., 2019) to control ∥Xp∥max, or outlier-free attention activation
functions (Hu et al., 2024a) to control ∥WK∥max, ∥WQ∥max, ∥WV ∥max.
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A RELATED WORKS, LIMITATIONS AND BROADER IMPACT

A.1 RELATED WORKS

Context-based Fine-tuning and Soft-prompt Tuning. Recently, resource-efficient fine-tuning
strategies (Ding et al., 2023; 2022), such as LoRA (Pan et al., 2024; Hayou et al., 2024; Hu et al.,
2024c; 2022), emerge as powerful alternatives to conventional full fine-tuning. In contrast, context-
based fine-tuning techniques, like hard-prompt tuning (Wen et al., 2024), in-context learning (Xu
et al., 2024; Shi et al., 2024; Wei et al., 2023; Dong et al., 2022; Brown et al., 2020), and prefix-tuning
(Liang et al., 2024; Li and Liang, 2021), adapt pretrained models to specific tasks without modifying
underlying model parameters (Brown et al., 2020; Li and Liang, 2021; Liu et al., 2022). One of the
most effective methods is soft-prompt tuning (Liu et al., 2023), which uses real-valued embeddings
to guide model outputs. This approach leverages the expressive power of continuous spaces to
fine-tune responses, avoiding extensive parameter updates and making it both efficient and less
resource-intensive than traditional fine-tuning methods (Lester et al., 2021; Liu et al., 2022).

Universality of Transformers. The universality of transformers refers to their ability to serve
as universal approximators. This means that transformers theoretically models any sequence-to-
sequence function to a desired degree of accuracy. Yun et al. (2020) show that transformers universally
approximate sequence-to-sequence functions by stacking numerous layers of feed-forward functions
and self-attention functions. In a different approach, Jiang and Li (2023) affirm the universality
of transformers by utilizing the Kolmogorov-Albert representation Theorem. Furthermore, Alberti
et al. (2023) demonstrate universal approximation for architectures that incorporate non-standard
attention mechanisms. Most recently, Kajitsuka and Sato (2024) show that transformers with one
self-attention layer is a universal approximator. Of independent interest, recent work by Havrilla and
Liao (2024) examines the generalization and approximation of transformers under Hölder smoothness
and low-dimensional subspace assumptions.

Our paper is motivated by and builds upon works of Yun et al. (2020); Kajitsuka and Sato (2024).
Specifically, we study the universality of prompt tuning transformers using the analysis framework
by Yun et al. (2020). Furthermore, we extend the contextual mapping property of 1-rank attention
by Kajitsuka and Sato (2024) to any-rank attention. This allows us to establish the universality of
prompt tuning transformers in the simplest configuration — single-layer, single-head attention.

Analysis on Prompt Tuning. Prompt tuning has been successful in various applications. However,
the theoretical analysis of it is less developed. Petrov et al. (2023) discuss different kinds of context-
based learning, and experimentally show when prompt tuning is successful in adapting to new tasks.
In this work, we tackle the prompt tuning problem from a theoretical perspective. Oymak et al. (2023)
identify the cases where attention layer with prompt tuning is more expressive than a self-attention
layer. They utilize prompt tokens dependent to weight matrices. In addition, they require weight
matrices to be full rank. Conversely, our study explores the expressive power of prompt tuning
under more general conditions, without relying on such assumptions. Wang et al. (2023a) show
the universality of prompt tuning transformers with an increasing number of layers in proportion
to the input data dimension and the quantization grid. Petrov et al. (2024) prove the universality of
prompt tuning on transformers with the number of layers linear in the input sequence length. Liang
et al. (2024) study the convergence guarantee for prompting tuning with ultra-long soft-prompt in the
Neural Tangent Kernel region (NTK). On the other hand, we focus on approximation and computation
properties of prompt tuning transformers with single-layer-single-head self-attention.

Our work is most similar to (Wang et al., 2023a), as both quantize the input and output domains of
sequence-to-sequence functions to establish universality. However, this work differs in three aspects.
First, while Wang et al. (2023a) require transformers with a number of layers proportional to the
input data dimension and two attention heads, we demonstrate the universality of prompt tuning with
the simplest transformer: a single-layer, single-head attention transformer. Second, we present the
first study to show complete data memorization through prompt tuning, providing a lower bound on
the required soft-prompt tokens for a single-layer, single-head transformer to memorize any dataset.
Lastly, we provide the first comprehensive analysis of the computational limits, proving the existence
of nearly-linear time prompt tuning inference algorithms.
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Memory Capacity of Transformer. Even though there has not been much analysis on the memory
capacity of prompt tuning, there are many work on the memorization of transformers itself. Kim et al.
(2022) prove 2n self-attention blocks are sufficient for the memorization of finite samples, where
n denotes the sequence length of data. Mahdavi et al. (2023) show that a multi-head-attention with
h heads is able to memorize O(hn) examples. Kajitsuka and Sato (2024) prove the memorization
capacity for a single layer transformer. They demonstrate that for N sequence-to-sequence data
examples, each with dimension d × n, the number of parameter required for memorization is
O(nNd+d2). Another area of research introduces a distinct type of memory capacity for transformers
by linking transformer attention mechanisms with dense associative memory models, specifically
modern Hopfield networks (Bietti et al., 2024; Hu et al., 2024a;b;d; 2023; Wu et al., 2024a;b;
Ramsauer et al., 2020).

The closest work to ours is (Wang et al., 2023a), where they discuss the required prompt tokens for
prompt tuning on memorizing a special sequence-to-sequence dataset. In the special dataset, the
examples are required to have exactly two tokens each. In addition, they discussed the memorization
of only the last token of each data sequence. In contrast, we provide the first analysis on general
cases where prompt tuning memorizes the whole sequence for each examples in a general dataset
with no assumption on the data. In addition, our work is the first to provide the lower bound on the re-
quired soft-prompt tokens for memorization.

A.2 LIMITATIONS AND BROADER IMPACT

Limitations. By the formal nature of this work, our results do not lead to practical implementations.
However, we anticipate that our findings will offer valuable insights for future prompt tuning methods.

Moreover, our memorization findings indicate an exponential dependence on the data sequence
length L and approximation precision 1/ϵ. Although resource-efficient, this exponential dependence
implies that prompt tuning pretrained transformers may not be an optimal method for encoding or
memorizing information. This leads to two fundamental possibilities:

• While not investigated in this work, there may be an information-theoretic lower bound that
highlights the limitations of our current memory capacity results for prompt tuning.

• If we prove that no upper bound can match this lower bound, it would reveal a fundamental
limitation of prompt tuning: it is not an information-efficient learning method (or machine).

We plan to investigate these issues in future work.

Broader Impact. This theoretical work aims to shed light on the foundations of large transformer-
based models and is not expected to have negative social impacts.
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B ADDITIONAL THEORETICAL RESULTS: UNIVERSALITY OF TRANSFORMERS
WITH 1-LAYER, 1-HEAD ATTENTION WITH ANY-RANK WEIGHT MATRICES

Lemma 2.2 shows that any-rank single-layer, single-head attention is contextual mapping. A direct
consequence is the universality of transformers with 1-layer, 1-head, any-rank self-attention following
Kajitsuka and Sato (2024). We believe this result may be of independent interest.

Theorem B.1. Let 1 ≤ α < ∞ and ϵ > 0. For any fseq2seq ∈ FC , there exists a transformer with
single-layer, single-head attention and any-rank weight matrices τ ∈ T 1,1,4

A (or τ ∈ T 1,1,r
B with

r = O((1/ϵ)dL)) with positional embedding E ∈ Rd×L such that dα (τ, fseq2seq) ≤ ϵ.

Proof Sketch. This proof is inspired by (Yun et al., 2020) and similar to the proof of Lemma E.2.

There are mainly three steps:

1. Given an input data X ∈ Rd×L, we first apply positional encoding E, which is given as

E =


0 1 2 . . . L− 1
0 1 2 . . . L− 1
...

...
...

. . .
...

0 1 2 . . . L− 1

 .

Then a series of feed-forward layers in the modified Transformer network quantizes X + E to a
quantized sequence M ∈ Gδ,L. Here, we define the grid

Gδ,L := [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [L− 1 : δ : L− δ]d,

where [a : ε : b] := {a, a+ ε, a+ 2ε, . . . , b− ε, b}. Note that with the positional encoding, our
contextual mapping through self-attention won’t be limited to permutation equivalent functions.

2. Next, by utilizing Lemma 2.2, the single self-attention layer in the modified transformer takes the
input M and implements a contextual mapping q : Rd×L 7→ Rd×L.

3. Finally, a series of feed-forward layers map elements of the contextual embedding q(M) to the
desired output value of fseq2seq(X).

We remark that Step 2 distinguishes us from prior works by utilizing the fact that any-rank attention
is a contextual mapping Lemma 2.2. This improves the result of (Kajitsuka and Sato, 2024), which
requires an attention layer of rank one.

Proof of Theorem B.1. First, we apply the positional encoding E ∈ Rd×L on the input sequence
X ∈ Rd×L, so that each token has a different domain. The positional encoding E is given as

E =


0 1 2 . . . L− 1
0 1 2 . . . L− 1
...

...
...

. . .
...

0 1 2 . . . L− 1

 .

We next use feed-forward layers f (FF) to implement a quantization map to quantize the input X +E
in to its discrete version M ∈ Gδ,L . The grid Gδ,L is defined as

Gδ,L := [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [L− 1 : δ : L− δ]d,
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where [a : ε : b] := {a, a+ ε, a+ 2ε, . . . , b− ε, b}. Note that the first column of X +E is in [0, 1]d,
the second is in [1, 2]d, and so on. Here, we write the quantization mapping as

[0, 1]d × · · · × [L− 1, L]d 7→ [0 : δ : 1− δ]d × · · · × [L− 1 : δ : L− δ]d.

Inspired by the construction recipe by (Yun et al., 2020), this task is realized by dL/δ feed-forward
layers. We add dL/δ layers of f (FF) with the following form, for k = 0, δ, . . . , L−δ and i = 1, . . . , d
:

Z 7→ Z + e(i)ϕ

((
e(i)
)T

Z − kδ1T
n

)
, ϕ(t) =

{
0 t < 0 or t ≥ δ

−t+ 1 0 ≤ t < δ
, (B.1)

where e(1) = (1, 0, 0, ..., 0) ∈ Rd and ϕ(t) ∈ Φ is an entrywise function, where the set of activation
functions Φ consists of all piece-wise linear functions with at least one piece being constant and at
most three pieces. Furthermore, any activation function ϕ ∈ Φ is realized by 4 MLP neurons. Each
layer in the form of (B.1) quantizes Xi,: (the i-th row) in [kδ, kδ + δ) to kδ. We denote output after
the feed-forward layers as M ∈ Gδ,L.

Next, in order to utilize Lemma 2.2, we observe that the quantized output M from the previous step
has no duplicate tokens, since each column has a unique domain. Also, we see that M is token-wise(√

d,
√
d(L− δ),

√
dδ
)

-separated. This is easily observed as we have, for any k, l ∈ L,

∥M:,k∥ >
√
d,

∥M:,k∥ <
√
d(L− δ),

∥M:,k −M:,l∥ >
√
dδ.

As a result, with Lemma 2.2, we arrive at a (Γ,∆)-contextual mapping q : Rd×L 7→ Rd×L where

Γ =
√
d(L− δ) +

√
dδ

4
=

√
d(L− 3δ

4
),

∆ = exp
(
−5|V|4d ln(n)L2/δ

)
.

Now we have successfully mapped each input sequence X + E to unique contextual embeddings
q(M) ∈ Rd×L. We next associate each unique embeddings to a corresponding expected output of
fseq2seq(X).

We use feed-forward layers to map each token of q(M) to the desired [0, 1]d. As in (Yun et al.,
2020, C.3), with a method similar to (B.1), we need one layer for each unique value of q(M) for
each M ∈ Gδ,L. There are in total (1/δ)dL possibilities of M and each corresponds to some output
of hseq2seq([P, ·]). Since we only focus on the last L tokens of output, we require O

(
L(1/δ)dL

)
=

O
(
δ−dL

)
layers to map these distinct numbers to expected outputs.

This completes the proof for transformers τ ∈ T 1,1,4
A . The proof for transformers τ ∈ T 1,1,r

B follows
the same recipe, and we refer to the proof of Lemma F.2 for details.
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C BACKGROUND: BOLTZMANN OPERATOR AND ATTENTION MECHANISM

Here, we present some auxiliary definitions and lemmas to prepare our proofs.

To demonstrate that a single-layer self-attention mechanism with matrices of any rank acts as a
contextual map, we follow (Kajitsuka and Sato, 2024; Asadi and Littman, 2017). Specifically, we
utilize the connection between self-attention mechanisms and the Boltzmann operator Boltz.

In this section, we introduce non-original but still necessary auxiliary lemmas. We defer the proofs to
Appendix J for completeness. Below, we start with the definition of the Boltzmann operator Boltz.

Boltzmann Operator. Following (Asadi and Littman, 2017; Kajitsuka and Sato, 2024), we associate
the Softmax function with the Boltzmann operator Boltz defined below:

Definition C.1 (Softmax and Boltz). Let z = (z1, . . . , zn) ∈ Rn and the function Softmax : Rn →
Rn operate element-wise: Softmax (z)i = exp (zi) /

∑n
j=1 exp (zj). Denote p = (p1, . . . , pn) :=

Softmax (z) ∈ Rn with pi = Softmax (z)i. The Boltzmann operator Boltz : Rn 7→ R is defined as

Boltz(z) = z⊤ Softmax(z) = z⊤p =

n∑
i=1

zipi. (C.1)

To give a brief overview to this section, in Appendix C.1, we first introduced the essential properties
of Boltz. Next, in Appendix C.2, we utilized these properties to further illustrate the Boltz operator’s
ability to maintain the separation between inputs.

In the following, we present the essential properties of Boltz in Appendix C.1.

C.1 ESSENTIAL PROPERTIES OF BOLTZMANN OPERATOR

Before characterizing the Boltzmann operator Boltz, we introduce some useful functions and essential
properties of Boltz from (Kajitsuka and Sato, 2024) to facilitate our proofs.

We first recall the partition function and the (Gibbs) entropy function from statistical physics,

Z(z) =

n∑
i=1

exp(zi), and S(p) = −
n∑

i=1

pi ln(pi). (C.2)

Then, the next lemma presents the relation between the Boltzmann operator Boltz, partition function
Z and entropy S.

Lemma C.1 (Boltz,Z and S). With the definitions given above and a vector z = (z1, . . . , zn) ∈ Rn,
the Boltzmann operator Boltz also takes the form

Boltz(z) = −S(p) + lnZ(z).

Proof. See Appendix J.1 for a detailed proof.

Next, we recall that Boltz decreases monotonically when the maximum entry is sufficiently distant
from the other entries.

Lemma C.2 (Monotonically Decrease, Lemma 4 of (Kajitsuka and Sato, 2024)). Given a vector
z = (z1, . . . , zn) ∈ Rn, the Boltzmann operator Boltz(z) monotonically decreases in the direction
of zi when maxj∈[n] zj − zi > lnn+ 1, that is,

∂

∂zi
Boltz(z) = pi (1 + ln pi + S(p)) < 0.

Proof. See Appendix J.2 for a detailed proof.
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The next lemma shows the concavity of Boltz when the max entry and the rest of the entries are
distant enough.

Lemma C.3 (Concave, Lemma 5 of (Kajitsuka and Sato, 2024)). Given a vector z = (z1, . . . , zn) ∈
Rn, the Boltzmann operator Boltz(z) is concave with respect to zi when maxj∈[n] zj−zi > lnn+3,
that is,

∂2

∂z2i
Boltz(z) < 0.

Proof. See Appendix J.3 for a detailed proof.

To ease the later calculation and better understand the characteristics of the Boltzmann operator, the
next lemma shows the bounds of the output of Boltz when given inputs with certain constraints.

Lemma C.4 (Lower Bound of Boltz with (δ)-Separated Input). Given a tokenwise (δ)-separated
vector z = (z1, . . . , zn) ∈ Rn with n ≥ 2 and δ > lnn+ 1. Also let the entries of z be sorted in a
decreasing order with no duplicate entry, that is, for any i, j ∈ [n], i < j ,

zi − zj > δ.

Then Boltzmann operator Boltz(z) is lower bounded by

Boltz(z) > Boltz(z′)

where z′ = (z1, z1 − δ, . . . , z1 − δ) .

Proof. See Appendix J.4 for a detailed proof.

Next, we present another property of Boltz, which states that when two vectors share the same first n
entries but differ in dimension, the output of Boltz for the lower-dimensional vector will be larger.

Lemma C.5 (Boltz Value Comparison). Given two tokenwise (δ)-separated vectors z =
(z1, . . . , zn) ∈ Rn, z′ = (z′1, . . . , z

′
m) ∈ Rm with m > n ≥ 2 and δ > lnn + 1. Also let the

entries of z, z′ be sorted in a decreasing order with no duplicate entry. In addition, let the first n
entries of z′ be z , that is,

(z′1, . . . , z
′
n) = z.

Then, we have

Boltz(z) > Boltz(z′).

Proof. See Appendix J.5 for a detailed proof.

With a solid understanding of Boltz established, we leverage its properties to demonstrate that Boltz
preserves the separation between two distinct input tokens.

C.2 DISTANCE PRESERVATION OF BOLTZMANN OPERATOR

In this section, by utilizing the above properties, we show that when given well separated input
tokens, the output of Boltz is also separated. We start by examining specific cases with more stringent
constraints on the inputs, and subsequently expand our discussion to more general scenarios.

We first discuss the case when the two input vector has no same entries.
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Lemma C.6 (Input of Complete Different Entries, Lemma 7 of (Kajitsuka and Sato, 2024)). Let
n ≥ 2 and consider two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. In addition, assume the
following conditions hold:
• Decreasing order entries: The entries of a and b are sorted in strictly decreasing order,

a1 > a2 > · · · > an and b1 > b2 > · · · > bn.

• Tokenwise (δ)-separateness: For any i, j ∈ [n], if ai ̸= bj

|ai − bj | > δ,

and if i < j,

ai − aj > δ,

bi − bj > δ,

where δ ≥ 4 lnn.

• Initial dominance: The largest element in ais strictly greater than the largest element in b,

a1 > b1.

Under these assumptions, we have

Boltz(a)− Boltz(b) > (lnn)2e−(a1−b1).

Proof Sketch. To find the lower bound of Boltz(a) − Boltz(b), we first find some lower bound of
Boltz(a) and some upper bound of Boltz(b) that ease the computation. From Lemma C.4, we have
that Boltz(a) > Boltz(a′) where a′ = (a1, a1 − δ, . . . , a1 − δ) . In addition, by definition of Boltz
the upper bound of Boltz(b) is Boltz(b) ≤ b1 . As a result, we evaluate Boltz(a′)− b1 to complete
the proof. See Appendix J.6 for a detailed proof.

Next, we show that when two inputs are different only by one last entry, their Boltz outputs are still
different with a certain distance.
Lemma C.7 (Input of One Entry Difference, Lemma 6 of (Kajitsuka and Sato, 2024)). Consider
n ≥ 2, and two vectors a = (a1, . . . , an−1, an), b = (b1, . . . bn−1, bn) ∈ Rn. In addition, assume
the following conditions hold:
• Identical first n− 1 entries: The first n− 1 entries of a is the same as b,

ai = bi∀i ∈ [n− 1].

• Strict inequality for last entry: The last entry of a is strictly greater than that of b,

an > bn.

• Well separated: The last entry an is sufficiently smaller than the maximum of the first n− 1 entries
of a,

max
i∈[n−1]

ai − an > lnn+ 3.

Then the difference of Boltz(a) between Boltz(b) is lower bounded as

Boltz(b)− Boltz(a) > (an − bn) (δ + an − bn − lnn− 1) · ebn∑n
i=1 e

bi
.
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Proof. See Appendix J.7 for a detailed proof.

Now, we consider a more general case, where the top k entries are the same.

Lemma C.8 (Input of Matching Top k Entries, Lemma 7 of (Kajitsuka and Sato, 2024)). Let
n ≥ 2 and consider two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. In addition, assume the
following conditions hold:
• Decreasing order entries: The entries of a and b are sorted in strictly decreasing order,

a1 > a2 > · · · > an and b1 > b2 > · · · > bn.

• Tokenwise (δ)-separateness: For any i, j ∈ [n], if ai ̸= bj

|ai − bj | > δ,

and if i < j,

ai − aj > δ,

bi − bj > δ,

where δ ≥ 4 lnn.

• Identical first k entries: Let a, b have the same top-k entries for k ∈ [n− 1], which is

(a1, . . . , ak) = (b1, . . . , bk)

• (k + 1)-th dominance: The largest element in ais strictly greater than the largest element in b,

ak+1 > bk+1.

Under these assumptions, we have

|Boltz(a)− Boltz(b)| > ln2(n) · e−(a1−bk+1).

Proof Sketch. As the top-k entries of a, b are the same, and all entries are (δ)-separated while sorted
in a decreasing order, when ak+1 > bk+1, we have

Boltz(b) > Boltz(a).

To understand the intuition behind this, first recognize that Boltz calculates a weighted sum of
elements, assigning higher weights to larger entries. Additionally, the total sum of all weights equals
one. Consequently, when all entries are distinct and arranged in descending order, a larger (k + 1)-th
entry, shares more weight from the top k greatest terms, compared to a smaller (k + 1)-th entry. This
results in a lower weighted sum.

Next, we compute the value of Boltz(b)−Boltz(a). By Lemma C.5, we have that Boltz(a) is upper
bounded by Boltz(aup), where

aup = (a1, a2, . . . , ak, ak+1) .

Also, similar to Lemma C.4, Boltz(b) is lower bounded by Boltz(blo), where

blo = (a1, a2, . . . , ak, bk+1, bk+1, . . . , bk+1) .

Computing Boltz(blo)−Boltz(aup) is easier than directly calculating Boltz(b)−Boltz(a) as we are
able to decompose Boltz(blo) and utilize Lemma C.7 to arrive at the final bound. See Appendix J.8
for a detailed proof.
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Finally, by utilizing the results above, we show that the Boltzmann operator is a mapping that projects
input sequences to scalar values while preserving some distance.

Lemma C.9 (Boltz Preserves Distance, Lemma 1 of (Kajitsuka and Sato, 2024)). Given (γ, δ)-
tokenwise separated vectors z(1), . . . , z(N) ∈ Rn with no duplicate entries in each vector, that
is

z(i)s ̸= z
(i)
t ,

where i ∈ [N ] and s, t ∈ [n], s ̸= t. Also, let

δ ≥ 4 lnn.

Then, the outputs of the Boltzmann operator are (γ, δ′)-separated:∣∣∣Boltz(z(i))∣∣∣ ≤ γ, (C.3)∣∣∣Boltz(z(i))− Boltz
(
z(j)
)∣∣∣ > δ′ = ln2(n) · e−2γ (C.4)

for all i, j ∈ [N ], i ̸= j.

Proof. See Appendix J.9 for a detailed proof.

We have now established that the Boltz operator has the property of preserving the distances between
inputs.
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D PROOFS OF SECTION 2.2

In this section, by relating Softmax with Boltz, we show that the one layer of single head self-
attention with weight matrices of any rank is a contextual mapping.

We first introduce a helper lemma.

Lemma D.1 (Lemma 13 of (Park et al., 2021)). For any finite subset X ⊂ Rd, there exists at least
one unit vector u ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥ ≤

∣∣u⊤ (x− x′)
∣∣ ≤ ∥x− x′∥

for any x, x′ ∈ X .

Proof. See Appendix J.10 for a detailed proof.

D.1 PROOFS OF LEMMA 2.2

With Lemma D.1, we develop a method to configure weight matrices of a self-attention layer.

Lemma D.2 (Construction of Weight Matrices). Given a dataset with a (γmin, γmax, ϵ)-separated
finite vocabulary V ⊂ Rd, there exist rank-ρ weight matrices WK ,WQ ∈ Rs×d such that∣∣∣(WKva)

⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ,

for any δ > 0, any min (d, s) ≥ ρ ≥ 1, and any va, vb, vc ∈ V with va ̸= vb. Specifically, the
matrices are constructed as follows:

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d, WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, qi, q′i ∈ Rd are unit vectors satisfying Lemma D.1, and pi, p
′
i ∈ Rs satisfy

∣∣p⊤i p′i∣∣ = 5(|V|+ 1)4d
δ

ϵγmin
.

Proof of Lemma D.2. We build our proof upon (Kajitsuka and Sato, 2024).

We start the proof by applying Lemma D.1 to V ∪ {0}. We obtain at least one unit vector q ∈ Rd

such that for any va, vb ∈ V ∪ {0} and va ̸= vb, we have

1

(|V|+ 1)2d0.5
∥va − vb∥ ≤

∣∣q⊤ (va − vb)
∣∣ ≤ ∥va − vb∥.

By choosing vb = 0, we have that for any vc ∈ V

1

(|V|+ 1)2d0.5
∥vc∥ ≤

∣∣q⊤vc∣∣ ≤ ∥vc∥. (D.1)

For convenience, we denote the set of all unit vector q that satisfies (D.1) as Q, where

Q :=
{
q ∈ Rd | 1

(|V|+ 1)2d0.5
∥vc∥ ≤

∣∣q⊤vc∣∣ ≤ ∥vc∥
}
.
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Next, we choose some arbitrary vector pairs pi, p′i ∈ Rs that satisfy

∣∣p⊤i p′i∣∣ = (|V|+ 1)4d
δ

ϵγmin
. (D.2)

We construct the weight matrices by setting

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, pi, p′i satisfies (D.2) and qi, q
′
j ∈ Q. We arrive at∣∣∣(WKva)

⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣
=
∣∣∣(va − vb)

⊤
(WK)

⊤
(WQvc)

∣∣∣
=

∣∣∣∣∣∣(va − vb)
⊤

(
ρ∑

i=1

qip
⊤
i

) ρ∑
j=1

p′jq
′⊤
j vc

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

(va − vb)
⊤
qip

⊤
i

) ρ∑
j=1

p′jq
′⊤
j vc

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ρ∑

i=1

ρ∑
j=1

(va − vb)
⊤
qip

⊤
i p

′
jq

′⊤
j vc

∣∣∣∣∣∣
=

ρ∑
i=1

ρ∑
j=1

∣∣∣(va − vb)
⊤
qi

∣∣∣ · ∣∣p⊤i p′j∣∣ · ∣∣q′⊤j vc
∣∣

≥ 1

(|V|+ 1)2d0.5
∥va − vb∥ · (|V|+ 1)4d

δ

ϵγmin
· 1

(|V|+ 1)2d0.5
∥vc∥

(
By (D.1) and (D.2)

)
> δ.

(
By (γmin, γmax, ϵ)-separateness of V

)
This completes the proof. Note that the inequality (D.2) holds here because when we sum over all
i, j, it will include cases of i = j.

Now we present the result showing that a softmax-based 1-layer attention block is a contextual
mapping.

Lemma D.3 (Lemma 2.2 Restated). Let Z(1), . . . , Z(N) ∈ Rd×L be embeddings that are
(γmin, γmax, ϵ)-tokenwise separated, with the vocabulary set V =

⋃
i∈[N ] V(i) ⊂ Rd. Addition-

ally, assume no duplicate word tokens in each sequence, i.e., Z(i)
:,k ̸= Z

(i)
:,l for any i ∈ [N ] and

k, l ∈ [L]. Then, there exists a 1-layer, single-head attention mechanism with weight matrices
W (O) ∈ Rd×s and WV ,WK ,WQ ∈ Rs×d that serves as a (γ, δ)-contextual mapping for the em-
beddings Z(1), . . . , Z(N), where: γ = γmax + ϵ

4 , and δ = exp
(
−5ϵ−1|V|4dκγmax logL

)
, with

κ := γmax/γmin.

Remark D.1 (Comparing with Existing Works). In comparison with (Kajitsuka and Sato, 2024),
they provided a proof for the case where all self-attention weight matrices WV ,WK ,WQ ∈ Rs×d

are strictly rank-1. However, this is almost impossible for any pre-trained transformer based models.
Here, by considering self-attention weight matrices of rank-ρ where min (d, s) ≥ ρ ≥ 1, we are able
to show that singe-head-single-layer self-attention with matrices of any rank is a contextual mapping.
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Remark D.2. In (Kajitsuka and Sato, 2024), γ and δ are chosen as follows:

Γ = γmax +
ϵ

4
, ∆ =

2(lnL)2ϵ2γmin

γ2
max(|V|+ 1)4(2 lnL+ 3)πd

exp

(
−(|V|+ 1)4

(2 lnL+ 3)πdγ2
max

4ϵγmin

)
.

Since the exponential term dominates the polynomial terms, in Lemma 2.2, we simplify ∆ to
exp
(
−Θ(ϵ−1|V|4dκγmax lnL)

)
.

Proof Sketch. We generalize the results of (Kajitsuka and Sato, 2024, Theorem 2) where all weight
matrices have to be rank-1. We eliminate the rank-1 requirement, and extend the lemma for weights
of any rank ρ . This is achieved by constructing the weight matrices as a outer product sum

∑ρ
i uiv

⊤
i ,

where ui ∈ Rs, vi ∈ Rd. Specifically, we divide the proof into two parts:

• We first construct a softmax-based self-attention that maps different input tokens to unique contex-
tual embeddings, by configuring weight matrices according to Lemma D.2.

• Secondly, for the identical tokens within a different context, we utilize the tokenwise separateness
guaranteed by Lemma D.2 and Lemma C.9 which shows Boltz preserves some separateness.

As a result, we prove that the self-attention function distinguishes input embeddings Z(i)
:,k = Z

(j)
:,l

such that V(i) ̸= V(j).

Proof of Lemma 2.2. We build our proof upon (Kajitsuka and Sato, 2024). We construct a self-
attention layer that is a contextual mapping. There are mainly two things to prove. We first show that
the attention later we constructed maps different tokens to unique ids. Secondly, we prove that the
self-attention function distinguishes duplicate input tokens within different context. For the first part,
we show that our self-attention layer satisfies:

∥Ψ∥ =

∥∥∥∥WO

(
WV Z

(i)
)
Softmax

[(
WKZ(i)

)⊤ (
WQZ

(i)
:,k

)]∥∥∥∥ <
ϵ

4
, (D.3)

for i ∈ [N ] and k ∈ [n]. Since with (D.3), it is easy to show that∥∥∥∥F (SA)
S

(
Z(i)

)
:,k

−F (SA)
S

(
Z(j)

)
:,l

∥∥∥∥ =
∥∥∥Z(i)

:,k − Z
(j)
:,l +

(
Ψ(i) −Ψ(j)

)∥∥∥ (D.4)

≥
∥∥∥Z(i)

:,k − Z
(j)
:,l

∥∥∥− ∥∥∥Ψ(i) −Ψ(j)
∥∥∥

≥
∥∥∥Z(i)

:,k − Z
(j)
:,l

∥∥∥− ∥∥∥Ψ(i)
∥∥∥− ∥∥∥Ψ(j)

∥∥∥
> ϵ− ϵ

4
− ϵ

4
=

ϵ

2
,

(
By ϵ-separatedness of Z and D.3

)
for any i, j ∈ [N ] and k, l ∈ [n] such that Z(i)

:,k ̸= Z
(j)
:,l . Now, we prove (D.3) by utilizing Lemma D.2.

We define the weight matrices as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where pi, p
′
j ∈ Rs and qi, q

′
j ∈ Rd. In addition, let δ = 4 lnn and p1, p

′
1 ∈ Rs be an arbitrary vector

pair that satisfies

∣∣p⊤1 p′1∣∣ = (|V|+ 1)4d
δ

ϵγmin
. (D.5)
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Then by Lemma D.2, there is some unit vector q1, q′1 such that we have,∣∣∣(WKva)
⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ, (D.6)

for any va, vb, vc ∈ V with va ̸= vb. In addition, for the other two weight matrices WO ∈ Rd×s and
WV ∈ Rs×d, we set

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d, (D.7)

where q′′ ∈ Rd, q′′1 = q1 and p′′i ∈ Rs is some nonzero vector that satisfies

∥WOp
′′
i ∥ =

ϵ

4ργmax
, (D.8)

for any i ∈ [ρ]. As a result, we now bound Ψ as:

∥Ψ∥ =

∥∥∥∥WO

(
WV Z

(i)
)
Softmax

[(
WKZ(i)

)⊤ (
WQZ

(i)
:,k

)]∥∥∥∥
=

∥∥∥∥∥
n∑

k′=1

skk′WO

(
WV Z

(i)
)
:,k′

∥∥∥∥∥ (
Denote skk′ = Softmax

[(
WKZ(i)

)⊤ (
WQZ

(i)
:,k

)]
k′

)
=

n∑
k′=1

skk′

∥∥∥∥WO

(
WV Z

(i)
)
:,k′

∥∥∥∥
≤ max

k′∈[n]

∥∥∥∥WO

(
WV Z

(i)
)
:,k′

∥∥∥∥ ( ∑n
k′=1 s

k
k′ = 1

)
= max

k′∈[n]

∥∥∥∥∥WO

(
ρ∑

i=1

p′′i q
′′⊤
i

)
Z

(i)
:,k′

∥∥∥∥∥ (
By Lemma D.2

)
=

ρ∑
i=1

∥WOp
′′
i ∥ · max

k′∈[n]

∣∣∣q′′⊤i Z
(i)
:,k′

∣∣∣ (
By (D.8)

)
=

ϵ

4γmax
· max
k′∈[n]

∥∥∥Z(i)
:,k′

∥∥∥ (
By (D.8) and ∥q′′i ∥ = 1

)
<

ϵ

4
.

Next, for the second part, we prove that with the weight matrices WO,WV ,WK ,WQ configured
above, the attention layer distinguishes duplicate input tokens with different context, Z(i)

:,k = Z
(j)
:,l

with V(i) ̸= V(j). We choose any i, j ∈ [N ] and k, l ∈ [n] such that Z(i)
:,k = Z

(j)
:,l and V(i) ̸= V(j). In

addition, we define a(i), a(j) as

a(i) =
(
WKZ(i)

)⊤ (
WQZ

(i)
:,k

)
∈ Rn,

a(j) =
(
WKZ(j)

)⊤ (
WQZ

(j)
:,l

)
∈ Rn.

From (D.6) we have that a(i) and a(j) are tokenwise (γ, δ)-separated where γ is computed by∣∣∣a(i)k′

∣∣∣ = ∣∣∣∣(WKZ
(i)
:,k′

)⊤ (
WQZ

(i)
:,k

)∣∣∣∣
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=

∣∣∣∣∣∣
(

ρ∑
i=1

piq
⊤
i Z

(i)
:,k′

)⊤
 ρ∑

j=1

p′jq
′⊤
j Z

(i)
:,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

Z
(i)⊤
:,k′ qip

⊤
i

) ρ∑
j=1

p′jq
′⊤
j Z

(i)
:,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ρ∑

i=1

ρ∑
j=1

Z
(i)⊤
:,k′ qip

⊤
i p

′
jq

′⊤
j Z

(i)
:,k

∣∣∣∣∣∣
=

ρ∑
i=1

ρ∑
j=1

∣∣∣Z(i)⊤
:,k′ qi

∣∣∣∣∣p⊤i p′j∣∣∣∣∣q′⊤j Z
(i)
:,k

∣∣∣
≤ (|V|+ 1)4d

δ

ϵγmin
γ2
max.

(
By (D.5) and ∥qi∥ =

∥∥q′j∥∥ = 1
)

Therefore,

γ = (|V|+ 1)4d
δγ2

max

ϵγmin
.

Now, since V(i) ̸= V(j) and there is no duplicate token in Z(i) and Z(j) respectively, we use
Lemma C.9 and obtain that∣∣∣Boltz(a(i))− Boltz

(
a(j)
)∣∣∣ = ∣∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (D.9)

> δ′

= (lnn)2e−2γ .

As we assumed Z
(i)
:,k = Z

(j)
:,l , we have∣∣∣∣(a(i))⊤ Softmax
[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (D.10)

=

∣∣∣∣(Z(i)
:,k

)⊤
(WQ)

⊤
WK

(
Z(i) Softmax

[
a(i)
]
− Z(j) Softmax

[
a(j)
])∣∣∣∣

=

∣∣∣∣∣∣
(
Z

(i)
:,k

)⊤ ρ∑
j=1

q′jp
′⊤
j

( ρ∑
i=1

piq
⊤
i

)(
Z(i) Softmax

[
a(i)
]
− Z(j) Softmax

[
a(j)
])∣∣∣∣∣∣(

By Lemma D.2
)

=

ρ∑
i=1

ρ∑
j=1

∣∣∣q′⊤j Z
(i)
:,k

∣∣∣ · ∣∣p′⊤j pi
∣∣ · ∣∣∣(q⊤i Z(i)

)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣∣

≤
ρ∑

i=1

γmax · (|V|+ 1)4
πd

8

δ

ϵγmin
·
∣∣∣(q⊤i Z(i)

)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣∣.(

By (D.5)
)

By combining (D.9) and (D.10), we have

ρ∑
i=1

∣∣∣(q⊤i Z(i)
)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣∣ > δ′

(|V|+ 1)4
ϵγmin

dδγmax
. (D.11)
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Now we arrive at the lower bound of the difference between the self-attention outputs of Z(i), Z(j)

as: ∥∥∥∥F (SA)
S

(
Z(i)

)
:,k

−F (SA)
S

(
Z(j)

)
:,l

∥∥∥∥ (D.12)

=
∥∥∥WO

(
WV Z

(i)
)
Softmax

[
a(i)
]
−WO

(
WV Z

(j)
)
Softmax

[
a(j)
]∥∥∥

=

ρ∑
i=1

∥WOp
′′
i ∥ ·

∣∣∣(q′′⊤i Z(i)
)
Softmax

[
a(i)
]
−
(
q′′⊤i Z(j)

)
Softmax

[
a(j)
]∣∣∣(

WV =
∑ρ

i=1 p
′′
i q

′′⊤
i

)
>

ϵ

4γmax

δ′

(|V|+ 1)4
ϵγmin

dδγmax
.

(
By (D.8) and (D.11)

)
where δ = 4 lnn and δ′ = ln2(n)e−2γ with γ = (|V|+ 1)4dδγ2

max/(ϵγmin). Note that we are able
to use (D.11) in the last inequality of (D.12) because (D.11) is guaranteed by q1, and we set q′′1 = q1
when constructing WV in (D.7).
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E PROOFS OF SECTION 2.3

We consider the continuous sequence-to-sequence functions on a compact set of sequence as fseq2seq :

[0, 1]d×L 7→ [0, 1]d×L. Furthermore, consider the function class of continuous sequence-to-sequence
FC which is C-Lipschitz in ℓα norm. Explicitly, for any fseq2seq ∈ FC and two input embeddings
Z,Z ′, we have

∥fseq2seq(Z)− fseq2seq (Z
′)∥

α
≤ C∥Z − Z ′∥α.

In addition, we consider simple transformers τ ∈ T 1,1,4
A which consist of single-head single-layer

size-one self-attention f (SA) ∈ F (SA) and ℓ1 + ℓ2 feed-forward layers f (FF) ∈ F (FF) each with 4
MLP hidden neurons:

T 1,1,4
A := {τ : Rd×L 7→ Rd×L|τ = f

(FF )
ℓ1

◦ . . . ◦ f (FF )
1 ◦ f (SA) ◦ f (FF )

ℓ2
◦ . . . ◦ f (FF )

1 }.

Finally, define the approximation error for some given functions f1, f2 as:

dα (f1, f2) =

(∫
∥f1(Z)− f2(Z)∥ααdZ

) 1
α

. (E.1)

In this section, we prove the universality of prompt tuning by showing that there exists a simple
transformer of single-layer self-attention τ ∈ T 1,1,4

A such that for any fseq2seq ∈ FC , prompt tuning
on g approximates this function up to some error ϵ > 0.

The proof follows the construction base recipe of (Yun et al., 2020) and (Wang et al., 2023a).
We start by quantizing the input and output domain of FC such that — for each fseq2seq ∈ FC ,
we obtain a quantized function f seq2seq : Gδ,L 7→ Gδ,L where Gδ,L = {0, δ, 2δ, . . . , 1 − δ}d×L.
Here, f seq2seq,FC denote the seq2seq function and quantized function class, respectively. This
is basically performing a piece-wise constant approximation, i.e., the values inside a quantized
grid assume the same value. Next, we build a surrogate quantized sequence-to-sequence function
hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1 − δ}d×(Lp+L) that takes the
concatenation of prompts P and embeddings Z as inputs. Importantly, we let “the last L tokes”
of this quantized function hseq2seq approximates any f seq2seq ∈ FC by taking different prompts P .
Finally, we construct some transformer τ ∈ T 1,1,4

A to approximate hseq2seq. This leads to a chaining
reduction of approximations, which implies τ ∈ T 1,1,4

A approximates fseq2seq up to any accuracy ϵ.

E.1 PROOFS OF LEMMA 2.3

We start by building quantized sequence-to-sequence functions hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L)

with quantized prompts to approximate f seq2seq. Next, we approximate hseq2seq with transformer
functions τ ∈ T 1,1,4

A . To achieve this, we use the feed-forward layer for quantizing the input and
output domain of transformers. Also, we utilize self-attention layer as contextual mapping. As a result,
we construct a transformer for prompt tuning to approximate any continuous sequence-to-sequence
function.

First, we introduce the lemma below which shows that, the quantized sequence-to-sequence function
f seq2seq is approximated by some sequence-to-sequence function hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L)

where Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L).

Lemma E.1 (Lemma 2.3 Restated). Consider a C-Lipschitz sequence-to-sequence function class
FC with functions fseq2seq : [0, 1]d×L → [0, 1]d×L. There exist a sequence-to-sequence function
hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1 − δ}d×(Lp+L) where for any
fseq2seq ∈ FC , we can find some P ∈ Rd×Lp , such that dα

(
h([P, ·]):,Lp:, fseq2seq

)
≤ ϵ/2, where the

prompt sequence length Lp ≥ Lλ, λ =
(

1
ϵ 2C(dL)

1
α

)dL
.
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Proof of Lemma E.1. We first quantize the input and output sequence domain of FC by quantizing
[0, 1]d×L into a grid space Gδ,L = {0, δ, 2δ, . . . , 1 − δ}d×L. Observe that there are n =

(
1
δ

)dL
different matrices in the grid space Gδ,L. Now, consider all the possible input to output mappings, we
have m = nn piece-wise constant functions f seq2seq ∈ FC . We define f seq2seq : Gδ,L 7→ Gδ,L as

f seq2seq (Z) =

{
f seq2seq (Z) Z ∈ Gδ,L

f seq2seq (Z
⋆) otherwise

,

where ki,jδ < Zi,j , Z
⋆
i,j ≤ (ki,j + 1) δ, while Z⋆ ∈ Gδ,L and ki.j ∈ {0, 1, ..., 1/δ − 1}. We set the

function class for the quantized space as FC =
{
f
(1)
seq2seq, f

(2)
seq2seq, . . . , f

(m)
seq2seq

}
. Then, by utilizing

the C-Lipschitzness, we have that for any fseq2seq ∈ FC , there is a piece-wise constant approximation
function f seq2seq ∈ FC that satisfies

dα(f seq2seq, fseq2seq) =

(∫ ∥∥f seq2seq(Z)− fseq2seq(Z)
∥∥α
α
dZ

)1/α (
By (E.1)

)
≤
(∫

(Cδ)
α
dL · dZ

)1/α (
By C-Lipschitzness

)
= Cδ(dL)

1
α .

By choosing δ = δ⋆ such that Cδ(dL)
1
α ≤ ϵ/2, we have

dα(f seq2seq, fseq2seq) ≤
ϵ

2
. (E.2)

Next, we quantize the prompts P ∈ Rd×Lp . We consider a set of quantized prompts in grid space
Gδ,Lp

= {0, δ, 2δ, . . . , 1 − δ}d×Lp . This gives us mp =
(
1
δ

)dLp different quantized prompts. We
denote this set of prompts as P =

{
P (1), P (2), . . . , P (mp)

}
.

Since there are m = nn =
(

1
δdL

) 1

δdL functions in FC , the required prompt length Lp to index all m
functions in FC is This gives

Lp ≥ L

(
1

δ

)dL

≥ L

(
1

ϵ
2C(dL)

1
α

)dL

.
(
Since we choose δ such that Cδ(dL)

1
α ≤ ϵ/2

)
Finally, we define some quantized function hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) where Gδ,(Lp+L) =

{0, δ, 2δ, . . . , 1− δ}d×(Lp+L), and let

hseq2seq

([
P (i), Z

])
:,Lp:

= f
(i)
seq2seq(Z). (E.3)

In addition, we set the first Lp columns of hseq2seq to be zero, which is

hseq2seq

([
P (i), Z

])
:,:Lp

= 0,

for all Z ∈ [0, 1]d×L, P ∈ Gδ,Lp
. Furthermore, let

hseq2seq ([P,Z]):,Lp:
=

{
hseq2seq ([P,Z]):,Lp:

P ∈ P
hseq2seq ([P

⋆, Z]):,Lp:
otherwise

,
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where ki,jδ < Pi,j , P
⋆
i,j ≤ (ki,j + 1) δ, while P ⋆ ∈ P and ki.j ∈ {0, 1, ..., 1/δ − 1}.

As a result, we show that with a properly chosen grid granularity δ = δ1, for any sequence-to-
sequence function fseq2seq ∈ FC , we build a quantized function h with prompt P that approximates
fseq2seq with error ϵ/2,

dα
(
hseq2seq([P, ·]):,Lp:, fseq2seq

)
= dα

(
f seq2seq, fseq2seq

)
≤ ϵ/2.

This completes the proof.

E.2 PROOFS OF LEMMA 2.4

Here we show τ ∈ T 1,1,4
A approximates the surrogate quantized seq2seq function hseq2seq up to any

precision. To do this, we utilize Lemma 2.2 to construct a transformer τ ∈ T 1,1,4
A . Then we show

that this transformer τ approximates quantized sequence-to-sequence functions hseq2seq([P, ·]).

Lemma E.2 (Lemma 2.4 Restated). For any given quantized sequence-to-sequence function hseq2seq :

Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L), there exists a transformer
τ ∈ T 1,1,4

A with positional encoding E ∈ Rd×(Lp+L), such that τ = h([P, ·]):,Lp: .

Proof Sketch. This lemma is inspired by (Wang et al., 2023a, Lemma 2). There are mainly three
steps:

1. Given an input data with prompt [P,Z] ∈ Rd×(Lp+L), we first apply positional encoding E,
which is given as

E =


0 1 2 . . . Lp + L− 1
0 1 2 . . . Lp + L− 1
...

...
...

. . .
...

0 1 2 . . . Lp + L− 1

 .

Then a series of feed-forward layers in the modified Transformer network quantizes [P,Z] + E
to a quantized sequence M ∈ Gδ,(Lp+L). Here, we define the grid

Gδ,(Lp+L) := [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [Lp + L− 1 : δ : Lp + L− δ]d,

where [a : ε : b] := {a, a+ ε, a+ 2ε, . . . , b− ε, b}. Note that with the positional encoding, our
contextual mapping through self-attention won’t be limited to permutation equivalent functions.

2. Next, by utilizing Lemma 2.2, the single self-attention layer in the modified transformer takes the
input M and implements a contextual mapping q : Rd×(L+Lp) 7→ Rd×(L+Lp).

3. Finally, a series of feed-forward layers map elements of the contextual embedding q(M) to the
desired output value of hseq2seq([P,Z]).

We remark that Step 2 distinguishes us from prior works by utilizing the fact that any-rank attention
is a contextual mapping Lemma 2.2. This dramatically improves the result of (Wang et al., 2023a),
which requires a depth of dL/ϵ layers, to just a single layer.

Proof of Lemma E.2. First, we apply the positional encoding E ∈ Rd×(Lp+L) on the input sequence
with prompt sequence [P,Z] ∈ Rd×(Lp+L), so that each token has a different domain. The positional
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encoding E is given as

E =


0 1 2 . . . Lp + L− 1
0 1 2 . . . Lp + L− 1
...

...
...

. . .
...

0 1 2 . . . Lp + L− 1

 .

We next use feed-forward layers f (FF) to implement a quantization map to quantize the input
[P,Z] + E in to its discrete version M ∈ Gδ,(Lp+L) . The grid Gδ,(Lp+L) is defined as

Gδ,(Lp+L) := [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [Lp + L− 1 : δ : Lp + L− δ]d,

where [a : ε : b] := {a, a + ε, a + 2ε, . . . , b − ε, b}. Note that the first column of [P,Z] + E is in
[0, 1]d, the second is in [1, 2]d, and so on. Here, we write the quantization mapping as

[0, 1]d × · · · × [Lp + L− 1, Lp + L]d 7→ [0 : δ : 1− δ]d × · · · × [Lp + L− 1 : δ : Lp + L− δ]d,

where [a : ε : b] := {a, a+ ε, a+2ε, . . . , b− ε, b}. Inspired by the construction recipe by (Yun et al.,
2020), this task is realized by d(Lp +L)/δ feed-forward layers. We add d(Lp +L)/δ layers of f (FF)

with the following form, for k = 0, δ, . . . , (Lp + L)− δ and i = 1, . . . , d :

Z 7→ Z + e(i)ϕ

((
e(i)
)T

Z − kδ1T
n

)
, ϕ(t) =

{
0 t < 0 or t ≥ δ

−t+ 1 0 ≤ t < δ
, (E.4)

where e(1) = (1, 0, 0, ..., 0) ∈ Rd and ϕ(t) ∈ Φ is an entrywise function, where the set of activation
functions Φ consists of all piece-wise linear functions with at least one piece being constant and at
most three pieces. Furthermore, any activation function ϕ ∈ Φ is realized by 4 MLP neurons. Each
layer in the form of (E.4) quantizes Xi,: (the i-th row) in [kδ, kδ + δ) to kδ. We denote output after
the feed-forward layers as M ∈ Gδ,(Lp+L).

Next, in order to utilize Lemma 2.2, we observe that the quantized output M from the previous step
has no duplicate tokens, since each column has a unique domain. Also, we see that M is token-wise(√

d,
√
d(L′ − δ),

√
dδ
)

-separated where L′ = Lp + L. This is easily observed as we have, for any
k, l ∈ [Lp + L],

∥M:,k∥ >
√
d,

∥M:,k∥ <
√
d(Lp + L− δ),

∥M:,k −M:,l∥ >
√
dδ.

As a result, with Lemma 2.2, we arrive at a (Γ,∆)-contextual mapping q : Rd×(Lp+L) 7→ Rd×(Lp+L)

where

Γ =
√
d(L′ − δ) +

√
dδ

4
=

√
d(L′ − 3δ

4
),

∆ = exp
(
−5|V|4d ln(n)L′2/δ

)
.

Now we have successfully mapped each input sequence [P,Z] + E to unique context ID q(M) ∈
Rd×(Lp+L). We next associate each unique embeddings to a corresponding expected output of
h([P, ·]).
Finally, we use feed-forward layers to map each token of q(M) to the desired [0, 1]d. As in (Yun
et al., 2020, C.3), with a method similar to (E.4), we need one layer for each unique value of q(M)
for each M ∈ Gδ,(Lp+L). There are in total (1/δ)d(Lp+L) possibilities of M and each corresponds
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to some output of hseq2seq([P, ·]). Since we only focus on the last L tokens of output, we require
O
(
L(1/δ)d(Lp+L)

)
= O

(
δ−d(Lp+L)

)
layers to map these distinct numbers to expected outputs.

This completes the proof.

E.3 PROOFS OF THEOREM 2.3

With Lemma E.2, we are able to find a transformer τ ∈ T 1,1,4
A such that τ([P,Z]) = h([P,Z]).

Finally, we arrive at the theorem that shows that a transformer of one single-head self-attention layer
is a universal approximator for sequence-to-sequence functions.

Theorem E.1 (Theorem 2.3 Restated). Let 1 ≤ p < ∞ and ϵ > 0, there exist a transformer τ ∈
T 1,1,4
A with single self-attention layer and quantization granularity δ, such that for any fseq2seq ∈ FC

there exists a prompt P ∈ Rd×Lp with dα
(
τ([P, ·]):,Lp

, fseq2seq
)
≤ ϵ.

Proof of Theorem 2.3. Combining Lemma E.1 and Lemma E.2, we arrive at a transformer τ ∈ T 1,1,4
A ,

with prompt P ∈ Gδ,Lp
, such that for any sequence-to-sequence fseq2seq ∈ FC ,

dα

(
τ ([P, ·]):,Lp:

, fseq2seq

)
≤ dα

(
τ ([P, ·]):,Lp:

, hseq2seq ([P, ·]):,Lp:

)
+ dα

(
hseq2seq ([P, ·]):,Lp:

, fseq2seq

)
≤ ϵ.

This completes the proof.
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F PROOFS OF SECTION 2.4

F.1 PROOF OF LEMMA 2.5

For the transformer τ ∈ T 1,1,4
A in the previous section Appendix E, we compute the required number

of FFN layers.

Lemma F.1 (Lemma 2.5 Restated). For a transformer τ ∈ T 1,1,4
A , as introduced in Section 2.3, to be

a universal approximator through prompt tuning, it requires O(ϵ−d(Lp+L)) of FFN layers.

Proof. As shown in the final step of the proof for Lemma E.2, we require O
(
δ−d(Lp+L)

)
layers

to map these distinct numbers to expected outputs. Recall that in (E.2), we have the relation of
quantization granularity δ and function approximation error ϵ as Cδ(dL)

1
α ≤ ϵ/2. We write the

number of feed-forward layers as O
(
2L(C(dL)

1
α /ϵ)d(Lp+L)

)
= O

(
ϵ−d(Lp+L)

)
, where C is the

Lipschitz constant and α is from the ℓα-norm we use for measuring the approximation error.

F.2 PROOF OF THEOREM 2.4

In this section, we prove the universality of prompt tuning on another simple transformer architecture
with a smaller depth than T 1,1,4

A from Section 2.3. This provides us a case for trade off between the
depth and width of the transformer.

Consider transformers τ ∈ T 1,1,r
B which consist of single-head single-layer size-one self-attention

f (SA) and two feed-forward layers f (FF)
1 , f

(FF)
2 each with r MLP hidden neurons:

T 1,1,r
B := {g : Rd×L 7→ Rd×L|τ = f

(FF)
2 ◦ f (SA) ◦ f (FF)

1 }.

We prove the universality of prompt tuning by showing that there exists a transformer network
τ ∈ T 1,1,r

B such that for any fseq2seq ∈ FC , prompt tuning on τ approximates this function up to
some error ϵ > 0.

Similar to the proof of Theorem E.1, we start by quantizing the input and output domain of FC to
obtain quantized functions

f seq2seq : Gδ,L 7→ Gδ,L,

where

Gδ,L = {0, δ, 2δ, . . . , 1− δ}d×L.

This is basically performing a piece-wise constant approximation. Next, we build a quantized
sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L),

that takes the concatenation of prompts P and embeddings Z as inputs. This quantized function
hseq2seq approximates any f seq2seq ∈ FC by taking different prompts P . Finally, we construct some
transformer τ ∈ T 1,1,r

B to approximate hseq2seq.

First, we utilize the results from Lemma E.1, which shows that the quantized sequence-to-sequence
function f seq2seq is approximated by some sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L).
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Next, in Lemma F.2, we utilize Lemma 2.2 to construct a transformer τ ∈ T 1,1,r
B . Then, we use the

transformer to approximate quantized sequence-to-sequence functions hseq2seq([P, ·]).

Lemma F.2 (Transformer Construction). For any given quantized sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L),

there exists a transformer τ ∈ T 1,1,r
B with positional embedding E ∈ Rd×(Lp+L), such that

dα
(
τ, h([P, ·]):,Lp:

)
≤ ϵ/2.

Proof Sketch. The proof of this lemma follows a similar idea as Lemma E.2. Nonetheless, by
applying the construction technique from (Kajitsuka and Sato, 2024), we employ a transformer
configuration that utilizes just two feed-forward layers.

The proof consists of three steps:

1. Given an input data with prompt [P,Z] ∈ Rd×(Lp+L), we first apply positional encoding E,
which is given as

E =


0 1 2 . . . Lp + L− 1
0 1 2 . . . Lp + L− 1
...

...
...

. . .
...

0 1 2 . . . Lp + L− 1

 .

Then a series of feed-forward layers in the modified Transformer network quantizes [P,Z] + E
to a quantized sequence M ∈ Gδ . Here, we define the grid

Gδ = [δ : δ : 1]d × [1 + δ : δ : 2]d × · · · × [Lp + L− 1 + δ : δ : Lp + L]d,

where [a : ε : b] := {a, a+ ε, a+ 2ε, . . . , b− ε, b}. Note that with the positional encoding, our
contextual mapping through self-attention won’t be limited to permutation equivalent functions.

2. Next, by utilizing Lemma 2.2, the single self-attention layer in the modified transformer takes the
input M and implements a contextual mapping q : Rd×(L+Lp) 7→ Rd×(L+Lp).

3. Finally, a series of feed-forward layers map elements of the contextual embedding q(M) to the
desired output value of hseq2seq([P,Z]).

Proof of Lemma F.2. First, we apply the positional encoding E ∈ Rd×(Lp+L) on the input sequence
with prompt sequence [P,Z] ∈ Rd×(Lp+L), so that each token of has a different domain. The
positional encoding E is given as

E =


0 1 2 . . . Lp + L− 1
0 1 2 . . . Lp + L− 1
...

...
...

. . .
...

0 1 2 . . . Lp + L− 1

 .

We next use the first feed-forward layer f (FF)
1 to implement a quantization map to quantize the input

[P,Z] + E into its discrete version M ∈ Gδ . Here, we define the grid

Gδ = [δ : δ : 1]d × [1 + δ : δ : 2]d × · · · × [Lp + L− 1 + δ : δ : Lp + L]d,
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where [a : ε : b] := {a, a + ε, a + 2ε, . . . , b − ε, b}. Note that the first column of [P,Z] + E is in
[0, 1]d, the second is in [1, 2]d, and so on. Here, we write the quantization mapping as

[0, 1]d × · · · × [Lp + L− 1, Lp + L]d 7→ [δ : δ : 1− δ]d × · · · × [Lp + L− 1 : δ : Lp + L]d,

where [a : ε : b] := {a, a + ε, a + 2ε, . . . , b − ε, b}. Following (Kajitsuka and Sato, 2024), this
quantization task is done by constructing the feed-forward layer as a θ-approximated step function.
Consider a real value piece-wise constant function f (Step) : R 7→ R, for any small θ > 0, z ∈ R, we
have the θ-approximation as

f (Step)(z) ≈
(Lp+L)(1/δ−1)∑

t=0

(ReLU (z/θ − tδ/θ)− ReLU (z/θ − 1− tδ/θ)) δ (F.1)

=


0 z < 0

δ 0 ≤ z < δ
...

...
L+ Lp L+ Lp − δ ≤ z

,

which is a series of small step functions, each beginning their rise at tδ and ending at θ + tδ. Here,
we show the first two terms t = 0, 1 for clarity:

t = 0 : (ReLU (z/θ)− ReLU (z/θ − 1)) δ =


0 z < 0

zδ/θ 0 ≤ z < θ

δ θ ≤ z

,

t = 1 : (ReLU (z/θ − δ/θ)− ReLU (z/θ − 1− δ/θ)) δ =


0 z < δ

zδ/θ δ ≤ z < θ + δ

δ θ + δ ≤ z

.

With (F.1), it is straightforward that we extend it to Rd×L. As a result, we have the first feed-forward
layer f (FF)

1 as

f
(FF)
1 (Z)i,j =

(Lp+L)(1/δ−1)∑
t=0

(ReLU (Zi,j/θ − tδ/θ)− ReLU (Zi,j/θ − 1− tδ/θ)) δ (F.2)

≈ f (Step) (Zi,j) ,

where i ∈ [d], j ∈ [Lp +L], 0 < δ < 1 and θ > 0. With (F.2), we are able to quantize each sequence
[P,Z] + E to a quantized version M ∈ Gδ .

Next, in order to utilize Lemma 2.2, we observe that the quantized input M from the previous step
has no duplicate tokens, since each column has a unique domain. Also, we see that M is token-wise(√

d,
√
d(L′ − δ),

√
dδ
)

-separated where L′ = Lp + L. This is easily observed as we have, for any
k, l ∈ [Lp + L],

∥M:,k∥ >
√
d,

∥M:,k∥ <
√
d(Lp + L− δ),

∥M:,k − L:,l∥ >
√
dδ.

As a result, with Lemma 2.2, the single self-attention layer implements a contextual mapping
q : Rd×(L+Lp) 7→ Rd×(L+Lp), we arrive at a (Γ,∆)-contextual mapping where

Γ =
√
d(L′ − δ) +

√
dδ

4
=

√
d(L′ − 3δ

4
),
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∆ = exp
(
−5|V|4d ln(n)L′2/δ

)
.

Now we have successfully mapped each input sequence [P,Z] +E to a unique context ID q(M) ∈
Rd×(Lp+L). We next associate each unique embeddings to a corresponding expected output of
hseq2seq([P, ·]).
We associate each unique contextual embeddings to the corresponding output of h([P, ·]) using
the second feed-forward layer f (FF)

2 . As in (Kajitsuka and Sato, 2024, A.5), this is achieved by
constructing a bump function fbump : Rd×(Lp+L) 7→ Rd×(Lp+L) for each possible output from the
last step q(M (i)), i ∈ [(1/δ)d(Lp+L)]. Each bump function fbump is realized by 3d(Lp + L) MLP
neurons. Therefore, we need 3d(Lp + L)(1/δ)d(Lp+L) MLP neurons to construct the feed-forward
layer f (FF)

2 , so that each contextual embedding is mapped to the expected output of hseq2seq([P, ·]). A
bump function fbump for a quantized sequence A ∈ Gδ is written as:

fbump (Q) =
h([P,A])

d(Lp + L)

d∑
i=1

Lp+L∑
j=1

[ReLU (K(Qi,j −Ai,j)− 1)− ReLU (K(Qi,j −Ai,j))

+ReLU (K(Qi,j −Ai,j) + 1)],

where Q ∈ Rd×(Lp+L) is some context ID scalar K > 0. Furthermore, recall that in (E.2), we
have the relation of quantization granularity δ and function approximation error ϵ as Cδ(dL)

1
α ≤

ϵ/2. We express the number of neurons in terms of ϵ as O
(
d(Lp + L)(C(dL)

1
α /ϵ)d(Lp+L)

)
=

O
(
ϵ−d(Lp+L)

)
, where C is the Lipschitz constant and α is from the ℓα-norm we use for measuring

the approximation error.

As a result, by choosing the appropriate step function approximation θ, we arrive at

dp
(
hseq2seq([P, ·]):,Lp:, τ

)
≤ ϵ/2.

This completes the proof.

Finally, we arrive at the theorem that shows that prompt tuning on some transformer with single-head
single-attention layer and two feed-forward layers is a universal approximator for sequence-to-
sequence functions.

Theorem F.1 (Theorem 2.4 Restated). Let 1 ≤ p < ∞ and ϵ > 0, there exist a transformer
τ ∈ T 1,1,r

B with single self-attention layer, r = O(d(Lp + L)) MLP neurons and quantization
granularity δ, such that for any fseq2seq ∈ FC there exists a prompt P ∈ Rd×Lp with

dα
(
τ([P, ·]):,Lp

, fseq2seq
)
≤ ϵ.

Proof of Theorem 2.4. Combining Lemma E.1 and Lemma F.2, we arrive at a transformer τ ∈ T 1,1,r
B ,

with prompt P ∈ Gδ,Lp , such that for any sequence-to-sequence fseq2seq ∈ FC ,

dα

(
τ ([P, ·]):,Lp:

, fseq2seq

)
≤ dα

(
τ ([P, ·]):,Lp:

, h ([P, ·]):,Lp:

)
+ dα

(
hseq2seq ([P, ·]):,Lp:

, fseq2seq

)
≤ ϵ.

This completes the proof.
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G PROOFS OF SECTION 2.5

In this section, we show the memorization capacity of prompt tuning on transformer networks with
single layer self attention. We now prove that there exist a transformer τ ∈ T 1,1,r

B , such that for any
dataset S, the transformer τ memorizes S through prompt tuning.

G.1 PROOF OF THEOREM 2.5

Theorem G.1 (Theorem 2.5 Restated). Consider a dataset S = {(X(i), Y (i))}Ni=1, where
X(i), Y (i) ∈ [0, 1]d×L. Assume the coresponding embedding sequences Z(1), . . . , Z(N) are gener-
ated from a C-Lipschitz function. Then, there exists a single-layer, single-head attention transformer
τ ∈ T 1,1,r

B with r = O
(
(1/ϵ)d(Lp+L)

)
and a soft-prompt P ∈ Rd×Lp such that, for any i ∈ [N ]:∥∥∥τ([P,Z(i)]):,Lp

− Y (i)
∥∥∥
α
≤ ϵ,

where Lp ≥ Lλ, with λ =
(
2ϵ−1C(dL)1/α

)dL
.

Proof Sketch. We first find some sequence-to-sequence function f⋆
seq2seq : [0, 1]d×L 7→ [0, 1]d×L,

such that for any i ∈ [N ], f⋆
seq2seq

(
Z(i)

)
= Y (i). Next, we complete the proof by utilizing the results

of Theorem 2.4 to construct a transformer τ ∈ T 1,1,r
B that is capable of approximating f⋆

seq2seq through
prompt tuning.

Proof of Theorem 2.5. From the sequence-to-sequence function class FC , there exist some function
f⋆

seq2seq : [0, 1]d×L 7→ [0, 1]d×L such that, f⋆
seq2seq

(
Z(i)

)
= Y (i) for any i ∈ [N ].

Next, since we utilize positional encoding, no information would be lost in the quantization step of
Theorem 2.4. By utilizing the results of Theorem 2.4, we construct a transformer τ ∈ T 1,1,r

B such
that

dα
(
τ([P, ·]):,Lp

, f⋆
seq2seq

)
=

(∫ ∥∥τ([P,Z]):,Lp
− f⋆

seq2seq(Z)
∥∥α
α
dZ

) 1
α

≤ ϵ.

As a result, we arrive at

max
i∈[N ]

∥∥∥τ([P,Z(i)]):,Lp: − Y (i)
∥∥∥
α
≤ ϵ.
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H PROOFS OF COMPUTATIONAL LIMITS OF PROMPT TUNING (SECTION 3)

We first introduce some helper definition and lemmas from fine-grained complexity theory (Alman
and Song, 2023).

Definition H.1 (Approximate Attention Computation AttC(n, d,B, ϵa), Definition 1.2 in (Alman
and Song, 2023)). Let ϵa > 0 and B > 0 be parameters. Given three matrices Q,K, V ∈ Rn×d,
with the guarantees that ∥Q∥max ≤ B, ∥K∥max ≤ B, and ∥V ∥max ≤ B, AttC(n, d,B, ϵa) outputs
a matrix T ∈ Rn×d which is approximately equal to Att(Q,K, V ) := D−1AV , meaning,

∥T −D−1AV ∥max ≤ ϵa, with A := exp
(
QK⊤) and D := diag(A1n)

Here, for a matrix M ∈ Rn×n, we write ∥M∥max := maxi,j |Mi,j |.

Lemma H.1 (Fine-Grained Upper bound, Theorem 1.4 in (Alman and Song, 2023)). AAttC(n, d =
O(log n), B = o(

√
log n), ϵa = 1/poly(n)) can be solved in time Tmat(n, n

o(1), d) = n1+o(1).

Lemma H.2 (Fine-Grained Lower bound, see Theorem 1.3 in (Alman and Song, 2023)). Assuming
SETH, for every q > 0, there are constants C,Ca, Cb > 0 such that: there is no O(n2−q) time
algorithm for the problem AAttC(n, d = C log n,B = Cb

√
log n, ϵa = n−Ca).

H.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Recall the Prompt Tuning Inference Problem APTI from Problem 1.

Problem 1 (Approximate Prompt Tuning Inference APTI(d, L, Lp, δF )). Let δF > 0 and B > 0.
Given three Qp,Kp, Vp ∈ Rd×(L+Lp) with guarantees that ∥Qp∥max ≤ B, ∥Kp∥max ≤ B and
∥Vp∥max ≤ B, we aim to study an approximation problem APTI(d, L, Lp, B, δF ), that approximates
Vp Softmax

(
KT

p Qp

)
with a matrix Z̃ such that

∥∥Z̃ − Vp Softmax
(
KT

p Qp

) ∥∥
max

≤ δF , where, for
a matrix M ∈ Ra×b, we write ∥M∥max := maxi,j |Mi,j |.

We rewrite

Vp Softmax
(
KT

p Qp

)
= V D−1 exp

(
KT

p Qp

)
.

By transpose-invariance property of ∥·∥max, we observe
∥∥∥Z̃ − Vp Softmax

(
KT

p Qp

)∥∥∥
max

≤ δF is

equivalent to
∥∥T −D−1AV

∥∥
max

with the following identifications between APIT and ATTC:

• (Lp + L) = n, d = d, B = B, δF = ϵa

• Z̃ = T , Vp = V , Kp = K, Qp = Q

By
∥∥ [·]:,Lp:

∥∥
max

≤ ∥·∥max, we complete the proof via a simple reduction from fine-grained upper
bound result Lemma H.1.

H.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. Using the same identifications as in the proof of Theorem 3.1, we complete
the proof with Lemma H.2.
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I LIMITATIONS OF PROMPT TUNING TRANSFORMERS

In Section 2, we demonstrate that through prompt tuning, even a transformer with the simplest
architecture can serve as a universal approximator. However, to achieve this, it is necessary to
construct a specific transformer tailored for the task. In this section, we explore how prompts
influence the output of a pretrained transformer model. Additionally, we investigate the boundaries
of prompt tuning on arbitrary pretrained transformer model by analyzing its underlying mechanisms.

I.1 DISCUSSION ON THE LIMITATIONS OF PROMPT TUNING

For simplicity, consider a single-layer transformer function class with 1 head of size s and r MLP
hidden neurons:

T 1,s,r
C := {τ : Rd×L 7→ Rd×L|τ = f (FF)

(
f (SA) (·)

)
}.

The tokenwise output of the transformer τ with input [P,X] ∈ Rd×(Lp+L) is

τ ([P,X]):,i = f (FF)
(
f (Att) ([P,X]:,i, [P,X]) + [P,X]:,i

)
,

where [P,X] is the concatenation of a prompt P ∈ Rd×Lp and a data X ∈ Rd×L. By taking the
inverse of feed-forward function f (FF−1) : Rd 7→ Rd, we have

f (Att) (x, [P,X]) ∈ f (FF−1) (y)− x, (I.1)

where x = X:,i and y is the corresponding label token for x.

Next, to better understand how the prompt P affect the output of the transformer, we focus on the
output token of the attention layer corresponding to some data token x = X:,i,

f (Att) (x, [P,X]) (I.2)

= WO (WV [P,X]) Softmax
[
(WK [P,X])

⊤
(WQx)

]

= WO (WV [P,X])


exp

[
(WK [P,X]:,1)

⊤
(WQx)

]
...

exp
[(
WK [P,X]:,(L+Lp)

)⊤
(WQx)

]


∑L+Lp

j=1 exp
[
(WK [P,X]:,j)

⊤
(WQx)

]
=

∑L+Lp

i=1 WO (WV [P,X]:,i) exp
[
(WK [P,X]:,i)

⊤
(WQx)

]
∑L+Lp

j=1 exp
[
(WK [P,X]:,j)

⊤
(WQx)

]
=

∑Lp

i=1 exp
[
(WKP:,i)

⊤
(WQx)

]
f (Att) (x, P )∑L+Lp

j=1 exp
[
(WK [P,X]:,j)

⊤
(WQx)

] +

∑m
i=1 exp

[
(WKX:,i)

⊤
(WQx)

]
f (Att) (x,X)∑L+Lp

j=1 exp
[
(WK [P,X]:,j)

⊤
(WQx)

]
=

Ψ(P, x)

Ψ ([P,X], x)
f (Att) (x, P ) +

Ψ (X,x)

Ψ ([P,X], x)
f (Att) (x,X) ,

where Ψ(·, ·, ·) is a positive scalar and defined as

Ψ(A, z) =
∑
i

exp
(
(WKA:,i)

⊤
(WQz)

)
.
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Combining (I.1) and (I.2), we have(
Ψ(P, x)

Ψ ([P,X], x)
f (Att) (x, P ) +

Ψ (X,x)

Ψ ([P,X], x)
f (Att) (x,X)

)
∈ f (FF )−1 (y)− x. (I.3)

Essentially, with all parameters for the feed-forward and self-attention layers fixed, prompt tun-
ing finds the prompt P ⋆ such that (I.3) holds for each input-label pair (x, y). In (I.3), note
that while Ψ(·, ·, ·) are positive scalars, the attention terms f (Att)(·) are vectors. The initial term

Ψ(P,x)
Ψ([P,X],x)f

(Att)(x, P ) depends entirely on P , highlighting the strong effect of prompt tuning on
shaping the model’s outputs by guiding the attention mechanism. In contrast, P ’s influence on the
second term Ψ(X,x)

Ψ([P,X],x)f
(Att)(x,X) is limited to scaling, preserving the original attention pattern

between x and X . Thus, prompt tuning biases the attention function’s output but does not alter the
intrinsic attention pattern between x and X .

This manipulation highlights prompt tuning’s ability to subtly refine and leverage the pretrained
model’s knowledge without disrupting its core attention dynamics. However, it constrains prompt
tuning’s expressiveness, as it cannot change the direction of the attention output vector f (Att)(x,X).
Thus, prompt tuning is limited to realigning latent knowledge within the model, failing to learn new
knowledge, which would require altering the model’s core attention dynamics.

In Section 2.5, we discuss the cases where prompt tuning is able to memorize some general data
set. Here, on the other hand, we also provide an example where prompt tuning on some general
transformers fails to memorize some simple data set.

I.2 EXAMPLES OF PROMPT TUNING FAILURES

The memorization ability in Theorem 2.5 is based on some specific transformers we carefully
constructed for the memorization task. However, as we discussed in Appendix I, there exists
limitations for prompt tuning on when learning new knowledge. Here, we provide an example where
prompt tuning on some arbitrary transformers fails to memorize. We first introduce some assumptions
on the relation between our transformer and dataset.

Assumption I.1. We assume that all output tokens
(
Y (i)

)
:,k

are in the range set of f (FF). We assume

that WQ,WK ,WV ,WO are full rank matrices and that f (SA)
(
X(i)

)
are distinct for i = 1, 2, . . . , n.

Now, we show that transformers through prompt tuning fails to memorize some simple data set.

Corollary I.0.1 (Prompt Tuning Fails to Memorize, Theorem 2 of (Wang et al., 2023a)). For
any pretrained single layer transformer τ ∈ T , there exist a sequence-to-sequence dataset
S =

{(
X(1) =

[
x
(1)
1 , x⋆

]
, Y (1) =

[
y
(1)
1 , y

(1)
2

])
,
(
X(2) =

[
x
(2)
1 , x⋆

]
, Y (2) = [y

(2)
1 , y

(2)
2

])
}, and

we cannot find a prompt P ∈ Rd×Lp with any Lp > 0 such that τ ([P, xi]) = yi holds for any
i = 1, 2. The vectors x0, x1, x2 are denoted post positional encodings.

Remark I.1. The most important aspect of this dataset is the shared token x⋆. As shown in
Appendix I.1, to learn the first example

(
X(1), Y (1)

)
, we are able to find a prompt P , such that(

Ψ(P, x⋆)

Ψ
(
[P,X(1)], x⋆

)f (Att) (x⋆, P ) +
Ψ
(
X(1), x⋆

)
Ψ
(
[P,X(1)], x⋆

)f (Att)
(
x⋆, X(1)

))
∈ f (FF )−1

(
y
(1)
2

)
− x⋆.

However, now the vector f (Att) (x⋆, P ) is fixed as prompt P has been chosen. This prevents us from
finding a prompt to cater to the second example, which is written as(

Ψ(P, x⋆)

Ψ
(
[P,X(2)], x⋆

)f (Att) (x⋆, P ) +
Ψ
(
X(2), x⋆

)
Ψ
(
[P,X(2)], x⋆

)f (Att)
(
x⋆, X(2)

))
∈ f (FF )−1

(
y
(2)
2

)
− x⋆.

Thus, the expressive power of prompt tuning is limited.
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J SUPPLEMENTARY PROOFS FOR APPENDIX C

Here we restate some proofs of the properties of Boltzmann operator from (Kajitsuka and Sato, 2024)
for completeness.

J.1 LEMMA C.1

Proof of Lemma C.1. By taking ln on pi defined in Definition C.1, we see

ln pi = zi − ln

n∑
j=1

ezj = zi − lnZ(z). (J.1)

Also, by the definition of Boltz, we have

Boltz(z) =

n∑
i=1

zipi

=

n∑
i=1

pi ln (piZ(z))
(
By (J.1)

)
=

n∑
i=1

pi ln pi +

n∑
i=1

pi lnZ(z)

= − S(p) + lnZ(z).

This completes the proof.

J.2 LEMMA C.2

Proof of Lemma C.2. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

We first observe that

∂

∂zj
pi =

∂

∂zj

(
ezi∑n

k=1 e
zk

)
(J.2)

=
δije

zj (
∑n

k=1 e
zk)− eziezj

(
∑n

k=1 e
zk)

2

=
δije

zj∑n
k=1 e

zk
− eziezj

(
∑n

k=1 e
zk)

2

= pj (δij − pi) ,

where δij is the delta function, i.e., δij = 1 only when i = j.

Next we have

∂

∂zi
Boltz(z) =

∂

∂zi

 n∑
j=1

zjpj


=

n∑
j=1

∂zj
∂zi

pj +

n∑
j=1

zj
∂pj
∂zi

= pi +

n∑
j=1

zjpi (δji − pj)
(
By (J.2)

)
= pi (1 + zi − Boltz (z))

(
By (C.1)

)
= pi (1 + zi + S(p)− lnZ(z)) .

(
By Lemma C.1

)
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Since pi > 0, we only need to focus on the second term

1 + zi + S(p)− lnZ(z) < 0.

This means

zi < lnZ(z)− S(p)− 1

By using maxj∈[n] zj ≤ lnZ(z) (Boyd and Vandenberghe, 2004, p. 72) and S(p) ≤ lnn, we have
that, when

zi < lnZ(z)− S(p)− 1,

is satisfied, the Boltzmann operator Boltz(z) monotonically decreases in the direction of zi.

J.3 LEMMA C.3

Proof of Lemma C.3. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

Observe that

∂S(p)
∂zi

=
∂

∂zi

−
n∑

j=1

pj ln pj

 (J.3)

= −
n∑

j=1

∂pj
∂zi

ln pj + pj
∂

∂zi
ln pj

= −
n∑

j=1

pi (δji − pj) ln pj + pi (δji − pj)
(
By (J.2)

)
= − pi

n∑
j=1

[δji (ln pj + 1)− pj ln pj − pj ]

= − pi (ln pi + 1 + S(p)− 1)
(
By δii = 1,S(p) =

∑
pj ln pj ,

∑
pj = 1

)
= − pi (ln pi + S(p)) .

Now, we prove the concavity by taking the derivative once again from Lemma C.2, which is

∂2

∂z2i
Boltz(z) =

∂

∂zi
pi (1 + ln pi + S(p))

(
By Lemma C.2

)
=

∂pi
∂zi

· (1 + ln pi + S(p)) + pi ·
∂

∂zi
(1 + ln pi + S(p))

= pi (1− pi) (1 + ln pi + S(p)) + pi

[
pi (1− pi)

pi
− pi (ln pi + S(p))

]
(
By (J.2) and (J.3)

)
= pi [(1− 2pi) (ln pi + S(p) + 1) + 1]

= pi [(1− 2pi) (zi − lnZ(z) + S(p) + 1) + 1]
(
By (J.1)

)
Since pi > 0, we analyze the second term. Consider pi < 1

2 , we have

zi − lnZ(z) + S(p) + 1 <
−1

1− 2pi
.
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By using maxj∈[n] zj ≤ lnZ(z) (Boyd and Vandenberghe, 2004, p. 72) and S(p) ≤ lnn, we have

zi < max
j∈[n]

zj − lnn+
−2 + 2pi
1− 2pi

.

Since −2+2pi

1−2pi
is unbounded below in domain 1

2 > pi > 0, we focus on discussing cases where
1
4 > pi > 0. We now have

−2 >
−2 + 2pi
1− 2pi

< −3.

As a result, the Boltzmann operator Boltz(z) is concave with respect to zi for any

zi < max
j∈[n]

zj − lnn− 3.

This completes the proof.

J.4 LEMMA C.4

Proof of Lemma C.4. From Lemma C.2, we know that Boltz(z) monotonically decreases in the
direction of zi when zi < z1 − lnn − 1. Since z is tokenwise (δ)-separated and has no duplicate
entry, given z1, the minimum of Boltz(z) happens at z⋆ = (z1, z1 − δ, z1 − 2δ, . . . , z1 − (n− 1)δ)
where δ > lnn+ 1. By Lemma C.2, we see that

Boltz(z) > Boltz(z⋆) > Boltz(z′).

J.5 LEMMA C.5

Proof of Lemma C.5. For any z′, we find some z⋆ ∈ Rm, where

z⋆ =
(
z′1, . . . , z

′
m−1,−∞

)
.

By Lemma C.2, we have

Boltz(z⋆) > Boltz(z′).

In addition, for any n, we are able to find some z⋆ with last (m− n) entries being (−∞). As a result,
we have

Boltz(z) = Boltz(z⋆) > Boltz(z′).

J.6 LEMMA C.6

Proof of Lemma C.6. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

Let a′ ∈ Rn be

a′ = (a1, a1 − δ, . . . , a1 − δ) . (J.4)

From Lemma C.4, we know that Boltz(a) > Boltz(a′). In addition, we have:

Boltz(a′)
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=

n∑
i=1

(
a′i

ea
′
i∑n

j=1 e
a′
j

)

=
a1e

a1 + (n− 1) (a1 − δ) ea1−δ

ea1 + (n− 1)ea1−δ

(
By (J.4)

)
=

a1 + (n− 1) (a1 − δ) e−δ

1 + (n− 1)e−δ

= a1 −
(n− 1)δe−δ

1 + (n− 1)e−δ
.

Also, we know that Boltz(b) ≤ b1, since entries of b is sorted in a decreasing order. Therefore,

Boltz(a)− Boltz(b)

≥ Boltz(a′)− b1

> a1 −
(n− 1)δe−δ

1 + (n− 1)e−δ
− (a1 − δ)

(
By b1 < a1 − δ

)
= δ − (n− 1)δe−δ

1 + (n− 1)e−δ

=
δ

1 + (n− 1)e−δ

(
By δ > 2 lnn+ 3.

)
≥ lnn.

Note that lnn > (lnn)2e−(a1−b1), because a1 − b1 > lnn implies lnn · e−(a1−b1) < 1.

J.7 LEMMA C.7

Proof of Lemma C.7. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

With the concavity given in Lemma C.3 and first-order Taylor approximation, we have

Boltz (b1, . . . , bn−1, t) + (an − t) · ∂

∂t
Boltz (b1, . . . , bn−1, t) > Boltz (b1, . . . , bn−1, an) ,

for t < an.

Then, by setting t = bn, we obtain

Boltz (b1, . . . , bn−1, t)− Boltz (b1, . . . , bn−1, an)

= Boltz(b)− Boltz(a)

> (an − bn)

(
− ∂

∂t
Boltz (b1, . . . , bn−1, t)

∣∣∣∣
t=bn

)
= (an − bn) [−pn (1 + ln pn + S(p))]

(
By Lemma C.2

)
> (an − bn)

[
−pn

(
1 + bn −max

i∈[n]
bi + lnn

)]
> (an − bn) pn (δ + an − bn − lnn− 1)

= (an − bn)
ebn∑n
i=1 e

bi
(δ + an − bn − lnn− 1) .

This completes the proof.
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J.8 LEMMA C.8

Proof of Lemma C.8. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

Let

aup := (a1, a2, . . . , ak, ak+1) ∈ Rk+1,

blo := (a1, a2, . . . , ak, bk+1, bk+1, . . . , bk+1) ∈ Rn.

Then, Lemma C.2 implies that

Boltz(a) < Boltz(aup),

boltz(b) > Boltz(blo).

Thus we only have to bound Boltz(blo)− Boltz(aup).

Let

γk :=

k∑
l=1

ale
al and ξk :=

k∑
l=1

eal .

Next, decompose Boltz(blo):

Boltz(blo) =
γk + (n− k)bk+1e

bk+1

ξk + (n− k)ebk+1

=
γk + bk+1e

bk+1+ln(n−k)

ξk + ebk+1+ln(n−k)

=
γk + (bk+1 + ln(n− k)) ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
− ln(n− k) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)

= Boltz (a1, . . . , ak, bk+1 + ln(n− k))− ln(n− k) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
.

Therefore, we have

Boltz(blo)− Boltz(aup) (J.5)

= Boltz (a1, . . . , ak, bk+1 + ln(n− k))− Boltz(aup)−
ln(n− k) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
.

Note that by Lemma C.7, we also have

boltz (a1, . . . , ak, bk+1 + ln(n− k))− Boltz(aup) (J.6)
> (ak+1 − bk+1 − ln(n− k)) (δ + ak+1 − bk+1 − ln(n− k)− ln(k + 1)− 1)

· ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)

> (δ − lnn)(2δ − 2 lnn− 1) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
.

(
By δ-separatedness

)
> 4 ln2(n) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
.

(
By assumption δ > 4 lnn

)
Now we plug (J.6) into (J.5) to obtain

Boltz(blo)− Boltz(aup)
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= Boltz (a1, . . . , ak, bk+1 + ln(n− k))− Boltz(aup)−
ln(n− k) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)

>
ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
· (4 ln2(n)− ln(n− k))

>
ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
· 2 ln2(n).

Also, for the denominator, we have

ξk + ebk+1+ln(n−k) <

k+1∑
l=1

eal
(
By ak+1 > bk+1 + ln(n− k)

)

< ea1

k+1∑
l=1

e−(l−1)δ (
By al < a1 − (l − 1)δ

)
< 2ea1 .

(
By δ > ln 2

)
Therefore, we arrive at

Boltz(b)− Boltz(aup) >
ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
· 2(lnn)2

>
ebk+1+ln(n−k)

2ea1
· 2(lnn)2

> (lnn)2e−(a1−bk+1).

This implies that

Boltz(b)− Boltz(a) > (lnn)2e−(a1−bk+1).

This completes the proof.

J.9 LEMMA C.9

Proof of Lemma C.9. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

First, we observe that Boltz is permutation invariant by definition. In addition, there are no duplicate
entries in each vector zi. Therefore, w.l.o.g. we write the vectors in entrywise decreasing order
z
(i)
1 > . . . > z

(i)
n for any i ∈ [N ]. We prove (C.3) by utilizing the first constraint of (γ, δ)-tokenwise

separateness of z(i), which is ∣∣∣z(i)s

∣∣∣ < γ,

for any i ∈ [N ] and s ∈ [n]. Since z
(i)
n < Boltz(z(i)) < z

(i)
1 , we have∣∣∣Boltz(z(i))∣∣∣ < max

(∣∣∣z(i)1

∣∣∣, ∣∣∣z(i)n

∣∣∣) < γ.

Next, we prove the δ′-separateness. Consider i ∈ [N ] and s ∈ [n], w.l.o.g. we assume that there
exists k ∈ {0, . . . , n− 1} such that(

z
(i)
1 , . . . , z

(i)
k

)
=
(
z
(j)
1 , . . . , z

(j)
k

)
and ak+1 > bk+1.
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Then, by combining Lemma C.8 and Lemma C.6, we have

|Boltz(z(i))− Boltz(z(j))|

> (lnn)2e
−
(
z
(i)
1 −z

(j)
k+1

)
> (lnn)2e−2γ .

(
a1 − bk+1 < 2r since (γ, δ)-separated

)
This completes the proof.

J.10 LEMMA D.1

Proof of Lemma D.1. We restate the proof from (Park et al., 2021) for completeness.

We first note that the second inequality is simple because u is a unit vector. Next, we prove the first
inequality. We focus on the cases where |X | = N ≥ 2 and d ≥ 2. We first prove that for any vector
v ∈ Rd, a unit vector u ∈ Rd uniformly randomly drawn from the hypersphere Sd−1 satisfies

Pr

(∣∣u⊤v
∣∣ < ∥v∥

N2

√
8

πd

)
<

2

N2
. (J.7)

With (J.7), we define V := {x− x′ : x, x′ ∈ X}. Then, the union bound implies

Pr

(⋃
v∈V

{∣∣u⊤v
∣∣ < ∥v∥

N2

√
8

πdx

})
≤
∑
v∈V

Pr

(∣∣u⊤v
∣∣ < ∥v∥

N2

√
8

πdx

)
<

N(N − 1)

2
· 2

N2
< 1,

and thus there exists at least one unit vector u that satisfies the lower bound.

We start the prove with

Pr

(∣∣u⊤v
∣∣ < ∥v∥

N2

√
8

πd

)

= Pr

(
|u1| <

1

N2

√
8

πd

)

= 2Pr

(
0 < u1 <

1

N2

√
8

πd

) (
By symmetry of the uniform distribution

)
=

2

Area (Sd−1)
·
∫ π

2

cos−1
(

1
N2

√
8
πd

) Area
(
Sd−2

)
· (sin(ϕ))d−2dϕ

= 2 ·
Area

(
Sd−2

)
Area (Sd−1)

·
∫ π

2

cos−1
(

1
N2

√
8
πd

)(sin(ϕ))d−2dϕ

=
2√
π
·
(d− 1) Γ

(
d
2 + 1

)
dΓ
(
d
2 + 1

2

) ·
∫ π

2

cos−1
(

1
N2

√
8
πd

)(sin(ϕ))d−2dϕ

<

√
2

π
· (d− 1)

√
d+ 2

d
·
∫ π

2

cos−1
(

1
N2

√
8
πd

) 1dϕ (
By Gautschi inequality and sin(π) ≤ 1

)
≤
√

2d

π

∫ π
2

cos−1
(

1
N2

√
8
πd

) 1dϕ (
Since d ≥ 1

)
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=

√
2d

π

(
π

2
− cos−1

(
1

N2

√
8

πd

))

=

√
2d

π
sin−1

(
1

N2

√
8

πd

)

≤
√

2d

π
· π
2
· 1

N2

√
8

πd

=
2

N2
.

(
ϕ ≤ π

2
sin(ϕ), ∀0 ≤ ϕ ≤ π

2

)
This completes the proof.
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K PROOF-OF-CONCEPT EXPERIMENTS

(a) logLp vs log ϵ Plot of Sigmoid Data. (b) logLp vs log ϵ Plot of x2 Data.

Figure 1: logLp vs log ϵ Plots for Different Data Types. The numerical results align with prompt
tuning universality (Theorem 2.3) and memorization (Theorem 2.5) results. We verify that prompt
tuning on a single-head, single-layer transformer can approximate Lipschitz functions. For Lipschitz
data of dimension d and length L, we observe that as dL increases, the required prompt length Lp

also increases. In particular, we confirm the lower bound for the soft prompt: logLp ∝ − log ϵ.

Here we provide minimally sufficient numerical results to back up our theory.

Objective: Memorization of Prompt Tuning on Single-Layer Single-Head Attention Trans-
former.

We verify the required soft-prompt length of prompt tuning memory capacity (Theorem 2.5):

Lp ≥ L · (2(1/ϵ)C(dL)1/α)dL, (K.1)

where ϵ is the maximum error in retrieving a sequential data point with Lipschitz constant C, length
L, and dimension d. For simplicity, we verify the linear relation:

logLp ∝ − log ϵ. (K.2)

Besides the memorization result in Theorem 2.5, this setting also illustrates 2 more points:

• Verifying the Universality Results: In this setting, the target function of prompt tuning approxi-
mation is identity function mapping C-Lipschitz data to themselves.

• Verifying the Contextual Mapping Results: In the proof of Theorem 2.5, we also utilize the
concept of contextual mapping to determine the required soft-prompt length. Verifying (K.1) also
verifies Lemma F.2 and Lemma 2.2.

Setup. We perform prompt tuning on a single-head, single-layer transformer with a hidden size of 1,
following Section 2. Memorization is defined as in Definition 2.7. We use this transformer model to
demonstrate the memorization capacity of prompt tuning, as shown in Theorem 2.5. We verify (K.2)
for different (d, L) values: (d = 1, L = 2), (d = 1, L = 3), and (d = 2, L = 3).

Data. We generate Lipschitz sequential data X ∈ Rd×L using

• the sigmoid function on the interval [0, 1] with dimension d, and length L.

• the x2 function on the interval [0, 1] with dimension d, and length L.

Optimizer. We use Adam optimizer to optimize the prompt P ∈ Rd×Lp while fixing the transformer
model weights. We train the model until the max error ϵ does not decrease more than 0.00001 for
consecutive 10Lp epochs.

Computational Resources. All experiments are conducted using a single NVIDIA A100 GPU with
80GB of memory. The code is based on standard PyTorch and the Hugging Face Transformers library.

Results: Alignment with Theory (i.e., (K.1)). Our results are presented in Figures 1a and 1b.
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Key observations include:

• We confirm the linear relationship between logLp and log ϵ.

• Prompt tuning on a single-head single layer transformer approximates Lipschitz functions.

• We verify that with a larger dL, the required prompt length Lp increases.
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