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ABSTRACT

Modeling the nonlinear dynamics of neuronal populations represents a key pur-
suit in computational neuroscience. Recent research has increasingly focused
on jointly modeling neural activity and behavior to unravel their interconnec-
tions. Despite significant efforts, these approaches often necessitate either intri-
cate model designs or oversimplified assumptions. Given the frequent absence of
perfectly paired neural-behavioral datasets in real-world scenarios when deploy-
ing these models, a critical yet understudied research question emerges: how to
develop a model that performs well using only neural activity as input at inference,
while benefiting from the insights gained from behavioral signals during training?
To this end, we propose BLEND, the Behavior-guided neuraL population dynam-
ics modElling framework via privileged kNowledge Distillation. By considering
behavior as privileged information, we train a teacher model that takes both be-
havior observations (privileged features) and neural activities (regular features) as
inputs. A student model is then distilled using only neural activity. Unlike existing
methods, our framework is model-agnostic and avoids making strong assumptions
about the relationship between behavior and neural activity. This allows BLEND
to enhance existing neural dynamics modeling architectures without developing
specialized models from scratch. Extensive experiments across neural population
activity modeling and transcriptomic neuron identity prediction tasks demonstrate
strong capabilities of BLEND, reporting over 50% improvement in behavioral de-
coding and over 15% improvement in transcriptomic neuron identity prediction
after behavior-guided distillation. Furthermore, we empirically explore various
behavior-guided distillation strategies within the BLEND framework and present a
comprehensive analysis of effectiveness and implications for model performance.

1 INTRODUCTION

Large-scale population-level recordings of neural activity enable the understanding of how complex
abilities of the brain in sensing, movement, and cognition emerge from the collective activity of
grouped neurons (Stevenson & Kording, 2011; Jun et al., 2017; Pei et al., 2021). This insight has
led to the development of various neural dynamics modeling methods to disentangle and interpret
the hidden structure of neural population activity with large-volume neural recordings as inputs
(Pandarinath et al., 2018; Ye & Pandarinath, 2021; Le & Shlizerman, 2022).

Alongside the recorded neural population activity, the observed behavior signals provide crucial
context and complementary information during neural dynamics modeling (Sani et al., 2021). For
example, behavior allows for the integration of neural data with other physiological measures (e.g.,
muscle activity, eye movements). By incorporating behavioral information, more comprehensive
and functionally relevant models of neural dynamics have been proposed (Zhou & Wei, 2020; Hur-
witz et al., 2021; Schneider et al., 2023b), bridging the gap between neural activity and its real-world
manifestations.

However, neural activity recordings with paired behavior signals are not always available in real-
world settings, i.e., behavioral data might be partial, limited, or not available for all periods of
neural recording. For instance, some studies focus on resting-state neural activity, where a subject
is not engaged in any specific task or receiving external stimuli. The absence of structured tasks
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(a) (b) (c)

Figure 1: Schematic illustration of neural population dynamics modeling mechanisms. In this paper,
we benchmark all the methods under the framework of masked neural activity reconstruction, in
which the model is firstly trained in an unsupervised manner to reconstruct the randomly masked
neural activity and then applied to downstream tasks such as neural activity prediction and behavior
decoding. (a) Neural dynamics modeling methods that only use neural population activity as input.
(b) Neural dynamics modeling methods that take behavior information as a prior. (c) Our BLEND
framework, which considers behavior information as privileged knowledge for distillation.

means there’s no clear temporal alignment between neural events and behavioral events (Drew et al.,
2020; Nozari et al., 2024). This discrepancy between the availability of behavioral and neural data
leads to a critical distinction in the types of information accessible for model development. These
features that only exist during the training stage are called privileged features, and those that exist
throughout training and inference stages are termed regular features (Vapnik & Vashist, 2009). Thus,
creating a model that can perform well using only regular features (neural activity) at inference
time, while still benefiting from the insights gained from privileged features (behavior), represents
a critical research question in neural dynamics modeling, especially in bridging the gap between
controlled experimental settings and real-world applications where privileged knowledge is limited
or unavailable. Maximizing the utility of existing privileged-regular feature pairs to enhance the
regular-feature-based network performance is a promising strategy to answer this question. Yet in
the field of computational neuroscience, these efforts remain underexplored.

To this end, in this paper, we propose BLEND, the Behavior-guided neuraL population dynamics
modElling framework via privileged kNowledge Distillation. As shown in Fig. 1(c), BLEND con-
stitutes a student and a teacher model, in which the teacher trains on both behavior observations
and neural activity recordings, then distills knowledge to guide the student which takes only neural
activity as input. This ensures the student model can make predictions using only recorded neural
activity during the deployment/inference stage, but also benefits from the guidance from behavior
information during the training stage, making it more versatile for settings lacking behavioral data.
Our main contributions are summarized as follows:

• Built upon the privileged knowledge distillation framework, we introduce a simple yet effective
neural dynamics modeling paradigm, BLEND, relying on a fundamental assumption that behavior
can serve as explicit guidance for neural representation learning. Notably, our approach is model-
agnostic, allowing for its seamless integration with diverse existing neural dynamics modeling
architectures, thus avoiding the need for developing specialized models from scratch.

• To evaluate our framework, we conduct extensive experiments on two benchmarks, i.e., Neural
Latents Benchmark’21 for neural activity prediction, behavior decoding, and matching to peri-
stimulus time histograms (PSTHs), as well as a multi-modal calcium imaging dataset for transcrip-
tomic identity prediction. Results show that our framework elevates the performance of baseline
methods by a large margin (>50% improvement in behavioral decoding and >15% improvement
in neuronal identity prediction) and significantly outperforms the state-of-the-art (SOTA) models.

• We present a comprehensive analysis of our framework across base models and privileged knowl-
edge distillation strategies, revealing key insights into the interaction between neural activity and
behavior. Our results demonstrate that behavior-guided distillation not only improves model per-
formance but fundamentally enhances the quality of learned neural representations. This leads
to more accurate and nuanced modeling of neural dynamics, offering new perspectives on how
behavioral information can be leveraged to better understand complex neural patterns.
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Figure 2: Illustration of the proposed BLEND framework, exemplified using neural spiking activity
data. Left: Behavior-guided neural representation learning via privileged knowledge distillation.
The teacher model is trained on a composite of neural activity and behavioral signals, subsequently
distilling its knowledge to a student model that utilizes solely neural activity as input. Right: During
the inference phase, the distilled student model is employed for neural population activity analysis
and transcriptomic identity prediction tasks.

2 RELATED WORK

Neural dynamics modeling (NDM). NDM refers to a category of methods that aim to capture the
dynamics of neural activity by using the activity recordings as inputs. A common and effective
choice is the latent variable model (LVM), which leverages low-dimensional latent factors to inter-
pret these dynamics. Various LVMs are developed, ranging from simple non-temporal models such
as principal components analysis (PCA) (Cunningham & Yu, 2014) and its variants (Kobak et al.,
2016), to linear dynamical systems (Macke et al., 2011; Gao et al., 2016), and to complex state space
models like LFADS (Pandarinath et al., 2018). Since the advent of Transformer, its ability to cap-
ture temporal dependencies and long-range interactions makes it appropriate for neural data, with
representative works such as NeuralDataTransformer (NDT) (Ye & Pandarinath, 2021), STNDT (Le
& Shlizerman, 2022), and EIT (Liu et al., 2022). As shown in Fig. 1(a), methods in this category
purely depend on neural activity recordings for neural population dynamics modeling yet ignore
using the paired behavior information as guidance.

Neural dynamics modeling with behavior as a prior. In recent years, an emerging research di-
rection has focused on jointly modeling neural population dynamics and behavioral signals. As
illustrated in Fig. 1(b), these methods can be categorized into two types. The first inputs both be-
havior and neural activity and utilizes behavior signals to guide the learning of neural dynamics:
pi-VAE (Zhou & Wei, 2020) considers the behavior variables as constraints for the construction
of latent space of LVMs; CEBRA (Schneider et al., 2023b) utilizes behavior signals to construct
contrastive learning samples for label-informed neural activity analysis. However, these approaches
normally need to develop delicately designed modules or complex training strategies to achieve
their goal. The second line of work aims to decompose neural activity into behavior-relevant and
behavior-irrelevant dynamics and reconstruct both behavior signals and neural activity signals. To
that end, a linear state-space model, PSID (Sani et al., 2021), is developed to decode population
dynamics from motor brain regions. Nonlinear state-space models such as TNDM (Hurwitz et al.,
2021) and SABLE (Jude et al., 2022) are proposed to further capture the nonlinear dynamics of neu-
ral activity and behavior observation. Nonetheless, these models assume a clear distinction between
behaviorally relevant and irrelevant dynamics in input neural activity, which might not always be
practical, potentially leading to oversimplification.

In contrast, our approach offers a model-agnostic learning paradigm that can be directly applied
to existing LVM models without relying on strong assumptions, thereby circumventing the issues
present in current LVM models that integrate behavior information as a prior.

Learning under privileged information (LUPI). Firstly proposed in Vapnik & Vashist (2009),
LUPI refers to the setting where, alongside the primary data modality, the model has access to an
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additional source of information. This extra source of input, termed privileged, is exclusively avail-
able during the training phase. The main objective of LUPI is to leverage this privileged information
to learn a better model in the primary data modality than one would learn without the privileged
information. This learning paradigm has been applied to different machine learning problems such
as recommendation system (Yang et al., 2022), medical image analysis (Chen et al., 2021), emotion
recognition (Aslam et al., 2023), and semantic segmentation (Liu et al., 2024).

In computational neuroscience, considering behavior information as privileged information to guide
neural dynamics modeling remains understudied. This work develops a novel learning paradigm that
represents an inaugural step toward addressing this underexplored research question and advancing
the field.

3 METHODS

This section introduces the details of our proposed BLEND framework, i.e., the behavior-guided
neural population dynamics modeling via privileged knowledge distillation. We start with problem
formulation of behavior-guided neural dynamics modeling in Section 3.1, followed by an exposition
of the BLEND algorithm in Section 3.2. Detailed exploration of the effectiveness of the BLEND
framework can be found in Appendix A.8 and A.9, including empirical studies of implications of
behavior guidance and how to choose distillation strategies for different models and data.

3.1 PROBLEM FORMULATION

We concretize the learning problem in this study with neural spiking data. For each trial of the
input neural activity, let x ∈ X = NN×T represent the input spike counts, where xt

i denotes the
spike count for neuron i at time t. Let b ∈ B = RB×T be the corresponding behavior signal, with
bt
i denoting the behavioral signal at time t. Without loss of generality, we assume that behavioral

signals are temporally continuous and have the same number of time steps as the neural activity.1
As illustrated in Fig. 1, the model fθ aims to reconstruct the randomly masked neural activity
solely based on the unmasked portions of x or together with the auxiliary behavior signal b. The
optimization objective for masked time-series modeling (MTM) can be formulated as follows:

θ∗ = argmin
θ

Ex∼p(x),b∼p(b),m∼p(m)

 1

|m|
∑
i,t

mt
i · Lrec

(
fθ (xm̄,b)

t
i ,x

t
i

) ≜ LMTM (1)

where m ∈ {0,1}N×T is a binary mask with 1 indicating masked elements, xm̄ ∈ Xm̄ represents
the unmasked portions of x, |m| is the number of masked elements, and Lrec is either Poisson or
Cross-Entropy loss as specified in the model configuration.

3.2 BLEND

The goal of this work is to create a model that can make predictions using only neural activity data
during deployment/inference, but also benefits from behavior data during training. This subsection
details the algorithm of BLEND, including the formulation of privileged knowledge distillation un-
der the context of neural dynamics modeling, teacher-student architecture, and distillation strategies.

We first conceptualize the behavior-guided neural population dynamics modeling problem under the
framework of LUPI:
Definition 1 (Privileged Knowledge (Yang et al., 2022)). Consider a general learning problem with
input x ∈ X and label y ∈ Y . If there is an additional source of information b ∈ B that exists
during training but not inference, we say b is the privileged knowledge if and only if I(y;b|x) :=
H(y|x)−H(y|x,b) > 0.

In Definition 1, I(·|·) and H(·|·) represent conditional mutual information and conditional entropy,
respectively. According to Definition 1, the behavior information b serves as the privileged knowl-
edge and offers additional predictive capabilities of label y, which is the unmasked neural activity
x in our scenario. Next, we introduce the proposed privileged knowledge distillation framework,
which is designed to incorporate behavioral guidance and facilitate neural dynamics modeling.

1BLEND can be readily extended to accommodate scenarios wherein behavioral information is discrete or
non-temporal in nature, see preliminary explorations in Appendix A.10.
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3.2.1 PRIVILEGED KNOWLEDGE DISTILLATION WITH BEHAVIOR AS GUIDANCE

As is illustrated in Fig. 2, BLEND employs a teacher-student architecture to realize our goal: by
leveraging the privileged information b at the training phase, to learn an LVM model for inference
phase that outperforms those built on the regular feature x alone. This procedure is divided into two
sequential stages:

Stage 1: Train a teacher model with regular information and privileged information. The
teacher model fθT ∈ {f |f : Xm̄ × B 7→ X} takes both masked neural activity recordings x and the
corresponding behavior signals b as inputs. The model parameter θT is optimized by minimizing
the MTM loss LMTM formulated in Eq. (1).

Stage 2: Train a student model with regular information by distillation. By exploiting all
available sources of information, the teacher model acquires a rich understanding of the neural
population dynamics. We then aim to distill the learned knowledge to the student model fθS ∈
{f |f : Xm̄ 7→ X}, which takes the neural activity as input. The parameter of student model θS is
updated by minimizing the following objective:

Ex,b,m

[
α · 1

|m|
∑
i,t

mt
i · Lrec

(
fθS (xm̄)

t
i ,x

t
i

)
︸ ︷︷ ︸

MTM Loss

+(1−α) ·
∑
i,t

Ldistill

(
fθS (xm̄)

t
i , fθT (xm̄,b)

t
i

)
︸ ︷︷ ︸

Distillation Loss

]
,

(2)
where α ∈ (0, 1) denotes the mixing ratio between the MTM loss and the distillation loss. The entire
optimization procedure of the proposed BLEND framework is presented in Alg. 1. After training
the student model with privileged knowledge distillation for MTM, it is applied to downstream tasks
where only neural activity recordings are available for inference (shown in Fig. 2, right).

While the above algorithm outlines the general framework of BLEND, different implementations of
the distillation loss Ldistill can capture various aspects of the teacher’s knowledge. In this study, we
investigate the following four main distillation strategies in our BLEND framework, each designed
to transfer certain aspects of the teacher’s knowledge to the student model.

Hard distillation. As a baseline, we first implement the Ldistill with hard distillation strategy, which
directly minimizes the mean squared error (MSE) between the teacher and student outputs:

Ldistill

(
fθS (xm̄)

t
i , fθT (xm̄,b)

t
i

)
=

∥∥∥fθS (xm̄)
t
i − fθT (xm̄,b)

t
i

∥∥∥2
2

(3)

Soft distillation. This approach distills knowledge by matching the softened probability distribu-
tions of the teacher and student models. We use a temperature parameter τ to soften the logits before
applying the softmax function:

Ldistill

(
fθS (xm̄)

t
i , fθT (xm̄,b)

t
i

)
= τ2 · KL

(
σ

(
fθT (xm̄,b)ti

τ

)∥∥∥σ(
fθS (xm̄)ti

τ

))
, (4)

where σ is the softmax function, KL(·∥·) is the Kullback-Leibler divergence, and τ is the tempera-
ture parameter.

Feature distillation. This method aims to align all the intermediate representations of the student
model with those of the teacher model.

Ldistill

(
fθS (xm̄)

t
i , fθT (xm̄,b)

t
i

)
=

L∑
l=1

∥∥f l
θS (xm̄)ti − f l

θT (xm̄,b)ti
∥∥2
2
, (5)

where f l
θS

and f l
θT

denote the outputs of the l-th layer of the student and teacher models, respectively.

Correlation distillation. This approach focuses on preserving the correlation structure of the
teacher’s outputs in the student model. For each sample in the batch, we compute the correlation
matrices of the teacher and student outputs and minimize their difference:

Ldistill

(
fθS (xm̄)

t
i , fθT (xm̄,b)

t
i

)
=

1

B

B∑
j=1

∥∥∥Corr(fθS (xm̄)j)− Corr(fθT (xm̄,b)j)
∥∥∥2
2
, (6)

where B denotes the batch size, and Corr(·) computes the correlation matrix of the outputs for the
j-th sample in the batch (see Appendix A.1.2 for details).
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4 EXPERIMENTS

As shown in Fig. 2, this work includes two benchmarks for evaluating our proposed BLEND frame-
work. The first is a public benchmark for neural latent dynamics model evaluation from Pei et al.
(2021), named Neural Latents Benchmark’21 (NLB’21). The second is a recent, public multi-modal
neural dataset from Bugeon et al. (2022), which contains calcium imaging recordings of neural pop-
ulation activity as well as single-cell spatial transcriptomics of the recorded tissue. Details of these
two benchmarks, tasks, and included baselines are introduced in Section 4.1 and 4.2.

4.1 NEURAL POPULATION ACTIVITY ANALYSIS ON NLB’21 BENCHMARK

We include three sub-datasets from NLB’21, i.e., MC-Maze, MC-RTT, and Area2-Bump, for a se-
ries of neural dynamics modeling evaluations. These datasets contain neural recordings from mon-
keys performing various reaching tasks: MC-Maze features delayed reaches through virtual mazes,
MC-RTT involves continuous reaches to random targets without delays, and Area2-Bump includes
reaches with occasional mechanical perturbations (see Appendix A.2 for details). To evaluate the
capability of our proposed BLEND on neural population dynamics modeling, we adopt three tasks
from NLB’21, i.e., neural activity prediction, behavior decoding, and matching to peri-stimulus time
histograms (PSTHs).

Neural activity prediction task aims to predict the neural activity of held-out neurons, measured
by metric Co-bps, computed as the log-likelihood of held-out neurons’ activity (see Appendix A.3
for detailed computation steps).

Behavior decoding task requires the model to relate neural activity to observed behavior. To eval-
uate this task, we first train a ridge regression model to predict behavioral data from neural firing
rates in the training set. We then use this model to predict behavior from neural activity in the test
set and measure the accuracy of these predictions using the R2 score (named Vel-R2).

Match to PSTHs task aims to evaluate how well models can capture stereotyped features of neu-
ronal responses across repeated trials of the same condition. To evaluate it, we calculate the R2

between model-predicted trial-averaged rates and true PSTHs for each neuron across all conditions,
then average these R2 values across neurons (named PSTH-R2).

We include two types of models as baselines for this benchmark. The first solely uses neural activity
recordings as inputs, including LRNN (Stolzenburg et al., 2018), LFADS (Pandarinath et al., 2018),
NeuralDataTransformer (NDT) (Ye & Pandarinath, 2021), STNDT (Le & Shlizerman, 2022), and
MINT (Perkins et al., 2023). The second type utilizes behavior information during training as a
prior to facilitate the learning process of neural dynamics modeling, including pi-VAE (Zhou & Wei,
2020), PISD (Sani et al., 2021), and TNDM (Hurwitz et al., 2021). We choose NDT and LFADS as
the base model for privileged knowledge distillation using behavior information, with best-distilled
model performance reported in Tab. 1. See details of model configurations in Appendix A.4.

4.2 TRANSCRIPTOMIC NEURON IDENTITY PREDICTION ON MULTI-MODAL NEURAL
ACTIVITY DATASET

This multi-modal dataset combines calcium imaging from mouse primary visual cortex (V1) with
single-cell transcriptomics. The dataset includes functional recordings from 9728 neurons across
17 sessions from 4 mice (SB025, SB026, SB028, SB030). Additionally, the dataset provides tran-
scriptomic profiles that are used to categorize neurons as either excitatory or inhibitory. For mouse
SB025, about half of the neurons classified as inhibitory are further subdivided into specific subtypes
(see details of this dataset in Appendix A.2). We evaluate models on the following two tasks under
both multi-animal scenario (all 4 mice) and single-animal scenario (only mouse SB025):

Excitatory/inhibitory (EI) neuron identity prediction task is a binary classification task that re-
quires the model to predict the neuron identity, i.e., excitatory or inhibitory.

Subclass label prediction task is a 5-class classification task, where the model is required to predict
the subclass label of inhibitory neurons, i.e., Lamp5, Pvalb, Vip, Sncg, or Sst.

Following the settings in Mi et al. (2023), we include a random model, PCA (Cunningham & Yu,
2014), UMAP (McInnes et al., 2018), LOLCAT (Schneider et al., 2023a) and its variants, and Ne-
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Table 1: Comparison of the proposed BLEND framework with other neural dynamics modeling
methods on NLB’21 Benchmark (Pei et al., 2021). Bold values denote the best performance for the
corresponding metric.

Methods MC-Maze MC-RTT Area2-Bump

Co-bps Vel-R2 PSTH-R2 Vel-R2 Vel-R2 PSTH-R2

N
eu

ra
l

D
ec

od
in

g LRNN (Stolzenburg et al., 2018) 0.148 0.317 0.274 0.188 0.473 0.085

MINT (Perkins et al., 2023) 0.181 0.646 0.165 0.159 0.370 0.103

STNDT (Le & Shlizerman, 2022) 0.282 0.773 0.585 0.233 0.563 0.416

B
eh

av
io

r
as

Pr
io

r pi-VAE (Zhou & Wei, 2020) 0.214 0.621 0.455 0.265 0.434 0.305

RNN PSID (Sani et al., 2021) 0.229 0.683 0.499 0.287 0.514 0.372

TNDM (Hurwitz et al., 2021) 0.248 0.730 0.509 0.345 0.677 0.402

B
L

E
N

D

NDT (Ye & Pandarinath, 2021) 0.275 (+0.0%) 0.779 (+0.0%) 0.551 (+0.0%) 0.318 (+0.0%) 0.519 (+0.0%) 0.290 (+0.0%)

NDT-Distill-Best (Ours) 0.310 (+12.7%) 0.891 (+14.4%)0.891 (+14.4%)0.891 (+14.4%) 0.592 (+7.4%) 0.372 (+17.0%) 0.788 (+51.8%) 0.483 (+66.6%)

LFADS (Pandarinath et al., 2018) 0.315 (+0.0%) 0.858 (+0.0%) 0.579 (+0.0%) 0.416 (+0.0%) 0.649 (+0.0%) 0.425 (+0.0%)

LFADS-Distill-Best (Ours) 0.321 (+1.9%)0.321 (+1.9%)0.321 (+1.9%) 0.877 (+2.2%) 0.604 (+4.3%)0.604 (+4.3%)0.604 (+4.3%) 0.429 (+3.1%)0.429 (+3.1%)0.429 (+3.1%) 0.837 (+29.0%)0.837 (+29.0%)0.837 (+29.0%) 0.615 (+44.7%)0.615 (+44.7%)0.615 (+44.7%)

uPRINT (Mi et al., 2023) as the baseline models for this benchmark. We choose NeuPRINT as
the base model for privileged knowledge distillation using behavior information with best-distilled
model performance reported in Tab. 2. Detailed model configurations are in Appendix A.4.

5 RESULTS AND ANALYSIS

5.1 BENCHMARK 1: NEURAL POPULATION ACTIVITY ANALYSIS

Tab. 1 summarizes the results of neural activity prediction, behavior decoding, and match to PSTHs
tasks of baseline methods and our proposed method on MC-Maze, MC-RTT, and Area2-Bump
datasets. Our behavior-guided distilled NDT and LFADS models achieve the best performance
and outperform SOTA methods on all tasks and datasets, demonstrating the effectiveness of our
proposed BLEND mechanism.

Fit to neural activity. For neural activity prediction of held-out neurons, NDT-Distill-Best achieves
0.310 Co-bps score on the MC-Maze dataset, reporting 12.7% improvement over the base model
NDT. LFADS-Distill-Best achieves a 0.321 Co-bps score, reporting the best performance for this
task against other baseline models. These observations indicate that our models gain a better under-
standing of neural population dynamics and yield improved predictions of held-out neural activity.

Fit to behavior. For behavior (monkey hand velocity) decoding, NDT-Distill-Best achieves Vel-R2

of 0.891, 0.372, and 0.788 respectively, outperforming the compared baselines. A 51.8% improve-
ment is observed on the Area2-Bump dataset over the base model NDT. While for LFADS-Distill-
Best, Vel-R2 scores of 0.877, 0.429, and 0.837 are reported, showcasing better behavior decoding
capabilities over baselines and the distilled NDT. Our findings demonstrate that the proposed method
achieves a superior correlation between neural activity and behavioral signals compared to existing
models. Note that the improvement of distilled LFADS over the base model on MC-Maze and MC-
RTT is not as significant as distilled NDT. The potential reason behind this is that LFADS, being
RNN-based, may reach its capacity limits with larger datasets, making it harder to incorporate addi-
tional knowledge effectively. Meanwhile, LFADS performs dimensionality reduction as part of its
model, which might limit its ability to incorporate additional information from the teacher in larger
datasets where the intrinsic dimensionality is already well-captured.

Match to PSTHs. In the PSTH matching task, our distilled NDT attains PSTH-R2 scores of 0.592
and 0.483 on the MC-Maze and Area2-Bump datasets, respectively. These results represent im-
provements of 7.4% and a remarkable 66.6% over the baseline model performance. The distilled
LFADS model achieves PSTH-R2 scores of 0.604 and 0.615, demonstrating superior performance
among all evaluated models and yielding improvements of 4.3% and 44.7% over the base model, re-
spectively. These findings indicate that leveraging behavioral data as privileged knowledge enhances
the models’ capacity to reproduce stereotyped neural responses, as quantified by PSTHs.
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Table 2: Top-1 accuracy of excitatory/inhibitory neuron identity prediction and inhibitory neuron
subclass label prediction tasks on the multimodal population activity dataset from Bugeon et al.
(2022). Bold values denote the best performance for the corresponding metric.

Methods Multiple Animals Single Animal

EI (2 class) Subclass (5 class) EI (2 class) Subclass (5 class)

Random 0.523 0.302 0.488 0.260

PCA (Cunningham & Yu, 2014) 0.565 0.330 0.572 0.263

UMAP (McInnes et al., 2018) 0.520 0.340 0.438 0.281

LOLCAT (Schneider et al., 2023a) 0.600 0.404 0.608 0.474

LOLCATISI(Mi et al., 2023) 0.640 0.474 0.632 0.491

LOLCATRaw(Mi et al., 2023) 0.664 0.439 0.616 0.386

NeuPRINT (Mi et al., 2023) 0.748 (+0.0%) 0.495 (+0.0%) 0.667 (+0.0%) 0.508 (+0.0%)

NeuPRINT-Distill-Best (Ours) 0.789 (+5.5%)0.789 (+5.5%)0.789 (+5.5%) 0.571 (+15.4%)0.571 (+15.4%)0.571 (+15.4%) 0.722 (+8.2%)0.722 (+8.2%)0.722 (+8.2%) 0.588 (+15.7%)0.588 (+15.7%)0.588 (+15.7%)

Overall, the BLEND framework provides a simple yet effective method that could directly improve
the performance of existing NDM models in neural population activity analysis tasks.

5.2 BENCHMARK 2: TRANSCRIPTOMIC NEURON IDENTITY PREDICTION

Tab. 2 shows the experimental results of transcriptomic identity prediction tasks, including EI neu-
ron identity prediction and inhibitory neuron subclass label prediction. These two tasks are con-
ducted in both multi-animal and single-animal settings. By incorporating our BLEND framework,
the distilled model shows remarkable improvement over the base model and outperforms all baseline
methods.

EI prediction. In the excitatory/inhibitory neuron identity prediction task, our distilled NeuPRINT
model attains the top-1 accuracy of 0.789 and 0.722 in multi-animal and single-animal settings,
respectively. These findings demonstrate improvements of 5.5% and 8.2% over the base model. No-
tably, our proposed method exhibits superior performance, surpassing all other baseline approaches
included for comparison.

Subclass label prediction. For the inhibitory neuron subclass label prediction task, the distilled
NeuPRINT model improves the base model by 15.4% and 15.7% in multi-animal and single-animal
settings, respectively, achieving the best top-1 accuracy of 0.571 and 0.588. Given that this task in-
volves a five-class classification problem, the model’s performance metrics are comparatively lower
than those observed in the EI prediction task, which is a binary classification problem.

As illustrated in Table 2, the model’s performance metrics in the single-animal setting are compara-
tively lower than those observed in the multi-animal setting. We posit that the multi-animal scenario
provides a more diverse and extensive set of neural activity inputs, thereby enhancing the model’s
generalization capabilities. Besides, Mi et al. (2023) points out a data-limited regime in this bench-
mark characterized by scarce labeled data for transcriptomic prediction, with only a small fraction of
neurons having both calcium imaging and transcriptomic data, and an imbalanced distribution across
subclasses. Our BLEND framework alleviates this problem and improves the model performance
since the teacher model provides regularization and rich knowledge transfer to the student.

5.3 ABLATION STUDIES ON BEHAVIOR-GUIDED KNOWLEDGE DISTILLATION STRATEGIES

In this work, we explore different privileged knowledge distillation strategies, including hard distil-
lation, soft distillation, feature distillation, and correlation distillation, as detailed in Section 3.2.1.

Neural population activity analysis on NLB’21 benchmark. We find that the NDT-Correlation-
Distill model generally performs best across most metrics, showing significant improvements over
the baseline NDT. For MC-Maze, NDT-Correlation-Distill achieves the highest Vel-R2 (0.891).
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Table 3: Ablation study on privileged knowledge distillation strategies evaluated by neural dynamics
modeling tasks of NLB’21 Benchmark (Pei et al., 2021) and cell class prediction tasks of Bugeon
et al. (2022) dataset. Bold values denote the best performance for the corresponding metric.

Neural Population Activity Analysis

Methods MC-Maze MC-RTT Area2-Bump

Co-bps Vel-R2 PSTH-R2 Vel-R2 Vel-R2 PSTH-R2

NDT (Ye & Pandarinath, 2021) 0.275 (+0.0%) 0.779 (+0.0%) 0.551 (+0.0%) 0.318 (+0.0%) 0.519 (+0.0%) 0.290 (+0.0%)

NDT-Hard-Distill (Ours) 0.290 (+5.5%) 0.890 (+14.2%) 0.587 (+6.5%) 0.380 (+19.5%) 0.747 (+43.9%) 0.363 (+25.2%)

NDT-Soft-Distill (Ours) 0.259 (−5.8%) 0.881 (+13.1%) 0.491 (−10.9%) 0.355 (+11.6%) 0.744 (+43.4%) 0.318 (+9.7%)

NDT-Feature-Distill (Ours) 0.303 (+10.2%) 0.888 (+14.0%) 0.596 (+8.2%) 0.381 (+19.8%) 0.787 (+51.6%) 0.481 (+65.9%)

NDT-Correlation-Distill (Ours) 0.310 (+12.7%) 0.891 (+14.4%)0.891 (+14.4%)0.891 (+14.4%) 0.592 (+7.4%) 0.372 (+17.0%) 0.788 (+51.8%) 0.483 (+66.6%)

LFADS (Pandarinath et al., 2018) 0.315 (+0.0%) 0.858 (+0.0%) 0.579 (+0.0%) 0.416 (+0.0%) 0.649 (+0.0%) 0.425 (+0.0%)

LFADS-Hard-Distill (Ours) 0.321 (+1.9%)0.321 (+1.9%)0.321 (+1.9%) 0.877 (+2.2%) 0.604 (+4.3%)0.604 (+4.3%)0.604 (+4.3%) 0.429 (+3.1%) 0.837 (+29.0%)0.837 (+29.0%)0.837 (+29.0%) 0.615 (+44.7%)0.615 (+44.7%)0.615 (+44.7%)

LFADS-Soft-Distill (Ours) 0.282 (−10.5%) 0.800 (−6.8%) 0.516 (−10.9%) 0.443 (+6.5%)0.443 (+6.5%)0.443 (+6.5%) 0.740 (+14.0%) 0.576 (+35.5%)

EI Neuron Identity & Inhibitory Neuron Subclass Label Prediction

Methods Multiple Animals Single Animal

EI (2 class) Subclass (5 class) EI (2 class) Subclass (5 class)

NeuPRINT (Mi et al., 2023) 0.748 (+0.0%) 0.495 (+0.0%) 0.667 (+0.0%) 0.508 (+0.0%)

NeuPRINT-Hard-Distill (Ours) 0.789 (+5.5%) 0.571 (+15.4%)0.571 (+15.4%)0.571 (+15.4%) 0.714 (+7.0%) 0.581 (+14.4%)

NeuPRINT-Soft-Distill (Ours) 0.782 (+4.5%) 0.541 (+9.3%) 0.722 (+8.2%)0.722 (+8.2%)0.722 (+8.2%) 0.588 (+15.7%)0.588 (+15.7%)0.588 (+15.7%)

NeuPRINT-Feature-Distill (Ours) 0.781 (+4.4%) 0.531 (+7.3%) 0.718 (+7.6%) 0.524 (+3.6%)

NeuPRINT-Correlation-Distill (Ours) 0.792 (+5.9%)0.792 (+5.9%)0.792 (+5.9%) 0.557 (+12.5%) 0.705 (+5.7%) 0.570 (+12.2%)

While for LFADS and its distilled variants, LFADS-Hard-Distill shows improvements over the base-
line LFADS, particularly in PSTH-R2 for MC-Maze and Vel-R2 for Area2-Bump. Notably, except
for LFADS-Hard-Distill, other distillation methods lead to performance degradation for LFADS on
MC-Maze (hence, only results for Soft-Distill are presented in Table 3). This contrasts with the NDT
results, where multiple distillation strategies show improvements, indicating that not all knowledge
transfer techniques are universally beneficial and highlighting the importance of careful method
selection when applying distillation techniques to different models or tasks.

Transcriptomic identity prediction on multi-modal calcium imaging dataset. It can be seen that
NeuPRINT-Hard-Distill and NeuPRINT-Soft-Distill show consistent improvements over the base-
line NeuPRINT across all tasks. NeuPRINT-Correlation-Distill performs best for Multiple Animals
EI prediction. NeuPRINT-Soft-Distill excels in Single Animal predictions for both EI and Subclass.

Overall, the distillation strategies, particularly Hard-Distill and Correlation-Distill, tend to outper-
form their respective baselines, suggesting that privileged knowledge distillation can significantly
enhance neural dynamics modeling. Different distillation strategies seem to be more effective for
different tasks and metrics, indicating that the choice of distillation method should be task-specific.

5.4 QUALITATIVE ANALYSIS

We visualized the decoded behavior trajectories of the base model and our distilled model for com-
parison in Fig. 3. Subfigure (a) shows the comparison between predicted and ground truth 2D hand
movement on MC-Maze for NDT (base model) and NDT-Hard-Distill (our distilled model). And
subfigure (b) illustrates the 1D hand velocity over time for both the X and Y axes separately. For a
more comprehensive visualization and qualitative analysis, please refer to Appendix A.5 and A.6.

2D hand movement trajectory decoding. For NDT the base model, the predicted trajectory follows
the general U-shape of the ground truth but shows significant deviations, especially at the bottom of
the U and the upper right corner. While our distilled model generates a trajectory that aligns much
more closely with the ground truth. It captures the U-shape more accurately, especially at the bottom
curve and the endpoints, showing a marked improvement in behavior decoding.
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Figure 3: Visualization of behavior decoding on MC-Maze dataset. (a) Prediction and ground truth
of 2D hand movement trajectory. (b) Prediction and ground truth of X and Y velocities, respectively.

1D hand velocity decoding (X and Y axes). For both X and Y velocities, the base model struggles
to accurately capture the magnitude and timing of velocity changes in both dimensions. Specifically,
it underestimates peak velocities and shows erratic fluctuations in X velocity, and shows substan-
tial deviations from ground truth in Y velocity, particularly after time step 60. While our distilled
NDT significantly enhances velocity predictions in both X and Y directions. It more accurately
captures the magnitude, timing, and overall pattern of velocity changes with improved smoothness,
suggesting a better understanding of the hand movement dynamics.

6 CONCLUSION AND DISCUSSION

In this study, we introduce BLEND, a novel framework for neural population dynamics modeling
that leverages privileged knowledge distillation. Predicated on the fundamental premise that be-
havioral data can serve as an explicit guide for neural representation learning, we present a model-
agnostic framework that facilitates seamless integration with diverse existing neural dynamics mod-
eling architectures. This versatility enables the enhancement of a wide range of computational ap-
proaches in the field of computational neuroscience. Comprehensive empirical evaluations, encom-
passing neural population activity analysis and transcriptomic identity prediction tasks, substantiate
the superior effectiveness of our proposed framework. BLEND demonstrates a remarkable capac-
ity for capturing implicit patterns within neural activity, consistently outperforming state-of-the-art
models by a significant margin, thereby providing new perspectives on how behavioral observations
can be leveraged to guide the complex modeling of neuronal population dynamics.

Although the initial results of BLEND are promising, a few limitations remain to be addressed.
In this work, we employ a straightforward approach to implement the behavior guidance by con-
catenating the neural activity and behavior information along the feature dimension (assuming they
have the same length of time steps). This methodological choice is motivated by the relatively
low-dimensional nature of behavioral signals, which precludes their use as an independent guidance
source (e.g., as a query in the cross-attention mechanism). However, this simplistic guidance strat-
egy may not fully capture the intricate relationship between neural activity and behavior. Future
research should investigate advanced integration methods to better utilize the complex interactions
between these data types, potentially improving the model’s ability to represent subtle neural pat-
terns. Moreover, while the current study focuses on temporal behavioral signals that correspond
directly with neural activity at each time step, future research should aim to extend BLEND to more
generalized settings. This expansion could encompass non-temporal or discrete behavioral signals,
thereby broadening the framework’s applicability to diverse neuroscientific domains. Such exten-
sions could prove valuable in investigating sleep stages, categorizing social behaviors, and exploring
other scenarios where behavior is not continuously paired with neural activity. This generalization
would significantly enhance the versatility and utility of BLEND across a wider spectrum of neuro-
science research paradigms.
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REPRODUCIBILITY STATEMENT

To enhance the reproducibility of this study, we provide an Appendix section comprising six sub-
sections that offer detailed supplementary information. Appendix A.1 presents the pseudo-code of
our proposed BLEND framework, followed by a comprehensive explanation of the behavior-guided
knowledge distillation strategies. Additionally, Appendix A.2 provides detailed descriptions of the
datasets utilized, namely MC-Maze, MC-RTT, Area2-Bump, and the multi-modal neural activity
datasets. To facilitate a deeper understanding of the tasks conducted in this study, Appendix A.3
elucidates the specifics of neural activity prediction, behavior decoding, and match to PSTHs tasks.
Subsequently, Appendix A.4 delineates the model configurations, including architecture and hyper-
parameters. To further elucidate the superior performance of our proposed method, Appendices A.5
and A.6 offer additional visualizations comparing different base models for distillation and vari-
ous distillation strategies, enabling qualitative assessment. Our source code will be made publicly
accessible upon acceptance of this paper.
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A APPENDIX

A.1 SUPPLEMENTARY CONTENTS OF BLEND ALGORITHM

A.1.1 BLEND ALGORITHM

Algorithm 1 Behavior-guided Teacher-Student Knowledge Distillation Framework (BLEND)
Require: Training data D = {(xi,bi)}Ni=1, Teacher model fθT , Student model fθS
Ensure: Trained student model fθS

1: // Train teacher model
2: Initialize teacher model parameters θT
3: for each epoch do
4: for each batch (xb,bb) in D do
5: Generate random mask mb ∼ p(m)
6: Apply the generated mask mb to original input xb

7: Create unmasked portions xm̄b

8: x̂b ← fθT (xm̄b
,bb) ▷ Teacher’s predictions

9: Compute LMTM using Eq. (1)
10: Update θT using ∇LMTM
11: end for
12: end for
13: // Train student model
14: Initialize student model parameters θS
15: for each epoch do
16: for each batch (xb,bb) in D do
17: Generate random mask mb ∼ p(m)
18: Apply the generated mask mb to original input xb

19: Create unmasked portions xm̄b

20: zT ← fθT (xm̄b
,bb) ▷ Teacher’s predictions

21: zS ← fθS (xm̄b
) ▷ Student’s predictions

22: Compute Ldistill using Eq. (2):
23: LKD ← αLMTM(zS ,xb) + (1− α)Ldistill(zS , zT )

▷ Distillation loss Ldistill chosen from one of Eq. (3), (4), (5), or (6)
24: Update θS using∇LKD
25: end for
26: end for
27: return fθS

A.1.2 DISTILLATION STRATEGIES.

Correlation-Distill. As shown in Section 3.2.1, this distillation strategy aims to preserve the corre-
lation structure of the teacher’s outputs. Concretely, the correlation matrix is computed as:

Corr(Y) =
(Y − Ȳ)(Y − Ȳ)T√

diag((Y − Ȳ)(Y − Ȳ)T ) · diag((Y − Ȳ)(Y − Ȳ)T )T
(7)

Here, Y ∈ RN×T represents the output of either the student or teacher model for a single sample,
with N being the number of neurons and T the number of time steps. Ȳ is the mean of Y along the
time dimension, and diag(·) extracts the diagonal of a matrix. The resulting correlation matrix has
dimensions N ×N . Note that we use the Frobenius norm ∥·∥F to compute the difference between
correlation matrices, as it provides a scalar measure of the overall difference between these matrices.

A.2 SUPPLEMENTARY CONTENTS OF DATASETS INCLUDED

MC-Maze dataset (Churchland et al., 2010; 2012) comprises recordings from the primary motor and
dorsal premotor cortices of a monkey performing instructed-delay reaching tasks in 108 different
configurations, involving various target positions and virtual barriers. This dataset includes one full
session with 2,869 trials and 182 neurons, along with hand kinematics. This dataset is notable for
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its behavioral richness, stereotyped repetitions, high trial counts, and clean separation of preparation
and execution phases, making it valuable for studying neural population dynamics during movement.

MC-RTT dataset (O’Doherty et al., 2017; Makin et al., 2018) features motor cortical recordings
during a random target task, comprising continuous, point-to-point reaches with variable lengths and
locations, without delay periods. It spans 15 minutes of continuous reaching, artificially divided into
1,351 600ms trials, and includes data from 130 neurons along with simultaneous hand kinematics.
Unlike the MC-Maze dataset, MC-RTT introduces modeling challenges due to its non-stereotyped
movements, lack of trial repetitions, and the unpredictability of random data snippets, precluding
simple trial-averaging approaches for de-noising. This dataset tests models’ ability to infer latent
representations from single-trial data and detect unpredictable inputs to population activity, offering
a more naturalistic benchmark for latent variable models.

Area2-Bump dataset (Chowdhury et al., 2020) contains neural recordings from area 2 of the so-
matosensory cortex, which processes proprioceptive information, as a monkey performed a visually-
guided reaching task using a manipulandum. It comprises 462 trials with data from 65 neurons,
along with hand kinematics and perturbation information, where in 50% of random trials, the mon-
key’s arm was unexpectedly bumped before the reach cue. This dataset challenges models to in-
fer inputs describing activity after sensory perturbations and to perform robustly with low neuron
counts, offering insights into the distinct dynamics of somatosensory areas compared to motor areas.

For each of the above datasets, neural activity recordings are counted in 5ms bins, and behavior
signals are also measured at 5ms intervals. Other preprocessing information can be found in Pei
et al. (2021)2 or Ye & Pandarinath (2021)3.

Multi-model neural activity dataset collected by Bugeon et al. (2022) combines neural recordings,
genetic information, and behavioral data from mice. This comprehensive dataset includes calcium
imaging from the primary visual cortex of four mice (SB025, SB026, SB028, SB030), encompass-
ing over 9,700 neurons across 17 recording sessions. Each session captures roughly 500 neurons
for about 20 minutes at a sampling rate of 4.3 Hz. The genetic component comprises expression
data for 72 specific genes, enabling the classification of neurons into excitatory or inhibitory types,
with further subtyping available for a portion of inhibitory neurons in one mouse (SB025). Comple-
menting the neural data are behavioral recordings such as running speed and pupil dilation, as well
as overall brain state classifications. The dataset also provides spatial information for the recorded
neurons, offering a rich resource for investigating the interplay between neural activity, cell types,
and behavior.

For the preprocessing details of this dataset, please refer to Mi et al. (2023).4

A.3 SUPPLEMENTARY CONTENTS OF TASKS INCLUDED

Neural activity prediction. This task requires the model to predict neural activity for held-out
neurons. Co-bps, also named Co-smoothing, is the primary evaluation metric used in the NLB’21
to assess how well models can predict held-out neural activity. The test data is split into held-in
and held-out neurons, with models using the training data and held-in test neurons to predict firing
rates λ for the held-out test neurons. Performance is measured using log-likelihood under a Poisson
observation model:

p(ŷn,t) = Poisson(ŷn,t;λn,t),

where ŷn,t is the held-out spike count for neuron n at time t. The log-likelihood L(λ; ŷ) is summed
over all held-out neurons and time points, then normalized to “bits per spike” by comparing to a
baseline model that uses only the mean firing rate of each neuron:

bits/spike =
1

nsp log 2
(L(λ; ŷn,t)− L(λ̄n; ŷn,t)),

where λ̄n,: is the mean firing rate for neuron n and nsp is its total number of spikes. A positive bits
per spike (bps) score indicates the model predicts time-varying activity better than the mean firing
rate baseline. The co-smoothing metric allows standardized comparison across different types of

2https://github.com/neurallatents/nlb_tools/tree/main
3https://github.com/snel-repo/neural-data-transformers
4https://github.com/lumimim/NeuPRINT

15

https://github.com/neurallatents/nlb_tools/tree/main
https://github.com/snel-repo/neural-data-transformers
https://github.com/lumimim/NeuPRINT


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

models and neural datasets, as it only requires models to output predicted firing rates rather than
imposing constraints on model architecture or training (Pei et al., 2021).

Behavior decoding. As mentioned in Section 4.1, following the settings in Pei et al. (2021); Ye &
Pandarinath (2021), we evaluate the performance of behavior decoding by fitting a ridge regression
model. This linear mapping is enforced for all models in the decoding process to prevent complex
decoders from compensating for poor neural dynamics estimation. More sophisticated decoders
could potentially achieve better performance but at the cost of obscuring the quality of the underlying
latent representations. The behavioral data used for decoding in MC-Maze, MC-RTT, and Area2-
Bump is monkey hand velocity.

Match to PSTHs. This task evaluates how well models can reproduce the stereotyped neural re-
sponses captured by peri-stimulus time histograms (PSTHs). PSTHs are computed by averaging
neuronal responses across trials within a given condition, revealing consistent features of neural ac-
tivity. For datasets with clear trial structures (MC-Maze and Area2-Bump), the task computes the
R2 between trial-averaged model rate predictions for each condition and the true PSTHs, first for
each neuron across all conditions and then averaged across neurons.

A.4 SUPPLEMENTARY CONTENTS OF MODEL CONFIGURATIONS

LFADS (Latent Factor Analysis via Dynamical Systems) (Pandarinath et al., 2018) is a deep
learning method designed to model neural population dynamics from single-trial spiking data, which
utilizes recurrent neural networks (RNNs) to model the underlying dynamics of neural populations.
The model consists of an encoder RNN that compresses the input spike data into a latent code,
and a generator RNN that reconstructs the data from this latent representation. LFADS infers
low-dimensional latent factors and initial conditions for each trial, which are then used to gener-
ate de-noised estimates of neural firing rates. This architecture allows LFADS to capture complex,
non-linear dynamics in neural data while providing interpretable latent representations of neural
population activity on single trials.

As the base model for our privileged knowledge distillation with behavior information in neural
dynamics modeling, we set the hidden dimension to 64 and factor size to 32. For model training, we
set the batch size to 64, learning rate to 1× 10−3 with 5000 warm-up iterations and weight decay to
5× 10−5. Mask ratio is set to 0.25.

NDT (NeuralDataTransformer) (Ye & Pandarinath, 2021) is a non-recurrent architecture designed
to model neural population spiking activity, based on the BERT encoder. The core of the NDT con-
sists of a stack of Transformer layers (typically 6 layers), each containing self-attention mechanisms,
layer normalization, and feedforward neural networks. It uses masked modeling during training,
where random portions of the input sequence are masked and the model is trained to reconstruct the
original input, encouraging it to leverage contextual information. The NDT processes neural data in
parallel rather than sequentially, enabling faster inference times compared to recurrent models like
LFADS, while achieving comparable performance in modeling autonomous neural dynamics and
enabling accurate behavioral decoding.

As the base model for our behavior-guided knowledge distillation in neural dynamics modeling, we
set the Transformer layer number to 4 for MC-Maze, MC-RTT, and Area2-Bump datasets, hidden
dimension to 128, and number of attention heads to 2. For model training, we set the batch size to
64, learning rate to 1 × 10−3 with 5000 warm-up iterations and weight decay to 5 × 10−5. Mask
ratio is set to 0.25.

NeuPRINT (Mi et al., 2023) is designed to assign time-invariant representations to individual neu-
rons based on population recordings of neural activity. The model uses a transformer architecture
to implement an implicit dynamical system that predicts neural activity based on the past activity
of the neuron itself and permutation-invariant statistics of the population activity. NeuPRINT learns
both the dynamical model and time-invariant representations for each neuron by minimizing the pre-
diction error of future neural activity. The learned representations can then be used for downstream
tasks such as predicting transcriptomic cell types.

As the base model for our behavior-guided knowledge distillation in transcriptomic identity predic-
tion, we follow the same configurations in Mi et al. (2023) and set the dimension of time-invariant
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Figure 4: Visualization of predicted hand velocity on MC-Maze dataset of base model NDT and
LFADS, as well as their behavior-guided distilled counterparts. (a) Prediction and ground truth of X
and Y velocities, respectively. (b) Prediction and ground truth of 2D hand movement trajectories.

embedding to 64. For model architecture, 1 transformer layer with 2 attention heads is used. For
model training, the batch size is set to 1024 and the learning rate is set to 1× 10−3.

A.5 ADDITIONAL QUALITATIVE ANALYSIS ON NDT AND LFADS

This section provides more qualitative analysis based on visualization of model predictions in the be-
havior decoding task. As shown in Fig. 4, a comprehensive visualization comparing the performance
of base models (NDT and LFADS) with their behavior-guided distilled versions (NDT-Hard-Distill
and LFADS-Hard-Distill) on the MC-Maze dataset is presented.

A.5.1 1D HAND VELOCITY DECODING (X AND Y AXES)

Fig. 4(a) shows the decoded X and Y hand velocities compared to the ground truths.

NDT vs. NDT-Hard-Distill: The distilled NDT model demonstrates significant improvements in
capturing both X and Y velocity components simultaneously. The base NDT model shows consid-
erable deviations from the ground truth, particularly in the latter half of the time series. In contrast,
NDT-Hard-Distill tracks both velocity components much more accurately throughout the entire se-
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quence. It better captures the magnitude and timing of velocity changes in both dimensions, resulting
in a much closer match to the ground truth trajectory.

LFADS vs. LFADS-Hard-Distill: Both LFADS and the distilled model perform well in tracking
the X and Y velocities, but the distilled version shows noticeable improvements. LFADS-Hard-
Distill more accurately captures the peaks and troughs of both velocity components, especially in
the middle and latter parts of the sequence. The refinements are subtle but consistent, indicating a
better overall representation of the hand movement dynamics. Notably, in the trough region of the Y
velocity component, NDT, NDT-Hard-Distill, and LFADS exhibit a significant mischaracterization
of the velocity profile, predicting a peak where the ground truth demonstrates a trough. In contrast,
LFADS-Hard-Distill accurately captures this critical feature, successfully predicting the trough trend
in concordance with the ground truth.

A.5.2 2D HAND MOVEMENT TRAJECTORY DECODING

Fig. 4(b) presents a comparison of 2D hand movement trajectories for four models: NDT (base
model), NDT-Hard-Distill (our distilled model), LFADS (base model), and LFADS-Hard-Distill
(our distilled model), alongside the ground truth trajectory.

For NDT, NDT-Hard-Distill, and LFADS, there’s a significant discrepancy between the ground truth
and predicted trajectories. While the ground truth curves downward, the predictions curve upward,
indicating poor performance or a fundamental misunderstanding of the underlying pattern. For
LFADS-Hard-Distill, the predicted trajectory closely follows the ground truth, suggesting much
better performance for this model. Moreover, LFADS-Hard-Distill appears to have successfully
learned the system’s behavior, demonstrating superior predictive capabilities.

A.5.3 COMPARATIVE ANALYSIS

Overall, we can conclude that the distillation process benefits both NDT and LFADS, with more
pronounced improvements observed in the NDT model. The distillation process enhances the mod-
els’ ability to capture fine-grained details and reduce erratic predictions, resulting in smoother, more
accurate velocity profiles. Meanwhile, LFADS-Hard-Distill demonstrates superior performance in
accurately predicting the trough region, as illustrated in Fig. 4(a), and in capturing the trajectory
trend, as shown in Fig. 4(b). In both instances, the other three models exhibit significant deviations
from the ground truth. This qualitative observation aligns with the quantitative results presented in
Tab. 3, wherein LFADS-Hard-Distill consistently outperforms the other three models in behavior
decoding.

These visualizations provide strong evidence for the effectiveness of the BLEND framework in
improving neural dynamics modeling. Moreover, the distillation process appears to transfer valuable
information from the behavior-guided teacher model to the student model, enhancing its ability to
infer accurate hand velocities in multiple dimensions from neural activity alone. The improvements
are consistent across different aspects of the movement (2D movement trajectories, 1D X and Y
velocities), suggesting a comprehensive enhancement of the models’ predictive capabilities.

In summary, this analysis demonstrates that the BLEND framework not only improves quantita-
tive metrics but also leads to qualitatively better predictions of complex behavioral outputs from
neural activity. These visualizations provide intuitive and compelling evidence for the benefits of
incorporating behavioral information through privileged knowledge distillation in neural dynamics
modeling.

A.6 ADDITIONAL QUALITATIVE ANALYSIS ON DIFFERENT DISTILLATION STRATEGIES

This section presents the qualitative analysis of different distillation strategies we employ in this
work, including Hard Distillation (Eq. 3), Soft Distillation (Eq. 4), Feature Distillation (Eq. 5),
and Correlation Distillation (Eq. 6). This analysis is conducted based on the visualization of model
predictions in the behavior decoding task of the MC-Maze dataset. As illustrated in Fig. 5, we
compare the performance of NDT and its different behavior-guided distilled variants in decoding
hand movement trajectories and velocities.
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Figure 5: Visualization of predicted hand velocity on MC-Maze dataset of different behavior-guided
distilled models, including based model NDT, NDT-Hard-Distill, NDT-Soft-Distill, NDT-Feature-
Distill, and NDT-Correlation-Distill. (a) Prediction and ground truth of X and Y velocities, respec-
tively. (b) Prediction and ground truth of 2D hand movement trajectory.
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A.6.1 1D HAND VELOCITY DECODING (X AND Y AXES)

For X velocities, all distilled models show improved alignment with ground truth compared to the
base model NDT, especially during peak velocity periods (time steps 40-80). For the Y velocities,
our behavior-guided distilled models demonstrate better tracking of the ground truth, with reduced
oscillations and improved accuracy in predicting direction changes. Moreover, the distillation ap-
proaches are particularly effective in capturing the synchronous changes in X and Y velocities, sug-
gesting better prediction of overall motion dynamics. NDT-Correlation-Distill stands out with its
ability to accurately predict velocities in both dimensions simultaneously, indicating a strong grasp
of the interdependencies between X and Y motions.

A.6.2 2D HAND MOVEMENT TRAJECTORY DECODING

For 2-dimensional hand movement trajectory decoding, the base model NDT shows significant de-
viation from the ground truth, especially in the lower part of the trajectory. In contrast, all dis-
tillation methods demonstrate improved trajectory prediction, with closer alignment to the ground
truth path. Specifically, NDT-Correlation-Distill appears to provide the most accurate trajectory
prediction, closely matching the ground truth’s shape and endpoints.

A.6.3 MODEL-SPECIFIC OBSERVATIONS

For each distillation strategy employed in this study, the following key observations can be discerned
from Figure 5:

• NDT-Hard-Distill: Shows substantial improvement over base NDT in both velocity and
trajectory prediction.

• NDT-Soft-Distill: Offers improved performance, though with some oscillations in velocity
predictions.

• NDT-Feature-Distill: Demonstrates good overall performance, with smooth velocity curves
and accurate trajectory prediction.

• NDT-Correlation-Distill: Appears to be the best-performing method, showing excellent
alignment with ground truth across all metrics.

Overall, we could conclude that the behavior-guided distillation approaches clearly enhance the pre-
dictive capabilities of the NDT model. The improvements are particularly noticeable in handling
complex motions and maintaining accuracy over longer time horizons. The correlation-based dis-
tillation method seems to be the most effective, suggesting that preserving relational information
during distillation is crucial for accurate predictions.

A.7 CROSS-CORRELATION ANALYSIS

This subsection provides cross-correlation and mutual information analyses on the MC-Maze dataset
to quantify the relationship between neural activity and behavioral variables.

The cross-correlation heatmap was generated by computing correlations between each neuron’s ac-
tivity and behavioral variables (X and Y velocities) across different time lags. For each neuron, the
data was flattened across trials and timepoints, detrended, and normalized before computing corre-
lations using a Fast Fourier Transform (FFT) method. The resulting correlations were arranged into
a matrix where each row represents a neuron, each column represents a time lag, and the color in-
tensity indicates the correlation strength. As shown in Fig. 6, our analysis revealed robust temporal
relationships between neural activity and movement kinematics. Nearly half of the recorded neurons
(47.4%) exhibited leading relationships with horizontal (X) velocity, while a slightly larger propor-
tion (54.7%) led vertical (Y) velocity components. Importantly, we observe median leads of 20ms
(X) and 10ms (Y), indicating that neural activity and behavior exhibit complex, complementary
dynamics.

The strength of these neural-behavioral relationships was confirmed by highly significant correla-
tions for both movement components (p < 0.001 for both X and Y velocities). This robust statistical
coupling explains why behavior serves as an effective privileged information source in our BLEND
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knowledge distillation framework, i.e., it provides a reliable signal about the neural computations
being performed. Crucially, we find that population-level mutual information (MI) is substantially
higher than single-neuron MI, indicating that behavior captures coordinated neural dynamics that
emerge at the population level. This difference demonstrates that behavior provides a window into
population-level neural representations, which is a key motivation for our knowledge distillation
approach.

Taken together, these analyses show that neural activity and behavior in the MC-Maze dataset are
strongly coupled, with behavior offering complementary, contextual information about the under-
lying neural computations. By effectively leveraging these neural-behavioral relationships, our
BLEND framework is able to achieve significant performance improvements in learning better neu-
ral population representations. The robust temporal structure and statistical significance of the ob-
served cross-correlations further validate the importance of behavior as a privileged signal in our
knowledge distillation approach.

Figure 6: Visualization of neural activity and behavior cross-correlation heatmap on MC-Maze
dataset. Upper: cross-correlation between independent neurons and horizontal movement; Below:
cross-correlation between independent neurons and vertical movement.

A.8 EMPIRICAL STUDY ON BEHAVIOR GUIDANCE

To understand why incorporating behavior signals leads to better neural activity reconstruction, we
conducted detailed analyses of the relationships between behavioral and neural data (exemplified
with MC-Maze dataset).

A.8.1 NEURAL SPACE ORGANIZATION

We first examined how behavior signals influence the organization of neural representations using
t-SNE visualization (Figure 7). The baseline model’s representations (shown in red) appear as scat-
tered, disconnected clusters across the neural space. In contrast, BLEND’s representations (shown
in blue) form more cohesive structures, suggesting that behavior signals help constrain neural activ-
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ity patterns into meaningful manifolds. This improved organization likely contributes to BLEND’s
superior reconstruction capability.

Figure 7: t-SNE visualization of neural representations showing the organization of neural space.
Red points represent baseline model representations, while blue points show BLEND model rep-
resentations. The more cohesive clustering of BLEND’s representations suggests better capture of
underlying neural structure.

Figure 8: Behavior-neural analysis. (a) Neural activity patterns across different behavioral states
show systematic variation. Different colors represent different behavior quartiles. (b) Box plots
comparing reconstruction errors for neurons with low versus high behavior coupling, demonstrating
improved reconstruction for behavior-coupled neurons.

A.8.2 BEHAVIOR-DEPENDENT NEURAL ACTIVITY PATTERNS

We analyzed how neural activity patterns vary systematically with behavioral states (Figure 8, left).
The behavioral states were determined through the behavior data, which consists of two continu-
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ous variables (x and y coordinates of hand position) over time. We used the first behavior vari-
able (x coordinate) and divided it into quartiles using numpy’s percentile function: behavior bins
= percentile(behavior data, [0, 25, 50, 75, 100]). This created four behavior states (1/4 through
4/4), representing different ranges of hand positions. For each state, we computed the mean neu-
ral activity pattern across all time points falling within that state. The resulting patterns show clear
modulation of neural activity by behavioral state, with distinct activity profiles for different hand po-
sitions. Some neurons (e.g., indices 25, 50, and 125) show particularly strong behavior-dependent
modulation.

A.8.3 RECONSTRUCTION QUALITY ANALYSIS

We quantitatively assessed how behavior coupling influences reconstruction quality through a com-
prehensive analysis framework. First, we quantified behavior-neural coupling using mutual infor-
mation (MI): MI(Ni, B) =

∑
n,b p(n, b) log

p(n,b)
p(n)p(b) , where Ni is the activity of neuron i and B is

the behavior variable. We computed this for each neuron using scikit-learn’s mutual info regression
function. Neurons were then classified into high coupling (MI > median) and low coupling (MI ≤
median) groups.

For each neuron i, we computed the reconstruction error as Ei =
1
T

∑T
t=1(r̂

t
i − rti)

2, where r̂ti is
the predicted firing rate and rti is the true firing rate at time t. The box plots (Figure 8, right) show
the distribution of these errors for both groups. Statistical analysis revealed significant differences
between high and low coupling groups (Wilcoxon rank-sum test: p < 0.001), with high-coupling
neurons showing consistently lower reconstruction errors.

These analyses collectively demonstrate that BLEND’s improved performance stems from its ability
to leverage inherent structure in behavior-neural relationships. The systematic variation of neural
activity with behavior and the improved reconstruction for behavior-coupled neurons provide strong
empirical evidence for the effectiveness of incorporating behavior signals in neural activity recon-
struction.

A.9 DISTILLATION STRATEGY EVALUATION ON SYNTHETIC DATA

This subsection provides a detailed exploration and a comprehensive understanding of when and
why different strategies excel. We conduct additional experiments using carefully designed synthetic
datasets that mirror the structure of real neural recordings while allowing precise control over neural-
behavioral relationships.

We created three types of synthetic datasets with distinct characteristics.

• Simple: The first type implements simple linear relationships between neural activity
and behavior, designed to test basic knowledge transfer. In this dataset, neural activity
is directly derived from sinusoidal behavioral trajectories through a linear transformation.
This creates a clear and interpretable relationship between behavior and neural responses,
with added Poisson noise to simulate realistic spike counts.

• Hierarchical: The second type features hierarchical relationships where different neu-
ron groups encode behaviors at varying timescales, simulating the layered processing of-
ten observed in neural circuits. The hierarchical dataset introduces temporal complexity
by dividing neurons into three functional groups, each processing behavior at different
timescales. Fast neurons respond to immediate behavior, medium neurons integrate over 5
timepoints, and slow neurons average over 10 timepoints, creating a rich temporal hierarchy
that mirrors the multi-timescale processing observed in real neural systems.

• Complex: The third type incorporates complex population-level correlations with tem-
poral dependencies, mimicking the intricate dynamics found in real neural populations.
The complex population dataset represents the most sophisticated model, organizing neu-
rons into five correlated assemblies with explicit population-level structure. This dataset
features decaying sinusoidal behavior patterns and maintains specific correlation structures
(0.3 within groups) through multivariate normal noise, creating realistic population dynam-
ics.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Methods Simple Hierarchical Complex

LFADS-Hard-Distill 0.985 0.976 0.182
NDT-Hard-Distill 0.934 0.926 0.147
NDT-Soft-Distill 0.927 0.932 0.146
NDT-Feature-Distill 0.926 0.940 0.139
NDT-Correlation-Distill 0.935 0.944 0.180

Table 4: Results showing variants of BLEND framework on three synthetic datasets with distinct
characteristics. Vel-R2 is used as the measurement metric.

All three datasets share common dimensions (2,869 trials, 140 timepoints, 182 neurons, 2 behavioral
variables) and are systematically divided into train/eval splits and held-in/held-out neurons, enabling
rigorous testing of neural analysis methods.

Our experiments with these synthetic datasets revealed clear patterns that explain the performance
differences observed in Table 4. LFADS consistently performed better with Hard Distillation across
all synthetic cases, particularly excelling with simple linear relationships (around 6% improvement
over NDT-based variants in Vel-R2). This aligns with our understanding that LFADS’s RNN-based
architecture, with its inherent temporal continuity and built-in constraints, benefits most from direct
knowledge transfer. The architecture’s strong internal regularization makes it well-suited for precise,
deterministic knowledge transfer through hard distillation.

Conversely, NDT showed superior performance with Correlation Distillation, especially in cases
with complex population-level correlations (around 20% improvement over other NDT-based vari-
ants). This finding stems from NDT’s transformer-based architecture, which processes information
in parallel and lacks inherent temporal constraints. The correlation distillation strategy provides
valuable structural guidance that complements NDT’s flexible architecture, helping it maintain im-
portant population-level relationships in the learned representations.

Intuitions and guidelines: These insights from synthetic data experiments provide concrete guide-
lines for strategy selection in practice. For architectures with strong internal regularization like
LFADS, Hard Distillation offers the most direct and effective knowledge transfer. For more flexible
architectures like NDT, Correlation Distillation helps maintain complex population dynamics and
temporal relationships. Soft Distillation, serving as a robust middle-ground option, can be bene-
ficial for datasets where subtle variations in neural responses need to be preserved, though it may
not fully capture complex population-level dynamics. Feature Distillation, while generally showing
more modest improvements, is particularly effective when the neural data exhibits a clear hierar-
chical structure, as it can capture relationships across different levels of neural representation. This
understanding not only explains the performance patterns in our original results but also offers a
principled approach to selecting distillation strategies for future applications of BLEND to different
neural datasets and architectures.

A.10 EXTENDING BLEND TO DISCRETE OR NON-TEMPORAL BEHAVIOR LABELS

To verify the capability of BLEND with discrete or non-temporal behavior observations, we ex-
tend BLEND on the DMFC-RGS dataset from NLB’21 Benchmark Pei et al. (2021), which con-
tains recordings from dorso-medial frontal cortex (DMFC) during a cognitive timing task known as
Ready-Set-Go (RSG). The behavioral variables in this task are distinctly discrete in nature. The task
incorporates five key behavioral features, represented as binary or categorical variables: ’is eye’
indicating whether the response was an eye movement (1) or joystick movement (0), ’theta’ speci-
fying the categorical direction of movement (left or right), and ’is short’ denoting whether the trial
used the Short prior (1) or Long prior (0). The remaining variables ’ts’ and ’tp’ represent the sam-
ple and produced time intervals respectively. These discrete behavioral choices create a structured
experimental design with clearly defined conditions.

Given that this dataset has discrete and non-temporal behavior labels, we align the neural activity
and behavior by introducing a learnable temporal position encoding for discrete behavior variables
across the length of neural recording. We compare NDT-Hard-Distill with the original NDT model
on this dataset, and this simple extension shows improvement in both Co-Bps (0.127 achieved by
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NDT-Hard-Distill and 0.118 achieved by NDT) and PSTH-R2 (0.444 achieved by NDT-Hard-Distill
and 0.338 achieved by NDT).

These promising results demonstrate the effectiveness of BLEND on both continuous/discrete and
temporal/non-temporal behavior observations, showcasing a flexible solution we provide for learn-
ing better neural population dynamics.
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