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Abstract

Utility functions are vital to human decision-making process, representing a prefer-
ence over inhomogeneous things and goods. However, it has always been a difficult
open problem to utilize a unified computational framework of estimating, learning,
and representing human utilities, since utility functions are internal and implicit
to humans, and can be different across individuals. Inspired by multiple related
studies, we aim to design possible ways of computational models to learn and
represent human utility. In this essay, we also present the strengths and weaknesses
of each method.

1 Introduction

Utility, which is first introduced in economics, has become a significant term and function in
measuring human’s preferences [9]. In economics, a rational consumer would always maximize their
utility within limited budget constraints [7]. In addition to economics, we can also model utility as
we model the possible world (e.g., a Markov Process) [2, 5]. In this case, utility can be used to define
the extent of human’s satisfaction of the possible world. Suppose the utility function with respect to
n variables and factors x1, o, ..., T, 1S

f(.’l?h.’l?g,...,lﬂn) (1)
and the limited constraint (cost) can be represented as
(1,22, Tpn) =0 2)

In this ideal case, we can utilize Lagrange Multiplier Method to find the analytical solution, through
maxf(xl,xg,...,xn)—>\C(x17x2,...,xn) 3)
where ) is the Lagrange multiplier.

However, in the real world we usually cannot represent utility in a certain function. On the one
hand, this is due to the complexity of the real world. There are too many variables and factors to
be found, and whether they are relevant to our objective or not remains unclear. On the other hand,
utility can be implicit and internal to humans, resulting in the difficulty in obtaining results through
observations. From this perspective, how to estimate, learn, and represent human utilities remains a
difficult problem. Inspired by multiple related studies, we aim to propose possible ways to design
feasible computational frameworks to learn and represent human utility.

2 Related Work

Naive utility calculus. Jara et al. [6] proposes that the naive utility calculus consists of a theory or
a generative model which is embedded in a Bayesian framework, and supports predictions about
future behaviors (setting the costs and rewards and deriving the resulting actions) and inferences
about the causes of observed behaviors. However, reasoning about decision-making in the real world
has several complications that the idealized naive utility calculus cannot handle. These complications
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reveal more sophisticated aspects or the naive utility calculus that give it traction and point to ways in
which commonsense psychology may develop.

Reinforcement learning based on preferences and examples. Preference-based Reinforcement
Learning (PbRL) [13] replaces reward values in traditional reinforcement learning by preferences to
better elicit human opinion on the target objective, especially when numerical reward values are hard
to design or interpret. Under the setting that preferences are stochastic, and the preference probability
relates to the hidden reward values, the proposed PbRL algorithms are able to identify the best policy
up to a high accuracy with high probability.

Inspired by the idea of devising RL algorithms that enable users to specify tasks simply by simply
providing examples of successful outcomes, recursive classification of examples (RCE) [4] was pro-
posed aimed at maximizing the future probability of the successful outcome examples. Different from
other similar work, RCE directly learned a value function from transitions and successful outcomes,
without learning the intermediate reward function. Experiments showed that RCE outperformed prior
methods that learn explicit reward functions.

Sadigh et al. [10] built on work in label ranking and proposed to learn from preferences and/or
comparisons - the person provided the system with a relative preference between two trajectories.
Therefore, the learned reward function strongly depends on what environments and trajectories were
experienced during the training phase.

Reinforcement learning with reward to represent utility. Silver et al. [11] hypothesised that
intelligence and its associated abilities can be understood as subserving the maximization of reward,
and reward is enough to drive a behaviour that exhibits abilities studied in natural and artificial
intelligence (Figure 1).

S— e - @

observation

creativity ts

imaginatione ;
language's sociale 4
intelligence .’

observation

Figure 1: The reward-is-enough hypothesis postulates that intelligence, and its associated abilities, can be
understood as subserving the maximisation of reward by an agent acting in its environment [11]. For example, a
squirrel acts so as to maximise its consumption of food (top, reward depicted by acorn symbol), or a kitchen
robot acts to maximise cleanliness (bottom, reward depicted by bubble symbol). To achieve these goals, complex
behaviours are required that exhibit a wide variety of abilities associated with intelligence (depicted on the right
as a projection from an agent’s stream of experience onto a set of abilities expressed within that experience).

Abel et al. [1] proved that while reward can express many tasks, there existed instances of each task
type that no Markov reward function can capture. Then a set of polynomial-time algorithms were
provided to construct a Markov reward function that allows an agent to optimize tasks of three types -
* aset of acceptable behaviors;
* apartial ordering over behaviors;

* apartial ordering over trajectories.

with an empirical study for corroboration and illustration under a proposed framework (Figure 2).
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Figure 2: The framework. Alice, Bob, and the artifacts of task definition (blue) and task expression (purple).

Christiano et al. [3] explored goals defined in terms of human preferences between pairs of trajectory
segments, and showed that such approach can effectively solve complex RL tasks without access to
the reward function. Experimental results in the environments including Atari games and simulated
robot locomotion showed that complex novel behaviors can be successfully trained within a flexible
amount of time.

3 Possible Computational Methods

Inspired by previous work, we aim to propose a potential framework of computational models that
can estimate, learn, and represent human utility. In the meanwhile, we will delve into each method
about their advantages and disadvantages in data collection, generalization, and efficiency.

3.1 [Utilizing the Partial Order Relationship

Sometimes the subjects within the scope of our discussion naturally have a relationship of partial
order. For instance, prices of homogeneous economic goods can influence human’s preference and
utility [8]. With respect to a fixed quality of goods, lower prices stands for higher utility. Another
example is the principle of "the more, the better". For homogeneous goods with a fixed price, having
more of this kind of goods indicates higher utility [12].

In this aspect, the next step is to focus on learning a possible relationship of partial order, which also
indicates a shortcoming of this method - partial order relationship may only exist among things that
belong to the same category. Totally unrelated things (e.g., apples and elephants), can hardly have
partial order relationships inbetween.

In terms of learning a relationship of partial order, this can mainly rely on common sense, both
physically and socially. From a generalized aspect, all measurement metrics and values have their
corresponding partial order relationships. Supervised learning from a limited dataset in a specific
domain can also be helpful with respect to this domain, be may become poor in generalizability.

3.2 Learning Preference from Observations and Inferences

Suppose a child is sitting in front of two toys, left and right. When you give the left one to this child,
he/she begins to cry; on getting the right one, he/she laughs. This observation may indicate that this
child prefers the right toy to the left one.

From a more generalized setting, given the set of all available (affordable) choices A = {z1, z2, ...z, }
of a person, if he/she chooses z; € A, then it is indicated that he/she prefers x; to others. Therefore,
we can build a model to learn from numerous observations of human choices. Then through a simple
inference, the preferences of the population can be indicated through a statistical calculation.

This method can be relatively accurate, since statistical patterns are always representative. However,
constructing such a huge dataset may consume too much labor, effort, and time.



3.3 Learning from Statistics in Existing Resources

Existing resources, such as corpus used in natural language processing, contains numerous information
of human preference and utility. Consider this example:

Life is dear, love is dearer. Both can be given up for freedom. — Petofi Sandor

From this quote, we can know that from the perspective of Petofi Sandor, the utility of having freedom
is much higher than possessing either of the former two.

Following this method, we can design a model to capture relevant information from large quantities
of corpuses. This method can save much labor and time, since all the dataset already exist. However,
one drawback is that the corpus can be polluted, and needs cleaning and post-processing.

4 Conclusion

In this essay, we reviewed previous work and research on learning and representing human utility
via different methods, including naive utility calculus, RL based on examples of preferences, and
RL with reward representations. The implicitness and internality of utility function make it difficult
to estimate and represent human utility. However, we manage to propose several possible ways of
constructing computational methods to model the human utility. We also discuss the advantages and
disadvantages of each method, hoping to be of inspiration for further research.
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