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Abstract

Parkinson’s Disease (PD) is the second most common neurodegenerative disease in humans. PD
is characterized by the gradual loss of dopaminergic neurons in the Substantia Nigra (a part of the
mid-brain). Counting the number of dopaminergic neurons in the Substantia Nigra is one of the most
important indexes in evaluating drug efficacy in PD animal models. Currently, analyzing and quantifying
dopaminergic neurons is conducted manually by experts through analysis of digital pathology images
which is laborious, time-consuming, and highly subjective. As such, a reliable and unbiased automated
system is demanded for the quantification of dopaminergic neurons in digital pathology images. We
propose an end-to-end deep learning framework for the segmentation and quantification of dopaminergic
neurons in PD animal models. To the best of knowledge, this is the first machine learning model that
detects the cell body of dopaminergic neurons, counts the number of dopaminergic neurons and provides
the phenotypic characteristics of individual dopaminergic neurons as a numerical output. Extensive
experiments demonstrate the effectiveness of our model in quantifying neurons with a high precision,
which can provide quicker turnaround for drug efficacy studies, better understanding of dopaminergic
neuronal health status and unbiased results in PD pre-clinical research.

1 Introduction

Image segmentation is a fundamental tool to developing artificial intelligence medical imaging applications
[1], such as radiology and digital pathology. For instance, deep learning cell segmentation models can enable
robust and fast approaches to quantify cells in histopathology images, enabling more sensitive analysis of
biological experiments in animals and humans [2, 3]. However, deep learning models rely on large-scale
high quality data, limiting their applications in biological use cases. In this paper we study the benefits of
self-supervised learning techniques to develop robust neuronal cell segmentation and quantification models
which are crucial for experimental disease models and gene-function studies. The developed model can be
further optimized to separate adjacent neuronal cells for automatic quantification of neuronal cells.

In this study, we establish a deep learning-based framework for segmentation and quantification of Ty-
rosine Hydroxylase (TH) positive dopaminergic (DA) neurons in the Substantia Nigra (SN) of mouse brain
tissues. SN is the area of the mid-brain that consists of DA neurons which are most susceptible to genetic and
sporadic factors that cause their loss as observed in Parkinson’s disease (PD) pathogenesis. TH is an enzyme
that is specifically expressed in DA neurons. TH staining is the most reliable method used for detecting
DA neurons. TH stains the soma (cell body), nucleus and the axons of DA neurons. Loss of dopaminergic
neurons leads to motor neuron associated dysfunctions as observed in PD patients and animal models [4].
Preventing loss of DA neurons is the most important goal of PD targeting therapies. The TH staining
intensity is also an indicator of the health status of the DA neurons and is considered the most reliable
method to identify loss of DA neurons [5]. Pre-clinical research on PD is highly dependent on segmentation
and quantification of DA neurons in the SN [6, 7]. The unique morphology of DA neurons also makes it
difficult to use generalized cell segmenting models to identify them and delve deeper into understanding the
biology of DA neurons. Generalist cell segmentation model such as Cellpose have been developed to solve
this problem but its efficiency in detecting specific type of neurons such as DA neurons is still limited [8].
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A generalist model does not provide additional information that is specific to DA neurons which holds high
value in PD research. Hence, it has become crucial to develop a machine learning model that can analyze
and quantify DA neurons precisely in the SN with a quick turnaround time and immune to user associated
bias. This will in turn make a huge impact in the field of PD pre-clinical research by identifying the efficacy
of potent drugs in a shorter time-frame and accelerating the possibility of taking a potential drug into the
clinic.

Our model leverages a combination of data sampling techniques and cross-domain self supervised learn-
ing [9, 10] on both unlabeled natural images and domain specific pathology images to learn transferable and
generalize representations for pathology images. Such representations can be further fine-tuned and deployed
for the neuronal cell segmentation using limited labeled data from the biological experiments. We compare
the performance of fine tuned model which is originally trained on different data, (1) natural images, (2)
pathology images, or (3) natural images followed by digital pathology images. We next compare the pre-
dicted number of TH cells from our model to manual counts done by histopathology experts to investigate
the accuracy of automated quantification. Furthermore, we analyze the effects of the combination of various
augmentation methods on the segmentation performance of the model. Experimental results and extensive
analysis indicate that our model can outperform existing models, especially in low data scenarios.

In summary, we make the following contributions:

• The first end-to-end framework for automatic segmentation and quantification of DA neurons in whole-
slide digital pathology images of PD models.

• A cross-domain self-supervised pre-training approach that exploits the power of unlabeled natural and
medical images for representation learning.

• A comprehensive set of experiments that demonstrate the effectiveness and efficiency of our model in
detecting and quantifying DA neurons using a limited amount of annotated data.

• A numerical and visual data output to indicate the phenotypic characteristics of DA neurons segmented
by the model

2 Related Works

CNN-based quantification of dopaminergic neurons. Deep learning methods have been successfully
utilized in analyzing human digital pathology images for different tasks, including cell segmentation and cell
counting [11, 12, 3, 2, 13]. However, the number of studies that employ deep learning for the quantization
of DA neurons in animal models of PD are relatively limited. [14] implemented a deep learning-based
method for processing whole-slide digital imaging to count DA neurons in SN of rat and mouse models. This
study leverages the TH positive nucleus to detect the TH cells which is susceptible to error because of the
existence of other cells of the brain which also have a nucleus and overlap in the same area. Additionally, the
architecture of DA neurons in SN makes it difficult to distinguish between overlapping cells when detected
only relying on nucleus as annotations. [15] developed a framework for automatic localization of SN region
and detection of neurons within this region. The SN localization is achieved by using a Faster-RCNN network,
whereas neuron detection is done using a LSTM network. However, these studies are limited to counting
neurons and/or detecting neuron locations and do not provide additional information about individual cells,
such as cell attributes and morphology, which is essential for understanding the biology behind DA neuronal
loss and its association with PD pathogenesis.
Self-supervised Learning. Self-supervised learning methods aim to learn generalizable representations
from unlabeled data. This paradigm involves training a neural network on a manually created (pretext)
task for which ground truth is obtained from the data. The learned representations can be transferred and
fine-tuned for various target tasks with limited labeled data. Instance discrimination methods [16, 17, 18,
19, 20, 21] have recently sparked a renaissance in the SSL paradigm. These methods consider each image as
a separate class and seek to learn representations that are invariant to image distortions. Motivated by the
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Figure 1: An overview of our approach. To address the annotated data scarcity challenge for training deep
models, we perform (a) self-supervised pre-training on natural images, and then (b) self-supervised pre-
training on digital pathology images. We finally (c) fine-tune the self-supervised pre-trained model with
limited annotated data for target neuron segmentation task.

success in computer vision, instance discrimination SSL methods have been adopted in medical applications.
A recent transfer learning study for medical imaging [22] demonstrated the efficacy of existing instance
discrimination methods pre-trained on ImageNet for various medical tasks. A group of work focused on
designing SSL frameworks by exploiting consistent anatomical structure within radiology scans [23, 24].
Another line of studies designed contrastive-based SSL for medical tasks [10, 25, 26, 9], including whole slide
image classification [27]. In contrast to the previous works, our work is the first study that investigates
the efficacy of SSL for digital pathology images of PD animal models to compensate the lack of large-scale
annotated datasets for training deep learning models.

3 Method

3.1 Animal studies, annotations, and dataset

The data-set used in this study was obtained by manually labeling 30,000 TH positive DA neurons in 2D
histology digital images. This is an internal data-set. The digital images were obtained from multiple animal
studies where mouse brains were sectioned at 35 micron thickness and stained with TH and either Haema-
toxylin or Nissl as a background tissue stain. The sections were then imaged using a whole slide scanner
microscope, Nanozoomer system (Hamamatsu Corp, San Jose, CA) at 20x resolution (0.46 microns/pixel).
Whole coronal brain section images containing the SN were exported from the digital scans at 20x resolution
and were used to annotate the TH positive DA neurons and train the model. This procedure helped us to
obtain a large data-set which consists of multiple internal data-sets and takes into account the variability
that arises from different staining conditions. The ground truth (GT) for this study was labelled and quality
controlled by biologists who specialize in mouse brain anatomy and PD research. The blind test data-set
used for analyzing model’s efficiency was a separate animal study in which the model has not been directly
trained on the study group. The DA neurons were detected by the model (red) and visually represented to
compare it with the manually counted neurons (blue) by the biologist.

3.2 Self-supervised Pre-training

Our approach is established on continual self-supervised pre-training in which a model is first pre-trained
on a massive general dataset, such as ImageNet, and then pre-trained on domain-specific datasets. For the
first step (see Figure 1.a), we train the self-supervised model on the ImageNet dataset using state-of-the-
art instance discrimination approaches, such as Barlow Twins [16]. For the second step (see Figure 1.b),
we continue the self-supervised pre-training on the in-domain medical dataset. Finally, we fine-tune the
pre-trained models for the neuron segmentation (target) task using labeled images (see Figure 1.c).
Barlow Twins [16]. This SSL approach aims to reduce the amount of redundant information about each
sample in the learnt representations while simultaneously making the representation invariance to image
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distortions. To do so, given an image sample X, two distorted views of the sample are generated by applying
a data augmentation function T (.) on X. The two distorted views X1 and X2 are then processed by the
backbone network fθ to produce latent representations Z1 = fθ(T (X1)) and Z2 = fθ(T (X2)). The backbone
network fθ includes a standard ResNet-50 encoder and a three-layer MLP projection head. The model is
trained by minimizing the following loss function:

LSSL =
∑
i

(1− Cii)2 + λ
∑
i

∑
i̸=j

C2
ij (1)

where C is the cross-correlation matrix computed between Z1 and Z2 along the batch dimension. λ is a
coefficient to identify the weight of each loss terms. The model is trained by making the cross-correlation
matrix C close to the identity matrix. In particular, by equating the diagonal elements of the C to 1, the
learned representation will be invariant to the image distortions. By equating the off-diagonal elements of
the C to 0, the different elements of the representation will be decorrelated, so that the output units contain
non-redundant information about the images.

3.3 Data Preparation

We use an in-house dataset of digital microscopy images obtained from the PD mice models. This dataset
consists of 1500 images among which a small fraction of 108 images have been annotated with the segmen-
tation masks for dopamine neurons. The images’ resolutions are in the range [3000, 6000]. We use all of
the images for self-supervised learning, and then fine-tune the self-supervised pre-trained models with the
labeled images (supervised learning). For supervised learning, we randomly divided the dataset into training
(70%), validation (10%), and testing (20%).

3.4 Network Architecture.

For target segmentation task, we use a U-Net network which consists of encoder (fθ) and decoder (gθ) parts.
The encoder is a standard ResNet-50, which is initialized with the self-supervised pre-trained encoder.

3.5 Tile sampling and augmentation.

For target segmentation task, we divide images into non-overlapping patches of size 512×512 to ensure
we sample from every part of the image. In all experiments, the raw image intensities per channel are
normalized to the [0,1]. Data augmentation is essential for biological and medical image analysis due to
the typically limited amount of available annotated data. We use different data augmentation techniques
to enforce the model to capture more robust and generalizable representations. In particular, we use Flip,
Rotation, RGBShift, Blur, GaussianNoise, and RandomResizedCrop to teach the expected appearance and
color variation to the deep model.

3.6 Fine-tuning protocol

. We initialize the encoder of the target model (i.e. U-Net) with the pre-trained models and fine-tune all
target model parameters. We train the target models using the Adam optimizer with a learning rate of 1e-3
and (β1, β2) = (0.9,0.999). We use ReduceLROnPlateau learning rate decay scheduler. We use batch size
of 32 and train all models for 200 epochs. We employ early-stop mechanism using the validation data to
avoid over-fitting. We use Dice coefficient loss function for training the target task. Dice coefficient is used
for evaluating the accuracy of the target segmentation task. We run each method ten times on downstream
task and report the average and standard deviation performance over all runs.
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Pre-training Initialization Dice(%)

- Random 86.43±0.96

Supervised ImageNet 85.86±3.37

Self-supervised
DeepCluster-v2 87.13±0.69
Barlow Twins 87.24±0.75

SwAV 87.73±0.68

(a) Fine-tuning with 100% of data

Pre-training Initialization Dice(%)

- Random 67.22±8.24

Supervised ImageNet 76.76±4.25

Self-supervised
DeepCluster-v2 78.72±3.98
Barlow Twins 79.50±2.02

SwAV 80.83±1.17

(b) Fine-tuning with 25% of data

Table 1: Comparison of different initialization methods on target segmentation task.

3.7 Cell counting.

The automatic cell counting is a challenging task due to the overlapping cells which share boundary; distin-
guishing overlapping cells requires certain post-processing to enhance the counting accuracy. In particular,
we first calculate the minimum and average cell size using the ground truth for the training data. Then,
we take the models predictions (segmentation masks) and extract the connected components within the
prediction masks; each connected component represents one or more cells (in the case of overlapping cells).
We then filter out components that are smaller than the minimum cell size. For the remaining components,
we count cells by dividing the cell size by the average cell size.

4 Experiments and Results

Self-supervised models provide more generalizable representations
Experimental setup. In this experiment, we evaluate the transferability of three popular SSL methods
using officially released models, including DeepCluster-v2 [18], Barlow Twins [16], and SwAV [18]. All
SSL models are pre-trained on the ImageNet dataset and employ a ResNet-50 backbone. As the baseline,
we consider (1) training the target model from random initialization (without pre-training) and (2) transfer
learning from the standard supervised pre-trained model on ImageNet, which is the de facto transfer learning
pipeline in medical imaging [10]. Both baselines benefit from the same ResNet-50 backbone as the SSL
models.
Results. Table 1a displays the results, from which we draw the following conclusions: (1) transfer learning
from the supervised ImageNet model lags behind training from random initialization. We attribute this
inferior performance to the remarkable domain shift between the pre-training and target tasks. In particular,
supervised ImageNet models are encouraged to capture domain-specific semantic features, which may be
inefficient when the pre-training and target data distributions are far apart. Our observation is in line with
recent studies [28] on different medical tasks suggests that transfer learning from supervised ImageNet models
may offer limited performance gains when the target dataset scale is large enough to compensate for the lack
of pre-training. (2) Transfer learning from self-supervised models provide superior performance compared
with both training from random initialization and transfer learning from the supervised ImageNet model. In
particular, the best self-supervised model (i.e. SwAV) yields 1.3% and 2.27% performance boosts compared
with training from random initialization and the supervised ImageNet model, respectively. Intuitively, self-
supervised pre-trained models, in contrast to supervised pre-trained models, encode features that are not
biased to task-relevant semantics, providing improvement across domains. Our observation in accordance
with previous studies [22] demonstrates the effectiveness of self-supervised ImageNet models for medical
applications.
Self-supervised models provide superior performance in semi-supervised learning
Experimental setup. We conduct further experiments to evaluate the advantage that self-supervised pre-
trained models can provide for small data regimes. To do so, we randomly select 25% of the training data and
fine-tune the self-supervised pre-trained models on this subset of data. We then compare the performance
of self-supervised models with training the target model from random initialization and fine-tuning the
supervised ImageNet model.
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Pre-training Method Pre-training Dataset Dice(%)

Random - 67.22±8.24

Barlow Twins ImageNet 79.50±2.02
SwAV ImageNet 80.83±1.17

Barlow Twins In-domain 70.92±5.41

Barlow Twins ImageNet→In-domain 81.73±1.03

Table 2: Comparison of pre-training dataset for self-supervised learning.

Metric Score (%)

Precision 95.25
Recall 95.49
F1-score 95.31

(a) The results for counting precision, recall and F1-
score of our method vs. human observers.

Method Counting Error (%)

Connected components 21.66
Our approach 9.08

(b) The results for automatic neuron counting error
compared with human counting.

Table 3: Neuron detection and counting results

Results. The results are shown in Table 1b. First, we observe that transfer learning from either supervised or
self-supervised pre-trained models can offer significant performance improvements compared with training
from random initialization. In particular, the supervised ImageNet model provides a 9.5% performance
improvement compared to the random initialization of the target model. Moreover, self-supervised models–
DeepCluster-v2, Barlow Twins, and SwAV, offer 11.5%, 12.3%, and 13.6% performance boosts, respectively,
in comparison with random initialization. These observations imply the effectiveness of pre-training in
providing more robust target models in low data regimes. Second, we observe that self-supervised models
provide significantly better performance than the supervised ImageNet model. Specifically, DeepCluster-
v2, Barlow Twins, and SwAV achieve 1.96%, 2.74%, and 4% performance boosts, respectively, compared
to the supervised ImageNet baseline. These observations restate the efficacy of self-supervised models in
delivering more generic representations that can be used for target tasks with limited data, resulting in
reduced annotation costs.
Impact of pre-training data on self-supervised learning
Experimental setup. We investigate the impact of pre-training datasets on self-supervised learning. To
do so, we train Barlow Twins on three data schemas, including (1) SSL on the ImageNet dataset, (2) SSL on
the medical dataset (referred to as the in-domain), and (3) SSL on both ImageNet and in-domain datasets
(referred to as ImageNet→In-domain). For ImageNet→In-domain pre-training, we initialize the model with
SvAW pre-trained on ImageNet, followed by SSL on our in-domain dataset. We fine-tune all pre-trained
models for the neuron segmentation task using 25% of training data.
Results. Table 2 shows the segmentation accuracy measured by the Dice score (%) for different pretraining
scenarios. First, we observe that pre-training on only in-domain dataset yields lower performance than
pre-training on only the ImageNet dataset. We attribute this inferior performance to the limited number of
in-domain pre-training data compared with the ImageNet dataset (1500 vs. 1.3M). Moreover, we observe that
the best performance is achieved when both ImageNet and in-domain datasets are utilized for pre-training. In
particular, ImageNet→In-domain pre-training surpasses both in-domain and ImageNet pre-trained models.
These results imply that pre-training on ImageNet is complementary to pre-training on in-domain medical
datasets, resulting in more powerful representations for medical applications.
Dopaminergic Neuron Detection and counting
Experimental setup. The DA neurons segmented by the model were compared to the DA neurons detected
by a biologist in the same tissue section from the blind data-set. The biologist detected the DA neurons
and counted them manually on an image analysis platform ImageJ. The output from the model was overlaid
with the manually detected cells and based on the color coding of the DA neurons by the model, the true

6



Data Augmentation Dice(%)

Mode 1 78.96±1.85
Mode 2 80.83±1.17
Mode 3 80.64±1.06
Mode 4 81.94±0.74
Mode 5 79.97±2.73
Mode 6 81.30±0.93
Mode 7 80.43±1.18

(a) Comparison of different data augmentations.

Network Architecture Dice(%)

DeepLabV3+ 81.53±0.76
U-Net 81.94±0.74

(b) Comparison of different network architectures.

Table 4: Ablation Experiments.

Figure 2: Visualization of Mouse brain 2D Image depicting DA neurons in the SN and segmentation results
produced by our method.

positive (TP), false positive (FP) and false negative (FN) were calculated by the biologist. We calculated
precision, recall and F1-score metrics for the detected neurons in the test images. In these measures, TP
is the number of neurons successfully detected by the model; FP is the number of neurons detected by the
model but are not actually neurons; and FN is the number of neurons not detected by the model. We further
compare the performance of our method in neuron counting to human counting. To do so, we calculate the
percentage error between the total number of neurons counted by our method and human counting. We also
conduct an ablation study to illustrate the superiority of our cell counting method over the naive approach
of counting cells by the number of connected components in the images.
Results. The performance metrics for neuron detection are shown in Table 3a. As seen, our method can
effectively detect dopaminerginc neurons in whole-slide digital pathology images; in particular, our approach
achieves a precision, recall, and F1-score of 95.25%, 95.49%, and 95.31%, respectively. Moreover, Table 3b
presents the neuron counting results against human counting. As seen, automatic counting of the cells
through computing the connected components within segmentation masks yields an error rate of 21.66%,
while incorporating the connected components’ sizes in counting significantly decreases the error rate to 9%.
This results demonstrate the effectiveness of our approach in handling the overlapping neurons and providing
a reliable automatic system for neuron counting.
Ablation Experiments
Experimental setup. We conduct extensive ablation experiments on different data augmentation tech-
niques and network architectures. We examine seven different combinations of transformation that are
commonly used in the literature, including (1) no augmentation (mode 1), (2) Flip, Rotation, RandomBright-
nessContrast, and RandomGamma (mode 2), (3) Flip, Rotation, RGBShift, Blur, GaussianNoise (mode 3),
(4) Flip, Rotation, RGBShift, Blur, GaussianNoise, RandomResizedCrop (mode 4), (5) Flip, Rotation, RG-
BShift, Blur, GaussianNoise, RandomResizedCrop, Elastic Transformation (mode 5), (6) Flip, Rotation,
RandomBrightnessContrast, RandomGamma, RGBShift, Blur, GaussianNoise, RandomResizedCrop (mode
6), and (7) Flip, Rotation, RandomBrightnessContrast, RandomGamma, RGBShift, Blur, GaussianNoise,
RandomResizedCrop, Elastic Transformation (mode 7). For network architectures, we examine U-Net and
DeepLabV3+. In ablation experiments, all models are initialized with SvAW pre-trained model and fine-
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Figure 3: Visualization of cell segmentation results.

Figure 4: Correlation plot depicting the number of DA neurons counted by a biologist vs the number of DA
neurons counted by the model. Blind data set was used to count the neurons from 18 brain sections stained
with TH staining to identify the DA neurons and Nissl stain to stain the brain tissue. The sections for this
study were chosen from multiple animal studies.

tuned with 25% of data.
Results. Table 4a shows the results of different data augmentation techniques. According to these results,
the lowest performance comes from mode 1 (no augmentation), highlighting that combining pre-training
with data augmentation techniques yields more accurate segmentation results for downstream tasks with
limited amounts of data. Additionally, the combination of Flip, Rotation, RGBShift, Blur, GaussianNoise,
RandomResizedCrop (mode 4) provides the best performance among all data augmentation approaches.
This implies that color transformations such as RGBShift, Blur, and GaussianNoise can help the deep model
in gleaning more generalizable representations. Furthermore, a comparison of the results obtained by modes
3 and 4, the latter of which includes an additional RandomResizedCrop, reveals that random cropping
significantly contributes to performance improvements. Moreover, a comparison of the results obtained
by modes 4 and 5, the latter of which includes an additional elastic transformation, demonstrates that
elastic transformation has a negative impact on performance; the same observation can be drawn from the
comparison of modes 6 and 7.

Table 4b presents the results of different network architectures for downstream neuron segmentation task.
As seen, U-Net, which was originally designed for medical segmentation tasks, provides superior performance
over DeepLabV3+.
Qualitative results
Experimental setup. We visualize the segmentation results of our best model from Table 1on the test
data. To do so, we first employ zero padding to make the size of the test images equal to a power of 512.
Then, we divide the test images into non-overlapping 512×512 patches and then feed patches to the network.
We then assemble the model’s predictions for images patches to generate the prediction for the whole image.
To examine the model’s efficiency in counting DA neurons, a biologist counted the cells manually (Ground
Truth) in the same section (blind dataset). We then ran a correlation statistics to measure the R2 between

8



Figure 5: Correlation plot depicting the number of DA neurons counted by a biologist vs the number of DA
neurons counted by Cellpose model [8]. Blind data set was used to count the neurons that was previously
used to analyze model efficiency in Figure 4.
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Figure 6: Data showing the comparison between Cellpose model and the model developed in this study to
count DA neurons in individual sections. The green, black and brown dots depict the cells counted by the
model, ground truth (GT) and Cellpose respectively. The red lines indicate the comparison between GT and
the Model. The blue lines indicate the comparison between GT and Cellpose. Sections were selected from
the blind dataset.
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Figure 7: Measurement of cell TH intensity. The top panel shows an example image and the color overlay of
mean intensity measured in 8-bit grayscale. The bottom panel shows the intensity color legend, a magnified
view of several cells outlined in the black box above and a table of mean grayscale intensity value for each
cell.

the model and the GT. We additionally compared the GT to the latest generalist cell segmentation model-
Cellpose and ran a correlation statistics to compare. Finally, the counts for DA neurons from our model,
GT and Cellpose were plotted head to head to examine the efficiency of our model.We measured the TH
intensity after converting the image into grayscale (8-bit, 0-255 range). The lower the number or closer to
0, the darker the stain is. The higher the number or closer to 255, the lighter the stain. The TH intensity
was measured on ImageJ, a platform used to analyze digital data.
Results. Figures 2 and 3 presents the visualization of the segmentation results from our best model. As
seen, our method can effectively detect and segment the dopaminergic neurons of varying size and shape.
Our quantitative results in Table 1, together with the qualitative results in Figures 2 and 3 demonstrate
the capability of our framework in providing an effective solution for segmentation of dopaminergic neurons.
Figure 4 shows the correlation plot between GT and model counted DA neurons. R2 of 0.95 with a pvalue <
0.0001 was achieved by our model in correlation statistical analysis. Under same parameters and dataset,
Cellpose achieved a R2 of 0.89 with a pvalue < 0.0001 in the correlation statistical analysis (see Figure 5). In
Figure 6, the statistics shows there is not significant changes between the DA neurons counted by the model
or Cellpose when compared to GT (One way ANOVA followed by post-hoc analysis). Deeper analysis into
the data shows that Cellpose had a significant difference from GT in three sections but our model was able
to detect the DA neurons with higher accuracy.Figure 7 shows the TH intensity (brown color) of individual
DA neuronal cell body in 5 different gradients. The gradient was obtained by measuring the TH intensity
for an entire data-set and splitting it into 5 different groups and a visual and numerical data was obtained
for each neuron.

5 Conclusion

The goal of this study was to develop a robust machine learning model that can detect and count the DA
neurons reliably in independent animal studies. This is an immediate requirement in the field of PD research
to accelerate the in-vivo screening of potential drugs so that more drugs can be taken into the clinic for human
trials. The existing manual counting or stereology based method is unable to keep up with the number of
studies currently conducted in different labs focusing on this area. Additionally, it also suffers from human
bias which makes the data interpretation extremely cumbersome. The study framework is established on a
self-supervised learning paradigm to combat the lack of large-scale annotated data for training deep models.
We also realized that using segmentation based methods facilitated us to go beyond counting the number
of DA neurons which the existing machine learning models are implementing (2 references) In addition to
counting the DA neurons, we were able to obtain phenotypic characteristics of the DA neurons which is very
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valuable to the scientific community. For such task, there are always challenges to consider such as limited
datasets, staining profile of tissues, overlapping cells but our model has demonstrated very high efficiency
taking into consideration all these factors. With the advancement in machine learning and biology, these
models will improve and provide solutions to the ever increasing demand for data-analysis in research biology.
Our data suggests that we could extrapolate this method to other species that are used as animal models
in PD. With the addition of more dataset, we could go deeper in understanding the biology of DA neuronal
loss by capturing the changes which are visible or sometimes not visible to the human eye. To summarize,
this method will be very useful to shorten the time needed to analyze loss of DA neurons in animal studies
and accelerate the drug discovery of PD.
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