
Published as a conference paper at ICLR 2024

MOBILE-AGENT: AUTONOMOUS MULTI-MODAL MO-
BILE DEVICE AGENT WITH VISUAL PERCEPTION

Junyang Wang∗& Jitao Sang†
School of Computer and Information Technology & Beijing Key Lab of Traffic Data Analysis and Mining
Beijing Jiaotong University
Beijing, China
{junyangwang, jtsang}@bjtu.edu.cn

Haiyang Xu†& Jiabo Ye & Ming Yan†& Weizhou Shen & Ji Zhang & Fei Huang
Institute for Intelligent Computing
Alibaba Group
Hangzhou, China
{shuofeng.xhy, ym119608}@alibaba-inc.com

ABSTRACT

Mobile device agent based on Multimodal Large Language Models (MLLM)
is becoming a popular application. In this paper, we introduce Mobile-Agent,
an autonomous multi-modal mobile device agent. Mobile-Agent first leverages
visual perception tools to accurately identify and locate both the visual and textual
elements within the app’s front-end interface. Based on the perceived vision
context, it then autonomously plans and decomposes the complex operation task,
and navigates the mobile Apps through operations step by step. Different from
previous solutions that rely on XML files of Apps or mobile system metadata,
Mobile-Agent allows for greater adaptability across diverse mobile operating
environments in a vision-centric way, thereby eliminating the necessity for system-
specific customizations. To assess the performance of Mobile-Agent, we introduced
Mobile-Eval, a benchmark for evaluating mobile device operations. Based on
Mobile-Eval, we conducted a comprehensive evaluation of Mobile-Agent. The
experimental results indicate that Mobile-Agent achieved remarkable accuracy and
completion rates. Even with challenging instructions, such as multi-app operations,
Mobile-Agent can still complete the requirements. Code and model are open-
sourced at https://github.com/X-PLUG/MobileAgent.

1 INTRODUCTION

LLM-based agents Li et al. (2023); Liu et al. (2023f;e;c); Shen et al. (2023); Wu et al. (2023);
Yang et al. (2023b); Shen et al. (2024); Yang et al. (2023d); Hong et al. (2023); Yang et al. (2023a),
utilizing a variety of tools, have demonstrated strong capabilities in task planning and reasoning. As
Multimodal Large Language Models (MLLM) Liu et al. (2023b); Zhu et al. (2023); Ye et al. (2023a);
Dai et al. (2023); Liu et al. (2023a); Chen et al. (2023); Ye et al. (2023b); Bai et al. (2023); Lin et al.
(2023) rapidly progress and exhibit remarkably visual comprehension capabilities, the realization
of MLLM-based agents has become feasible, also sparking the potential for a variety of innovative
applications.

Recently, mobile device agent has emerged as a novel and popular application of MLLM-based
agents. The agent needs to operate the mobile device based on the screen and user instructions. This
requires the agent to possess both visual perception and semantic understanding capabilities. However,
existing MLLMs, including the state-of-the-art GPT-4V, still lack sufficient visual perception abilities
to serve as an effective agent. Zheng et al. (2024) points out that although GPT-4V can generate

∗Work done during internship at Alibaba Group.
†Corresponding author

1

https://github.com/X-PLUG/MobileAgent


Published as a conference paper at ICLR 2024

Figure 1: Mobile-Agent is an autonomous agent for operating the mobile device. Based on user
instruction, Mobile-Agent can plan a series of operations to complete the requirements.

effective operations, it struggles to accurately locate the positions of these operations on the screen.
This limitation hinders the ability to operations on mobile device solely through advanced MLLMs.

To address this issue, existing works have attempted to assist GPT-4V in localization by leveraging
user interface layout files. Yang et al. (2023c) extracted actionable positions on the screen by accessing
Android application XML files. Zheng et al. (2024) used HTML code from web applications to aid in
localization. These methods rely on the accessibility of underlying files. However, in many scenarios,
permissions to access these files may not be available, rendering these methods ineffective.

In order to eliminate the dependency on the underlying files in existing localization methods, in
this work, we propose Mobile-Agent, an autonomous mobile device agent with visual perception.
Mobile-Agent, through the visual perception module, can accurately locate operations using only
screenshots from the mobile device. The visual perception module consists of detection and OCR
models, responsible for describing the content of localized screen regions and identifying text within
the screen, respectively. Through carefully crafted prompts, we facilitate effective interaction between
the agent and tools, enabling the automation of mobile device operations. Leveraging the robust
contextual capabilities of GPT-4V, Mobile-Agent achieves a self-planning capability to plan tasks
holistically based on the screenshot, user instruction, and operation history. To enhance the agent’s
ability to identify erroneous operations and incomplete instructions, we introduce a self-reflection
method. Guided by prompts, the agent continually reflects on invalid and incorrect operations, and the
agent can halt once the instruction is completed. In order to comprehensively assess Mobile-Agent’s
capabilities, we have introduced Mobile-Eval, a benchmark centered around current mainstream
mobile Apps. Mobile-Eval includes instructions for various difficulty levels. We have conducted an
analysis of Mobile-Agent based on Mobile-Eval, showcasing and analyzing some of the cases within
it. The experimental results indicate that Mobile-Agent exhibits remarkable instruction completion
rates and operation accuracy. Even in challenging instructions, such as operating multiple Apps,
Mobile-Agent is able to successfully complete the tasks.

The contributions summarized are as follows:

• We propose Mobile-Agent, an autonomous mobile device agent. Mobile-Agent utilizes
visual perception tools for operation localization. It can self-plan each step and complete
self-reflection. Mobile-Agent solely relies on device screenshots without any system code,
which is a purely vision-based solution.

• We introduce Mobile-Eval, a benchmark designed to assess mobile device agents. This
benchmark comprises 10 commonly used Apps and features instructions with varying three
difficulty levels.

• We conducted a comprehensive analysis of Mobile-Agent based on Mobile-Eval. We
presented typical selected cases to analyze the capabilities of it.

2



Published as a conference paper at ICLR 2024

Figure 2: The framework of Mobile-Agent.

2 MOBILE-AGENT

This section introduces our Mobile-Agent framework. The framework consists of state-of-the-art
MLLM GPT-4V, a text detection module for text localization, and an icon detection module for icon
localization. We will first explain how to use visual tools to position the instructions generated by
GPT-4V to specific locations on the mobile device. Subsequently, we will describe the workflow of
the Mobile-Agent.

2.1 VISUAL PERCEPTION

GPT-4V Lacks Localization Capability. While GPT-4V can provide correct operations for instruc-
tion and screenshot, existing work Zheng et al. (2024) indicates that GPT-4V is unable to effectively
output the location where the operations take place. Therefore, we need external tools to assist
GPT-4V in operation localization, allowing the operations to be output onto the mobile device screen.

Text Localization. When the agent needs to tap on specific text on the screen, we use an OCR tool to
detect the position of the corresponding text on the screen. We will discuss three scenarios:

• When the OCR detection results do not include the specified text, the agent will be instructed
to either reselect the text for tapping or choose an alternative operation. This situation often
occurs in complex scenarios where GPT-4V may have a small number of hallucinations.

• When the OCR detection results only have one instance of the specified text, we directly
generate an operation to click on the center coordinates of that text box.

• When the OCR detection results include multiple instances of the specified text, we assess
the number of results. If there are many instances, it indicates that there is too much similar
content on the current screen, making it challenging for the agent to make a selection. In
such cases, the agent is requested to reselect the text for tapping. If there are few instances,
we crop these regions and draw detection boxes on them. Then, we use these regions to let
the agent choose which one to click. When cropping, we extend the text detection boxes

3



Published as a conference paper at ICLR 2024

outward by a certain range and then draw the detection boxes on these cropped images. This
is done to preserve more information and facilitate the agent's decision-making process.
This process is shown in the top-left of Figure 2.

Icon Localization. When the agent needs to click an icon, we use an icon detection tool and
CLIP Radford et al. (2021) to locate the position of it. Speci�cally, we �rst request the agent to
provide the attributes of the icon to click, including color and shape. Subsequently, we use Grounding
DINO Liu et al. (2023d) with the prompt “icon” to identify all the icons on the screenshot. Finally,
employing CLIP, we calculate the similarity between all detected icons and the description of the
click region, selecting the region with the highest similarity for a click. This process is shown in the
top-right of Figure 2.

2.2 INSTRUCTIONEXECUTION

Operation. In order to better translate the actions output by the agent into operations on the screen,
we de�ne 8 operations for the Mobile-Agent:

• Open App (App): Open a speci�c App on the desktop page.

• Click the text (Text): Click the area of the screen where the text “Text” is located.

• Click the icon (Icon, Position): Click the area described by “Icon” in the “Position”. “ Icon”
provides a description, including attributes such as color, icon shape, etc., of the tapping
location. “Position” needs to be selected from top, bottom, left, right, or center, with one or
two options, to minimize the possibility of errors.

• Type (Text): Type the "Text" into the current input box.

• Page up & down: Used for scrolling up and down the current page.

• Back: Return to the last page.

• Exit: Return directly to the desktop from the current page.

• Stop: When the instruction is completed, end the entire process.

Self-Planning. The Mobile-Agent completes each step of the operation iteratively. Before the
iteration begins, the user needs to input an instruction. We generate the system prompt for the entire
process based on the instruction. At the start of each iteration, we capture a screenshot of the current
mobile screen and provide it to the agent. The agent, by observing the system prompt, operation
history, and the current screen capture, outputs the next step of the operation. If the agent's output is
to end the process, the iteration stops; otherwise, a new iteration continues. Mobile-Agent, utilizing
the operation history, is aware of the current task progress and, based on the system prompt, generates
operation on the current screenshot, thereby achieving an iterative self-planning process. This process
is shown at the bottom of Figure 2.

Self-Re�ection. During the iteration, the agent may encounter errors, leading to the inability to
complete the instruction. To improve the success rate of instruction, we have introduced a self-
re�ection method. This method will take effect in two situations. The �rst is when the agent generates
an incorrect or invalid operation, causing the process to be stuck. When the agent notices that the
screenshot has not changed after a particular operation, or the screenshot shows a wrong page, we
will instruct the agent to try alternative operations or modify the parameters of the current operation.
The second is when the agent may overlook certain requirements of complex instruction. After
the agent completes all operations through self-planning, we will instruct the agent to analyze the
operations, history, the current screenshot, and user instruction to determine if the instruction have
been completed. If not, the agent needs to continue generating operations through self-planning. This
process is shown at the bottom of Figure 2.

Prompt Format. To better implement the functionalities described above, we drew inspiration from
the prompt format used by ReAct. We require the agent to output three components: Observation,
Thought, and Action. Observation is a description by the agent of the current screenshot and the
history of operations. This helps the agent to notice updates in the screenshot and promptly identify
errors based on historical records. Thought represents the agent's consideration of the next step
of operation generated from the Observation and the instruction. The agent needs to describe the

4



Published as a conference paper at ICLR 2024

Table 1: The applications and instructions used in Mobile-Eval.
Application Instruction

Alibaba.com
1. Help me �nd caps in Alibaba.com.
2. Help me �nd caps in Alibaba.com. If the "Add to cart" is available in the item information page, please
add the item to my cart.
3. I want to buy a cap. I've heard things are cheap on Alibaba.com. Maybe you can �nd it for me.

Amazon Music
1. Search singer Jay Chou in Amazon Music.
2. Search a music about "agent" in Amazon Music and play it.
3. I want to listen music to relax. Find an App to help me.

Chrome
1. Search result for today's Lakers game.
2. Search the information about Taylor Swift.
3. I want to know the result for today's Lakers game. Find an App to help me.

Gmail
1. Send an empty email to to {address}.
2. Send an email to {address} to tell my new work.
3. I want to let my friend know my new work, and his address is {address}. Find an App to help me.

Google Maps
1. Navigate to Hangzhou West Lake.
2. Navigate to a nearby gas station.
3. I want to go to Hangzhou West Lake, but I don't know the way. Find an App to help me.

Google Play
1. Download WhatsApp in Play Store.
2. Download Instagram in Play Store.
3. I want WhatsApp on my phone. Find an App to help me.

Notes
1. Create a new note in Notes.
2. Create a new note in Notes and write "Hello, this is a note", then save it.
3. I suddenly have something to record, so help me �nd an App and write down the following content:
meeting at 3pm.

Settings
1. Turn on the dark mode.
2. Turn on the airplane mode.
3. I want to see the real time internet speed at the battery level, please turn on this setting for me.

TikTok
1. Swipe a video about pet cat in TikTok and click a "like" for this video.
2. Swipe a video about pet cat in TikTok and comment "Ohhhh, so cute cat!".
3. Swipe videos in TikTok. Click "like" for 3 pet video cat.

YouTube
1. Search for videos about Stephen Curry on YouTube.
2. Search for videos about Stephen Curry on YouTube and open "Comments" to comment "Oh, chef, your
basketball spirit has always inspired me".
3. I need you to help me show my love for Stephen Curry on YouTube.

Multi-App
1. Open the calendar and look at today's date, then go to Notes and create a new note to write "Today is
[today's data]".
2. Check the temperature in the next 5 days, and then create a new note in Notes and write a temperature
analysis.
3. Search the result for today's Lakers game, and then create a note in Notes to write a sport news for this
result.

upcoming operation in the Thought. Action requires the agent to choose one of eight operations and
parameters based on Thought.

3 EXPERIMENTS

In this section, we will conduct a comprehensive evaluation of the Mobile-Agent. We use the
Android operating system due to its convenient operation invocation interfaces. We will explore other
operating systems in future work. Our experiments are primarily divided into two parts: quantitative
experiments and qualitative experiments. In the quantitative experiments, we will evaluate the Mobile-
Agent on our proposed Mobile-Eval benchmark. In the qualitative experiments, we will analyze
speci�c cases.

3.1 SETUP

Mobile-Eval. To comprehensively evaluate the capabilities of Mobile-Agent, we introduce Mobile-
Eval, a benchmark based on current mainstream Apps. Mobile-Eval consists of a total of 10 commonly
used Apps on mobile devices. To assess the multi-application usage capability of the agent, we
have also introduced instructions that require the simultaneous use of two Apps. We designed three
instructions for each App. The �rst instruction is relatively simple, requiring only the completion
of basic App operations. The second instruction adds some additional requirements to the �rst one,

5



Published as a conference paper at ICLR 2024

Table 2: The overall evaluation results of Mobile-Agent on Mobile-Eval, where the two values of RE
represent the number of steps taken by Mobile-Agent and human, respectively.

App
INSTRUCTION1 INSTRUCTION2 INSTRUCTION3

SU PS RE CR SU PS RE CR SU PS RE CR

Alibaba.com ! 0.75 4 / 3 100% 7 0.39 13 / 8 62.5% ! 0.9 10 / 9 100%
Amazon Music 7 0.44 9 / 5 80.0% ! 0.75 8 / 6 100% 7 0.50 12 / 3 66.7%
Chrome ! 1.00 4 / 4 100% ! 0.8 5 / 4 100% ! 0.43 8 / 5 100%
Gmail ! 1.00 4 / 4 100% 7 0.56 9 / 8 37.5% 7 0.56 9 / 8 37.5%
Google Maps ! 1.00 5 / 5 100% ! 1.00 6 / 6 100% ! 1.00 6 / 6 100%
Google Play ! 1.00 3 / 3 100% ! 0.50 10 / 4 100% ! 1.00 3 / 3 100%
Notes ! 0.57 7 / 4 100% ! 0.67 6 / 4 100% ! 1.00 5 / 5 100%
Settings ! 1.00 4 / 4 100% ! 1.00 4 / 4 100% ! 1.00 5 / 5 100%
TikTok ! 1.00 4 / 4 100% ! 1.00 10 / 10 100% ! 1.00 7 / 7 100%
YouTube ! 1.00 4 / 4 100% ! 1.00 9 / 9 100% ! 1.00 7 / 7 100%
Multi-App ! 1.00 6 / 6 100% ! 1.00 6 / 6 100% ! 1.00 10 / 10 100%

Avg. 0.91 0.89 4.9 / 4.2 98.2%0.82 0.77 7.9 / 6.3 90.9%0.82 0.84 7.5 / 6.2 91.3%

making it more challenging. The third instruction involves abstract user instruction, where the user
does not explicitly specify which App to use or what operation to perform, leaving the agent to make
its own judgment. In Table 1, we present the Apps and instructions used in Mobile-Eval.

Metrics. We have designed four metrics to assess the performance of the Mobile-Agent from different
perspectives:

• Success (Su): If the Mobile-Agent completes the instruction, it is considered successful.

• Process Score (PS): This metric measures the accuracy of each step in the execution of
instructions. Speci�cally, it equals the number of correct steps divided by the total number
of steps. Although the agent may not ultimately succeed in some instructions, each correct
step contributes to the Planning Score.

• Relative Ef�ciency (RE). We manually performed each instruction and recorded the number
of steps taken by a human. We consider human operation as the optimal solution. We will
compare the number of steps taken by Mobile-Agent with the steps taken by humans to
demonstrate whether Mobile-Agent can use the mobile device more ef�ciently.

• Completion Rate (CR). We calculate the number of human-operated steps that Mobile-Agent
is able to complete, divided by the total number of steps taken by a human, to demonstrate
the completion rate of Mobile-Agent for a given instruction. If the instruction is completed,
this metric will be equal to 1.

3.2 QUANTITATIVE RESULTS

We present the experimental results in Table 2. Firstly, across the three instructions, Mobile-Agent
achieved completion rates of 91%, 82%, and 82% respectively. Despite some instructions not being
successfully executed, the completion rates for all three types of instructions exceeded 90%. Next,
we can observe from the PS metric that Mobile-Agent has a high probability of producing correct
operations across the three instructions, achieving around 80%. Finally, the RE metric indicates that
Mobile-Agent can achieve an 80% capability of reaching human-optimal operations. The above
results collectively indicate the effectiveness of Mobile-Agent as a mobile device assistant.

It is worth noting that the PS values for some instructions don't reach 1, indicating that Mobile-Agent
may make some invalid or incorrect operations. However, in these cases, most instructions were
ultimately completed. This suggests that Mobile-Agent possesses good self-re�ective capabilities.
Even in the presence of invalid or incorrect operations, it can re�ect based on the screenshots and
ultimately correct its mistakes. This is crucial for mobile device agents because, like humans, they
cannot guarantee that all operations are correct, and agents must have the ability to correct errors.

6




	Introduction
	Mobile-Agent
	Visual Perception
	Instruction Execution

	Experiments
	Setup
	Quantitative Results
	Case Study

	Related Work
	LLM-based Agent
	Agent for Mobile Device

	Conclusion
	Appendix

