Published as a conference paper at ICLR 2025

DUAL PROCESS LEARNING: CONTROLLING THE USE
OF IN-CONTEXT VS. IN-WEIGHTS STRATEGIES WITH
WEIGHT FORGETTING

Suraj Anand Michael A. Lepori Jack Merullo Ellie Pavlick

Department of Computer Science
Brown University
Correspondence to surajk610@gmail.com.

ABSTRACT

Language models have the ability to perform in-context learning (ICL), allow-
ing them to flexibly adapt their behavior based on context. This contrasts with
in-weights learning (IWL), where memorized information is encoded in model
parameters after iterated observations of data. An ideal model should be able
to flexibly deploy both of these abilities. Despite their apparent ability to learn
in-context, language models are known to struggle when faced with unseen or
rarely seen tokens (Land & Bartolo} 2024). Hence, we study structural in-context
learning, which we define as the ability of a model to execute in-context learning
on arbitrary novel tokens — so called because the model must generalize on the
basis of e.g. sentence structure or task structure, rather than content encoded in
token embeddings. We study structural in-context algorithms on both synthetic and
naturalistic tasks using toy models, masked language models, and autoregressive
language models. We find that structural ICL appears before quickly disappearing
early in LM pretraining. While it has been shown that ICL can diminish during
training (Singh et al.| 2023), we find that prior work does not account for struc-
tural ICL. Building on|Chen et al.| (2024)’s active forgetting method, we introduce
pretraining and finetuning methods that can modulate the preference for structural
ICL and IWL. Importantly, this allows us to induce a dual process strategy where
in-context and in-weights solutions coexist within a single model

1 INTRODUCTION

A fundamental trait of transformer language models (LMs) is their ability to integrate context to
adjust model representations and behavior without weight updates. This ability enables emergent
phenomenon such as ‘in-context’ learning (ICL) (Brown et al.,|2020; Dong et al., [2023; |Garg et al.|
2023)), and more generally allows models to flexibly accommodate variations in language. For
instance, a model is likely to memorize that the token green is typically used as an adjective, yet still
recognize that it is used as a noun in the sentence The child sat on the main green based on contextual
information.

However, this flexibility breaks down on truly novel/unseen tokens. Recent research has found that
models cannot successfully perform ICL when given undertrained (Land & Bartolo, 2024; [Rumbelow.
& Watkins| [2023) or newly-introduced tokens (e.g. when adding languages to an existing model)
(Chen et al.,[2024). For example, otherwise-performant language models produce bizarre responses
when queried to simply repeat an undertrained token (Rumbelow & Watkins| 2023)). Notably, this task
does not require any semantic content to be encoded within the embedding of the token of interest,
and so one might expect a model to implement a solution that is robust to undertraining.

In light of this, we distinguish two types of strategies that a language model might implement when
faced with a task presented in context: conditional ICL refers to strategies that are sensitive to

'We release code at https://github.com/surajk610/dual-process—-learning for repro-
ducibility

https://github.com/surajK610/dual-process-learning

Published as a conference paper at ICLR 2025

Natural Language Setting

Sylltlletic Setlillg
P: -S|
BERT a:t-o! : peecr)\ :

Sequence

Query Pattern
Pretrained on Language Structure S
>(_<adj> <adj> <adj> |
: <noun> cop <adj> <adj> - . L
Structure : &
det <noun> cop <adj> :
: Example
P(noun) : happy happy happy
POSP : i
Example P(ad)) : dog 1zrhappy happy’
the dog is happy : is happy dog dog happy dog dog

rose P(noun)

P(adj) : Unseen (Structural ICL)
: - 2 /v[<unseen2> <unseen2> <unseen2>]
—— unseen2>
: 5 il
the <unseenl> is <unseen2> : is <unseen2> <unseenl>) “UNSCEN,(Tinceenas cunseent> <unseent>
P(ad))
.. Temporary Forgethng

Structural In-Context Learning H Preference of Head for In-Weights Structural In-Context Performance
: 10

.4
- . -
0.0 ,

0 5000 10000 20000 = 0 5000 10000 20000
N N

=

Pure
icL

Unseen Token Accuracy

Training

1 - Vanilla Training leads to 2 - Active/Temporary Forgetting
Structural ICL transience maintains Structural ICL

Figure 1: (Top Left) In our naturalistic setting, we train a part-of-speech probe on BERT representa-
tions of sentences from Penn Treebank 3 and evaluate it on templatic examples (Section [3). (Top
Right) In our synthetic setting, we train a small masked language model (MLM) on sequences where
the expected response is determined based on the part-of-speech of the query token (Section [).
(Bottom Left) An idealization of two main findings: (1) structural ICL is transient (i.e. decays over
training) in both naturalistic and synthetic settings, and (2) Active/temporary forgetting maintains
structural ICL in the synthetic setting. (Bottom Right) Temporary forgetting induces structural
ICL when applied for N > 0 steps, enabling generalization to unseen random tokens. In-weights
preference is coarsely controllable by varying temporary forgetting parameter V.

the semantic content of all tokens, whereas structural ICL refers to strategies that are invariant to
the information (or lack thereof) encoded in the embedding weights of at least one token. Refer to
Section [2|for a more precise definition. While not all tasks permit structural ICL strategies, several
fundamental syntactic (Section[3) and logical (Section[7) tasks do.

A recent influential line of work has studied the development of transformers throughout training
through the lens of ICL vs. in-weights learning (IWL). This has resulted in several notable findings,
including (1) that models often adopt either ICL or IWL strategies, unless the data distribution has
specific, language-like properties (Chan et al 2022b)), (2) that ICL is transient, disappearing as
the models become overtrained (Singh et al.| [2023)), and (3) that Lo-regularization mitigates ICL
transience, but instead leads to IWL transience (Singh et al., [2023). We expand upon this framework
to study the relationship between conditional ICL, structural ICL, and IWL. Moreover, we aim to
translate insights from these studies into actionable techniques to encourage models to flexibly deploy
both IWL and structural ICL strategies. We refer to this capability as dual process learning in
loose analogy to Dual Process Theory (Kahneman, 201 1)), as IWL implements automatic, memorized
operations for IID settings (a la System 1) and structural ICL enables flexible, context-sensitive
operations for out-of-distribution settings (a la System 2).

In the present study, we find that structural ICL is also transient. However, while regularization
provides a path to persistence for conditional ICL (Singh et al., |2023), it does not for structural
ICL. Therefore, we propose an extension to active forgetting — a recent weight resetting technique
introduced by [Chen et al.|(2024)) to help augment models with new tokens — to render structural ICL
persistent. Our modification allows us to coarsely control the strategies that the model adopts during
pretraining, enabling us to induce dual process learning: (structural) ICL for rare and unseen tokens
and IWL for common tokens. Finally, we demonstrate a proof-of-concept fine-tuning strategy to
induce dual process learning in pretrained causal language models.

Published as a conference paper at ICLR 2025

In summary, our main contributions are:

* We define and study the concept of structural ICL in both large models and toy models.
We discover that both masked and autoregressive LMs exhibit a (limited) form of structural
in-context learning that emerges early in training, but this ability quickly vanishes.

* We show that active forgetting (Chen et al., [2024)) maintains structural ICL in models.

* We introduce temporary forgetting, which enables one to control how much a model relies
on in-weights vs. in-context strategies. We find that temporary forgetting enables us to
induce dual process learning under a variety of data distributions, where our model uses
an in-weights strategy for frequently tokens and a (structural) in-context solution for rarely
seen tokens.

* We introduce probabilistic temporary forgetting, which enables one to induce structural
ICL in a pretrained causal language model. We demonstrate a proof-of-concept by fine-
tuning GPT-2 and demonstrating structural ICL in a simple logical reasoning task.

2 DEFINITIONS

In-Context vs. In-Weights Learning We follow |[Reddy| (2023)), which defines in-weights learning
(IWL) to be “query-response relationships encoded in the weights of the network™ while in-context
learning (ICL) emerges due to “common structural element[s]” and “can be exploited to perform
zero-shot learning on novel tasks that share this structure.” Notably, word embeddings are purely
in-weight representations, which are enriched with contextual information by attention layers.

We formulate our ICL prediction tasks as Png(y | P1.n; Z1.n) Where y are the label(s), py.,, is the set
of positional embeddings, z;., is the set of word embeddings for a sequence of length n, and M
refers to the parameters of a language model.

Structural vs. Conditional ICL. We define structural ICL precisely via an empirical test: a model
exhibits structural ICL if it can complete a task that is presented in context in a way that is invariant

to the content of one or more embeddings. For one or more word embeddings at specified position(s)

. replace cpe
i € I, we replace Zz; ——— Zrandom- Lhis removes the in-weight information contained within the

word embedding and forces the model to rely on on contextual information and structural analogy.
We state that a model can perform conditional ICL when it succeeds on prediction task when z;.,,
remains unmodified. This is the standard ICL setting studied in the literature (Chan et al.| 2022bj;
Singh et al.| 2023} |Garg et al.| [2023}; |Akytirek et al.,2024). Note that a model that exhibits conditional
ICL will not necessarily exhibit structural ICL.

Head vs. Tail In skewed token distributions, we refer to the most frequently occurring tokens
(typically ~ 10%) as the head of the distribution and the least frequently occurring tokens (typically
~ 10%) as the tail. As token distributions increase in skew, tail tokens are seen less frequently. This
dichotomy relates to our analysis of structural ICL because tail tokens are an interpolation between
fully-trained tokens and random tokens. By accommodating random tokens through structural ICL,
we can also recover performance on infrequent tail tokens.

3 (STRUCTURAL) IN-CONTEXT LEARNING IS TRANSIENT

Recent work has discovered that conditional ICL capabilities slowly degrade over the course of
long training in a synthetic setting (Singh et al., 2023). In this section, we study the transience of
conditional and structural ICL over the course of training in a naturalistic setting using BERT-style
models (Devlin et al.||2019)). Using a syntax probing task, we find that structural ICL rapidly degrades
to completely random performance after fairly few training steps, while conditional ICL abilities
degrade during a significantly longer timescale. To perform this analysis, we use intermediate
checkpoints released from the MultiBERTS (Sellam et al., 2021}, averaging all of our results across
seeds 0, 1, and 2. We calculate error bars in Figure [2|as &1 standard error of the mean (SEM).

Published as a conference paper at ICLR 2025

3.1 TaskK

Determining the part of speech (POS) of each word in a sentence is a fundamental step toward
understanding that sentence. We identify two strategies that a model might employ to determine the
POS of a token: (1) an in-weights strategy, where the model explicitly memorizes the POS of a token
in its weights, and (2) an in-context strategy, where the model infers the POS of a given token from
context information. We created several templatic evaluation datasets in order to tease these two
strategies apart. Each dataset contains sentences that obey the template: The <noun> is <adj> (e.g.
The dog is happy).

Our evaluation datasets are defined as follows:

1. Head (Tail): Contains sentences where filler tokens are sampled from the most (least)
frequent 1500 nouns and most (least) frequent 1500 adjectives in the training set of Penn
Treebank 3 (PTB-3) (Marcus et al., [1993). We sample 1500 unique words because this
comprises ~ 10% of all unique nouns in PTB-3.

2. Head (Tail) Switch: Contains sentences where tokens are sampled as in the “Head” (“Tail”)
dataset, but where noun tokens fill the <ad j> slot and adjective tokens fill the <noun> slot
(e.g., The happy is dog). These datasets put the IWL strategy and ICL strategy into conflict.

3. Random Token: Contains sentences where the <noun> and <adj> slots are filled by
randomly-initialized embeddings. This dataset evaluates structural ICL performance. This
dataset appeals to the intuition that it should be possible to infer the POS of nonce tokens in
sentences like “the gluck is wug.”

For each layer and MultiBERT checkpoint, we train a separate binary POS probe on representations
of nouns and adjectives from sentences in the training set of PTB-3 (Marcus et al., [1993). We
then evaluate these trained probes on our evaluation datasets in order to understand the strategies
that models employ to determine POS at various points through training. For multi-token words,
we average representations across tokens (See Appendix |A| for additional details). Note that the
MultiBERTSs are trained following |Devlin et al.| (2019) on a combination of BookCorpus (Zhu
et al.,|2015) and English Wikipedia collected by [Turc et al.| (2019). As such, the distribution of the
training data is fixed, and our experiments are constrained to the natural distribution of language. As
BookCorpus does not have POS tags readily accessible, we employ PTB-3 to estimate the noun and
adjective distribution of the training data. We classify a word as either nouns (adjectives) if that word
appears as a noun (adjective) over 80% of the time. See Figure [T](Top Left) for more details.

3.2 TRAINING DYNAMICS

We examine (1) structural in-context learning and (2) the tradeoff between in-context and in-weight
strategies over the course of training.

Structural ICL We find that the MultiBERTS are able to perform structural ICL early in training, but
that this capability is transient. We measure structual ICL by evaluating pretrained probe performance
on the Random Token evaluation dataset. If a model determines POS using an in-context strategy
that is invariant to the content of the probed token, then it should succeed at inferring the POS of the
random tokens inserted in both slots. In Figure 2] (Left), we present accuracy on the Random Token
dataset using a probe trained on representations from Layer 7, as this layer achieves the highest
probing validation performance on PTB-3 (See Appendix [B|for results across all layers). We find a
clear signature of structural ICL transience: probe performance on random tokens spikes early in
MultiBERT training before dropping to chance by the end of training. These results suggest that there
is an inductive bias toward structural ICL that diminishes as information is encoded in the model
weightsE] As structural ICL confers the ability to generalize to rare and new tokens, this finding raises
questions about how we can train models that maintain this ability throughout training.

In-Context vs. In-Weights Strategies Much like |Singh et al.[(2023)), we observe that conditional
ICL strategies decay over training as information is encoded in model weights (e.g., token embed-
dings). To approximate how much a model relies on contextual information to infer the POS of
tokens, we consider the difference in performance between probes trained on Layer O (the embedding
layer) and probes trained on Layer 7 on the Head and Tail evaluation datasets. Layer 0 must rely only

2We also observe structural ICL transience in Pythia-1.4B (See Appendix i

Published as a conference paper at ICLR 2025

Structural In-Context Performance Gain from In-Context Info. Pref. for In-Weights Strategy
g 0o —— Layer7 > 0% — Tail 5080
5 Layer 0 o Head 9
o8y . Random Baseline | 3 No Gain 5 073
< g S0
o7 — < es
: s 5
E 0.6 9 ‘é 0.60
<) (2]
Tos K o /\J\\,/\ L — Tail
& 04 - 050 Head
‘ 0 259 500 750, }000 1250 1.500 1750 2000 10° 106 10° 108
MultiBERT Training Step (in 1000s) MultiBERT Training Step MultiBERT Training Step

Figure 2: (Left) Structural ICL is transient, as Random Token accuracy first peaks and then decays.
(Middle) We investigate the benefit of contextualization over memorization in Head and Tail datasets
by examining the difference in Layer 7 Accuracy (where both in-context and in-weights strategies are
possible) and Layer O Accuracy (where only an in-weights strategy is possible). These differences
become negligible after sufficient training. (Right) Using the Head Switch and Tail Switch datasets,
we find that models begin to encode POS using an IWL strategy over time. Note that the x-axis
begins at training step 20,000 for (Middle) and (Right).

on information encoded in the embedding matrix, as there is no in-context information available; in
contrast, Layer 7 can use contextualization to achieve higher performance (Tenney et al.,[2019; |Hewitt
et al., 2021). We find that the benefit of contextualization fades for both Head and Tail datasets,
but dissipates more quickly for the head of the distribution than the tail (See Figure 2] Middle). We
hypothesize that this occurs because there are far more gradient updates to head token embeddings
Concurrently, we measure Layer 7 probe performance on the Head Switch and Tail Switch datasets.
We observe that the model shifts from an in-context to an in-weights strategy, preferring to infer
POS from token identity, rather than token position (See Figure[2] Right). In other words, models
become more reliant on in-weights strategies and less reliant on in-context strategies over the course
of training. This finding aligns with|Singh et al.[(2023).

4 DATA DISTRIBUTION IMPACTS IN-CONTEXT LEARNING

We develop a synthetic masked language modeling task to characterize how data distributional
parameters affect structural ICL, conditional ICL, and IWL. Our synthetic task requires the model to
determine which of two classes a word belongs to. A token’s class may be inferred from contextual
information or memorized in the embedding layer. This task was crafted as a simplified version of
the naturalistic task investigated in Section 3]

Our vocabulary contains tokens that represent nouns, adjectives, and a copula (i.e., is). Each input
sample is created by selecting (1) a sequence S, (3) a query @, (3) two filler tokens Z,,oun,
Zqq5- The query uniquely determines a response pattern P. Our MLM is trained to predict
P(F;|S,Q) foralli € {0,...,|P| — 1} (i.e. the probability of each pattern token). The sequence
and pattern are designed so that no exceedingly simple heuristic can solve this task. Specifically,
sentence templates are defined using the following elements:

* sequence S: Either <noun> <copula> <adj>or <copula> <adj> <noun>.
* query Q: Either <noun> or <adj>.

* response pattern P: Either <adj> <noun> <noun> if the query is <noun>
or <adj> <adj> <adj>ifthe query is <adj>.

These templates are populated by Z,,0ur, filling the <noun> slots and x44; filling the <ad 3> slots.
This task is designed such that the model must make a POS classification on the query token, and
then perform an additional operations conditioned on that classification (i.e., copying specific token
identities in a specific order). See Figure [I](Top Right) and Appendix[I| for examples.

We parameterize the task with vocabulary size v, the sampling distribution skew for noun/adjective
fillers ¢ (Where we select Zyoun, Tagj ~ Zipf(c)), and the ambiguity of token POS . The ambiguity

3We observe that performance gain due to the model’s use of in-context information decreases across a
wide range of syntactic phenomena as embeddings are enriched during training. We term this the ”"Pushdown
Phenomenon” and explore it more thoroughly in Appendix @

Published as a conference paper at ICLR 2025

Structural In-Context Performance AL Pref. of Head for In-Context Pref. of Tail for In-Context
o7 Al ICL N

---- Uniform
a=1.0001

— a=12

— a=15

o

Y
o
3

0.8

o
EY

0.6

1)
o

o
IS

0.4

o
IS

=)
N

0.2

Tail Switch Accuracy

Head Switch Accuracy

Random Token Accuracy

All WL

All WL

o
o

0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Step Step Step

AllICL

[
o

PR AllICL

o
Y
o
Y
o
@

o
EY
o
o
o
o

o
IS
o
IS
o
IS

-==- Uniform
a=1.0001

— a=12

— a=15

<)
N
o
N

Tail Switch Accuracy

Head Switch Accuracy

Unseen Token Accuracy

All WL+ All WL
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000

Step Step Step

o
o

Figure 3: Comparative analysis of in-context learning performance across training methodologies and
data distributions. (Top) In-context performance by distribution with vanilla training; (Bottom) In-
context performance by distribution with active forgetting. The parameters used are v = 10000, e =
0.10. Note that the Uniform distribution does not have a head or a tail, and we present results in the
head graphs. (Top Left) Vanilla training results in structural ICL transience across all distributions.
(Top Middle, Top Right) Conditional ICL is asymptotically nonzero for most distributions, unless they
are highly skewed (i.e., « = 1.5). (Top Middle) However, IWL is often preferred for head tokens and
(Top Right) conditional ICL is preferred for tail tokens. (Bottom Row) In contrast, active forgetting
preserves structural ICL and removes all preference for IWL across distributions and datasets. Note:
The y-axis in the bottom left is relabelled “Unseen Token Accuracy” to emphasize that the random
token evaluation dataset does not contain any random embeddings seen during active forgetting.

parameter determines the percentage of filler tokens can fill both <noun> and <adj> slots, and
is inspired by the ambiguity of POS found in natural language. For our primary experiments, we
fix € = 0.10]| We investigate how training dynamics change as the skew changes, and additionally
compare to uniform sampling distribution.

In this task, an ICL strategy to infer the POS of the query token may achieve perfect accuracy by
utilizing in-context information (e.g. a copula is always followed first by an adjective, then a noun).
In contrast, an IWL strategy may achieve an accuracy of (1 — €/2) at most due to ambiguous tokens.
Thus ambiguity provides mild pressure to develop an ICL strategy. In order to make fair comparisons,
we only evaluate our models on the subset of tokens that are not ambiguous; thus, both an ICL and
IWL solution could achieve perfect accuracy.

Our task is formatted in a cloze-style where each token in the pattern is masked. We employ a BERT-
style MLM (Devlin et al.} 2019) to predict the identities of these masked tokens, with hyperparameters
described in Appendix J} Our models achieve near-perfect validation accuracy after < 60, 000 steps
in all experimental settings.

In addition to performance on a randomly selected validation set, we create datasets to evaluate the
model’s preferred strategy throughout training, similar to Section[3] All examples in these datasets
contain novel {Z,oun, Zqq; } combinations. Much like our naturalistic setting in Section we
create Head, Tail, Head Switch, Tail Switch, and Random Token datasets. In this setting, our head
and tail datasets use the top and bottom 10% of the token distribution by count, respectively.

*Interestingly, we find that & must be greater than zero for an in-context solution to emerge at all.

Published as a conference paper at ICLR 2025

Accuracy by Token Location in Distribution Pref. of Head for In-Weights Pref. of Tail for In-Context
0

-

o

3
®

o o o
>
>

=

Accuracy
o o
5

1 - Switch Accuracy

0.2 == Vanilla Training
mmm Temporary Forgetting

o
o
Tail Switch Accuracy

o o © 9o o
=

E

°
°

POV FOSNNG FCNIIN =1.0001 a=12 a=15

™~ Head > Tail ~ Unseen ™~ Head > Tail ~ Unseen

NIRRT AR

a=1.0001 a=12 a=15
Distribution Distribution

SV A?

Distribution (@) + Token Location

Figure 4: (Left) Temporary forgetting achieves near perfect unseen random token performance across
distributions, indicating structural ICL. (Left, Green) Vanilla training on skewed distributions renders
tail token performance poor; (Left, Blue) In contrast, tail token performance is almost perfect after
temporary forgetting. (Right) Temporary forgetting can maintain a preference for IWL for the head of
the distribution while maintaining a preference for ICL for the tail of the distribution i.e., temporary
forgetting induces dual processes learning. Parameters used are v = 10000, ¢ = 0.10 and optimal
hyperparameters k, N are found using a grid search.

4.1 TRAINING DYNAMICS

Transience of Structural ICL. We reproduce our results from the naturalistic setting presented
in Section[3} structural in-context strategies emerge quickly, but are transient. This is shown by the
model’s performance on the Random Token dataset over the course of training, which peaks early and
then quickly degrades (See Figure 3] Top Left). This trend holds across all tested distributions. Thus,
both synthetic and naturalistic training settings result in structual ICL transience, as hypothesized in
Figure[T] (Bottom Left). Critically, we find that models retain conditional ICL strategies, even after
structural ICL performance degrades. Across most data distributions, performance on both the Head
Switch and Tail Switch datasets reveal a nonzero reliance on conditional ICL strategies, even while
Random Token accuracy remains at zero (See Figure 3] (Top Middle, Top Right)).

Structural ICL has Practical Importance In highly skewed distributions (e.g. Zipf o > 1.5) where
tail tokens are very rare and head tokens are very common, the disappearance of structural ICL
eventually precipitates a total loss of ICL abilities (Figure 3] Top, Red Line). We find that common
tokens are memorized, resulting in high overall performance. However, the model completely fails
when presented with tail tokens (See Figure@, Left, « = {1.2,1.5}). Even when conditional ICL
strategies remain after training in less-skewed distributions, the least-frequent subset of tail tokens
result in poor performance. Inducing structural ICL would recover performance on these undertrained
tokens.

In-Context Learning conflicts with In-Weights Learning We analyze how the skew of the training
distribution applies pressure toward adopting an IWL or ICL strategy. We find that increasing the
skew of a distribution increases the pressure toward an IWL strategy for the head of the distribution,
and increases the pressure toward an ICL strategy for the tail of the distribution. Furthermore, training
distributions with a Uniform sampling distribution show a comparatively higher conditional ICL
preference (and thus lower IWL preference) than any Zipfian sampling distribution (See Figure 3]
Top Middle). We explore how to mitigate this competition in Section

5 MAINTAINING STRUCTURAL ICL WITH ACTIVE FORGETTING

In Sections[3]and @] we have demonstrated structural ICL is transient across models and tasks. In an

effort to promote the persistence of structural ICL, we utilize active forgetting 2024).
Henceforth, we refer to the standard training procedure as vanilla training.

Active Forgetting When training a model using active forgetting, we re-initialize the embedding
matrix every k steps during training. The intuition behind this is that the model must employ in-
context strategies to achieve high accuracy, as each embedding is no longer guaranteed to encode

3Additional experiments exploring the effect of ambiguity are located in Appendix D and the effect of
vocabulary size are located in AppendixM

Published as a conference paper at ICLR 2025

g
=}
o

g
o
o

R e =
I Singh Et Al,, 2023 Solution
I Temporary Forgetting

HEEl Vanilla Training

I
N
%
©
1
5

Accuracy
o
w
o
Accuracy
o
w
o

©
N
%
o
N
v

o
o
)
<)
o
S

7'?,)0129\97\?6‘)&\9\70 "@Ozewvso«»&szo

Training Frequency Decile Training Frequency Decile

Figure 5: Performance by token decile and on randomly initialized embeddings (Rnd). (Left) With
vanilla training on a skewed distribution (Zipfian a = 1.5), low decile tokens show poor performance.
However, overall performance remains good because these tokens are rare. (Right) Temporary
forgetting induces structural ICL to recover performance on tail, undertrained, and unseen tokens
compared with [Singh et al.|(2023)’s Ls-regularization procedure, which was proposed to preserve
conditional ICL.

in-weight information. This renders unseen/undertrained embeddings in-distribution, whereas they
were previously out-of-distribution. We further explore this effect in Appendix

Results We test £ = 100, 1000, 5000 and settle on & = 1000 after preliminary exploration. Training
our models with active forgetting asymptotically promotes structural ICL across all tested skews. We
evaluate this using the Random Token dataset, and find near-perfect performance after sufficient
training on all distributions (See Figure |3} Bottom Left). Given random embeddings to fill the
<noun> and <adj> slots, the model can now (1) derive the POS of these tokens by ICL and (2)
output novel labels corresponding to the identity of these embeddings in the desired pattern

As the skew of the distribution of nouns and adjectives increases, there is greater pressure to memorize
the head of the distribution (as these tokens are observed more frequently). Thus, it takes longer for
the model to exhibit a preference towards in-context solutions for head tokens (e.g., almost 60,000
steps for the o = 1.5 setting) and there is a much larger dip in performance after every instance of
forgetting the embedding matrix. However, we find that our active forgetting results generally match
our idealized result from Figure [I| (Bottom Left).

6 DUAL PROCESS LEARNING WITH TEMPORARY FORGETTING

While active forgetting successfully induces a structural ICL strategy, our model loses the ability
to memorize information in its embeddings. This is detrimental in a variety of cases, such as when
in-context information is insufficient to generate an appropriate response. An optimal model would
encode a dual process strategy: maintaining a structural ICL solution while also memorizing useful
linguistic properties.

Temporary Forgetting We modify the paradigm of active forgetting in order to induce a bias for
structural in-context strategies for the tail of the distribution while preserving in-weights strategies for
frequently-observed tokens. We introduce temporary forgetting, where we perform active forgetting
every k steps for the first IV steps (N >> k) of training. After this point, we allow the embedding
matrix to train normally. As a baseline, we compare to |Singh et al.[(2023))’s solution to conditional
ICL transience, Lo regularization. Crucially, we wish to understand whether L, regularization helps
maintain structural ICL, which was not tested in the original work.

Results We study a highly skewed distribution, with parameters v = 10000, = 0.10,a« = 1.5. We
find that by varying N, we can vary the model’s dependence on in-weights information for frequently
seen tokens while maintaining structural ICL performance (See Figure [T} Bottom Right). At the
extremes, setting [V to be very large mimics the behavior of active forgetting and setting N to be
small only sometimes maintains structural ICL performance. We can control the preference for IWL
versus ICL on observed tokens by modifying N.

Thus, temporary forgetting enables a model to successfully encode two distinct strategies for the
same task. We can now induce this behavior for any distribution ov > 1.0 (See Figure] Right),

SThis is possible because the embedding and unembedding matrices being tied.

Published as a conference paper at ICLR 2025

Vanilla Training

Active Forgetting

Temporary Forgetting

0754

0.70 4

°

a

&
L

—— Structural ICL
—— Conditional ICL
== Random Baseline

o

2

3
L

0704

—— Structural ICL
~—— Conditional ICL
== Random Baseline

--- Random Baseline
== Vanilla Training
| === Temporary Forgetting

Accuracy

Accuracy
s o o
a8 &
TR S

©
L

050 + 0.50 4+

Structural ICL
Category

IWL on Head

(a) Results from our replication study on the task with an autoregressive transformer. (Left)
With vanilla training, structural ICL is transient while conditional ICL is persistent. (Middle) Training with
active forgetting preserves structural ICL. (Right) When training our model to a skewed token distribution
(Zipfian o = 3), vanilla training results in memorization of head tokens and chance performance on unseen
tokens; in contrast, temporary forgetting evokes a dual process, which significantly improves structural ICL
performance while preserving IWL on common tokens. Further task and experiment details in Appendix@

Syllogism Task Vanilla Fine-Tune GPT-2 Prob. Temporary Forgetting GPT-2

Structure Coneqt : 1.0
-
All <X> are <Y>. -
All <Y> are <Z>. <7> L5 0.8
Therefore, all <X> are __ . 3
HE-
Example : X 0.6
S — R e Tl e e
ALL W are R. (R) : g 044
Therefore, all B are __ S /\ /
= ,V\ /~\ [
Unseen (Structural ICL) 202 /
All W %‘ —— —— Baseline
<unseen> are W. : o
ALl W are R. : 0.0 < Random Tokens
(ttiereforermatlisunseen=Tarer 0 500 1000 1500 2000 0 500 1000 1500 2000

Fine-Tuning Step Fine-Tuning Step

(b) Probabilistic temporary forgetting enables GPT-2 to perform structural ICL. (Left) A diagram representing
the syllogism task. (Middle) Vanilla fine-tuning GPT-2 large on Wikitext fails to confer structural ICL, resulting
in poor Random (Unseen) Token Performance. (Right) In contrast, we find that probabilistic temporary forgetting
successfully confers structural ICL, drastically improving Random Token Performance.

Figure 6: Autoregressive Transformer Structural ICL Experiments

while also inducing structural ICL behavior on all distributions we test (See Figure [d] Left)[] In
contrast, we find that the strategy employed by (Singh et al., 2023)) does nor eliminate structural
ICL transience: undertrained and random tokens result in poor performance, as seen in Figure[5] In
summary, temporary forgetting significantly enhances our ability to balance between in-context and
in-weights strategies, overcoming inherent biases in naturally occurring data. After a critical number
of training steps, we can stop the forgetting mechanism and retain structural ICL.

7 STRUCTURAL ICL IN AUTOREGRESSIVE TRANSFORMERS

Replication using [Chan et al.| (2022b) Task In this section, we replicate our main findings using
an autoregressive transformer on a task similar to|Chan et al.| (2022b). We modify the task presented
in|Chan et al| (2022b) to enable us to examine structural ICL (See Appendix [E)F| We find that the
phenomena described in Sections 3] 4.1} [] and|[6]all extend to this new task. In particular, Figure%
(Left) demonstrates the transience of structural ICL, even when conditional ICL persists. Figure
(Middle) demonstrates that active forgetting preserves structural ICL. Finally, Figure [6a] (Right)
demonstrates that temporary forgetting induces a dual process strategy, where structural ICL is
maintained and IWL is deployed on the head of a skewed distribution.

"Distributions where o < 1.0 would likely only rely on an in-context strategy.
8This modification ensures the tail distribution of these tokens are undertrained/untrained and thereby
resemble the "glitch tokens” of Rumbelow & Watkins|(2023).

Published as a conference paper at ICLR 2025

Probabilistic Temporary Forgetting Induces Structural ICL in GPT-2 Thus far, our interven-
tions have focused exclusively on pretraining to induce structural in-context learning (ICL). In this
section, we expand this approach to explore whether fine-tuning can also facilitate dual process
learning. As a proof-of-concept, we introduce probabilistic temporary forgetting. Our methodol-
ogy involves fine-tuning a GPT-2 model using a causal language modeling objective, with one key
modification: during each fine-tuning step, we replace approximately 10% of tokens in the batch with
randomly-initialized embeddings. Importantly, after each gradient update, we restore the embedding
matrix to its original pretrained values. For additional details, please refer to Appendix

We designed a simple syllogism task inspired by [Lampinen et al.| (2024) and |[Kim et al.| (2024)
(Figure [6b] Left). Notably, we include a condition where the subject term in the first premise and
conclusion of the syllogism is replaced by a random embedding. As we use an unconditionally valid
syllogism, this should not interfere with the model’s ability to perform logical inference. We fine-tune
GPT-2 large (Radford et al.l 2019) on Wikitext (Merity et al., 2016)) sentences for 2000 steps using
both (1) vanilla training and (2) probabilistic temporary forgetting.

The results reveal a striking contrast between methods. With standard fine-tuning, the model
demonstrates persistently low accuracy on our syllogism task when tested with unseen tokens
(Figure [6b} Middle). In contrast, when fine-tuned using probabilistic temporary forgetting, the model
shows substantial improvement in handling random (unseen) tokens while maintaining comparable
performance on baseline conditions (Figure [6bl Right).

8 DISCUSSION

Related Work As discussed throughout the work, the present study is intimately related to the
burgeoning literature examining the trade-offs between in-context and in-weights learning (Chan
et al., 2022bga; Reddyl 2023} |Raparthy et al.,|2023; |Fu et al.,|2024). Additionally, this work connects
to a vast literature on forgetting in neural networks. Most prior work on forgetting characterizes this
phenomenon as undesirable (Kemker et al., 2017} |Kirkpatrick et al., 2017; McCloskey & Cohen,
1989; Ratcliffl [1990). However, some work has shown that intentional forgetting (via resetting a
subset of parameters) may be beneficial in certain contexts. On computer vision tasks, forgetting
has been shown to help with generalization and sample efficiency (Alabdulmohsin et al., 2021}
Taha et al., 2021} [Ramkumar et al., |2023)). Additionally,|Zhou et al.|(2022) show that a forget-and-
relearn paradigm helps shape the learning trajectory of neural networks. Our method of forgetting
embeddings is directly inspired by (Chen et al.| (2024)), which shows that forgetting during pretraining
boosts linguistic plasticity for multilingual learning.

Conclusion The ability to flexibly deploy in-context and in-weights algorithms has been described
as an “important and useful [behavior] for a model,” as it enables models to both memorize information
about commonly-seen inputs and generalize to new inputs|Chan et al.|(2022b). However, it has proven
difficult to ensure that models reliably acquire both forms of processing. This has led prior work to
celebrate the ability to maintain dual strategies even for a limited set of distributions and suggest
interventions such as “engineer[ing] data distributions to evoke this behavior in models” (Chan et al.,
2022b)). In contrast, the present work demonstrates a method for engendering dual process learning
across a range of distributions. Additionally, we extend our analysis to structural in-context learning.

In summary, we find that structural ICL is transient in LMs, as they initially learn to generalize to
unseen tokens, before losing this ability. We find that active forgetting recovers structural ICL, at the
expense of IWL. We introduce temporary forgetting and probabilistic temporary forgetting to induce
dual process learning, enabling models to leverage IWL for common tokens and structural ICL for
rare or unseen tokens—this approach holds across various distributions. These strategies may prove
particularly valuable for training models in domains characterized by highly skewed distributions.

This study opens several promising directions for future work. A critical next step involves deter-
mining whether temporary forgetting can be effectively incorporated into large-scale pretraining
curricula, which would establish the method’s broader impact. Additionally, as we provide only a
proof-of-concept for probabilistic temporary forgetting, more comprehensive analysis of this tech-
nique is essential. From an implementation perspective, investigating whether probabilistic temporary
forgetting can be integrated with parameter-efficient fine-tuning methods (Hu et al., 2022) represents
an important advancement toward making this approach practical for large language models.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We would like to thank the members of the LUNAR, Serre, and LNCC laboratories at Brown
University for their valuable feedback on this research. In addition, we would like to thank Vignesh
Pandiarajan, Anish Anand, and Akash Anand for proofreading the manuscript.

REFERENCES

Ekin Akyiirek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architec-
tures and algorithms, 2024. URL https://arxiv.org/abs/2401.12973.

Ibrahim Alabdulmohsin, Hartmut Maennel, and Daniel Keysers. The impact of reinitialization on
generalization in convolutional neural networks, 2021.

Nora Belrose, Quintin Pope, Lucia Quirke, Alex Mallen, and Xiaoli Fern. Neural networks learn
statistics of increasing complexity, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165/

Stephanie C. Y. Chan, Ishita Dasgupta, Junkyung Kim, Dharshan Kumaran, Andrew K. Lampinen,
and Felix Hill. Transformers generalize differently from information stored in context vs in weights,
2022a.

Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya Singh, Pierre H.
Richemond, Jay McClelland, and Felix Hill. Data distributional properties drive emergent in-
context learning in transformers, 2022b.

Yihong Chen, Kelly Marchisio, Roberta Raileanu, David Ifeoluwa Adelani, Pontus Stenetorp, Sebas-
tian Riedel, and Mikel Artetxe. Improving language plasticity via pretraining with active forgetting,
2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei
Li, and Zhifang Sui. A survey on in-context learning, 2023.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav Goldberg. When bert forgets how to POS:
amnesic probing of linguistic properties and MLM predictions. CoRR, abs/2006.00995, 2020.
URLhttps://arxiv.org/abs/2006.00995.

Jingwen Fu, Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. How does representation impact
in-context learning: An exploration on a synthetic task, 2024. URL https://openreview,
net/forum?id=JopVmAPyx6.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes, 2023.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:

11

https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2006.00995
https://openreview.net/forum?id=JopVmAPyx6
https://openreview.net/forum?id=JopVmAPyx6

Published as a conference paper at ICLR 2025

Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4129-4138, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
URLhttps://aclanthology.org/N19-1419.

John Hewitt, Kawin Ethayarajh, Percy Liang, and Christopher Manning. Conditional probing:
measuring usable information beyond a baseline. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 1626—1639, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.122. URL https://aclanthology.org/2021.emnlp-main.122.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Ronald Kemker, Angelina Abitino, Marc McClure, and Christopher Kanan. Measuring catas-
trophic forgetting in neural networks. ArXiv, abs/1708.02072, 2017. URL https://api.
semanticscholar.org/CorpusID:22910766.

Geonhee Kim, Marco Valentino, and André Freitas. A mechanistic interpretation of syllogistic
reasoning in auto-regressive language models. arXiv preprint arXiv:2408.08590, 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13):3521-3526, March
2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http://dx.doi.org/10,
1073/pnas.1611835114l

Andrew K Lampinen, Ishita Dasgupta, Stephanie C Y Chan, Hannah R Sheahan, Antonia Creswell,
Dharshan Kumaran, James L. McClelland, and Felix Hill. Language models, like humans, show
content effects on reasoning tasks. PNAS Nexus, 3(7):pgae233, 07 2024. ISSN 2752-6542. doi:
10.1093/pnasnexus/pgae233. URL https://doi.org/10.1093/pnasnexus/pgae233.

Sander Land and Max Bartolo. Fishing for magikarp: Automatically detecting under-trained tokens
in large language models, 2024.

Linguistic Data Consortium. Ontonotes release 5.0. https://catalog.ldc.upenn.edu/
LDC2013T19, 2013. Accessed on December 10, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Comput. Linguist., 19(2):313-330, jun 1993. ISSN
0891-2017.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Gordon H. Bower (ed.), Psychology of Learning and Motivation,
volume 24 of Psychology of Learning and Motivation, pp. 109—165. Academic Press, 1989.
doi: https://doi.org/10.1016/S0079-7421(08)60536-8. URL https://www.sciencedirect,
com/science/article/pi11/S0079742108605368.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das,
Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Téackstrom, Claudia Bedini, Nuria
Bertomeu Castelld, and Jungmee Lee. Universal Dependency annotation for multilingual parsing.
In Hinrich Schuetze, Pascale Fung, and Massimo Poesio (eds.), Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 92—
97, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL https:
//aclanthology.org/P13-2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

12

https://aclanthology.org/N19-1419
https://aclanthology.org/2021.emnlp-main.122
https://api.semanticscholar.org/CorpusID:22910766
https://api.semanticscholar.org/CorpusID:22910766
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://doi.org/10.1093/pnasnexus/pgae233
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://aclanthology.org/P13-2017
https://aclanthology.org/P13-2017

Published as a conference paper at ICLR 2025

Liam Parker, Emre Onal, Anton Stengel, and Jake Intrater. Neural collapse in the intermediate hidden
layers of classification neural networks, 2023.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang. CoNLL-
2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes. In Sameer
Pradhan, Alessandro Moschitti, and Nianwen Xue (eds.), Joint Conference on EMNLP and CoNLL
- Shared Task, pp. 1-40, Jeju Island, Korea, July 2012. Association for Computational Linguistics.
URLhttps://aclanthology.org/W12-4501.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Vijaya Raghavan T. Ramkumar, Elahe Arani, and Bahram Zonooz. Learn, unlearn and relearn: An
online learning paradigm for deep neural networks, 2023.

Akshay Rangamani, Marius Lindegaard, Tomer Galanti, and Tomaso A Poggio. Feature learning
in deep classifiers through intermediate neural collapse. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 28729-28745. PMLR, 23-29 Jul 2023. URL https://proceedings,
mlr.press/v202/rangamani23a.html.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gener-
alization to new sequential decision making tasks with in-context learning, 2023.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning
and forgetting functions. Psychological review, 97 2:285-308, 1990. URL https://api.
semanticscholar.org/CorpusID:18556305.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task, 2023.

Jessica Rumbelow and Matthew Watkins. Solidgoldmagikarp (plus, prompt generation). Less-
Wrong, 2023. URL https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLgg/
solidgoldmagikarp—-plus—prompt—-generation.

Thibault Sellam, Steve Yadlowsky, Jason Wei, Naomi Saphra, Alexander D’ Amour, Tal Linzen,
Jasmijn Bastings, Iulia Turc, Jacob Eisenstein, Dipanjan Das, Ian Tenney, and Ellie Pavlick. The
multiberts: BERT reproductions for robustness analysis. CoRR, abs/2106.16163, 2021. URL
https://arxiv.org/abs/2106.16163.

Aaditya K Singh, Stephanie C.Y. Chan, Ted Moskovitz, Erin Grant, Andrew M Saxe, and Felix
Hill. The transient nature of emergent in-context learning in transformers. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL |https://openreview.
net/forum?id=0f0GBzowS3P.

Ahmed Taha, Abhinav Shrivastava, and Larry Davis. Knowledge evolution in neural networks, 2021.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In Anna
Korhonen, David Traum, and Lluis Marquez (eds.), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4593-4601, Florence, Italy, July 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL https://aclanthology.
org/P19-1452|

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models, 2019.

Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville. Fortuitous forgetting in connectionist
networks, 2022.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 19-27, 2015. doi: 10.1109/ICCV.2015.11.

13

https://aclanthology.org/W12-4501
https://proceedings.mlr.press/v202/rangamani23a.html
https://proceedings.mlr.press/v202/rangamani23a.html
https://api.semanticscholar.org/CorpusID:18556305
https://api.semanticscholar.org/CorpusID:18556305
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://arxiv.org/abs/2106.16163
https://openreview.net/forum?id=Of0GBzow8P
https://openreview.net/forum?id=Of0GBzow8P
https://aclanthology.org/P19-1452
https://aclanthology.org/P19-1452

Published as a conference paper at ICLR 2025

A PROBING SETUP

We provide probing background in this section, borrowing some notation from |[Elazar et al.| (2020).

Given a set of labeled data of points X = z1,...x, and task labels Y = y1,...,y,, we analyze a
model f that predicts the labels Y from X : ¢, = f(z;). We assume that this model is composed of
two parts: (1) an encoder h that transforms input z; into a learned representation vector h,, and (2) a
classifier c that is used for predicting ¢; based on h,,, such that ¢; = c¢(h(z;)). We refer to c as the
probe and the model containing h as the model.

Given this setup, we evaluate a particular model’s performance across various layers and training
steps for our POS task. Each encoder h is associated with a specific training step and layer h*!. We
probe the residual stream after layer [.

In this research, we are interested in the model’s choice of strategy at a particular time step. That is,
we seek to describe the change in prediction of ¢j; due to varying ¢, of encoder h%'. Accordingly, we
fix c as a single linear fully-connected layer.

B STRUCTURAL ICL ACROSS LAYERS

Structural In-Context Performance

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12
——- Random Baseline

08 -

=]
S
L

Unseen Token Accuracy
°
o
L

=
n
I

0.4

T T T T T
0.00 025 0.50 075 100 125 150 175 200
MultiBERT Training Step 1e6

Figure 7: We find that structural ICL is transient across all layers of MultiBERTsS (seeds O, 1, 2
averaged). The middle layers show the most structural ICL during early in training, whereas very
early and very late layers remain about random throughout training.

We find that structural ICL consistently approachs random levels as training progresses across layers
in the MultiBERTSs. This signifies that the model fully loses the ability to process unseen tokens
as training continues. This is one explanation for the “glitch tokens” described in
(2024), for which LMs fail to output sensible content.

14

Published as a conference paper at ICLR 2025

C STRUCTURAL ICL IN GENERATIVE DECODER-ONLY LANGUAGE MODELS

C.1 SYLLOGISM TASK

We designed a syllogism task that requires symbolic reasoning based on the context to show that (1)
structural ICL is transient in a decoder-only transformer based on generation and (2) a variant of
temporary forgetting can remedy structural ICL on a real-world natural langauge model.

Our task is formulated as follows: Our task requires abstract reasoning on untrained tokens in a
decoder-only transformer. The model must complete the following syllogism.

All <X> are <Y>.
All <Y> are <Z>.
Therefore, all <X> are __

The correct answer is <Z>. We examine accuracy, which we define as the probability of choosing
<Z> compared to the probability of choosing <Y>. We test baseline performance over training steps
where <X>, <Y>, <Z> are chosen from the set of tokens representing A-Z, and we test unseen token
performance by replacing <X> with an unseen token in this formulation (<Y>, <Z> are still chosen
from A-Z). This task was inspired by [Lampinen et al.[(2024)).

C.2 STRUCTURAL ICL 1S TRANSIENT IN PYTHIA 1.4B

Structural ICL on Pythia 1.4B Syllogisms Task

e o o
~ o w
| 1 1

Y
=]
o

Accurac

/ —— Baseline

/ Random Tokens

©c o o ©
MNooWw A WU
1 1 1 1

o
=
1

T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000
Step

Figure 8: We find that structural ICL is transient for the decoder-only Pythia-1.4B on a syllogisms
task. Performance on common tokens continues improving to near-perfect accuracy. Results averaged
over three trials.

In the above syllogism task, we observe structural ICL transience in Pythia 1.4B checkpoints. We
find that structural ICL consistently spikes and then approaches below random levels as training
progresses across layers in the Pythia 1.4B model (Biderman et al.,[2023), as shown by the random
(unseen) token accuracy in Figure[8] The model loses the ability to perform syllogisms on unseen
tokens as training continues. We chose the Pythia-1.4B model to show the generalizability of our
finding to natural language decoder-only models. We employ publicly released training checkpoints
to run our experiments (starting at step 0, then every 5000 steps starting from step 1000 until 141000).

D PROBABILISTIC TEMPORARY FORGETTING FIXES STRUCTURAL ICL IN
GPT-2

We finetune GPT-2 large (Radford et al.|[2019) on Wikitext (Merity et al., 2016) sentences taken from
Wikepedia articles for 2000 steps. We use the AdamW optimizer with a learning rate of 3e — 5 and a

15

Published as a conference paper at ICLR 2025

linear optimization schedule with 500 warmup steps. Note that unseen token syllogism performance
on the pretrained GPT-2 large is even worse than on the pretrained Pythia 1.4B. To accommodate
the fine-tuning setting, we use a probabilistic variant of temporary forgetting: every step, we replace
tokens in the batch with p = 0.10 with randomly initialized embeddings. After the step, we set the
embedding matrix back to its original values, hence maintaining the spirit of temporary forgetting. In
this method, our pretrained embeddings remain unchanged.

After fine-tuning with probabilistic temporary forgetting on Wikipedia sentences, we find that
syllogism accuracy with unseen tokens jumps from 0.02 to 0.927 while the baseline syllogism
accuracy goes from 0.933 to 0.923, as seen in Figure[6b] In addition, when we fine-tune without
probabilistic temporary forgetting (i.e. vanilla fine-tuning), we see that unseen token syllogism
accuracy remains substantially below-random. Our probabilistic temporary forgetting rectifies
structural ICL on a downstream task in a real natural language model.

16

Published as a conference paper at ICLR 2025

E AUTOREGRESSIVE TRANSFORMER SYNTHETIC SETTING

To show the broadness of our structural ICL results, we also replicate our findings using a modified
version of the synthetic task presented in|Chan et al.|(2022b)).

E.1 MODIFIED |CHAN ET AL.[(2022B)) TASK

(a) Model, inputs, and outputs.
) (b) Sequences for training.
bursty ?
‘ transformer (causal) ‘ bam Olze Q26 [sa s gy2e SEE e @
resnet embed T T T T T non-bursty ?
@ 931 184 -Fnse h45 d1ooa bsm Cl7e 2 m 8579 C 907 @
image label
- context query
context query
(c) Sequences to evaluate in-context learning. (d) Sequences to evaluate in-weights learning.
? ?
Xo Xo Z1 Xo 21 Z1 Xo Zi £ie s ioos bam |46 2= Yore Cao7@
context query context query

Figure 9: This is the task formulation of Chan et al.|(2022b) (Replicated from Figure 1 of |Chan et al.
(2022b)). We use a similar task, but with token embeddings that are learned during training rather
than ResNet encodings of Omniglot.

Similar to|Chan et al.|(2022b)’s task formulation, we have training data comprised of sequences of
tokens and labels where the context is made up of the first 16 elements (8 token-label pairs), and the
final element is the ‘query’ token. The aim of the model is to predict the correct label for the query.
There are 1600 tokens, each mapped to a label. With some ambiguity probability (e.g., 0.05), a token
is mapped to a different label randomly chosen from the set of labels (in order to confer ambiguity,
as in Sectiond). Sequences are bursty, with the query-label pair as well a different token-label pair
each occurring 3 times in the context. We evaluate the trained models on three types of sequences to
measure (1) structural ICL, (2) conditional ICL, and (3) IWL.

Again borrowing from Chan et al.| (2022b), our context for the ICL conditions is a random ordering
of two token-label pairs with 4 examples each, and the query is selected randomly from one of the
two tokens. While label-pairs are fixed in training (up to the ambiguity parameter), the labels for
the two tokens are randomly re-assigned to either O or 1 for each sequence. We calculate few-shot
accuracy by considering only probabilities assigned to O and 1 (resulting in chance performance of
0.5). In evaluating structural ICL, we generate sequences consisting of random tokens and labels,
while conditional ICL sequences consisted of tokens previously seen by the model during training.
We test on tokens drawn from uniform and zipfian distributions, where experiments are with a Zipf
a = 1.0001 token sampling distribution unless otherwise specified.

To measure IWL, we considered non-bursty sequences where the query-label is not located in the
context. The only way for a model to correctly predict the label is to rely on information in weights
as we ensured unique, non-query token-label pairs in the context.

Note that the difference from |Chan et al.|(2022b)’s setup is that we use randomly initialized tokens
embeddings rather than Omniglot Resnet-encoded images and our autoregressive transformer is also
smaller. This enables us to test for structural ICL by replacing token identities with random vectors.
Another method for us to test structural ICL could have been to use random images, but this would
not maintained the analogy to undertrained/unseen “glitch tokens” in language models, unlike our
current setup

17

Published as a conference paper at ICLR 2025

E.2 MODEL DESCRIPTION

We use a 4-layer GPT-2 architecture as our autoregressive transformer with 4 attention heads per
decoder layer and an embedding size of 64 (Radford et al 2019). To optimize, AdamW with a
learning rate of 5 x 1075 and a linear warmup schedule with 1/10 of the total number of steps as
warmup steps (Loshchilov & Hutter, [2019).

We ensure that on a validation similar to the training set, there is near-perfect performance by the
completion of training.

E.3 VANILLA TRAINING

We find across setting that settings where ICL arises, there is structural ICL and it disappears abruptly
with vanilla training. This is true for different levels of burstiness (0.8, 0.95, 1.0), different levels of
ambiguity (0.05, 0.10, 0.20), and different distributions (Uniform, Zipf with o« = 1.0001, 1.5, 2, 3).
In-weights learning varies based on the distribution.

Amb=0.05, a=0 Amb=0.05, a=1.0001 Amb=0.05, a=2 Amb=0.05, a=3
o757 fropypeive ¥ o075 o075 o075
o7 o070 o070 o070
z —— Conditional ICL z z [
® oss ® oss ® oss ® o6s
5 —— Structural ICL 5 5 5
060 060 060
g o ---- Random Baseline | S S
< s < oss <L oss <L oss
050 050 oso+1 050
0 10000 20000 30000 40000 50000 §0000 70000 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 €000 70000 10000 20000 30000 40000 50000 §0000 70000
Step Step Step Step
Amb=0.10, a=0 Amb=0.10, a=1.0001 Amb=0.10, a=2 Amb=0.10, a=3
o7 o075 o075 ors
S0 .07 5,070 S, 070
8 o6 8 8 8
o © oss © oss © oss
5 5 5 5
g oe G oo G 0w G os
Toss Loss Loss L oss
050 -t 030 o501 050
0 10000 20000 30000 40000 50000 §0000 70000 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 §0000 70000 10000 20000 30000 40000 50000 §0000 70000
Step Step Step Step
Amb=0.20, a=0 Amb 0.20, =1.0001 Amb=0.20, a=2 Amb=0.20, a=3
075 03 09
on0
) e 3 g
[e e e
o7 07
<oss < os < < os
i 11 LML)l

0 10000 20000 30000 40000 50000 60000 70000 o 10000 20000 l(mm) wnuo 50000 60000 70000 0 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 000 4000 50000 60000 70000

Figure 10: Structural ICL disappears while conditional ICL remains across different combinations
of ambiguity and skew in our autoregressive few-shot task described in Appendix [E] Interestingly,
skewed distributions with high ambiguities show some variance in structural ICL accuracy after the
initial disappearance.

Published as a conference paper at ICLR 2025

E.4 ACTIVE FORGETTING

Active forgetting preserves structural ICL, but completely removes any use of IWL. We see this
across tested distributions (Uniform, Zipf with e = 1.0001, 2). We use £ = 500 because this worked
well with initial experiments (although the other tested parameters of k¥ = 1000, 2000 also worked
almost equivalently).

a=0 a=1.0001

070

Accuracy
Accuracy
Accuracy

—— Conditional ICL
—— Structural ICL
—----Random Baseline "

4 20000 40000 60000 80000 4 20000 40000 60000 80000 4 20000 40000 60000 80000

Step Step Step
Figure 11: Active forgetting preserves structural ICL across different skews in our autoregressive few-
shot task described in Appendix [E] Interesting, increasing the skew seems to make active forgetting
converge quicker.

E.5 TEMPORARY FORGETTING

In our temporary forgetting setting, we use a burstiness parameter of 0.95 for experiments. We use
k = 1000, N = 8000 because these parameters worked well in initial experiments. We did not
exhaustively search over parameters. We tested whether we could evoke a dual process of ICL and
IWL across distributions (Zipf with o = 1.0001, 2, 3), as seen in Figure This is in contrast to
active forgetting, where we cannot learn information in-weights (Figure%, and vanilla training,
where we cannot asymptotically perform above a random baseline for structural ICL (Figure [I0).

Structural ICL IWL on Head/Common Tokens
1.0

-- Random Baseline
=== Vanilla Training
mmm Temporary Forgettin 08

°
S

>
9
c
5
o
o]

<

a=2
Distribution

a=2
Distribution

Figure 12: Temporary forgetting preserves structural ICL across different skews in our autoregressive
few-shot task described in Appendix [E] as opposed to vanilla training (i.e. standard training). In
addition, it enables IWL for common tokens instead of completely removing it like active forgetting.
It achieves about 90% the IWL use for these. Note we consider the smaller set between top 100
tokens and top 10% of the probability when choosing common tokens to evaluate IWL on.

Active Forgetting Training Temporary Forgetting Training

074 4
064 4
05 4

—— Structural ICL
—— IWL on All Tokens

Accuracy
Accuracy
A

T T T T T T T T T T T T T
0 20000 40000 60000 80000 o 10000 20000 30000 40000 50000 60000 70000

Steps Steps
Figure 13: Temporary forgetting enables us to learn IWL while preserving structural ICL, whereas
active forgetting forces only structural ICL. This is seen by the developmental accuracies in this
figure (note k = 500 for active forgetting whereas k = 1000, N = 8000 for temporary forgetting).

19

Published as a conference paper at ICLR 2025

F DUAL PROCESSES FOR SKEWED DISTRIBUTIONS

Chan et. al Dual Process Temporary Forgetting Dual Process
ICL on holdout classes IWL on common classes ICL on random tokens IWL on common tokens
1.00 . 1.00 1.00
>
g g
0.75 20.75 20.75
o) g < 2
g e IS <
3 5050 2050 2050
£ & ‘;’ £
0.25 50.25 9o.25
2 -
2
000 10001 12 1.5 2 0-00= 8" 170001 1.2 15 2 0.00=0"70001 15 3 3 0.00=0 70001 15 3 3
Zipf Exponent Zipf Exponent Zipf Exponent Zipf Exponent

Figure 14: Temporary forgetting’s ability to invoke dual processes (in yellow) on various distributions
of our synthetic POS task compared with|[Chan et al.| (2022b) observational baseline. Structural ICL
and IWL are able to be co-occur in networks now trained on data distributions of any skew with
«a > 1, as opposed to being limited to a specific “sweet spot” distribution.

G PUSHDOWN DATASETS

We use the train/dev splits from the English UD Treebank for the c-pos, f-pos, and dep tasks[McDonald|
(2013); the train/dev splits from Ontonotes-v5 in the CONLL-2012 Shared Task format for the
ner, phrase start, and phrase end tasks |[Linguistic Data Consortium| (2013)); [Pradhan et al.| (2012); the
train/dev splits from Penn Treebank-3 for the depth and dist tasks Marcus et al.| (1993)); and generated
token sequences for the prev, dup, and ind tasks.

We reproduce baselines from |Elazar et al.| (2020) to verify the correctness of our probing setups for
c-pos, f-pos, ner, dep, phrase start and phrase end and from Hewitt & Manning|(2019)) for depth and
dist.

H PUSHDOWN SIGNATURE OBSERVATION IN SYNTAX

cpos fpos

!

cgog
g8

-0.900

-0.875

-0.850

0.825

0.800

Layer
012345867 809101112

0775

0.750

0725

0.700

120
180
400
600

1000

1400

1800

phrase start phrase end

004 0925
0900
050 075

0,88 Ho.850

Layer
012345867 809101112

086 0.825

084 0.800
0775
080 0.750

.78

Figure 15: The “Pushdown Phenomenon” is observed across syntactic features, suggesting that
a transition from IC to IW strategies happens across these features. In early steps of training,
representing syntactic information occurs in later layers, which are more contextualized. However,
as training progress, the same properties are better encoded in earlier layers due to memorization
of token-level and n-gram level information. The n-gram level information requires attention to
build, which explains why performance in dep, depth, and dist does not propagate all the way to
embeddings.

20

Published as a conference paper at ICLR 2025

We observe a “Pushdown Phenomenon”, which describes a phenomenon where in early steps of
training, computing token-wise syntactic properties occurs in later layers, which have more in-context
information. However, as training progresses, the same properties are better encoded in earlier layers
until only the first couple layers are required for representing syntactic properties.

We examine whether the ”Pushdown Phenomenon” exists in various syntactic properties in BERT. To
do so, we employ our probing setup (Appendix [A)) for the tasks of named entity recognition (ner),
coarse part of speech (c-pos), fine-grained part of speech (f-pos), dependency parsing (dep), syntactic
constituency boundaries which indicate the start and end of a phrase (phrase start, phrase end), depth
in the parse tree (depth), and distance in the parse tree (dist). We probe each property across the axes
of (1) training time steps and (2) layers. We repeat this process for three seeds of the MultiBERT's
(Sellam et al.}2021)). For all tasks, we probed all layers of MultiBERT seeds 0, 1, and 2 for timesteps
from 0 to 200,000 increasing by 20,000; 200,000 to 1,000,000 increasing by 100,000; and 1,000,000
to 2,000,000 increasing by 200,000. If a specific word is composed of multiple subword tokens, we
follow |[Hewitt & Manning|(2019) and average the encoding across tokens.

‘We observe the "Pushdown Phenomenon” in all our examined tasks. However, we find that across
tasks, syntactic information is “pushed down” at different rates. Early layer accuracy increases
approximately follow a pattern of ner — phrase start — cpos/fpos — phrase end — dep —
depth — dist. We leave it to future work to explore whether this timing is a function of (1) complexity
of high-achieving rules/heuristics consistent with Belrose et al.|(2024) or (2) a naturally occurring
dependency hierarchy of syntactic relationships suggestive of implicit curriculum learning. One
possible intuition for why the ”Pushdown Signature” of memorization often coincides with poor
maintenance of in-context strategies might be neural collapse (Parker et al., 2023; Rangamani et al.,
2023)), although this should be further investigated by future studies.

I SYNTHETIC POS TASK EXAMPLES

Here, we provide further details regarding the design of our synthetic POS task. Our task is designed
to 1) minimally emulate a subtask performed in language models (Part-of-Speech tagging) while
2) controlling for various confounds. In particular (1) it does not allows heuristics based on token
position and (2) is not deterministic based on the query.

Here are a couple clarifying examples (<sequence> <query> — <pattern>):

1. (@) is happy dog dog — happy dog dog
(b) dog is happy dog — happy dog dog
Note that in this example, we show that using two templates rules out a simple position-based
heuristic. If a model assumes that the noun occupies the 3rd position of the sequence, then
the model will believe happy is a noun in the second example and falsely predict a response
pattern of dog dog dog.

2. (a) dog is happy dog — happy dog dog
(b) dog is sad dog — sad dog dog

Note that in this example, both queries are dog, yet the predicted pattern is different.
Context is necessary for correct prediction.

J Toy MODEL

We employ a 6-layer BERT model across the synthetic setting experiments. Experiments were
performed with an MLM as syntactic structure is much more difficult to infer in autoregressive
models as they are only exposed to an ordered subset of the tokens in a sentence. This model
has 1 attention head per layer, 64-dimensional hidden dimensions, 128-dimensional intermediate
representations, and tied weights for the embedding and unembedding layers. We optimize model
parameters with AdamW with a learning rate of 5 x 10~? (Loshchilov & Hutter, 2019). The hidden
dimension sizes were decided per a minimax strategy, i.e. this representation dimensionality was the
smallest such that we achieved near perfect accuracy on a validation set for the downstream task.
Future work should better examine the effect of representation size on in-context vs. in-weights
learning.

21

Published as a conference paper at ICLR 2025

K PERFORMANCE BY TOKEN DECILE

10+ mmm Vanilla Training

HE Increased Weight Decay

mmm Active Forgetting
Temporary Forgetting

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
Training Frequency Percentile

Figure 16: Increased weight decay has little/no effect on the failure of the structural ICL strategy
(we increase weight decay from 0.01 to 0.1). In contrast, active and temporary forgetting boosts
rare token validation accuracy significantly, as seen in the tail of the distribution. Parameters are
v = 10000,¢ = 0.10, a0 = 1.5

We find that on highly skewed distributions, the tail of the distribution suffers immensely due to
undertraining. This phenomenon cannot be rectified by [Singh et al.| (2023))’s method of promoting
asymptotic ICL. However, we find that both active forgetting and temporary forgetting correct this
behavior to boost performance on tail tokens in skewed distributions from near-zero to near-perfect
levels.

22

Published as a conference paper at ICLR 2025

L AMBIGUITY (¢) EXPERIMENTS

Structural In-Context Performance

Head In-Context Preference

Tail In-Context Preference

10
. s
-=- Uniform §
—— @=1.0001 | oeq |; or]
08 = H
> a=12 > I\ .
© — a=1.5 - I [okth
3 506 1] 2
o H| S
Q 06 S I 0 054
< | 9
< .
= [<
< M]
g O o4
~ = [o
S o Soaq I]
© f ER e
c wv | 03
o} L : [0}
g AN =
u [0} [ﬂ 024
5 o021 T °27 i \
M N
i
|
004 - 004 00+
T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000] 10000 20000 30000 40000 50000 60000
10 10
i
08 084 I‘
> 08 i 08
) > H ke
© 2 ["ﬂl‘ o
Jid H i ©
3 S 11 4 s
S Dosd ot q- =]
S os $ i 'l 5 oo
X =1 I 2
12 04 = i E=RTe
c o) ol H
3 3 | &
w (©
o |
5 02 T : = oo
U
|
yl
\
0o{ ¥~ 00
T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
104 104
>, 08]
> 08
9
g g 9
5 5 e
O o =1
Y 06 O o
< o %67
<
S 5 :
2 £ g
= 044 : = S oe
c i v o)
3 g .
2 L ©
S o029 1) T 024
|
1
i\
004 at 004

T T T T
30000 40000 50000 60000

Step

T T T T T T
30000 40000 50000 60000 o 10000 20000

Step

T T T T T T
30000 40000 50000 60000 o 10000 20000

Step

T T
o 10000 20000

Figure 17: (Top) ¢ = 0.01, (Middle) ¢ = 0.10, (Bottom) ¢ = 0.50. Overall in-context strategy
is dependent by amount of ambiguity in the labels. With 50% of the tokens as ambiguous, all
unambiguous tokens use an in-context strategy; with 10%, there is a mixed strategy dependent on
where in the distribution the example is; with 1%, almost unambiguous tokens use a memorized
strategy. The vocab size is v = 10000.

In all of our ambiguity experiments, structural ICL is transient (even when 50% of tokens are
ambiguous). The ambiguity parameter significantly alters the model’s overall strategy. With a low
ambiguity parameter, the model prefers memorization (IWL strategy) of unambiguous tokens and
with a high ambiguity parameter, the model prefers an ICL strategy. Across all ambiguity parameters,
there is a difference in tail and head behavior.

23

Published as a conference paper at ICLR 2025

M VOCABULARY SIZE (v) EXPERIMENTS

Structural In-Context Performance

Head In-Context Preference

Tail In-Context Preference

-=- Uniform
—— a=1.0001
08 -
> a=1.2 > 04 S o8
[9)
© — a=1.5 © 9
=1 = ©
o 2 5
g g g
< < 034 o 06
c <
S c
~ v =
) £ 2
= 044 = 02+ 3 04
c w A
[} k] —
i s K
S o024 : T o1 & oo
]
. pren
004 - 004 004
T T T T T T T T T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000] 10000 20000 30000 40000 50000 60000
10 104
> 08 08
>
H 9 >
i © 9
E jid I
o] 3 5
9 o064 o >
<< O O 06+
< Y]
c <
a e
X o <
o g 2
2 0s H £ 0
c [0} H
bl)
1 k] —
) 3 ©
5 02 T = oo
I
|
|
\
00 ¥'v- 004
T T T T T T T T T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
104 104
>, 084 084
>
@ 9 o)
5 g 8
o 3 5
© 06 | o 2
P v} O 06 -
<< o
c <
a e
9 O <
o £ S
=oaq It = 'S 04
c i a =
o} i %)
bl [° =
b [o ©
< o ©
5 024 T 02
n
oo Wh- 00+
T T T T T T T T T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Step Step Step

Figure 18: (Top) v = 1000, (Middle) v = 10000, (Bottom) v = 20000. The strength of an in-context
solution depends on the interaction between vocabulary size v and skewedness of the distribution a.
Too small of a vocabulary size (i.e. v = 1000) encourages more memorization in general but fixes
performance in o = 1.5 setting. The ambiguity is € = 0.10.

In all of our vocabulary experiments, structural ICL is transient. As expected, we find that vocabulary
size has a similar effect to the skewedness of the distribution. That is, increasing the vocabulary
without bound would lead to poor tail ICL performance. Too small of a vocabulary size seems to
increase ICL among very skewed distributions but decrease ICL among all other distributions.

24

Published as a conference paper at ICLR 2025

N EMBEDDING ANALYSIS

We perform qualitative analyses on the embeddings produced by vanilla training (i.e. standard training
without modification), active forgetting, and temporary forgetting in order to better understand how
these training regimens impact model representations. These analyses, consisting of principal
component analysis (PCA) and probing for POS, are located in Appendix [N}

After vanilla training, the learned embeddings cluster according to their POS, far from the distribution
of randomly-initialized tokens. We train a linear probe on these learned embeddings, and find that it
can almost perfectly partition nouns and adjectives. Note that the disappearance of structural ICL
occurs at the same time as the probe achieves above-random POS probing (i.e. memorization).

As expected, we do not see any structure in the embeddings produced after active forgetting. As such,
a linear POS probe trained on these embeddings never achieves above random chance throughout
training. The embedding distribution looks quite similar to the random initialization distribution,
indicating that no information has been encoded in these embeddings. See Figure [I9]

Finally, the temporary forgetting setting reflects aspects of both vanilla training and active forgetting;
that is, the head of the token distribution learns to partition nouns and adjectives whereas the tail
of the distribution does not learn any structure. The tail embeddings much more closely resemble
the initialization distribution with temporary forgetting than with vanilla training. This results in a
unseen token generalization in addition to memorized information. See Figure 20]

10

Vanilla Training

Active Forgetting

s Random (Init)

Adjs

Component 2
Token Type

Nouns

-10 05 00 15 20 25 - -3 -2

o5) B o H
Component 1 Component 1

Figure 19: Vanilla training imposes structure on the adjectives and nouns such that randomly
initialized (unseen) tokens are out-of-distribution whereas active forgetting embeddings resemble the
initial distribution. Parameters used are v = 10000, « = 1.0001, ¢ = 0.10.

25

Published as a conference paper at ICLR 2025

Head Tokens Tail Tokens
Legend
L Noun ™ o . e
- 0% ®
Adjective ° 4 s pf:;.é »t . 3
LY » X R T
" I oA EL T
. 1 i 8 Fa0n - 1
Vanilla ,.% ﬁ; ‘ ‘:'”1?’3;’ A "13‘2. ’.ﬂ wia..
Tralnlng ‘:e"‘m .vx .. ""'—: % ..é) w‘.‘:{'-'71
oy) -
'.qni 't < ,;(::"": ~ ° '..
. - ‘s [] e ®, .‘.. “ 5
H ., . '. \ **
" P d ”e
Probe Accuracy: 0.95 Probe Accuracy: 0.79
. *
L]
L
. 5 . »
. » 2y ,J.f
Active * qﬂ(:):‘& .-,-;{ .'_’-
. oo . AR O O T EN
Forgetting - #.: { (0 ;,;ﬂ: |
en ,.'-....' J‘\-L ("t
P PRI T)
TR P e
[e 1
R TR
.2
*
Probe Accuracy: 0.54
*
* .
e . SN *
ol 3T
Temporary . -}t"’“_”fi | R0
» 3 N b
Forgetting . -“ﬁ 10" e P VI
P e \-" 4 e
PN el
.:v“ :!} }4‘1“' "'
I" S ke %,
RSP
L]
Probe Accuracy: 0.88 Probe Accuracy: 0.55

Figure 20: Vanilla training learns to partition noun and adjective embeddings in the head of the
distribution, and some structure in the tail. Active forgetting learns no separation between noun and

adjective embeddings. Temporary forgetting learns structure in the head of the distribution and no
structure in the tail of the distribution. Parameters used are v = 10000, « = 1.2, = 0.10.

26

Published as a conference paper at ICLR 2025

O OTHER RANDOM DISTRIBUTION GENERALIZATION

Note that while we define structural in-context learning as free from reliance on any encoded
semantic information, it is important to note that this does not mean that structural in-context learning
assumes no geometry of the space. In fact, this would be practically impossible to achieve because
connectionist networks function in a geometric space and take advantage of orthogonality, translation,
scaling, etc. If we cannot make assumptions about the distribution from which the data is sampled,
then we deprive our networks of their toolbox. Still, we test on random sampling distributions for the
embeddings other than our initialization distribution. Namely, we test on a uniform distribution from
0 to 1 and a large normal distribution with mean of 5 and standard deviation of 5.

Vanilla Training Active Forgetting Temporary Forgetting
0 2] O S 0

Random (Large)
Random (Unif)

Random (Init)

Component 2
*
Token Type

Adjs

Nouns

» » © E o 1 » o w o o E) »
Component 1 Component 1 Component 1

—— Random (Init)
Random (Unif)
—— Random (Large)

0 10000 20000 3000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 1000 20000 3000 40000 50000 60000
Step ste ste

Figure 21: Vanilla training fails on all random tokens, whereas active/temporary forgetting succeed
on the random distribution of initialization. Active and stop forgetting do not generalize to arbitrary
random distributions, although show some generalization to normal distributions with large means
and variances.

P REQUIRED COMPUTE FOR EXPERIMENTS

We employed compute resources at a large academic institution. We scheduled jobs with SLURM.
For our naturalistic experiments, each MultiBERT seed required 24 separate runs (one per tested
checkpoint at a particular timestep), which totaled ~ 100 hours on an RTX A5000 with 24 GB
of GPU memory. Over 3 seeds, this was ~ 300 hours of GPU usage. For our synthetic setting,
the vanilla training required 64 separate runs (one per hyperparameter combination of vocab size,
ambiguity, and sampling distribution), which totaled ~ 250 hours of RTX A5000 usage. Likewise,
our active forgetting and temporary forgetting interventions took a similar amount of GPU usage.
Therefore, in total, our GPU usage for all synthetic experiments summed up to about 750 hours.
We ran experiments mostly in parallel with SLURM to iterate quickly. Compute was a significant
limitation for the development time and informed our development of training interventions in a
synthetic setting. In total, our GPU usage was significantly higher than the reported number due to
various failed/modified experiments. The total compute likely was around 20,000 GPU-hours on
RTX A5000s, although this is a rough estimate.

27

	Introduction
	Definitions
	(Structural) In-Context Learning is Transient
	Task
	Training Dynamics

	Data Distribution Impacts In-Context Learning
	Training Dynamics

	Maintaining Structural ICL with Active Forgetting
	Dual Process Learning with Temporary Forgetting
	Structural ICL in Autoregressive Transformers
	Discussion
	Probing Setup
	Structural ICL across Layers
	Structural ICL in Generative Decoder-Only Language Models
	Syllogism Task
	Structural ICL is Transient in Pythia 1.4B

	Probabilistic Temporary Forgetting Fixes Structural ICL in GPT-2
	Autoregressive Transformer Synthetic Setting
	Modified chan2022data Task
	Model Description
	Vanilla Training
	Active Forgetting
	Temporary Forgetting

	Dual Processes for Skewed Distributions
	Pushdown Datasets
	Pushdown Signature Observation in Syntax
	Synthetic POS Task Examples
	Toy Model
	Performance by Token Decile
	Ambiguity () Experiments
	Vocabulary Size (v) Experiments
	Embedding Analysis
	Other Random Distribution Generalization
	Required Compute for Experiments

