
SLAC: Simulation-Pretrained Latent Action Space
for Whole-Body Real-World RL

Jiaheng Hu
The University of Texas at Austin

jhu@cs.utexas.edu

Peter Stone
The University of Texas at Austin, Sony AI

pstone@cs.utexas.edu

Roberto Martı́n-Martı́n
The University of Texas at Austin, Amazon

robertomm@cs.utexas.edu

Abstract: Building capable household and industrial robots requires master-
ing the control of versatile, high-degree-of-freedom (DoF) systems such as mo-
bile manipulators. While reinforcement learning (RL) holds promise for au-
tonomously acquiring robot control policies, scaling it to high-DoF embodiments
remains challenging. Direct RL in the real world demands both safe exploration
and high sample efficiency, which are difficult to achieve in practice. Sim-to-real
RL, on the other hand, is often brittle due to the reality gap. This paper introduces
SLAC, a method that renders real-world RL feasible for complex embodiments by
leveraging a low-fidelity simulator to pretrain a task-agnostic latent action space.
SLAC trains this latent action space via a customized unsupervised skill discovery
method designed to promote temporal abstraction, disentanglement, and safety,
thereby facilitating efficient downstream learning. Once a latent action space
is learned, SLAC uses it as the action interface for a novel off-policy RL algo-
rithm to autonomously learn downstream tasks through real-world interactions.
We evaluate SLAC against existing methods on a suite of bimanual mobile ma-
nipulation tasks, where it achieves state-of-the-art performance. Notably, SLAC
learns contact-rich whole-body tasks in under an hour of real-world interactions,
without relying on any demonstrations or hand-crafted behavior priors. More in-
formation, code, and videos at robo-rl.github.io

Keywords: Real-world RL, Latent Action, Whole-body Manipulation

1 Introduction

Future robots are expected to perform diverse tasks in unstructured environments. Achieving this
requires controlling high-degree-of-freedom, multi-purpose systems like mobile manipulators and
humanoids. These robots offer unique opportunities to handle complex and ambitious tasks: their
many degrees of freedom allow them to pursue multiple control objectives simultaneously, includ-
ing sophisticated contact-rich interactions (e.g., wiping a board while avoiding obstacles), and their
combined locomotion and manipulation capabilities provide large workspaces for long-horizon op-
eration. However, these opportunities come with significant challenges. The combination of long-
horizon, multi-objective tasks and high-dimensional action spaces makes policy optimization par-
ticularly difficult. Moreover, performing contact-rich interactions with the whole body increases the
risk of damaging the robot and its surroundings, making safety a critical concern.

As a result, prior policy learning methods that have shown success in simpler settings often struggle
to scale to these high-DoF, multi-purpose robots. On the one hand, successes in Imitation Learning
(IL) with simple fixed-base robot arm [1, 2, 3] are hard to replicate for high DoF robot systems
due to the difficulty both in creating a teleoperation interface and in collecting a sufficient number of

robo-rl.github.io

Low-fidelity Simulation Real-world Downstream Tasks

Clean Board Wipe Over Obstacle

Push to Tray Sweep into Bag

Board Env

Table Env

unsafe

SLAC Latent Action Space

Original High-dimensional Action Space

Unsupervised
Latent Action

Learning

SLAC
Action

Decoding

< 1hr

Figure 1: SLAC uses a task-agnostic action space trained in low-fidelity simulation (left) to learn
downstream tasks in the real world. This latent action space is safe, temporally extended, and
disentangled, enabling a bimanual mobile manipulator to solve challenging contact-rich whole-body
tasks (right) with less than an hour of autonomous real-world interactions.

high-quality demonstrations. On the other hand, while Reinforcement Learning (RL) algorithms can
learn without expert demonstrations, they require many environment steps before convergence, and
has primarily been conducted in simulation [4, 5, 6, 7, 8, 9, 10], with policies transferred zero-shot
to the real world. However, these approaches often face significant challenges in bridging the reality
gap [11, 12, 13, 14, 15], which often widen as the complexity of robots and tasks increases, despite
costly domain randomization or the tedious construction of high-fidelity digital twins [16, 17, 4].

Real-world RL offers a promising alternative: by enabling robots to learn directly through trial-and-
error interactions with the physical world, we may bypass both the reality gap and the need for costly
human demonstrations. Unfortunately, existing real-world RL approaches [18, 19, 20, 21] remain
largely limited to simple domains such as tabletop manipulation and quadruped locomotion. They
do not scale effectively to more complex tasks and embodiments, due to fundamental challenges in
ensuring safe exploration given larger workspaces and frequent physical contact with the environ-
ment, and in achieving sample-efficient learning in the presence of high-dimensional action spaces,
long-horizon tasks, and intricate reward structures. These factors severely limit the applicability of
current real-world RL techniques to complex robotics problems.

This paper introduces SLAC: Simulation-Pretrained Latent ACtion Space for Real-World RL, which
utilizes low-fidelity simulator to make real-world downstream RL feasible for high DoF robots such
as mobile manipulators. The SLAC framework introduces a two-step procedure to circumvent the
main challenges of real-world RL, namely unsafe exploration and sample inefficiency. In the first
step, SLAC learns a task-agnostic latent action space in a coarsely aligned, low-fidelity simulator
via Unsupervised Skill Discovery (USD) [22, 23, 24, 25]. SLAC utilizes a novel USD objective that
shapes this latent action space to be (1) temporally extended, enabling more effective exploration
than when directly using the low-level action space by reducing decision frequency; (2) disentan-
gled, allowing each latent action dimension to independently affect the states, thereby facilitating
joint optimization of multiple objectives without conflict; and (3) safe, avoiding dangerous behav-
iors that could damage the robot. In the second step, the learned SLAC latent action space is used
by a novel off-policy RL algorithm to efficiently learn downstream tasks directly in the real world.
Critically, this design offers robustness to the reality gap: even if latent actions exhibit slight behav-
ioral mismatches between simulation and the real world, the downstream policy can still learn to
solve the task by directly selecting effective latent actions based on real-world reward signals.

We evaluate our method on a complex, high-DoF, bimanual mobile manipulator, where SLAC can
learn contact-rich whole-body tasks in less than an hour of real-world interactions, using only on-
board sensor signals. To the best of our knowledge, SLAC is the first algorithm that enables a
high-DoF mobile manipulator to learn with RL in the real world without relying on any demonstra-
tions/mocap data [26, 27] or hand-crafted behavior priors [26, 28, 29].

2

2 Related Work

Robots can be trained to perform tasks using four main approaches: (1) sim-to-real reinforcement
learning, (2) real-world reinforcement learning, (3) classical motion planning and control, and (4)
learning from demonstrations. In this section, we review the first two approaches, which are most
relevant to SLAC. We defer discussion of the latter two [2, 3, 1, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49] to the appendix.

Sim-to-Real Reinforcement Learning: While Reinforcement Learning (RL) provides a way for
agents to learn sophisticated behaviors from trial and error, popular algorithms like PPO [50] are
quite sample-inefficient and can require billions of samples before they converge. Many works have
therefore resorted to performing the RL training completely in simulation [4, 14, 5, 6, 7, 8, 13, 9,
10, 11], and zero-shot transfer the learned policy into the real-world. Such a procedure requires
the simulation to have very high fidelity, and can pose significant challenges for simulated object
creation, especially for tasks that are contact-rich/non-rigid [12]. Unlike these works, SLAC relies
on simulated interactions only to provide a suitable action space for downstream real-world RL,
which reduces or eliminates the reliance on high-fidelity simulation.

RL in the Real World: Directly doing RL in the real world offers a promising direction to avoid
the requirement of high-fidelity simulation [21, 19, 18, 20, 51, 52, 53]. However, these methods
often target simple domains such as fixed-base manipulator, and fall short when applied to more
complex embodiments such as whole-body mobile manipulation due to the high requirements for
sample efficiency and safe exploration. In the rare exceptions where a mobile manipulator does
learn through trial-and-error in the real world [27, 26, 28, 29], domain knowledge is often injected to
simultaneously facilitate safety and efficient exploration, in the form of ad-hoc hand-crafted motion
priors [26, 28, 29] and/or demonstrations [26, 27]. By comparison, SLAC enables high-degree-of-
freedom mobile manipulators to learn downstream tasks in the real world without relying on any
demonstrations or hand-crafted behavior priors.

3 SLAC: Simulation-Pretrained Latent Action Space for Real-World RL

SLAC aims to enable sample-efficient and safe real-world reinforcement learning (RL) for high
DoF robots such as mobile manipulators. We formulate the real-world RL problem as a Partially
Observable Markov Decision Process (POMDP), defined by the tupleM = (S,A,O, P,Rtask , γ),
where S is the set of underlying environment states, A is the high-dimensional native action space
(e.g., joint velocities or torques), O is the observation space (e.g. camera images), P (s′|s, a) is
the state transition function, Rtask (s, a) =

∑m
i=1 Ri(s, a) is a composite reward function with

m ≥ 1 term(s)1, and γ ∈ (0, 1] is the discount factor. The objective is to learn a policy π(a|o) that
maximizes the expected return:

π∗(a|o) = argmax
π

Eπ

[∞∑
t=0

γtRtask (st, at)

]
(1)

Due to the high dimensionality of A and the complexity of real-world tasks, directly optimizing
π(a|o) in the real world is prohibitively sample-inefficient and unsafe. To address these issues, we
propose to replace the native control space A with an N -dimensional multi-discrete 2 latent action
space Z = Z1× · · ·×ZN learned in a low-fidelity simulation, which does not accurately replicate
the visual or physical properties of the real world and does not implement the task reward Rtask , but
approximately retains key physical affordances and shares the same robot action space A.

Specifically, we aim to learn a latent action decoder πdec(a|odec , z), which converts a latent action
z ∈ Z into low-level actions a ∈ A based on a low-dimensional decoder observation odec that is

1This formulation is general, as any reward function can be expressed as a sum of component functions.
2While our method is compatible with both continuous and discrete latent actions, we focus on the discrete

case in our experiments.

3

shared across simulation and the real world (e.g., proprioceptive states, furniture poses). We discuss
in Sec. 3.1 how we learn this latent action decoder through unsupervised skill discovery.

Once the latent action decoder is learned, SLAC trains a perception-to-latent task policy πtask (z|o)
in the real world given a downstream task reward. πtask (z|o) selects latent actions based on (history
of) high-dimensional real-world observations o ∈ O (e.g. camera images), and is trained entirely
in the real world using a novel sample-efficient off-policy RL method explained in Sec. 3.2.

Together, the task policy and the latent action decoder define a hierarchical visuomotor policy over
low-level robot actions, which can be run directly on a real robot with on-board sensors:

π(a|o) =
∫
z

πdec(a|odec , z)πtask (z|o) dz (2)

We show the full pipeline of our two-step method in Fig. 2

3.1 Learning a Latent Action Space in Simulation

The first step of SLAC seeks to learn a task-agnostic latent action space capable of supporting a
wide range of real-world task variations. Unsupervised Skill Discovery (USD) [22, 23, 24, 25],
which learns diverse task-agnostic behaviors without relying on explicit task rewards, offers a
promising approach for acquiring such an action space. This process yields a latent skill decoder
πdec(a|odec , z), where each latent skill z induces a distinct behavior. These learned skills can then
be composed by a task policy πtask (z|o) to efficiently solve downstream tasks, where the learned
skill space serves as a temporally extended action space of the task policy. 3

However, despite its potential, USD has seen limited adoption in robotics due to its high sample
complexity, which renders it impractical for direct deployment on real robots. Instead, SLAC ad-
dresses this limitation by conducting USD entirely in simulation, where data collection is fast and
inexpensive. Our key insight is that even low-fidelity simulation can serve as an effective substrate
for behavior pretraining: as long as the learned skills span a sufficiently diverse range of behaviors,
they can be composed downstream to solve real-world tasks. To this end, SLAC employs simulation
environments that do not directly replicate a real-world counterpart (e.g. not visually realistic, no
hard-to-simulate objects like marker traces), but still preserve key geometric affordances that are
potentially useful for downstream tasks (e.g. a whiteboard that the robot can touch, an obstacle that
the robot may collide with). We show some of these environments in Fig. 1. Importantly, such a
simulation environment is often significantly easier to create than a high-fidelity one.

Given this low-fidelity simulation, SLAC leverages the Disentangled Unsupervised Skill Discovery
(DUSDi) framework [25] for learning a disentangled latent action space, which has been shown
to facilitate sample-efficient downstream learning. The DUSDi framework optimizes the following
mutual-information-based objective:

J (θ) =
N∑
i=1

I(Si;Zi)− λI(S¬i;Zi), (3)

where {Si}Ni=1 is a set of state entities (e.g. whiteboard, table, body parts) in the environment that
the robot can interact with; Z = Z1× · · · × ZN is the latent action space, factorized by design into
N dimensions; and λ < 1 is a weighting factor for the disentanglement objective. Intuitively, this
objective encourages each latent action dimension Zi to control only its corresponding state entity
Si, thereby creating a disentangled and temporarily extended action space that allows the robot to
independently and simultaneously control different entities in the environment – an ability critical
for downstream learning.

3For the rest of this paper, we will use “skills” and “latent actions” interchangeably.

4

1. Unsupervised Latent
Action Space Learning

Low Fidelity Simulation

Temporally Extended Whole-body Motions

2. Real-world Downstream
Reinforcement Learning

Task
Reward

Camera Proprio.

q
x!!

Onboard Obs.

Real-world Tasks

r#$$%
	

r'())*	
r+,-
	

Temporally Extended Whole-body Motions

×	m Q!"##$	

Q&'(

Q)**+
	…

…

Factorized Qs
…

Disentangled
States Features

… …

Task
Policy

Latent Action
Decoder

latent actions

… …

Latent Action
Decoder

latent actions

… …FilterUniversal Safety
Reward

…

Empowerment
Reward

𝑎[/,…,2] ∈ 𝒜

𝑎/ 𝑎4 𝑎2

𝑧 ∈ 𝒵

…𝑎/ 𝑎4 𝑎2

𝑎[/,…,2] ∈ 𝒜

𝑧 ∈ 𝒵

Figure 2: The two-step SLAC procedure to enable real-world policy learning. (Left) In the first
step, SLAC learns a Latent Action Decoder that maps each latent action, z ∈ Z , to a sequence of
low-level robot actions, (a0, . . . , aT), at ∈ A. This decoder is learned in low-fidelity simulation via
unsupervised skill discovery with novel objectives that encourage the robot to independently control
different state features (e.g., camera directions, contacts with table, base locations) while being safe.
(Right) In the second step, once the decoder is trained, the robot learns downstream tasks with RL
in the real world using the SLAC latent action space. The task policy directly takes in the onboard
sensor observations of the robot (i.e., images, proprioception) and outputs latent actions z that are
decoded into safe robot actions. SLAC applies Factorized Latent-Action SAC to optimize the policy
for downstream tasks with multi-term reward (e.g., look at the objects, keep a bag close, sweep the
trash) directly in the real world with very few samples, converging in less than an hour, by taking
advantage of high-frequency off-policy updates and factorized Q decomposition.

To optimize this objective tractably, we can approximate Eq. 3 through variational inference [54],
resulting in the following reward function:

rskill(s, a) ≜
N∑
i=1

qiϕ(z
i|si)− λqiψ(z

i|s¬i) (4)

where qiϕ and qiψ are variational distributions that can either be learned through self-supervised
learning or manually constructed, in which case the objective reduces to a form of goal-conditioned
reinforcement learning [55]. In SLAC, we opt for the latter to constrain the learned behavior.

However, naively optimizing the objective above provides the robot with no notion of safety, which
can result in irreversible damage when deployed on real hardware. To address this issue, SLAC
incorporates universal safety constraints in the form of a safety reward function rsafe that discour-
ages unsafe behaviors. In principle, rsafe can take any form. In practice, for our robot experiments,
we found that the same safety reward function can be used universally across all environments and
tasks. Specifically, our safety reward rsafe consists of the following components: (1) Penalizing
large absolute actions. (2) Penalizing large relative changes in action. (3) Penalizing collisions. (4)
Penalizing excessive force on the robot. We provide the detailed formulation for rsafe in the ap-
pendix. The final objective for learning the latent action space combines task-agnostic exploration
with these safety considerations, as shown below:

rlatent = rskill + rsafe (5)

We directly optimize Eq. 5 by running online Reinforcement Learning in simulation. We show the
pseudo-code for latent action space learning in the appendix.

3.2 Sample-Efficient Policy Learning of Downstream Tasks in the Real World

Given the SLAC latent action space learned in simulation (Sec. 3.1), the second step of SLAC de-
rives a sample-efficient off-policy Reinforcement Learning Algorithm, which we named Factorized
Latent-Action SAC (FLA-SAC), to directly learn downstream tasks in the real world. FLA-SAC
is built on top of Soft Actor-Critic [56], with three important algorithmic innovations to boost the
performance. We show the pseudo-code for FLA-SAC in the appendix.

5

Efficient Use of Experiences: Due to the high cost of collecting real-world trajectories, our goal
is to develop algorithms that efficiently learn from a few steps of environment interactions. One
critical strategy to achieve this efficiency is giving an off-policy algorithm a high update-to-data
(UTD) ratio, where the number of actor-critic updates is significantly higher than the number of
environment steps, by repeatedly sampling from a replay buffer that stores all previous environment
steps. FLA-SAC leverages such a high UTD ratio to maximize data efficiency.

Since a high UTD ratio can increase the risk of overfitting, recent work [19, 57, 20] proposed various
techniques, such as layer normalization and critic ensembling, to regularize the policy update. How-
ever, we empirically found these methods to be ineffective in our setting. Instead, we observed that
simply reducing the batch size during updates (from 256 in the original SAC implementation [56] to
64) acts as powerful regularization that significantly improves performance. This adjustment helps
the model escape poor local optima by introducing higher gradient variance, which promotes more
effective exploration of the parameter space, especially at the start of the training.

Large Discrete Action Space: Since we opt for a discrete latent action space in SLAC, we want our
downstream learning algorithm to support discrete actions. Unfortunately, vanilla SAC only works
for continuous actions due to the need to backpropagate through the action vector during policy
update. While there exist off-policy algorithms that support discrete action spaces (e.g. DQN [58],
Discrete-SAC [59]), they typically require enumerating the Q function for all possible actions and
do not work for combinatorially large discrete action spaces (e.g. the latent action space of SLAC).

Instead, FLA-SAC extends SAC to large discrete action spaces by using the gumbel-softmax
trick [60], which allows us to compute gradients through discrete random variables via
reparametrization. Specifically, we used the non-straight-through Gumbel-softmax estimation
shown in Eq. 6 for sampling actions, with a fixed temperature τ of 1.0, which we empirically found
to give good performance even when the size of the action space is as large as O(106).

ẑ(s) = softmax

(
log πθ(z | s) + gz

τ

)
, gz ∼ Gumbel(0, 1) (6)

Factored Q-Function Decomposition: Challenging robotics tasks often come with a naturally
composite reward function, where the eventual reward is the sum of a set of reward terms corre-
sponding to a set of sub-objectives, e.g. a whole-body mobile manipulation task may require: (1)
navigating to a location, (2) without colliding with obstacles, and (3) while holding an object at the
right orientation. Directly optimizing this complex reward function with vanilla RL can be quite
challenging, often requiring many steps of environment interactions, posing a significant challenge
to real-world learning. Our key realization is that we can take advantage of the disentangled nature
of the learned latent action space Z , by finding and exploiting the strong dependencies between the
latent action dimensions and the reward terms. Specifically, given a composite reward function with
m terms4: rtask =

∑m
i=1 ri, it can be shown (proof in the appendix) that:

Qπ(s, z) =

m∑
i=1

Qi
π(s, z) (7)

where each factored value function Qi
π represents the expected return for a specific reward term ri.

Now, since each dimension zi of our latent action z is trained to control and only control one en-
vironment entity, each reward term ri typically only depends on a small subset of the latent action
dimensions (for example, a reward for navigation is only associated with the latent action dimension
that controls the robot base location). This property allows us to dissociate each Qi

π with unre-
lated latent action dimensions, resulting in Qi

π(s, zIi
), where Ii ⊆ {1, . . . ,dim(z)} is the index set

corresponding to the dimensions of z that reward ri depends on.

Such a factorization brings us two significant advantages: First, it effectively prevents Qi
π from

learning spurious correlations with actions, thereby providing a better optimization landscape for
4It is important to note that SLAC is still valid with a non-composite reward (i.e. m = 1), just that we will

no longer benefit from Q decomposition.

6

Table 1: We compare the Success rates (↑) over 10 trials and the total safety violation counts during
training (↓) of SLAC against baseline methods across four tasks. In all four tasks, SLAC achieves
the highest success rate while also inducing the least number of safety violations.

Method / Task Board Board-Obstacle Table-Tray Table-Bag

Success Unsafe # Success Unsafe # Success Unsafe # Success Unsafe #

SLAC (ours) 0.9 1 0.8 4 0.9 0 0.7 0
SERL [20] 0.0 8 0.0 22 0.0 6 0.0 9
Sim2Real [15] 0.2 - 0.2 - 0.4 - 0.0 -
RLPD [57] 0.4 34 0.2 37 0.3 26 0.0 33

accurate prediction of the Q value. Second, since we calculate the policy update by backpropagating
from the Q functions, each action dimension will only be updated with reward terms that it can
affect, resulting in a more accurate policy gradient estimation than the non-factorized version. In
other words, our technique effectively decomposes a hard learning problem into multiple simpler
problems that can be solved in parallel, leading to improved performance and sample efficiency.

In practice, we implement the Q-decomposition by masking out irrelevant action dimensions for
each Qi

π using a binary adjacency matrix B that encodes action-reward dependencies. This imple-
mentation enables parallel computation of all Q-functions, significantly accelerating training. The
matrix B can either be learned automatically from a small number of random interaction trajecto-
ries [10], or manually specified when the mapping is known a priori [13]. In SLAC, we assume
access to this mapping as a design choice, leveraging the fact that each latent action dimension is
intentionally constructed to control a specific environment entity (see Sec. 3.1).

4 Experimental Results

Our main experiments evaluate SLAC on a bi-manual mobile manipulator – an ideal application do-
main for our method, which is not only extremely challenging due to the complexity of embodiment
and tasks, but also tremendously useful as household robots. Specifically, we evaluate our methods
in two different environments: a table environment, where the robot faces a table with objects on it,
and a whiteboard environment where the robot can interact with a whiteboard. Each simulation envi-
ronment takes less than 20 minutes to create in iGibson [61]. In each environment (shown in Fig. 1,
described in detail in the appendix), we evaluate multiple different visuomotor contact-rich tasks
that require whole-body motion to solve, and present the results (Sec. 4.1) and ablations (Sec. 4.2).
Finally, we present additional results in Sec. 4.3 on a multi-agent domain, demonstrating the broad
applicability of our method.

4.1 Training Setup & Results

Observations & Network: In all tasks, the observation of the robot consists only of an RGBD cam-
era observation and robot proprioception. The pointcloud is first processed by a PointNet [62] and
then passed into an MLP network along with the proprioceptive data. Both networks are randomly
initialized and trained from scratch. We show the detailed hyperparameters in the appendix.

Baselines: We compare the performance of our method against state-of-the-art methods in realworld
RL, sim2real RL, and realworld finetuning. Specifically, we compare against the following methods:
• SERL [20], a state-of-the-art real-world Reinforcement Learning framework that directly train a

policy from scratch in the low-level action space using regularized SAC.
• Zero-shot Sim2Real [15], a task policy trained in sim is directly applied to the real world.
• RLPD [57], a state-of-the-art method for learning from both online and prior data, which we use

for training in the real world with prior data from simulation.
Notice that both Zero-shot Sim2Real and RLPD have an unfair advantage over our method, as
they require implementing downstream task reward and objects (e.g. marker trace) in simulation.

7

(a) SLAC training curves (b) Ablations for SLAC (c) SLAC on the Multi-Particle Domain

Figure 3: Training curves for SLAC. SLAC can learn contact-rich whole-body manipulation tasks
within an hour of real-world interactions (Fig. 3a), and can be applied to non-robotics domains as
well (Fig. 3c). Ablation (Fig. 3b) shows that all the techniques in SLAC are critical to its success.

For contact-rich tasks, these objects are often quite hard to create in simulation. By comparison,
our method does not require implementing the downstream tasks in simulation, since we are only
learning a task-agnostic latent action space in simulation.

Metric and Results: For each method on each downstream task, we compare the success rate of
the final policy across 10 different trials. For the three methods that require training in simulation
(SLAC, Sim2Real, RLPD), we train for 10M steps in simulation for each task. For the three methods
that require real-world interactions (SLAC, SERL, RLPD), we train each of them for 30k steps
of real-world low-level robot actions, corresponding to 50 minutes of real-world interactions, and
additionally report the number of times they have violated the safety constraints during training. The
full result is shown in Table 1. In all four tasks, SLAC learns to solve the task in less than an hour of
real-world interactions (curves in Fig. 3a), while maintaining safety during real-world exploration,
significantly outperforming the baselines.

4.2 Ablations

To study the effectiveness of each component of our method, we conduct ablation studies comparing
against the following variations of our method:
• No Disentanglement: where we remove the disentangled constraint during latent action space

learning. As a result, our latent action space is no longer factored, and we can no longer apply
Q-Function Decomposition during downstream learning since now all reward terms depend on the
entire latent action vector.

• On-Policy: where we replace our proposed FLA-SAC with PPO[50], a state-of-the-art on-policy
RL algorithm that has achieved many successes in Sim2Real RL.

• Not Temporally Extended: where the task policy makes decisions at the same frequency as the
latent action encoder (i.e. 10hz).

We report the training curve for each of these variances of our method on the Board task in Fig. 3b.
We can see that removing any single component of SLAC results in a significant decrease in the
learning efficiency. Note that for some of these variants (e.g., the on-policy version), it is likely that
they would eventually achieve good performance with enough training steps. However, given the
high cost of real-world interactions, it is not practical to evaluate this likelihood.

4.3 Applications to Non-Robotics Domain

Since SLAC is an embodiment-agnostic framework that does not require domain knowledge, we
can in principle apply SLAC to any robots and even beyond robotics. We briefly illustrate this
point on the Multi-Particle domain [63]. We follow the task setup of food-poison-hard [25], where a
centralized controller needs to simultaneously control 10 agents to interact with different landmarks,
and report the results in Fig. 3c. On this challenging task where learning from scratch completely
fails, SLAC successfully learns policies that match the final performance of the previous state of the
art [25], while being an order of magnitude more sample efficient. This result illustrates the broad
applicability of SLAC.

8

5 Conclusion

This paper introduced SLAC, a framework for enabling high DoF robots to learn policy directly in
the real world, by leveraging a latent action space trained in a low-fidelity simulation. SLAC learns
this latent action space through unsupervised skill discovery, and employs a novel sample-efficient
RL algorithm to learn task policy in the SLAC latent action space. Evaluated on a set of contact-rich
whole-body manipulation tasks, SLAC is able to solve the tasks in under an hour of real-world inter-
action, where baseline methods failed. SLAC opens up new opportunities for advancing both latent
action space learning (e.g., through improved skill discovery methods) and downstream policy learn-
ing (e.g., by leveraging or learning a world model). We believe SLAC provides a strong foundation
for scaling real-world robot learning to increasingly complex and diverse tasks and embodiments.

Limitations: Despite its strong empirical performance, SLAC is not without limitations. First,
SLAC introduces an implicit trade-off related to the granularity of the latent action space. For
example, an identity mapping between the robot’s raw action space and latent action space would
make the downstream task policy capable of learning any task within the original capability of the
robot, but would significantly reduce the sample efficiency (as shown in our results in Sec. 4.1).
Similarly, the temporal length of each latent action entails another tradeoff, where shorter latent
actions give more control to the task policy at the expense of longer task horizons, which may
hamper learning (as shown in our ablation studies in Sec. 4.2). It is likely that the optimality of
the latent action space will be strongly task-dependent. Second, in the current SLAC framework,
the latent action decoder is kept fixed during downstream learning. However, for more fine-grained
tasks, we might benefit from finetuning the latent action encoder while training the task policy.
While this is conceptually doable via the option framework [64], we leave the empirical study of
how to implement it in a stable manner to future work. Finally, while this paper primarily focuses
on the algorithmic side of real-world learning, we expect future engineering efforts in the automation
of task reset and downstream reward generation (e.g., via VLM/LLM or a learned reward function)
to further boost the downstream learning efficiency.

References
[1] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,

A. Mandlekar, A. Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x models:
Open x-embodiment collaboration 0. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 6892–6903. IEEE, 2024.

[2] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations
for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

[3] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[4] J. Hu, R. Hendrix, A. Farhadi, A. Kembhavi, R. Martı́n-Martı́n, P. Stone, K.-H. Zeng, and
K. Ehsani. Flare: Achieving masterful and adaptive robot policies with large-scale reinforce-
ment learning fine-tuning. arXiv preprint arXiv:2409.16578, 2024.

[5] D. Honerkamp, T. Welschehold, and A. Valada. n2m2: Learning navigation for arbi-
trary mobile manipulation motions in unseen and dynamic environments. arXiv preprint
arXiv:2206.08737, 2022.

[6] R. Yang, Y. Kim, A. Kembhavi, X. Wang, and K. Ehsani. Harmonic mobile manipulation.
arXiv preprint arXiv:2312.06639, 2023.

[7] N. Yokoyama, A. W. Clegg, E. Undersander, S. Ha, D. Batra, and A. Rai. Adaptive skill
coordination for robotic mobile manipulation. arXiv preprint arXiv:2304.00410, 2023.

9

[8] Y. Ma, F. Farshidian, and M. Hutter. Learning arm-assisted fall damage reduction and recovery
for legged mobile manipulators. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 12149–12155. IEEE, 2023.

[9] S. Jauhri, J. Peters, and G. Chalvatzaki. Robot learning of mobile manipulation with reacha-
bility behavior priors. IEEE Robotics and Automation Letters, 2022.

[10] J. Hu, P. Stone, and R. Martı́n-Martı́n. Causal Policy Gradient for Whole-Body Mobile Ma-
nipulation. In Proceedings of Robotics: Science and Systems, Daegu, Republic of Korea, July
2023. doi:10.15607/RSS.2023.XIX.049.

[11] T. Li, J. Truong, J. Yang, A. Clegg, A. Rai, S. Ha, and X. Puig. Robotmover: Learning to move
large objects by imitating the dynamic chain. arXiv preprint arXiv:2502.05271, 2025.

[12] C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Martı́n-Martı́n, and P. Stone. Deep rein-
forcement learning for robotics: A survey of real-world successes. Annual Review of Control,
Robotics, and Autonomous Systems, 8, 2024.

[13] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: learning a unified policy for
manipulation and locomotion. In Conference on Robot Learning, pages 138–149. PMLR,
2023.

[14] T. He, J. Gao, W. Xiao, Y. Zhang, Z. Wang, J. Wang, Z. Luo, G. He, N. Sobanbab, C. Pan,
et al. Asap: Aligning simulation and real-world physics for learning agile humanoid whole-
body skills. arXiv preprint arXiv:2502.01143, 2025.

[15] W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement learning
for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI),
pages 737–744. IEEE, 2020.

[16] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-Martı́n, C. Wang, G. Levine,
M. Lingelbach, J. Sun, et al. Behavior-1k: A benchmark for embodied ai with 1,000 everyday
activities and realistic simulation. In Conference on Robot Learning, pages 80–93. PMLR,
2023.

[17] Y. Liu, H. Xu, D. Liu, and L. Wang. A digital twin-based sim-to-real transfer for deep re-
inforcement learning-enabled industrial robot grasping. Robotics and Computer-Integrated
Manufacturing, 78:102365, 2022.

[18] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-
free reinforcement learning via multi-task learning: Learning dexterous manipulation behav-
iors without human intervention. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6664–6671. IEEE, 2021.

[19] L. Smith, I. Kostrikov, and S. Levine. A walk in the park: Learning to walk in 20 minutes with
model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

[20] J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma, S. Schaal, C. Finn, A. Gupta, and S. Levine.
Serl: A software suite for sample-efficient robotic reinforcement learning. In 2024 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 16961–16969. IEEE, 2024.

[21] J. Yang, M. S. Mark, B. Vu, A. Sharma, J. Bohg, and C. Finn. Robot fine-tuning made easy:
Pre-training rewards and policies for autonomous real-world reinforcement learning. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pages 4804–4811. IEEE,
2024.

[22] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018.

10

http://dx.doi.org/10.15607/RSS.2023.XIX.049

[23] Z. Wang, J. Hu, C. Chuck, S. Chen, R. Martı́n-Martı́n, A. Zhang, S. Niekum, and
P. Stone. Skild: Unsupervised skill discovery guided by factor interactions. arXiv preprint
arXiv:2410.18416, 2024.

[24] S. Park, K. Lee, Y. Lee, and P. Abbeel. Controllability-aware unsupervised skill discovery,
2023. URL https://arxiv.org/abs/2302.05103.

[25] J. Hu, Z. Wang, P. Stone, and R. Martı́n-Martı́n. Disentangled unsupervised skill discovery
for efficient hierarchical reinforcement learning. Advances in Neural Information Processing
Systems, 37:76529–76552, 2024.

[26] H. Xiong, R. Mendonca, K. Shaw, and D. Pathak. Adaptive mobile manipulation for articulated
objects in the open world, 2024.

[27] A. Herzog, K. Rao, K. Hausman, Y. Lu, P. Wohlhart, M. Yan, J. Lin, M. G. Arenas, T. Xiao,
D. Kappler, D. Ho, J. Rettinghouse, Y. Chebotar, K.-H. Lee, K. Gopalakrishnan, R. Julian,
A. Li, C. K. Fu, B. Wei, S. Ramesh, K. Holden, K. Kleiven, D. Rendleman, S. Kirmani,
J. Bingham, J. Weisz, Y. Xu, W. Lu, M. Bennice, C. Fong, D. Do, J. Lam, Y. Bai, B. Holson,
M. Quinlan, N. Brown, M. Kalakrishnan, J. Ibarz, P. Pastor, and S. Levine. Deep rl at scale:
Sorting waste in office buildings with a fleet of mobile manipulators, 2023.

[28] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth, and S. Levine. Fully
autonomous real-world reinforcement learning with applications to mobile manipulation. In
Conference on Robot Learning, pages 308–319. PMLR, 2022.

[29] R. Mendonca, E. Panov, B. Bucher, J. Wang, and D. Pathak. Continuously improving mobile
manipulation with autonomous real-world rl. arXiv preprint arXiv:2409.20568, 2024.

[30] S. Dass, W. Ai, Y. Jiang, S. Singh, J. Hu, R. Zhang, P. Stone, B. Abbatematteo, and R. Martı́n-
Martı́n. Telemoma: A modular and versatile teleoperation system for mobile manipulation.
arXiv preprint arXiv:2403.07869, 2024.

[31] Y. Jiang, R. Zhang, J. Wong, C. Wang, Y. Ze, H. Yin, C. Gokmen, S. Song, J. Wu, and L. Fei-
Fei. Behavior robot suite: Streamlining real-world whole-body manipulation for everyday
household activities. arXiv preprint arXiv: 2503.05652, 2025.

[32] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

[33] J. Li, Y. Zhu, Y. Xie, Z. Jiang, M. Seo, G. Pavlakos, and Y. Zhu. Okami: Teaching humanoid
robots manipulation skills through single video imitation. In 8th Annual Conference on Robot
Learning, 2024.

[34] H. Seraji. A unified approach to motion control of mobile manipulators. The International
Journal of Robotics Research, 17(2):107–118, 1998.

[35] Y. Yamamoto and X. Yun. Coordinating locomotion and manipulation of a mobile manipulator.
In [1992] Proceedings of the 31st IEEE Conference on Decision and Control, pages 2643–
2648. IEEE, 1992.

[36] L. Sentis and O. Khatib. A whole-body control framework for humanoids operating in human
environments. In ICRA, pages 2641–2648, 2006.

[37] A. Dietrich, T. Wimbock, A. Albu-Schaffer, and G. Hirzinger. Reactive whole-body control:
Dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE
Robotics & Automation Magazine, 19(2):20–33, 2012.

[38] F. Nori, S. Traversaro, J. Eljaik, F. Romano, A. Del Prete, and D. Pucci. icub whole-body
control through force regulation on rigid non-coplanar contacts. Frontiers in Robotics and AI,
2:6, 2015.

11

https://arxiv.org/abs/2302.05103

[39] E. Papadopoulos and J. Poulakakis. Planning and model-based control for mobile manipu-
lators. In Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2000)(Cat. No. 00CH37113), volume 3, pages 1810–1815. IEEE, 2000.

[40] J. Haviland, N. Sünderhauf, and P. Corke. A holistic approach to reactive mobile manipulation.
IEEE Robotics and Automation Letters, 7(2):3122–3129, 2022.

[41] J. Pankert and M. Hutter. Perceptive model predictive control for continuous mobile manipu-
lation. IEEE RAL, 5(4):6177–6184, 2020.

[42] Q. Huang, K. Tanie, and S. Sugano. Coordinated motion planning for a mobile manipulator
considering stability and manipulation. The International Journal of Robotics Research, 19
(8):732–742, 2000.

[43] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient optimization tech-
niques for efficient motion planning. In 2009 IEEE International Conference on Robotics and
Automation, pages 489–494. IEEE, 2009.

[44] J. Van Den Berg, P. Abbeel, and K. Goldberg. Lqg-mp: Optimized path planning for robots
with motion uncertainty and imperfect state information. The International Journal of Robotics
Research, 30(7):895–913, 2011.

[45] M. Stilman. Global manipulation planning in robot joint space with task constraints. IEEE
Transactions on Robotics, 26(3):576–584, 2010.

[46] H. Dai, A. Valenzuela, and R. Tedrake. Whole-body motion planning with centroidal dynamics
and full kinematics. In IEEE-RAS International Conference on Humanoid Robots, pages 295–
302. IEEE, 2014.

[47] F. Burget, A. Hornung, and M. Bennewitz. Whole-body motion planning for manipulation
of articulated objects. In 2013 IEEE International Conference on Robotics and Automation,
pages 1656–1662. IEEE, 2013.

[48] J. Wolfe, B. Marthi, and S. Russell. Combined task and motion planning for mobile manipu-
lation. In Twentieth international conference on automated planning and scheduling (ICAPS),
2010.

[49] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic trajec-
tory optimization for motion planning. In 2011 IEEE international conference on robotics and
automation, pages 4569–4574. IEEE, 2011.

[50] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[51] R. C. Julian, E. Heiden, Z. He, H. Zhang, S. Schaal, J. J. Lim, G. S. Sukhatme, and K. Haus-
man. Scaling simulation-to-real transfer by learning a latent space of robot skills. The Inter-
national Journal of Robotics Research, 39(10-11):1259–1278, 2020.

[52] J. Zhang, M. Heo, Z. Liu, E. Biyik, J. J. Lim, Y. Liu, and R. Fakoor. Extract: Efficient
policy learning by extracting transferable robot skills from offline data, 2024. URL https:

//arxiv.org/abs/2406.17768.

[53] P. Yin, T. Westenbroek, S. Bagaria, K. Huang, C. an Cheng, A. Kobolov, and A. Gupta. Rapidly
adapting policies to the real world via simulation-guided fine-tuning, 2025. URL https:

//arxiv.org/abs/2502.02705.

[54] D. Barber and F. Agakov. Information maximization in noisy channels: A variational approach.
Advances in Neural Information Processing Systems, 16, 2003.

12

https://arxiv.org/abs/2406.17768
https://arxiv.org/abs/2406.17768
https://arxiv.org/abs/2502.02705
https://arxiv.org/abs/2502.02705

[55] J. Choi, A. Sharma, H. Lee, S. Levine, and S. S. Gu. Variational empowerment as represen-
tation learning for goal-conditioned reinforcement learning. In International conference on
machine learning, pages 1953–1963. PMLR, 2021.

[56] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[57] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with
offline data. In International Conference on Machine Learning, pages 1577–1594. PMLR,
2023.

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[59] P. Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint
arXiv:1910.07207, 2019.

[60] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[61] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivastava, B. Shen, K. E. Vainio, C. Gok-
men, G. Dharan, T. Jain, et al. igibson 2.0: Object-centric simulation for robot learning of
everyday household tasks. In Conference on Robot Learning, pages 455–465. PMLR, 2022.

[62] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation, 2017. URL https://arxiv.org/abs/1612.00593.

[63] J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S. Santos, C. Dief-
fendahl, C. Horsch, R. Perez-Vicente, et al. Pettingzoo: Gym for multi-agent reinforcement
learning. Advances in Neural Information Processing Systems, 34:15032–15043, 2021.

[64] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
conference on artificial intelligence, 2017.

[65] M. FISCHLER AND. Random sample consensus: a paradigm for model fitting with applica-
tions to image analysis and automated cartography. Commun. ACM, 24(6):381–395, 1981.

13

https://arxiv.org/abs/1612.00593

A Appendix

A.1 Policy and Training Visualizations

We encourage the reviewer to visit our project website (https://robo-rl.github.io/) for full
videos of the SLAC training process in the real world and the learned policies.

A.2 Q Decomposition Proof

We provide proof the equation Qπ(s, z) =
∑m
i=1 Q

i
π(s, z) discussed in Sec. 3.2, using the linearity

of expectations:

Proof.

Qπ(s, z) = Eπ[
∞∑
t=0

γtrt]

= Eπ[
m∑
i=1

∞∑
t=0

γtrit]

=

m∑
i=1

Eπ[
∞∑
t=0

γtrit]

=

m∑
i=1

Qi
π(s, z)

A.3 Universal Safety Reward

In SLAC, we employ a universal safety reward for ensuring that the learned latent action space is
safe. This reward is the same across all our environments, and is defined as follows:

rsafe = −λ1∥a∥2 − λ2∥a− aprev∥2 − λ3 · Icollision − λ4 · IF>70 (8)

In our experiments, we set λ1 = 0.01, λ2 = 0.1, λ3 = 0.2, and λ4 = 0.05. Additionally, we
incorporate a shaping reward that encourages the robot to stay close to the board / table and find it
to speed up training.

A.4 SLAC Unsupervised Latent Action Space Learning Pseudocode

Here, we omit standard SAC steps, such as target network creation and update, for simplicity.

14

https://robo-rl.github.io/

Algorithm 1: SLAC Unsupervised Latent Action Space Learning
1 Initialize sim environment, skill prior distribution p(z), replay buffer Dsk ;
2 Initialize latent action decoder πdec , discriminators qϕ, qψ , and value function Qdec ;
3 for k ← 1 to skill learning epochs do
4 Sample skill z ∼ p(z);
5 for j ← 1 to steps per skill do
6 (odec , a, o

′
dec)← sim.step(πdec(a | odec , z));

7 Store transition (odec , a, z, o
′
dec) into replay buffer Dsk ;

8 for i← 1 to n updates do
9 Sample mini-batch {(odec , a, z, o′dec} from Dsk ;

10 [Optional] Update qϕ and qψ;
11 Calculate intrinsic reward r based on Eq. 5;
12 Update Qdec with r using SAC critic update;
13 Update πdec with Qdec using SAC policy update;

14 return πdec

A.5 SLAC Real-World Downstream RL Pseudocode

Again, we omit standard SAC steps, such as target network creation and update, for simplicity.

Algorithm 2: FLA-SAC for Real-World Downstream Task Learning

1 Initialize replay buffer D, task policy πtask (z | o), factored Q-functions {Qi}mi=1;
2 Load pre-trained latent action decoder πdec , binary dependency matrix B ;
3 for k ← 1 to task learning steps do
4 (o, z, r = [ri]mi=1, o

′)← robot.real world step(πtask (z | o), πdec);
5 Store (o, z, r, o′) into replay buffer D;
6 for j ← 1 to utd ratio do
7 Sample mini-batch {(o, z, r, o′)} from D with small batch size;
8 Update Qi(o,Bi ⊙ z) with ri in parallel for all i = 1, . . . ,m;
9 Update πtask (ẑ | o) with Q =

∑
iQ

i using SAC loss, with ẑ sampled via
Gumbel-Softmax (Eq. 6) for differentiability;

10 return πtask

A.6 Hyperparameter

Here, we present the hyperparameter for both the latent action decoder training and the downstream
task learning. The same hyperparamters are shared across all tasks. We use a low-level step size of
L = 50 for all our experiments.

Table 2: Hyperparameters of Latent Action Decoder Learning.
Name Value

SAC

optimizer Adam
activation functions ReLu

learning rate 1× 10−4

batch size 1024
critic target τ 0.01

MLP size [1024, 1024]
n updates 2

of environments 16
entropy coefficient α 0.0

log std bounds [-10, 2]
warmup samples 24000

latent action dimension 45

15

Table 3: Hyperparameters of Downstream Learning.
Name Value

FLA-SAC

optimizer Adam
activation functions ReLu

learning rate 4× 10−4

batch size 64
critic target τ 0.05

MLP size [256, 256]
utd ratio 10

of environments 1
entropy coefficient α 0.1

log std bounds [-10, 2]
warmup samples 60

gumbel temperature 1.0

A.7 Environment Description

In this section, we describe the two mobile manipulation environments that we tested SLAC on.
In each environment, we apply our method to solve two different downstream tasks. We visualize
the environments and the downstream tasks in Fig. 1. In both environments, the robot has a 17-
dimensional action space, corresponding to base velocity (3d), head camera joint position (2d), right
end-effector delta pose (6d) and left end-effector delta pose (6d). The observation space of the
task policy consists of a 320×240 RGBD image that is segmented and down-sampled to 50 points,
and a 7-dimensional vector corresponding to the proprioceptive data. For all downstream tasks, we
employ a relatively sparse reward that is only given at the end of a high-level policy step.

A.7.1 Board Environment

Simulation In the board environment, the robot is initialized in front of an interactable whiteboard.
The decoder observation odec consists of the proprioceptive data of the robot, the robot’s previous
action, the robot’s distance and relative orientation with the board (which we estimate in the real
world via a simple RANSAC line detector [65]), and the end effector’s contact history with the
board. The latent action space is trained to maximize empowerment for the following state entities:
board contact history, robot base position, robot view, and board contact force.

Downstream Task 1: Clean Whiteboard The Clean Whiteboard task requires the robot to identify
the location of the board that needs to be wiped, and then use a sponge to clean up the identified
region. Specifically, we define a composite task reward function with the following terms: 1) En-
courage the robot to look at the target marker to wipe. 2) Encourage the successful removal of the
target marker. 3) Encourage the robot to move towards the target marker. 4) Penalize large contact
forces and any collision. The task is considered successful if all four conditions are successfully
achieved.

Downstream Task 2: Wipe Board over Obstacles The Wipe over Obstacles task is conceptually
similar to the Clean Whiteboard task, except that now there is an obstacle between the robot and the
board. Thus, the robot needs to additionally learn to keep a reasonable distance from the obstacle
and still be able to wipe the mark. The reward function is the same as Clean Whiteboard.

A.7.2 Table Environment

Simulation In the table environment, the robot is initialized in front of a table. The table is not
interactive, but would incur a penalty if the robot collides with it. The decoder observation odec
consists of the proprioceptive data of the robot, the robot’s previous action, and the robot’s distance
and relative orientation with the table (which we again estimate in the real world via RANSAC [65]).
The latent action space is trained to maximize empowerment for the following state entities: robot
left and right eef position relative to the table, robot base position, and robot view.

16

Downstream Task 3: Push Garbage on the Table to the Tray The Push to Tray task requires the
robot to push some garbage on the table in a tray that is also placed on the table. The reward function
consists of the following terms: 1) Encourage the robot to look at the location of the garbage. 2)
Encourage successfully pushing the garbage into the tray. 3) Encourage the robot to move towards
the garbage. 4) Penalize large contact forces and any collision.

Downstream Task 4: Sweep Garbage from the Table to the Bag For the Sweep to Bag task, the
robot is initialized with a bag in its left gripper. The goal of the task is to sweep the garbage into the
bag, which requires the coordinative control of both robot arms and the base. The reward function
consists of the following terms: 1) Encourage the robot to look at the location of the garbage. 2)
Encourage successfully pushing the garbage off the table. 3) Encourage the robot to move its base
towards the garbage. 4) Encourage the bag to be close to the garbage. 5) Penalize large contact
forces and any collision.

A.8 Discussion of Broader Areas Related to SLAC

In this section, we discuss SLAC’s relation to two additional areas: planning & control, and learning
from demonstrations.

Classical Motion Planning and Control: A traditional way to enable robots to perform tasks is
through motion planning and control. In practice, however, uncertainty and inaccuracy in localiza-
tion frequently impede the accurate execution of planned trajectories [45, 46, 47, 48, 49]. Moreover,
when the robot needs to consider multiple objectives, creating a motion planner is even harder, as
it requires solving complex multi-objective optimization problems [42, 43, 44]. On the side of con-
trol, existing methods [34, 35, 36, 37, 38, 39, 40, 41] resort to sophisticated prioritized solutions that
require extensive tuning and pre-determined task priorities. Moreover, these methods assume accu-
rate models of the robot and the environment, which often break in unstructured environments and
with high-dimensional sensor signals (e.g. images). By comparison, SLAC can autonomously learn
closed-loop policies only based on onboard sensors, and does not require prior domain knowledge.

Learning from Demonstrations: Recently, learning from demonstration has gained popularity as
a powerful paradigm for learning robot behaviors, particularly for tabletop manipulation [2, 3, 1].
As robot systems get more and more complex, however, collecting high-quality data can quickly
become challenging due to high-degree-of-freedom embodiments that require coordinated control.
Even with carefully designed systems that only work for very specific embodiments [30, 31, 32,
33], getting enough data for imitation learning remains hard and costly, especially for dynamic and
contact-rich tasks. SLAC does not require any demonstrations, and potentially can be applied to
learn a wide range of tasks through autonomous interactions with the environment.

17

	Introduction
	Related Work
	SLAC: Simulation-Pretrained Latent Action Space for Real-World RL
	Learning a Latent Action Space in Simulation
	Sample-Efficient Policy Learning of Downstream Tasks in the Real World

	Experimental Results
	Training Setup & Results
	Ablations
	Applications to Non-Robotics Domain

	Conclusion
	Appendix
	Policy and Training Visualizations
	Q Decomposition Proof
	Universal Safety Reward
	SLAC Unsupervised Latent Action Space Learning Pseudocode
	SLAC Real-World Downstream RL Pseudocode
	Hyperparameter
	Environment Description
	Board Environment
	Table Environment

	Discussion of Broader Areas Related to SLAC

