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Abstract

A central goal in deep learning is to learn compact representations of features at
every layer of a neural network, which is useful for both unsupervised representa-
tion learning and structured network pruning. While there is a growing body of
work in structured pruning, current state-of-the-art methods suffer from two key
limitations: (i) instability during training, and (ii) need for an additional step of
fine-tuning, which is resource-intensive. At the core of these limitations is the lack
of a systematic approach that jointly prunes and refines weights during training in
a single stage, and does not require any fine-tuning upon convergence to achieve
state-of-the-art performance. We present a novel single-stage structured pruning
method termed DiscriminAtive Masking (DAM). The key intuition behind DAM is
to discriminatively prefer some of the neurons to be refined during the training pro-
cess, while gradually masking out other neurons. We show that our proposed DAM
approach has remarkably good performance over a diverse range of applications in
representation learning and structured pruning, including dimensionality reduction,
recommendation system, graph representation learning, and structured pruning
for image classification. We also theoretically show that the learning objective of
DAM is directly related to minimizing the L0 norm of the masking layer.
All of our codes and datasets are available https://github.com/jayroxis/
dam-pytorch.

1 Introduction

A central goal in deep learning is to learn compact (or sparse) representations of features at every
layer of a neural network that are useful in a variety of machine learning tasks. For example,
in unsupervised representation learning problems [3], there is a long-standing goal to learn low-
dimensional embeddings of input features that are capable of reconstructing the original data [44,
35, 24, 33]. Similarly, in supervised learning problems, there is a growing body of work in the
area of network pruning [4], where the goal is to reduce the size of modern-day neural networks
(that are known to be heavily over-parameterized [7, 51, 22, 45]) so that they can be deployed
in resource-constrained environments (e.g., over mobile devices) without compromising on their
accuracy. From this unified view of representation learning and network pruning, the generic problem
of “learning compact representations” has applications in several machine learning use-cases such as
dimensionality reduction, graph representation learning, matrix factorization, and image classification.

*These authors contributed equally to this work.
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A theoretically appealing approach for learning compact representations is to introduce regularization
penalties in the learning objective of deep learning that enforce L0 sparsity of the network parameters,
θ. However, directly minimizing the L0 norm requires performing a combinatorial search over all
possible subsets of weights in θ, which is computationally intractable. In practice, a common approach
for enforcing sparsity is to use a continuous approximation of the L0 penalty in the learning objective,
e.g., L1-based regularization (or Lasso [42]) and its variants [39, 47]. While such techniques are
capable of pruning individual weights and thus reducing storage requirements, they do not offer any
direct gains in inference speed since the number of features generated at the hidden layers can still
be large even though the network connectivity is sparse [4]. Instead, we are interested in the area of
structured network pruning for learning compact representations, where the sparsity is induced at the
level of neurons by pruning features (or channels) instead of individual weights.

Figure 1: Illustration of Discrimi-
native Masking. The gate function
shifts to the "right" during training
resulting in more zeros in the mask
on convergence.

While there is a growing body of work in structured network
pruning [26, 28, 43, 14], the basic structure of most state-of-the-
art (SOTA) methods in this area (e.g., ChipNet [43] and NetSlim
[28]) can be described as training a learnable vector of mask
parameters, g ∈ Rn,g = [g1, g2, ..., gn]

⊺, which when multiplied
with the features extracted at a hidden layer, h ∈ Rn, results in
the pruned outputs of this layer, o = g ⊙ h. Sparsity in the mask
parameters is generally enforced using different approximations
of the L0 norm of g (e.g., use of Lasso in NetSlim and use
of “crispness” loss in ChipNet). Despite recent progress in this
area, current SOTA in structured pruning suffer from two key
limitations. First, since most methods do not explicitly minimize
the L0 norm of g during pruning, they often suffer from training
instabilities. In particular, most SOTA methods [28, 43] involve
thresholding techniques to set small non-zero weights to zero
leading to large drops in accuracy during the training process, as
evidenced by our results in this paper. Second, once the pruning process is complete and we have
converged at a compact network, most SOTA methods still need an additional step of fine-tuning the
network in order to achieve reasonable accuracy. This is not only resource-intensive but there is also
an on-going discussion on whether and how we should fine-tune [36] or rewind to initial weights
[23] or train from scratch [29], making it difficult to prefer one approach over another.

At the core of these limitations is the lack of a systematic approach for structured network pruning
that jointly prunes and refines weights during training in a single stage, and does not require any
fine-tuning upon convergence to achieve SOTA performance. Notice that in existing methods for
structured pruning, allowing every neuron j to be pruned differently using an independent mask
parameter gj only increases the number of learnable (or free) parameters in the learning objective,
increasing the complexity of the problem. Instead, we ask the question: “Can we leverage the intrinsic
symmetry of neural network initialization to design a pruning mask using the least number of free
parameters?”

We present a simple solution to this question by proposing a new single-stage structured pruning
method that learns compact representations while training and does not require fine-tuning, termed
DiscriminAtive Masking (DAM). The basic idea of DAM is to use a monotonically increasing gate
function G for masking every neuron in a layer that only depends on the index j = 1, 2, ..., n (or
position) of the neuron in the layer and a scalar parameter β to be learned during training (see
Figure 1). At the start of training, the gate function admits non-zero values for all neurons in the
layer, allowing all neurons to be unmasked (or active). As the training progresses, the gate function
gradually shifts from “left” to “right” as a result of updating β such that upon convergence, only
a subset of neurons (on the extreme right) are active while all others are masked out. The key
intuition behind DAM is to discriminatively prefer some of the neurons (on the right) to be refined
(or re-adapted) during the training process for capturing useful features, while gradually masking
out (or pruning) neurons on the left. This preferential pruning of neurons using a very simple gate
function helps in regulating the number of features transmitted to the next layer.*

Contributions: We show that our proposed DAM approach has remarkably good performance over
various applications, including dimensionality reduction, recommendation system, graph represen-

*This is somewhat analogous to how a physical dam regulates the flow of water by shifting a movable gate.
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tation learning, and structured pruning for image classification, achieving SOTA performance for
structured pruning. This shows the versatility of DAM in learning compact representations on diverse
problems and network choices, in contrast to baseline methods for structured pruning that are only
developed and tested for the problem of image classification [28, 43]. Our approach is single-stage,
does not require fine-tuning (and hence has lower training time), and does not suffer from training
instabilities. We also theoretically show that the learning objective of DAM is directly related to
minimizing the L0 norm of the discriminative mask, providing a new differentiable approximation
for enforcing L0 sparsity. Our approach is also easy to implement and can be applied to any layer
in a network architecture. The simplicity and effectiveness of DAM provides unique insights into
the problem of learning compact representations and its relationship with preferential treatment
of neurons for pruning and refining, opening novel avenues of systematic research in this rapidly
growing area.

2 Related Work

Learning with Sparsity: There is a long history of methods for enforcing compactness (or sparsity)
in learned parameters [33, 42], where it is understood that compact hypotheses can not only result
in more efficient data representations but also promote better generalizability [37]. This connection
between compactness and generalization has also been recently explored in the context of deep
learning [49, 1], motivating our problem of learning compact representations.

Unstructured Pruning: There are several methods that have been developed for unstructured
network pruning [30, 10, 12, 38], where the goal is to prune individual weights of the network. A
widely used technique in this field is referred to as the Lottery Ticket Hypothesis (LTH) [10], which
suggests that a certain subset of weights in a network may be initialized in such a way that they are
likely “winning tickets”, and the goal of network pruning is then to simply uncover such winning
tickets from the initialization of an over-parameterized network using magnitude-based pruning.
Similar to our work, there exists a line of work in the area of dynamic sparse training for unstructured
pruning [50, 13, 32, 9, 27] that gradually prunes the model to the target sparsity during training.
However, while unstructured pruning methods can show very large gains in terms of pruning ratio,
they are not directly useful for learning compact representations, since the pruned weights, even
though sparse, may not be arranged in a fashion conducive to the goal of reducing the number of
features.

Structured Network Pruning: The goal of structured pruning is to enforce sparsity over the
network substructures (e.g., neurons or convolutional channels) that is directly relevant to the goal
of learning compact representations. Most structured pruning SOTA methods need a three-stage
process [16], i.e., training, pruning and finetuning, in order to get highly compressed models. Early
exploration on the L1 norm based filter pruning can be traced back to [26], followed by Network
Slimming (NetSlim) [28], which uses a sparsity-inducing regularization based on L1 norm. Following
this line of work, a recent development in the area of network pruning is ChipNet [43], which
introduces an additional crispness loss to the L1 regularization, and achieves SOTA performance
on benchmark tasks. However, network slimming can only work if the underlying architecture has
batch normalization layers. It also has training instabilities due to soft-thresholding inherent to Lasso.
ChipNet also iterates between soft- and hard-pruning, which is done after the training phase. Further,
both these approaches require finetuning or retraining, which can be resource intensive.

Faster pruning schemes have also been explored by previous works. Bai et al [2] proposed a few-shot
structured pruning algorithm utilizing filter cross distillation. The SNIP [25] took one step ahead by
performing single-stage pruning. However, SNIP falls in the category of unstructured pruning. To
the best of our knowledge, no existing structured pruning method has been demonstrated to achieve
SOTA performance without finetuning. For example, while the method proposed in [30] can be
potentially used as a single-stage structured pruning method with the help of group sparsity, the
empirical analysis of the paper only focused on unstructured pruning.

Deep Representation Learning: Leveraging the power of deep neural networks, high-dimensional
data can be encoded into a low-dimensional representation [18]. Such process is known as deep
representation learning. A good representation extracts useful information by capturing the underlying
explanatory factors of the observed input. The existence of noises, spurious patterns and complicated
correlations among features make it a challenging problem. Previous work [44] show that an
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Autoencoder architecture can be used for denoising images. To disentangle correlated features, VAE
[19] and β-VAE [17] encourages the posterior distribution over the generative factors q(z|x) to
be closer to the isotropic Gaussian N (0, I) that explicitly promotes disentanglement of the latent
generative factors. Driven by the idea of the autoencoder, the deep representation learning has
been found remarkably successful in various of applications, e.g., graph representation learning
[21, 6, 8, 31, 46, 34] and recommendation system [48].

However, most existing works in representation learning treat the embedding dimension as a hy-
perparameter, which can be crucial and difficult to choose properly. Small embedding dimensions
cannot sufficiently represent the important information in the data that leads to bad representations.
On the other hand, large embedding dimensions allow some level of redundancy in the learned
representations, even picking up spurious patterns that can degrade model performances.

3 Proposed Approach

Problem Statement: Let us represent the general architecture of a neural network with l layers
as F(x) = Ψl ◦ Ψl−1 ◦ ...Ψ2 ◦ Ψ1(x), where x are the input features to the network, Ψi is the
learnable function at layer i that generates hidden features hi = Ψi(hi−1), and f ◦ g represents the
composite function f(g(·)). Let us also consider the “masked” version of this network where the
features learned at every hidden layer, hi are multiplied with a vector of mask values gi using a mask
function Mi(hi) = gi ⊙ hi. The masked neural network can then be described as Fmasked(x) =
Ψl ◦Ml−1 ◦Ψl−1 ◦ ...M2 ◦Ψ2 ◦M1 ◦Ψ1(x). The goal of learning compact representations can be
framed as minimizing the following learning objective:

min
θ

Ex∼Dtr

[
L (Fmasked(x)) +

λ

l − 1

l−1∑
i=1

∥gi∥0

]
, (1)

where θ are the learnable parameters of the network, Dtr is the training set, L(.) is the loss function,
and λ is the trade-off parameter for enforcing L0 sparsity in the mask values gi. Note that this
formulation provides a unified view of both representation learning and structured network pruning,
which differ in the choice of loss function (typically, reconstruction error for representation learning
and cross-entropy for structured pruning), and the number of layers that are pruned (in representation
learning, we only aim to prune the bottleneck layer while in structured pruning, we aim to prune all
of the layers in the network, see Figure 2).

DiscriminAtive Masking (DAM): Our proposed approach presents a novel perspective of structured
pruning by introducing a new strategy of “ordering-and-masking.” To understand the basic idea of
this strategy, let us assume that we are given the ideal “ordering” of neurons in a layer that reflect
their importance (i.e., neurons with higher order number are more useful for the learning task). Given
this ordering, we can perform structured pruning by incrementally “masking” out neurons with lower
order (i.e., setting their mask values to 0) before going to neurons with higher order during the
training process. In other words, we discriminatively (or preferentially) focus on pruning neurons
lower in the order, while retaining and refining the features learned at neurons higher in the order.
This approach for masking can be realized using a monotonic gate function G that maps neuron
order to mask values, i.e., lower order neurons are assigned smaller mask values than higher order
neurons. By dynamically regulating the gate function during the course of training, we can control
the percentage of neurons pruned at every training epoch.

Specifically, let us assign every neuron j at layer i with an “order number,” µij . Before we describe
how we arrive at these neuron orders, we first present the formulation of our proposed gate function
G, whose value at neuron j monotonically increases with the order number of the neuron, µij , as
follows:

gij = G(µij , αi, βi) = ReLU[tanh (αi(µij + βi))], (2)

where αi is a constant scalar parameter (termed as the steepness parameter) that is not optimized
during training, while βi is a ‘learnable’ scalar parameter (termed the offset parameter) that is the
only parameter optimized during training to control (or regulate) the process of masking in DAM.
Figures 2(c) and (d) show examples of gate function values (in red) at two different values of
βi. Note that using a single learnable parameter βi to implement the masking process introduces
significant simplicity in the design of the learnable mask, in contrast to SOTA methods in structured
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Figure 2: Illustration of the problems of representation learning (a) and structured network pruning
(b). Blue blocks are layers in neural networks while red blocks show non-zero values in the mask
layers. Figure (c) and (d) show two states of the gate function for k = 10. As an example, β=-2 in (c)
prunes 20% of the neurons while β=-6 in (d) prunes 60% of the neurons.

pruning [28, 43] where a different masking parameter is trained for every neuron in the network. We
hypothesize this simplicity of the gate function, in conjunction with the preferential pruning property
of DAM, to result in remarkable gains in learning compact representations, as evidenced later in
our experiments. Further, note that while we can use other monotonically increasing function to
implement our gates, we found ReLU-tanh to perform best in practice.

Assigning Neuron Orders µij : We now discuss our approach for assigning neuron order numbers
µij . Note that the order numbers only have to be assigned during the initialization step, and do not
change during the training process. Further, note that every neuron is initialized with weights that are
independent and identically distributed (because of the i.i.d nature of commonly used initialization
methods in deep learning [41]). Hence, all neurons are symmetrically invariant to each other at
initialization and any neuron has an equally good chance of refining themselves to capture useful
features later in the training process as any other neuron. Hence, any random ordering of the
neurons in the DAM approach would result in a similar pruning process (we empirically demonstrate
the permutation invariance of µij in Section 5). For simplicity, we consider a trivial choice of
µij = kj/ni, where k is a constant parameter that determines the domain size of µij , and ni is the
total number of neurons at layer i.

How Does Reducing βi Enforce L0 Sparsity? Let us first understand how mask values gi respond
to the only learnable parameter βi. Figure 2 (c) shows an example of gi when βi = −2. At this stage,
we can see that only a small number of neurons have zero gate values (white). As we reduce βi to
−6 in Figure 2 (d), we can see that the gate moves towards the ’right’, resulting in more excessive
pruning of neurons. In general, the number of non-zero values of the gate function (and hence, its L0

norm) is directly related to βi as follows:

∥gi∥0 =

ni∑
j=1

1(gij > 0) =

ni∑
j=1

(1− 1(µij ≤ βi)) = ⌈ni(1 + βi/k)⌉, for βi ≥ −k, (3)

where 1 indicates the identity operator and ⌈·⌉ is the ceiling operator. In order to back-propagate
gradients, we use a continuous approximation of Equation (3) (by dropping the ceiling operator) for
regularization as ∥gi∥0 ≈ ni(1 + βi/k). Hence, minimizing L0 norm of gi is directly proportional
to minimizing βi with a scaling factor of ni/k.

Learning Objective of DAM: While minimizing βi with scaling factors proportional to ni can
explicitly minimize L0 norm of the gate values, we found in practice that layers with smaller
number of neurons ni still require adequate pruning of features for learning compact representations
proportional to layers with large ni. Hence, in our learning objective, we drop the scaling factor and
directly minimize the sum of βi across all layers in the following objective function.

min
θ,β

Ex∼Dtr

[
L (Fmasked(x)) +

λ

l − 1

l−1∑
i=1

βi

]
, (4)

where, β is the set of all βi’s in the network, {β1, β2, . . . , βl−1}.

Theoretical Analysis of DAM: Analysis of the dynamics of the gate functions and additional
specifications for choosing αi and the gate function are provided in Appendix A.

Parameter Specification and Implementation Details: In all of our experiments, we used αi = 1
and k = 5. In our structured network pruning experiments, we used a cold-start of 20 epochs (i.e.,
the βi’s were frozen for the duration of cold-start), so as to allow the leftmost neurons to undergo
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some epochs of refinement before beginning the pruning process. We also set the initial value of βi to
1, which can also be thought of as another form of cold-starting (since pruning of a layer only starts
when βi becomes less than zero).

4 Experiments on Representation Learning Problems

4.1 Results on Dimensionality Reduction (DR) Problems

Problem Setup: We evaluate the effectiveness of DAM in recovering the embeddings of synthetically
generated dimensionality reduction problems. The general form of the problem is expressed by (5).
Suppose Ω ∈ Rr and all of its r dimensions are independent from each other. A d-dimensional data
X can be expressed using a transformation Ψ : Rr −→ Rd defined on Hilbert space, and X = Ψ(Ω),
d > r. Let M be the learnable mask, we formulated the dimensionality reduction problem as:

min
Θ

{
∥FD ◦M ◦ FE(X)−X∥2F + λβ

}
, Θ = {θE , θD, β} (5)

The FE ,M,FD are trained end-to-end using gradient descent. In our experiments, Ω is sampled
from a isotropic normal distribution, i.e., Ω ∼ Nr(0, Ir). We let Ψ to use the same structure as the
decoder FD with randomly generated parameters θΨ, i.e., Ψ = FD|θD=θΨ , so that the minimum
number of dimensions needed in the encoded representation for the decoder to reconstruct X is r.

Linear DR: We test DAM for removing linear correlations in a given rank-deficient matrix. In this
case, Ψ is a matrix representing a linear projection from Rr to Rd. We use two real matrices as the
encoder and decoder and train the DAM to find the full-rank representation of X .

Nonlinear DR: To test the ability of DAM for disentangling nonlinearly correlated dimensions, we
present two cases: (i) Ψ is a polynomial kernel of degree 2 (we use a QRes layer from [5]); (ii) Ψ
is a nonlinear transformation expressed by a neural network. We use a deep neural network as the
encoder with sufficient complexity.
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Figure 3: Bottleneck dimension (of nonzero entries) vs number of epochs during training.

Observation: Figure 3 shows the convergence of bottleneck dimensions over the training epochs for
different synthetic data with varying sizes of underlying factors (r). The curves and shades show the
mean and standard deviation of five different runs. We can see that DAM consistently uncovers the
exact dimension of the underlying factors r. We provides details of in-depth sensitivity analysis of
DAM results based on its hyper-parameters (e.g., learning rate and λ) in Appendix C.

Theoretical Analysis of DAM for linear DR: We theoretically show that DAM converges to the
optimal solution for the linear DR case (see Appendix B for details).

4.2 Recommendation System Results

Problem Setup: We consider the state-of-the-art method for recommendation system problems
(IGMC [48]), which transforms the rating matrix completion task to a link prediction problem, where
the ratings are interpreted as links between users and items.

In particular, IGMC generates 128-dimensional embeddings to represent the enclosing subgraph and
further avoids overfitting using a dropout layer with a dropout rate of 0.5. We replaced the dropout

6



Table 1: Results of IGMC with and w.o. DAM on recommendation system tasks.
IGMC IGMC-DAM

RMSE Dimension RMSE Dimension
Flixter 0.8715± 0.0005 128 0.8706± 0.0003 32
Douban 0.7189± 0.0002 128 0.7183± 0.0004 17

Yahoo-Music 19.2488± 0.0123 128 19.0166± 0.0444 83

layer with a DAM layer in the IGMC to reduce the dimension of the learned representations. We
train our IGMC-DAM model for 100 epochs under the same training configurations.

Observation: Table 1 shows that DAM successfully reduces the dimensions of the learned represen-
tations without any increase in errors, demonstrating that DAM is able to boost the performance of
IGMC by learning compact representations over the target graph.

4.3 Graph Representation Learning Results

Problem Setup: Following the previous experiment, we further explore the effectiveness of DAM in
learning compact graph representations. Our goal is to learn low-dimensional embeddings for each
node in a graph that captures the structure of interaction among nodes. A simple graph autoencoder,
e.g., GAE [21], uses a graph convolutional network (GCN) [20] as an encoder and an inner product
as a decoder. The encoder calculates the embedding matrix Z from the node feature matrix X with
the adjacency matrix A, and the decoder reconstructs a adjacency matrix Â such that: Â = σ(ZZ⊤),
with Z = GCN(X,A). The reconstruction loss, BCE(A, Â) is backpropagated to train the GAE
model. To reduce the dimension of the learned representation, we add a DAM layer in a GAE after
the encoder (GAE-DAM).
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Figure 4: Link prediction performance for Cora, CiteSeer and PubMed Dataset. Competing models
are GAE, GAE-DAM.

Observation: Figure 4 shows that DAM based GAE method is able to learn meaningful structural
information in compact latent embeddings. DAM improves the link prediction performance of the
simple GAE for Cora, CiteSeer and PubMed dataset by learning compact representations.

4.4 Representation Learning Results for MNIST Dataset

Problem Setup: We further evaluate DAM on the problem of dimensionality reduction using simple
auto-encoders on the MNIST dataset, and also compare the effectiveness of DAM (that directly
enforces L0 sparsity) with an ablation of our approach that instead minimizes the L1 norm (similar
to Lasso). We vary the trade-off parameter λ to compare the sparsity of the learned representations
between DAM and L1-norm based ablation method.

Observation: Figure 5 shows that DAM is able to achieve lower reconstruction error as well as
higher F1 scores over the same bottleneck dimensions than L1 based method. In Figure 5 (c), we can
see that DAM shows a near-linear descending trend of bottleneck dimensions as λ increases (further
evidence presented in Appendix E1). In contrast, the L1 based method has a saturating effect at large
λ values since the weights come close to zero but require some thresholding to be pruned. This shows
that DAM is amenable to learning highly compact representations in contrast to L1 based methods.
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Figure 5: Performance comparison plots of DAM with L1-norm method on MNIST dataset.

5 Experiments on Structured Network Pruning

Evaluation Setup Here we demonstrate the effectiveness of DAM on the task of structured network
pruning. We compared the performance of our proposed DAM with two SOTA structured pruning
algorithms, Network Slimming (Net-Slim) [28] and ChipNet [43]. Net-Slim is well-established SOTA
that is widely used as a strong baseline, while ChipNet is the latest SOTA representing a very recent
development in the field. ChipNet and Net-Slim are both pretrained for 200 epochs, while the DAM
performs single-stage training and pruning in the same number of epochs. Since, our DAM approach
does not require additional fine-tuning, we imposed a limited budget of 50 epochs for fine-tuning the
SOTA methods. Note that ChipNet also has a pruning stage which involves 20 additional epochs. We
evaluate the performance of these methods on the PreResnet-164 architecture on benchmark computer
vision datasets, CIFAR-10 and CIFAR-100. Additional evaluation setup details are in Appendix E2.

Performance and Running time comparison: Figures 6a and 6b demonstrate the performance of
different network pruning methods for various pruning ratios. We observe that for both datasets,
DAM is able to outperform Net-Slim by a significant margin specially when the models are sparse.
Additionally, DAM is able to achieve similar or slightly better performance than ChipNet with no
additional fine-tuning. We also compare the total running time for pruning across the different models
(divided into the three categories) in Figure 6c. We can see that the training time of the three methods
are almost the same, with ChipNet being slightly small. However, the running time for the pruning
and fine-tuning stages for DAM are both zero. Net-Slim also does not involve additional pruning
after training. However, ChipNet involves 20 epochs of pruning which is significant and is almost
comparable to its pretraining time. Finally, comparing the total running time taken by each of the
structured pruning methods, we observe that DAM is significantly faster than the current SOTA
counterparts owing to its single-stage pruning approach.
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Figure 6: Performance and running time comparison of DAM with state-of-the-art structured pruning
methods on PreResNet-164 for various parameter pruning ratios.

Stability Analysis: We further analyse the stability of our proposed DAM approach for network
pruning through visualization of the training dynamics. We observe that the training cross-entropy
(CE) loss and the validation CE loss are very similar to what we expect from a Preresnet model
trained on benchmark vision datasets with learning rate changes at 100 and 150 epochs, respectively.
We further notice that the total training loss for the DAM is also very stable and does not show
any sudden variations, leading to steady convergence. Finally, from the convergence plot for E[βi]
(green-dashed line), we can see that our pruning does not involve any sudden steps and happens in a
continuous and steady rate throughout the training stage.
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The training dynamics of the ChipNet (blue shaded region in the middle panel) is exactly the same as
training vanilla vision models since it does not involve sparsity constraints. However, as we move
to the pruning stage, we notice a sharp rise in both training and validation losses (white region).
This is due to the use of a different optimizer AdamW as opposed to SGD which was used in the
training stage. Further, a very interesting phenomenon happens in the fine-tuning stage (red shaded
region) where the training and validation losses increases for the first 25 epochs and then takes a
sharp decrease once the learning rate is adjusted. This suggests that after the pruning stage, finetuning
the model with large learning rate forces the model to make large updates in the initial epochs (akin to
training from scratch), which further drives the model out of the local minima. Once the learning rate
is adjusted, the model is able to slowly progress towards a new local optima and ultimately converges
to the fine-tuned minima.

Finally, both the training and fine-tuning dynamics of the Net-Slim (rightmost panel) appears to be
highly unstable. This suggests that the pre-training with sparsity loss is not stable and can lead to
large fluctuations in the training loss. Also, note that Net-Slim does not have a validation set as it
instead uses the test set to choose the best model. We have refrained from using the best model by
looking at the performance on the test set, and instead evaluate the model from the last epoch.
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Figure 7: Stability analysis for DAM (left), ChipNet (middle) and Network Slimming (right) through
visualization of the loss curves. Blue, white and red shades denote the training, pruning and fine-
tuning stages respectively.

Permutation Invariance: To test the effect of permuting the neuron order on the performance of
DAM, Table 2 provides results across five randomly permuted values of µij across every neuron
in the network, while using the same initialization as previous experiments. We can see that DAM
is invariant to permutations of neuron order during initialization, validating our simple choice of
assigning neuron ordering based on their index values.

Table 2: Permutation Invariance results on PreResNet-164 on CIFAR-10. RSD denotes the relative
standard deviation.

Run 1 Run 2 Run 3 Run 4 Run 5 RSD
Test Accuracy 94.11% 93.86% 93.71% 93.93% 93.52% 0.0024

Channels Pruned 43.31% 43.14% 43.31% 43.14% 43.02% 0.0029
Parameters Pruned 64.01% 63.40% 63.97% 63.64% 63.37% 0.0048

Additional Results: To illustrate generalizibility we provide additional network pruning results
for more networks such as VGG-19, PreResnet-20, PreResNet-56 and PreResnet-110 on CIFAR
datasets and LeNet-5 on MNIST in Appendix E3. To demonstrate decorrelated kernels obtained after
pruning using DAMs we use CKA similarity [22]. The results can be found in Appendix E3. For
extreme values of λ, we demonstrate that DAM is able to pruning entire bottleneck layers for ResNet
architectures by visualizing the pruned architectures in Appendix E4.

6 Discussion, Open Questions, and Future Works
The effectiveness of DAM in learning compact representations provides a novel perspective into
structured network pruning and raises several open questions about its relationships with other
concepts in this area. In the following, we list some of these connections and describe the limitations
and future extensions of our work.
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Connections with Lottery Ticket Hypothesis: Our work builds on the intuition of discriminative
masking, i.e., we preferentially favor some neurons to be refined while favoring some other neurons to
be pruned. This has interesting connections with the lottery ticket hypothesis (LTH) [10], where some
subsets of initialized weights in the network are hypothesized to contain “winning tickets” that are
uncovered after a few epochs of training. While there is some open discussion on whether the winning
tickets exist even before initialization [11, 15], there are several studies supporting this hypothesis
[38, 12]. Our results attempts to throw light on the question: “can we find winning tickets if we
discriminatively search for it in a certain subregion of the network?” Further, we are able to show
that the results of DAM are invariant to random permutation of the neuron indices at initialization,
since all neurons receive identically distributed weights. Along these lines, we can also explore if
there are certain ordering of neurons (e.g., in accordance with their likelihood of containing winning
tickets revealed through LTH) that can perform better than random ordering in DAM.

Connections with Dropout: Another interesting connection of DAM is with the popular regular-
ization technique of Dropout [40] that randomly drops out some neurons during training to break
“co-adaptation” patterns in the learned features so as to avoid overfitting. Essentially, by randomly
dropping a neuron at some epoch of training, the other neurons are forced to pick up the learned
features of the dropped neuron, thus resulting in the learning of robust features. This is similar to the
“re-adaptation” of weights at the active neurons at some epoch of DAM training, while the mask value
of the neurons in the transitioning zone (when 0 < gj < 1) are gradually dropped by the shifting of
the gate function. This motivates us to postulate the weight re-adaptation hypothesis as a potential
reason behind the effectiveness of DAM in learning compact representations, which requires further
theoretical justifications.

Budget-aware Variants of DAM: One promising future extension of our current DAM formulation
would be to make it budget-aware, i.e., to stop the training process once we arrive at a target level
of sparsity. Note that there is a direct correspondence between the value of the learnable gate offset
parameter βi (that is minimized at every epoch) and the resulting L0 sparsity (see Equation 3). Hence,
a simple budget-aware extension of our current DAM formulation would be to start from a large
value of lambda (to provide sufficient scope for aggressive pruning) and keep monitoring the level of
sparsity at every layer during the training process. As soon as the target sparsity mark is achieved,
we can freeze βi’s at every layer thus essentially halting the pruning process (note that the network
architecture becomes immutable if βi’s is fixed).

DAM Variants for Pre-trained Networks: One of the fundamental assumptions of our current DAM
formulation is that all neurons are symmetrically invariant to each at initialization, and hence we can
simply use random neuron ordering for discriminative masking. While this assumption is valid for
“training from scratch”, this may not hold for neurons in a pre-trained network. Future extensions
of DAM can include advanced ways of ordering neurons that do not rely on the above assumption
and hence can even be used with pre-trained networks. For example, we can order neurons based
on the magnitudes of weights of every neuron or the value of mutual information between neuron
activations and outputs. This would open novel avenues of research in structured network pruning by
finding effective neuron orderings for different initializations of network weights.
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