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ABSTRACT

Understanding the physical world—governed by laws of motion, spatial relations,
and causality—poses a fundamental challenge for multimodal large language mod-
els (MLLMs). While recent advances such as OpenAI o3 and GPT-4o demonstrate
impressive perceptual and reasoning capabilities, our investigation reveals these
models struggle profoundly with visual physical reasoning, failing to grasp basic
physical laws, spatial interactions, and causal effects in complex scenes. More
importantly, they often fail to follow coherent reasoning chains grounded in visual
evidence, especially when multiple steps are needed to arrive at the correct answer.
To rigorously evaluate this capability, we introduce MVPBench, a curated bench-
mark designed to rigorously evaluate visual physical reasoning through the lens of
visual chain-of-thought (CoT). Each example features interleaved multi-image in-
puts and demands not only the correct final answer but also a coherent, step-by-step
reasoning path grounded in evolving visual cues. This setup mirrors how humans
reason through real-world physical processes over time. To ensure fine-grained eval-
uation, we introduce a graph-based CoT consistency metric that verifies whether
the reasoning path of model adheres to valid physical logic. Additionally, we mini-
mize shortcut exploitation from text priors, encouraging models to rely on visual
understanding. Experimental results reveal a concerning trend: even cutting-edge
MLLMs exhibit poor visual reasoning accuracy and weak image-text alignment in
physical domains. Surprisingly, RL-based post-training alignment—commonly
believed to improve visual reasoning performance—often harms spatial rea-
soning, suggesting a need to rethink current fine-tuning practices.

1 INTRODUCTION

Human comprehension of the world is fundamentally grounded in physical laws: objects fall when re-
leased, and liquids take the shape of their containers Spelke & Breinlinger (1992); Baillargeon (2004).
Such physical regularities form the basis of our causal understanding Gopnik et al. (2004); Lake et al.
(2017), and further link the chain of reasoning when solving complex problems. Recent advances
appear to grasp this physical world that humans experience—a blitz of multimodal large language
models (MLLMs) like OpenAI o3 OpenAI (2025), GPT4o OpenAI (2024), Gemini Deepmind (2024),
InternVL3 Zhu et al. (2025), Kimi1.5 KimiTeam (2025) and many othersLiang et al. (2025); Zheng
et al. (2025b) -all claiming human-level physical reasoning after a final reinforcement-learning (RL)
post-training. Recent works Shao et al. (2024); Guo et al. (2025); Li et al. (2025b); Daxberger et al.
(2025); Huang et al. (2025); Fan et al. (2024) show models describing panoramic scenes, solving
game reasoning, even generating Chain-of-Thought (CoT) explanations. At first glance, it feels as
thought plug-and-play embodied intelligence is already on our doorstep.

Full of eager expectation, we asked the lastest MLLMs a child-level physics question. What is the
direction of movement for the car? Fig. 1(left) shows the setup. Surprisingly, GPT-4o responded with
an incorrect prediction. Pushing further, we queried the thought chain of models. The failure patten
was consistent: models saw the pixels but did not reason about forces, geometry, or causality.

“The Second Half,” reminds us AI is entering a phase where evaluation outweighs trainingYao
(2025). Yet current benchmarks used to “prove” spatial reasoning are a weak compass. Most
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step_1:
Confirm the front and rear of the A. As seen in the 

image, The arrow labeled A is a vehicle. The front 

usually has headlights, while the rear has taillights 

and a license plate. So the front of object A is near 

the bottom of the picture, while the tail is near the 

top of the picture.

step_2:
Determine the direction of Road extension. The 

road extends from the top to the bottom in the 

image, and object A is traveling along this curved 

road. The road markings (yellow solid line and 

white dashed lines) extend along the curve of the 

road, further confirming the direction of the road.

step_3:
Judge the final direction .  To sum up, the front of 

the A is facing downward, and the rear is facing 

upward in the image. This vehicle is driving along 

the curve of the road.

Textual CoT Visual CoT

Multi-path CoT: 
step_1→ step_2→step_3

step_2→ step_1→step_3

Question：
In the figure, the arrows point to 

object A. What is the direction of 

movement for object A?

Answer：
The A is driving along the road 

toward the downward direction.

Subject：
Spatial Relations

Subset: 

 Direction Judgment
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Step 1

 Confirm the front and rear of the A.

 • Object A is the orange vehicle on the road. The front of the 

vehicle is at the bottom part of the vehicle (closer to the 

camera). 

 • The rear of the vehicle has luggage and appears further 

from the bottom edge of the image.

Step 2

 Observe the Road Layout. 

 • The image shows a curved road with a clear boundary wall 

on both sides and lane markings. The curvature of the road 

indicates a leftward bend from the perspective of the vehicle.

Answer

Given the orientation and curvature. The vehicle is currently 

turning rightward from its perspective (which is leftward in 

the image). Therefore, the vehicle is moving upwards in the 

image along the curved road. 

Step 3

 Look at Contextual Road Features. 

 • The vehicle is positioned properly on the right-hand side of 

the road (as per right-hand traffic norms), which supports 

upward movement.

Model reasoning (GPT-4o)Model reasoning (GPT-4o)
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Figure 1 A one-minute sanity check shatters the illusion of spatial reasoning in MLLMs. Red arrows
indicate objects and multiple reasoning chains are provided to capture diverse yet valid solution strategies.

rely on game-engine videos or CAD renderings whose textures and lighting barely resemble the
messy real worldKang et al. (2024); Zheng et al. (2024). In addition, many questions are phrased
so that a language-only model can guess the answer from commonsense priors, bypassing vision
altogetherZhou et al. (2025); Yue et al. (2024); il Lee et al. (2025). Furthermore— almost none pair
each intermediate visual cue with an explicit reasoning step, so training pipelines receive no pressure
to ground chain-of-thought in what the model sees;Jiang et al. (2025b); Zhang et al. (2024); Shao
et al. (2024) RL post-training therefore optimizes conversational fluency while silently tolerating
physical implausibility. The result is a generation of MLLMs that can describe images eloquently
yet still misjudge which way a car is moving.

To close this evaluation gap, we introduce MVPBench, a Multi-path Visual Physics benchmark that
turns the spotlight on vision-centric reasoning. MVPBench contains 1,211 carefully curated examples
across three real-world domains: i. hands-on physics experiments (electromagnetic induction,
heat conduction, collisions), ii. exam-style word problems requiring symbolic or commonsense
reasoning, and iii. spatial-transformation tasks that challenge 3D understanding (viewpoint shifts,
object rearrangement). Each example pairs multi-image evidence with multiple valid CoT paths,
forcing models to justify every step in view of changing visuals. To evaluate such rich annotations, we
introduce a graph-based CoT metric suite that represents each reasoning chain as a directed acyclic
graph of atomic facts and then assesses step-wise fidelity through exact or fuzzy graph matching,
measures text–image grounding with automated alignment scores, and quantifies multi-path coverage
by rewarding diverse yet logically valid reasoning flows. MVPBench thus re-aligns the compass:
genuine physical understanding demands that models see, think, and prove—not merely narrate.

Extensive experiments reveal two key insights: i. Providing models with the full image sequence
boosts performance by up to 21% points-evidence that temporal context matters. ii. Contrary to
conventional wisdom, RL-based post-training reduces visual-physics scores on MVPBench by 2%
points, indicating that current reward designs sacrifice grounded reasoning for coherence.

To summarize, this paper makes the following contributions:i. To the best of our knowledge,
MVPBench is the first benchmark to combine real-world visual physics, multi-image inputs, and
multi-path CoT annotations. ii. A graph-based evaluation toolkit that jointly measures reasoning
fidelity, visual grounding, and path diversity. iii. The first comprehensive study showing that widely
adopted RL alignment can impair spatial reasoning, calling for vision-centric reward design.

2 RELATED WORKS

Limitations of Multi-modal Large Language Models in Visual Physical Reasoning. Despite
rapid progress, recent studies show that MLLMs still exhibit substantial weaknesses in understanding
the physical world from visual input. Their visual physical understanding remains fragile Liu et al.
(2024); Guo et al. (2024); Bonnen et al. (2024), and they face major challenges when reasoning over
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visual perception in complex scenes Zhang et al. (2025b); Zheng et al. (2025a); Bi et al. (2025). In
terms of physical discipline knowledge, models show limited ability to perform multimodal reasoning
over discipline-level problems He et al. (2024). When tasked with predicting physical interactions and
long-term object dynamics, they often fail to capture the underlying causal structure Yi et al. (2020);
Bear et al. (2022) Moreover, MLLMs struggle to accurately infer object properties and latent states
in physics-based scene evaluations Wang et al. (2023b); Balazadeh et al. (2025). Even their spatial
reasoning, while improving, frequently breaks down on visual tasks that require precise understanding
of spatial relations and configurations Chen et al. (2024a). Taken together, these findings highlight
the need for more comprehensive and rigorous benchmarks that specifically target the visual physical
and spatial reasoning capabilities of MLLMs.

Physical Comprehension Datasets. These datasets have become a crucial area of focus, posing a
significant challenge for MLLMs. Early physical benchmarksBear et al. (2022); Zhu et al. (2023);
Tung et al. (2023)were developed around simple physical scene reasoning. Inspired by research on
infant intuitive physics, the studyRiochet et al. (2020) evaluate innate understanding of models in
the physical world. In other aspects of physical datasets, existing benchmarksHe et al. (2024); Jiang
et al. (2024); Lu et al. (2022); Hao et al. (2025); Zhang et al. (2025c) to evaluate physics problems
mainly focus on commonsense reasoning based on language knowledge. Spatial benchmarksWang
et al. (2023a); Yang et al. (2024); Shiri et al. (2024); Li et al. (2024), on the other hand, emphasize
spatial perception and reasoning in 3D scenes, illustrating the early stages of world model. Recent
effortChow et al. (2025) has expanded to comprehensively assess understanding of models in physical
scenes across various tasks, though they still fail to fully encompass real-world physical knowledge.
By introducing visual CoT as inputs, it forces models to reason across images, making it a closer
approximation to the analysis of complex physical scenes in the real world.

Table 1 Comparison of MVPBench with existing benchmarks for physical understanding. MVPBench
covers a broader range of physical reasoning categories, supports multi-perspective chain-of-thought evaluation,
and provides CoT annotations. In the data format, TC indicates that the dataset utilizes textual CoT, VC means
the use of visual CoT as input, and Vc signifies all that the data is constructed in a vision-centric manner.

Benchmark Data category CoT Evaluation Data format
Physics experiments Physics problems Spatial relations Dynamic prediction Quality Diversity Efficiency Vc TC VC

PhysBenchChow et al. (2025) ✓ ✓ ✓
PhysionBear et al. (2022) ✓
PhysReasonZhang et al. (2025c) ✓ ✓ ✓
PhysGameCao et al. (2024) ✓ ✓
ContPhyZheng et al. (2024) ✓
EmbSpatialDu et al. (2024) ✓

MVPBench ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓

3 MVPBENCH

The motivation for constructing the MVPBench benchmark stems from recognizing significant gaps in
the current capability of MLLM to deeply comprehend and reason about the physical world. Existing
benchmarks emphasize isolated aspects such as static scene understanding, physics-based reasoning,
or basic spatial awareness, leaving unaddressed the integration of physical reasoning with complex
visual inputs. Therefore, MVPBench aims to rigorously evaluate abilities of MLLMs to visually
reason about diverse physical phenomena in scenarios closely resembling real-world complexities.

To ensure comprehensive coverage of visual reasoning skills, MVPBench incorporates carefully
curated data across multiple distinct yet complementary domains: 1) Physics Experiments tests the
understanding of sequential physical processes through multi-step visual inference. 2) Physics Prob-
lems challenges models to interpret advanced, visually grounded physics questions from academic
examinations. 3) Spatial Relations assesses spatial perception judgment across various scenarios. 4)
Dynamic Prediction evaluates the predictive capabilities of models regarding dynamically evolving
physical interactions. Collectively, these diverse yet targeted subdomains ensure MVPBench not only
addresses existing evaluation gaps but also significantly extends the reasoning depth, robustness, and
versatility of models. Details of data analysis are provided in Appendix C.
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Physics Experiments

Mechanics

Optics

Q：After dipping A into B to 

get them wet, what happens 

next?

A：The chopsticks stand up.

Q：Can D magnify B and 

C in water?

A：Object D can smagnify 

objects B and C .

Q：What happens when C is 

heated with D?

A：Object C will melt into a 

flowing liquid.

Thermodynamics

Q：How can we make B move 

in C?

A：The toothpick naturally 

moves forward.

Electromagnetism

Q：Put C into D, 

gradually add B,what 

happens to C?

A：C moves towards 

the center.

kinematics

Physics Problems

Spatial Relations Dynamic Prediction

Mechanics

Q： What is the dynamic 

friction factor between A and 

the left wall?

                  A：𝜇 =
3

2

Q：What’s the time t for 

the conductor rod to slide 

down?

Q：What is the car's speed at 

the end of the 2nd second?

Optics

Kinematics

A：30 𝑚/𝑠

Thermodynamics

Electromagnetism

A：𝑡 =
𝑚(𝑅+𝑟)

𝐵2𝐿2 +
𝐵2𝐿2𝑥

𝑚𝑔(𝑅+𝑟) sin 𝜃

Direction Relation

Q：What is the orientation of 

object A?

A：The orientation of object A is 

moving right and down.

Distance Relation

Q：What is the closest object to A?

A：Object E is the closest object to A.

Perspective Transformation

Q：What direction is B from A's perspective?

A：B is located to the right rear of A.

Topological Relation

Q：Can node 1 reach node 3?

A：Node 1 can reach node 3.

Liquid Flow Destination Physical State
Q：When A and B are placed above C–F and 

fall under gravity, they make contact with C–

F. What will happen next?

A：C, D, E, and F have not fallen down.

Q：Which container will the liquid from A, B, 

and C enter after passing through the baffles?

A：Most liquid from A and B flows into D, 

while E mainly receives flow from C.

Q：How will A, B, and C change as the light 

source moves right?

A：Both of them shift to the left and become 

shorter and smaller.

Transformation of ShadowMulti-object Collision

Q：What blocks will A collide with and 

where will it stop?

A：Object A collides with the purple square, 

pushes it forward, and stops in front of it.

Q： What's the piston's maximum 

height from the cylinder base?

A：21.25𝑐𝑚

Q： How high must S 

be for its light to stay in 

water?

A：ℎ ≈ 0.73𝑟

Figure 2 Examples from MVPBench across four categories. Each example includes an initial scene followed
by reasoning steps. Target objects are marked with red arrows and labeled with letters to reduce textual bias.

3.1 DATA GENERATION

Physics Experiments. We scraped publicly available physics experiment videos, manually filtered
them, and archived the curated clips as MP4 files. From each video, we extracted key frames depicting
(i) the initial setup, (ii) critical intermediate steps, and (iii) the final results. Salient objects were
highlighted with arrows while all textual cues were omitted, forcing models to infer solely from
visual cues, with GPT-4 generating the corresponding scene descriptions. The intermediate steps
encompass essential logical reasoning processes required to complete each experiment. To evaluate
multi-path reasoning verification capability of MLLMs, recorded multiple chains of thought
for each instance. All assets are stored in a structured JSON schema that includes mechanics,
thermodynamics, electromagnetism, optics and kinematics. The remaining subsets empoly the same
format as the JSON detailed above, and we omit related discussion in the following section.

Physics Problems. On one hand, we crawled and manually filtered all the problems from relevant
websites, compiling them into PDF files, which were then converted into Markdown format via
OCR and manually aligned. On the other hand, the data was with examples from the PhysReason-
miniZhang et al. (2025c) dataset. All problems are tightly coupled to images and drawn from
examinations in several countries (predominantly Chinese college entrance examination) for their
open-ended formats that demand advanced reasoning. After meticulous verification, we extracted key
reasoning steps and final answers. These steps include both textual and visual components, with the
image segment forming an additional input alongside the original image. The questions cover five
subcategories including mechanics, thermodynamics, electromagnetism, optics, and kinematics.

Spatial Relations. Spatial relation reasoning is a crucial area in understanding of the physical world.
To address this gap, we have pre-designed four main subcategories to evaluate perception of spatial
relations: (1) Direction judgment: This subcategory formulates problems concerning the directional
judgment of various objects. (2) Distance estimation: This subset encompasses problems related to
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estimating the distance relation of different objects. (3) First view transformation: This subcategory
addresses issues pertaining to direction judgment from a egocentric viewpoint regarding various
objects. (4) Topological relation judgment: This subcategory focuses on problems associated with
reachability within directed graphs. The first three subcategories manually screened original images
from public websites, and the fourth subcategory constructed images using the Graph Editor tool.

Dynamic Prediction. To investigate whether MLLMs can predict time-varying physical outcomes
through visual reasoning, we introduce a Dynamic Prediction subset comprising four subcategories:
Multi-object Collision, Liquid Diversion, Physical state and Shadow Transformation predict.
This subset utilizes the PhysBench Chow et al. (2025) benchmark, which provides high-quality
dynamic scene videos. All samples are adapted and extended from PhysBench to ensure high-
quality video frames. For each sample, we extract multiple temporally spaced key frames from the
corresponding video to form multi-image inputs, annotating salient objects with arrows.

4 COT EVALUATION METHOD

Quality Efficiency

Step Accuracy Score (SAS)

Key Step Coverage (KSC)

Model Output

Match

Step Relevance Score (SRS) 

Reflection Validity Rate (RVR)

𝒔𝒕𝒆𝒑𝟏 → 𝒔𝒕𝒆𝒑𝟐 → 𝒔𝒕𝒆𝒑𝟑
𝒔𝒕𝒆𝒑𝟏 → 𝒔𝒕𝒆𝒑𝟑 → 𝒔𝒕𝒆𝒑𝟐

1. Ignite B, melt wax around it

2. B burns, consuming oxygen

3. B stops burning

Judgement

Key Step Annotation

1. Object B is a red candle

2. Light candle B--it drips wax

3. The wax quickly hardens

4. Candle B keeps burning

Judgement

Diversity

Annotated

CoT chains

Gragh

2 3

1

3 2
Final

𝒔𝒕𝒆𝒑𝟐 → 𝒔𝒕𝒆𝒑𝟏 → 𝒔𝒕𝒆𝒑𝟑

Judge

Path Validity Rate
          (PVR)

Path Coverage Score 
             (PCS)

2

1 3

2

1 3

Match

Unmatch

Cover

Uncover

A is facing towards the 

right side of the image.

Let's rethink this from 

another angle.

I’m not sure if that helps, 

Step Judgement

Question:What is the orientation of object A?

Relevant

Irrelevant

Behind A the sun is setting …

The street is …

Reflection Step

   Judgement

Valid

Invalid

Figure 3 Evaluation framework for multi-path Chain-of-Thought (CoT) reasoning. MVPBench introduces
a comprehensive protocol to evaluate CoT reasoning from three perspectives: quality, diversity, and efficiency.
For CoT diversity, we propose a graph-based multi-path evaluation method that quantifies the ability of
a model to explore alternative reasoning routes via Path Validity Rate (PVR) and Path Coverage Score (PCS),
advancing beyond prior single-path metrics.

Existing CoT evaluation methods often simplify reasoning assessment to a binary judgment of the
final answer, overlooking the internal reasoning steps. To address this limitation, we propose a holistic
CoT evaluation suite that captures the reasoning process across multiple dimensions, offering a finer-
grained understanding of reasoning capabilities of MLLMs. Notably, we are the first to introduce
an evaluation metric for assessing multi-path reasoning ability of models, which complements
traditional correctness and reflection assessments. Details are presented in Section 4.1 (correctness),
Section 4.2 (multi-path reasoning), and Section 4.3 (reflection quality).

4.1 COT QUALITY EVALUATION

To evaluate the correctness of CoT reasoning, we extend existing interpretable metrics by incorpo-
rating both step-wise accuracy and final answer correctness. While prior work such as Jiang et al.
(2025b) focused on intermediate informativeness, they overlook the contribution of the final answer
to overall quality. Inspired by Zhang et al. (2024), we introduce a weighted scoring framework that
balances the quality of intermediate steps with the correctness of the final prediction.

Step Accuracy Score (SAS). We prompt GPT-4o OpenAI (2024) to decompose each CoT prediction
into steps, categorized as logical inference, image captioning, or background/numerical computation
(depending on the dataset). Each step is binary-judged for correctness based on alignment with
references or logical/visual validity. SAS is computed as the proportion of correct steps.

CoT Reasoning Score (CRS). To combine step-wise correctness and final answer validity, we define
a weighted reasoning score as CRS = α · SAS + (1−α) · Correct(sA), where Correct(sA) ∈ {0, 1}
denotes whether the final answer is correct, and α is set to 0.7 by default.
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Key Step Coverage (KSC). We also measure the proportion of annotated key reasoning steps that
appear in the model output, serving as a recall-style indicator of reasoning completeness.

4.2 COT DIVERSITY EVALUATION

While some recent studies have acknowledged the need for multi-path reasoning evaluation, significant
gaps remain. Zhang et al. (2024) emphasizes that rigid ground-truth templates fail to capture the
diversity of reasoning styles, calling for adaptive key-step extraction. Similarly, Jiang et al. (2025b)
and Chow et al. (2025) annotate multiple reasoning paths but lack systematic metrics to measure the
ability of models to generate and validate diverse CoT trajectories.

Accordingly, we introduce CoT Diversity Evaluation (CDE), a graph-based framework for assessing
the ability of models to generate logically valid and distinct reasoning chains, with three key stages:

• Reference Graph Construction. Each annotated instance is converted into directed graphs, with
key steps as nodes and logical flows as edges.

• Model Path Embedding. We map the model-generated reasoning steps into the reference graph
by parsing them into directed edge sequences.

• Path Matching and Metric Computation. We define three core metrics for multi-path evaluation:
– Path Validity Rate (PVR): Proportion of model edges matching the reference graph.
– Path Coverage Score (PCS): Normalized length of the longest matched sub-path.

Path Count Adjustment. To fairly compare models with differing numbers of generated and
reference paths, we define adjusted versions of the above metrics.

Let Np and Ngt denote the numbers of predicted and reference paths, respectively. The adjusted path
validity rate is defined as Path Validity Rateadj = PVR× min(Np,Ngt)

Ngt
, and the adjusted path coverage

score is given by Path Coverage Scoreadj = PCS × exp
(
−α ·

(
Np

Ngt
− 1

))
, where α controls the

penalty for over-generation: higher values enforce stricter adherence to the reference count, while
lower values allow more flexibility.

Structure-Tolerant Matching. From our preliminary experiments we observed that DAG-based
matching is overly sensitive to small structural variations: logically equivalent reasoning paths may
still be penalized if node or edge order differs. To address this, we introduce a Graph Edit Distance
(GED) similarity, which measures the minimal number of edit operations (insertions, deletions,
substitutions) needed to transform the model graph into the reference graph. We map this distance
into a smooth similarity score as Sim = exp(−γ · GED), where γ = 0.5 controls sensitivity to
structural differences. We then define the CoT Match Score (CMS) by combining path-level validity
and coverage with structure tolerance: CMS = λ · (PVR+PCS)

2 +(1−λ) ·Sim, where λ = 0.7 balances
diversity against robustness to structural variations. This adjustment enables CDE to more faithfully
evaluate both the logical validity and the structural flexibility of model-generated reasoning paths.

4.3 COT EFFICIENCY EVALUATION

The efficiency of reasoning is also crucial for evaluating CoT quality. Models like o1 generate
excessively long reasoning chains with extensive reflection and verification steps. To capture this
aspect, we evaluate the relevance of reasoning steps and the validity of reflective ones.

Step Relevance Score (SRS). While long reasoning sequences enable deeper analysis, they often
include irrelevant descriptions unrelated to solving the task. We partition the model’s reasoning
into steps and instruct GPT-4o to identify all relevant steps Prelevant. A step is considered relevant
if its major content directly contributes to problem-solving. SRS, similar to SCS, is defined as the
proportion of relevant steps among all generated steps.

Reflection Validity Rate (RVR). Reflective reasoning can strengthen CoT performance by identifying
errors or providing additional justification, but not all reflections are helpful—some may be redundant
or incorrect. We define a reflection step as valid if it (i) identifies a previous error or (ii) offers new
supporting reasoning. Reflection quality is then measured as the proportion of valid reflections Rvalid,
detected through linguistic cues such as “Wait” or “Alternatively”.
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Table 2 CoT reasoning performance on MVPBench across three dimensions. We assess open- and closed-
source MLLMs on CoT Quality (SAS, KSC, CRS), CoT Diversity (PVR, PCS, CMS), and CoT Efficiency (SRS,
RVR, Avg), under Single and Multi image settings. Best single-image results and largest multi-image gains are
highlighted for closed-source and open-source models. ↑ indicates performance improvement with multi-
image input, ↓ indicates a drop, and * denotes invalid outputs. Additional evaluation results for closed-source
models and human performance benchmarks are presented in the Appendices A.1 and B.1, respectively.

Model CoT Quality CoT Diversity CoT Efficiency

SAS KSC CRS PVR PCS CMS SRS RVR Avg
Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi

Open-source MLLMs
LLaVA-OV-72B Li et al. (2025a) 53.09 * 29.47 * 36.49 * 63.44 * 70.00 * 74.01 * 96.91 * 99.55 * 98.23 *

LLaVA-CoT Xu et al. (2024) 48.47 8.58↑ 30.21 2.23↑ 32.58 9.01↑ 28.87 10.32↑ 51.89 3.75↑ 48.43 9.02↑ 97.63 0.49↓ 99.64 0.12↑ 98.64 0.49↓
InternVL2.5-78B Chen et al. (2024b) 56.35 10.12↑ 42.42 5.45↑ 43.98 4.45↑ 67.28 8.43↑ 72.09 4.79↑ 70.82 5.12↑ 96.89 0.83↓ 99.45 0.50↑ 98.17 0.16↓

InternVL2.5-78B-MPO Wang et al. (2024b) 55.77 7.80↑ 41.87 5.63↑ 43.76 8.51↑ 72.80 9.34↑ 76.08 5.61↑ 79.33 8.11↑ 97.88 1.67↓ 99.32 0.28↓ 98.60 0.98↓

InternVL3-78B Zhu et al. (2025) 57.80 9.26↑ 46.20 5.49↑ 47.48 9.25↑ 66.06 7.02↑ 70.61 7.53↑ 76.77 8.65↑ 97.54 0.35↑ 99.52 0.11↓ 98.53 0.13↑

InternVL3-78B-Instruct Zhu et al. (2025) 55.86 9.53↑ 42.15 3.51↑ 44.24 8.63↑ 68.41 9.78↑ 72.41 3.41↑ 76.23 8.38↑ 96.88 0.29↑ 99.92 0.50↓ 98.40 0.10↓
Qwen2.5-VL-7B Bai et al. (2025) 52.40 3.11↑ 36.54 1.73↑ 39.24 4.32↑ 64.43 5.83↑ 73.70 2.12↑ 74.00 3.86↑ 93.59 0.30↑ 99.26 0.02↓ 96.43 0.14↑

Qwen2.5-VL-72B Bai et al. (2025) 57.15 5.55↑ 43.29 5.33↑ 46.08 7.24↑ 74.73 6.76↑ 78.97 6.12↑ 82.43 7.34↑ 97.46 1.50↓ 99.43 0.24↑ 98.45 0.63↓

QVQ-72B Qwen Team (2024) 68.28 2.49↑ 44.63 0.76↓ 53.83 0.88↓ * * * * * * 85.29 3.82↑ 56.27 3.04↑ 70.93 3.28↑

Closed-source MLLMs
GPT-4o OpenAI (2024) 63.26 20.30↑ 46.39 14.75↑ 50.45 21.41↑ 68.04 13.22↑ 72.38 10.01↑ 81.34 13.04↑ 98.42 1.26↓ 99.39 0.28↑ 98.90 0.49↓

OpenAI o3 OpenAI (2025) 75.29 15.87↑ 50.64 11.52↑ 59.11 15.83↑ 68.85 9.81↑ 74.91 10.24↑ 76.65 9.97↑ 99.43 2.31↓ 99.52 0.13↑ 99.48 1.09↓

Claude 3.7 Sonnet Anthropic (2025) 64.41 16.12↑ 45.66 11.95↑ 50.87 15.22↑ 73.70 12.81↑ 75.79 12.04↑ 79.08 13.38↑ 97.76 0.13↑ 97.34 2.23↑ 97.55 1.18↑

5 COMPREHENSIVE EVALUATION OF COT-BASED MULTIMODAL REASONING

Overall Results. Table 2 reports model performance across three CoT evaluation dimensions using
SAS, KSC, and SRS for both logical inference and image captioning. Diversity is assessed via PVR
and RCS, and robustness is measured by averaging SRS and RVR, with RVR set to 100 for models
lacking reflection ability. Table 3 complements this by presenting subcategory-level evaluation across
all CoT metrics on MVPBench. Model and setup details are in Appendix H.

GPT-4o demonstrates strong overall performance, while OpenAI o3 surpasses it in quality and
efficiency, achieving the highest scores. Among open-source models, the InternVL series is most
competitive, with InternVL3-vl-78B and MPO-tuned InternVL2.5 showing strong performance across
all dimensions. QVQ performs well in CoT quality but lacks robustness, often producing verbose and
loosely related content, from which we derive the following key observations.

CoT Diversity Does Not Guarantee High Reasoning Accuracy. While diversity helps explore
multiple reasoning paths, our results show it does not inherently improve reasoning quality. For
example, Qwen2.5-VL-72B achieves the highest diversity but underperforms QVQ-72B in quality,
despite the latter lacking diversity evaluation. This suggests a trade-off: greater diversity may lead to
less focused or accurate reasoning if not properly guided. In contrast, OpenAI o3 attains top quality
with moderate diversity, highlighting the importance of goal-directed reasoning.

Reflection enhances quality but with limited reliability. As shown in Table 2, QVQ with reflection
surpasses its base model Qwen2.5-VL-72B by 7.75% in CRS and 11.13% in SAS, even with longer
CoT sequences, approaching GPT-4o in quality. However, its reflection validity rate is only about
56%, meaning nearly half of reflection attempts fail to aid accuracy, which compromises efficiency
and introduces redundant reasoning steps.

Long CoT Models May Be More Prone to Distraction. Models generating longer CoT tend to exhibit
lower relevance, often producing content unrelated to the question, reflected by lower KSC scores
(compared to QVQ). Some short-CoT models like LLaVA-OV-72B also show low relevance, usually
due to repetitive outputs on specific question types. Fine-grained analysis shows models often lose
focus when describing images, generating exhaustive but irrelevant captions.

Post-training may harm generalization. While post-training—particularly mixed preference opti-
mization (MPO)—is frequently employed to align models more closely with specific downstream
tasks, it does not universally enhance CoT reasoning quality. As in Figure 5, InternVL2.5-78B-MPO
underperforms its base counterpart InternVL2.5-78B, and InternVL3-78B similarly trails InternVL3-
78B-Instruct in Physics Experiments subset. Although MPO can effectively boost performance on
human-preference-aligned subsets such as physics questions, it tends to negatively impact subsets re-
quiring stronger visual perception or temporal prediction capabilities. This phenomenon suggests that
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MPO may introduce distributional biases or lead to overfitting to specific tasks, thereby compromising
generalization, visual grounding, and multimodal coherence—particularly evident in visual-centric
reasoning tasks. MVPBench, with its comprehensive and balanced design across multiple reasoning
categories, effectively highlights these limitations.

6 UNDERSTANDING THE EVALUATIVE POWER OF MVPBENCH

Table 3 Subcategory-level evaluation of CoT reasoning in MVPBench. We present subcategory-level scores
for three core reasoning metrics and evaluated across both open- and closed-source MLLMs. Top-performing
models within each category are highlighted in blue (open-source) and red (closed-source). For models
(SpaceQwen2.5 and SpaceThinker) fine-tuned specifically for spatial reasoning and their corresponding base
model (Qwen2.5VL-3B), we evaluate only on the Spatial-Relation subset, * denotes no output.

Model Phys-Experiment Phys-Problems Spatial-Relation Dyn-Prediction
Quality Diversity Efficiency Quality Diversity Efficiency Quality Diversity Efficiency Quality Diversity Efficiency

Open-source MLLMs
LLaVA-OV-72B Li et al. (2025a) 37.21 66.61 94.77 32.94 79.72 99.05 34.16 59.79 99.36 41.66 89.93 99.72
LLaVA-CoT Xu et al. (2024) 33.79 52.34 97.35 20.86 45.46 98.97 31.89 54.31 98.45 43.77 41.61 99.78
InternVL2.5-78B Chen et al. (2024b) 43.95 73.38 94.25 47.44 71.32 98.83 39.75 71.08 99.59 44.78 87.49 100
InternVL2.5-78B-MPO Wang et al. (2024b) 41.60 79.43 97.19 51.54 75.87 98.97 37.83 71.42 98.48 44.06 90.60 99.76
InternVL3-78B Zhu et al. (2025) 37.00 83.39 91.49 58.26 68.23 98.92 39.31 70.43 99.14 46.68 88.05 99.95
InternVL3-78B-Instruct Zhu et al. (2025) 42.01 74.57 94.87 52.64 69.79 99.81 38.10 70.96 98.96 44.20 89.58 99.96
Qwen2.5-VL-7B Bai et al. (2025) 37.00 80.15 91.49 42.34 67.10 98.55 35.20 68.57 95.82 40.30 82.16 99.85
Qwen2.5-VL-72B Bai et al. (2025) 41.19 82.59 96.72 57.01 79.69 99.36 39.18 59.67 98.06 46.94 98.75 99.65
QVQ-72B Qwen Team (2024) 49.63 0.00 71.65 60.97 0.00 63.71 38.50 0.00 69.24 66.20 0.00 79.13
Qwen2.5VL-3BBai et al. (2025) * * * * * * 22.24 13.40 95.03 * * *
SpaceQwen2.5-VL-3BJia et al. (2025) * * * * * * 20.84 34.86 93.72 * * *
SpaceThinker-Qwen2.5VL-3B Chen et al. (2025) * * * * * * 23.93 31.15 97.87 * * *

Closed-source MLLMs
GPT-4o OpenAI (2024) 50.21 76.36 97.53 52.29 69.52 98.77 43.64 69.33 99.72 52.35 91.14 99.59
OpenAI o3 OpenAI (2025) 57.73 75.58 97.44 65.36 68.57 99.06 43.92 71.26 99.83 69.44 91.18 99.71
Claude 3.7 Sonnet Anthropic (2025) 49.13 78.97 97.38 57.02 72.15 94.71 42.41 72.71 99.67 54.92 92.47 98.45

Our dataset, MVPBench, is specifically constructed to test multimodal reasoning under diverse
and fine-grained physical scenarios. We explore its impact on evaluation outcomes from there
perspectives: the effectiveness of fine-tuning spatial reasoning, category diversity and input modality.

The effectiveness of specialized fine-tuning strategies aimed explicitly at spatial reasoning. To
further explore MLLMs specifically fine-tuned for spatial reasoning capabilities, we selected three
representative models for rigorous comparison: Qwen2.5VL-3BBai et al. (2025) as a baseline
model without specialized spatial reasoning fine-tuning, and two models (SpaceQwen2.5-VL-3BJia
et al. (2025) and SpaceThinker-Qwen2.5VL-3BChen et al. (2025)) employing different specialized
fine-tuning strategies to enhance spatial reasoning. We conducted rigorous evaluations on the Spatial-
Relation subset within MVPBench, comparing the models across three dimensions: CoT Quality,
Diversity, and Efficiency. The detailed results are presented in the table 3. Compared with the baseline
Qwen2.5VL-3B, both spatially fine-tuned models show smaller CoT-Quality drops on multi-image
tasks. SpaceThinker-Qwen2.5VL-3B beats Qwen2.5VL-3B in CoT-Quality, indicating that synthetic
reasoning-trace fine-tuning strengthens multi-step visual reasoning. CoT-Diversity rises markedly
with fine-tuning (34.86% and 31.15%) versus the baseline’s 13.40%, yielding richer, more flexible
reasoning paths. The baseline gains a bit in CoT-Efficiency but loses CoT-Quality under multi-image
complexity, while SpaceThinker-Qwen2.5VL-3B achieves the highest efficiency (97.87%) with a
slight dip for multi-image input. Overall, targeted spatial-reasoning fine-tuning delivers clear gains in
quality and diversity that outweigh minor efficiency trade-offs.

Category diversity influences evaluation difficulty. MVPBench spans a variety of physical rea-
soning subcategories, each posing distinct challenges. We observe that model performance varies
substantially across these categories, underscoring the impact of task type on evaluation difficulty.
For example, InternVL3-78B achieves a Quality score of 58.26 on the more abstract Phys-Problems
category, but performs better with a score of 66.68 on the more concrete Dyn-Prediction tasks (see
Table 3). Notably, across all open-source models, the Spatial-Relation subset yields the lowest
average Quality score (37.10), suggesting it poses the greatest challenge. This indicates that current
MLLMs still struggle with fine-grained spatial reasoning, revealing a critical gap in their perceptual
and relational understanding of physical scenes. This performance gap illustrates how reasoning
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Figure 4 Performance comparison between
single-image and multi-image inputs on CoT
evaluation. This figure highlights the perfor-
mance difference when reasoning with multi-
ple images versus a single image across var-
ious MLLMs. Multi-image inputs generally
enhance performance, while QVQ shows a
drop—indicating potential challenges in multi-
image integration.
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Figure 5 CoT Performance of MLLMs with post-
training versus without post-training. InternVL2.5 and
InternVL3-instruct represent models without post-training,
whereas InternVL2.5-MPO and InternVL3 denote their post-
trained counterparts. Please note that each metric axis has
its own independent scale. The results clearly indicate that
post-training often fails to enhance the reasoning perfor-
mance of models and degrades it.

complexity varies by category and highlights the importance of category-aware evaluation for robust
and meaningful model comparisons.

Multi-image input significantly boosts model performance. To evaluate the impact of input modality,
we conducted comparative experiments using both single-image and multi-image inputs under
identical prompts and evaluation metrics. This design isolates the effect of visual input quantity,
allowing for a controlled analysis of performance variance. As illustrated in Fig 4, nearly all models
benefit from multi-image inputs, achieving notable gains in both CoT Quality and Diversity scores.
Closed-source models show particularly striking improvements, with GPT-4o leading the trend—its
CoT Quality score rises from 50 to 72, a relative increase of 44%, and its Diversity score jumps from
70 to 85, a 21% improvement. Other closed-source models like Claude 3.7 Sonnet and OpenAI o3 also
exhibit significant gains, with Quality scores increasing by 15% and Diversity by 13%. Open-source
models, such as InternVL3-78B, show more modest improvements, rising from a Quality score of
47.5 to 56.7 (a 19% increase) and a Diversity score improvement of around 10%. However, QVQ-
72B is an outlier, showing a performance drop of roughly 1-2 points in quality, indicating potential
challenges in multi-image integration. Overall, these results highlight the superior adaptability of
closed-source models, particularly GPT-4o, in leveraging multi-image inputs to enhance fine-grained
physical reasoning and diversity in responses.

7 CONCLUSION

We introduce MVPBench, a benchmark designed to rigorously evaluate visual chain-of-thought
reasoning in multimodal large language models (MLLMs). It target tasks that require grounded,
multi-step inference over visual evidence and goes beyond surface-level image description. Our
evaluation reveals than even state-of-the-art models like GPT-4o and OpenAI o3 often struggle with
physical reasoning. To diagnose these failures, we introduce a graph-based CoT consistency metric
to assess reasoning validity, uncovering frequent violations of basic physical principles. Notably,
we find that reinforcement learning-based alignment can impair physical reasoning, highlighting a
misalignment between current fine-tuning strategies and the demands of physical perceptual reasoning.
These findings call for post-training strategies that better integrate visual grounding, causal structure,
and structured explananation in MLLMs.
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9 REPRODUCIBILITY STATEMENT

We provide a comprehensive description of the dataset collection and preprocessing steps in the
appendix C, including detailed documentation to ensure clarity and transparency. The implementation
details and evaluation settings for each benchmarked model are also thoroughly reported in the
appendix H. To further promote reproducibility, we have included all the code, configuration files and
experimental scripts in the supplementary materials, and provided the access link to our dataset at the
appendix overview.
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APPENDIX OVERVIEW

Our supplementary includes the following sections:

• Section A: More experiment results. Extended Empirical Analysis on Closed-source and
Post-trained Models.

• Section B: More Exploration. Analysis of human performance and error analysis.
• Section C: More Dataset Details.
• Section D: More Qualitative Examples. More visualization of our evaluation demos.
• Section E: Limitations. Discussion of limitations of our work.
• Section F: Broader impacts. Discussion of societal impacts of our work.
• Section G: Detailed Evaluation prompts.
• Section H: Setup. Details for model design, implementation.
• Section I: The Use of LLMs.
• Section J: Rebuttal.

To further promote reproducibility, we provide our dataset, which can be accessed via an anonymous
link.
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A MORE EXPERIMENT RESULTS

A.1 MORE CLOSED-SOURCE MODEL EXPERIMENTS

Table 4 Additional Evaluation Results for Closed-Source Models on CoT Reasoning Performance across
Three Dimensions in MVPBench. ↑ indicates performance improvement with multi-image input, ↓ indicates a
drop.

Model CoT Quality CoT Diversity CoT Efficiency

SAS KSC CRS PVR PCS CMS SRS RVR Avg
Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi

Closed-source MLLMs
Gemini-2.5-flash-preview-04-17 Deepmind (2024) 60.56 12.32↑ 49.29 8.54↑ 50.05 11.63↑ 56.44 9.23↑ 59.35 7.12↑ 57.20 8.45↑ 97.59. 0.37↓ 92.00 2.00↑ 94.71 0.82↑
Grok3xAI (2025) 62.48 3.44↑ 52.05 4.13↑ 52.69 4.50↑ 61.57 10.13↑ 68.05 6.89↑ 63.78 8.43↑ 89.55 2.53↓ 86.00 6.26↑ 87.77 1.87↑

To evaluate additional closed-source models, we randomly sampled 25 instances from each sub-
dataset of MVPBench, resulting in 100 samples in total. As shown in Table 4 and Table 11, the
results of these models largely confirm the trends observed with tested models discussed earlier:
performance varies notably across different sub-datasets, and multi-image input consistently leads to
substantial improvements. Interestingly, Gemini Deepmind (2024) demonstrates strong quality in the
Physics Experiments subset, yet performs surprisingly poorly in the Spatial Relations task—even
falling behind several open-source models.

A.2 MORE POST-TRAINING MODEL EXPERIMENTS

To further investigate the impact of post-training on model generalization, we conducted additional
experiments comparing different base models and distinct post-training methods. Specifically,
we compared two base models without post-training, Qwen2.5VL-7B and Qwen2VL-2B, against
their respective post-trained counterparts: MM Eureka-7B, which employs large-scale rule-based
reinforcement learning (RL), and R1-VL-2B, utilizing Step-wise Group Relative Policy Optimization
(StepGRPO). The comparative analysis indicates clear trends consistent with our earlier findings
in the InternVL series. As shown in Figure 6, Qwen2.5VL-7B exhibits superior Step Accuracy
(56.63%) compared to MM Eureka-7B (52.39%). Similarly, Qwen2VL-2B outperforms R1-VL-2B
in Path Validity Rate (42.87% versus 35.72%) and Path Coverage Score (61.63% versus 50.48%),
demonstrating significant performance drops associated with post-training methods. Although certain
metrics like Key Step Coverage show modest improvements in post-trained models (MM Eureka-
7B: 36.66% vs. Qwen2.5VL-7B: 31.39%), the overall pattern emphasizes a general reduction in
multimodal coherence and visual-centric reasoning effectiveness post-training. These findings align
with observations from the InternVL models discussed in the main text and reinforce the conclusion
that various post-training approaches, despite improving alignment to specific tasks, may impair
generalization, particularly in visual-centric and dynamic reasoning tasks.

B MORE EXPLORATION

B.1 HUMAN PERFORMANCE

To estimate human performance, we recruited four undergraduate students who had received sys-
tematic training in physics and were familiar with fundamental physical concepts. Each student was
asked to solve the same 100 instances used in our closed-source model evaluation. Unlike other
benchmarks, MVPBench is formulated as a visual question answering (VQA) task, and the evaluation
of quality and efficiency relies on the generation of detailed, step-by-step reasoning chains. Therefore,
our human performance assessment focuses solely on the diversity metric. For each instance, students
were provided with the question, answer, image(s), and annotated key reasoning steps. They were
instructed to produce as many distinct reasoning chains as possible that could lead to the correct
answer by covering all the provided key steps. The resulting outputs were then used to compute the
diversity scores.
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Figure 6 CoT Performance of MLLMs with post-training versus without post-training. Qwen2.5VL-7B
and Qwen2VL-2B represent models without post-training, whereas MM Eureka-7B and R1-VL-2B denote their
post-trained counterparts.Please note that each metric axis has its own independent scale.The results clearly
indicate that post-training fails to enhance the reasoning performance of models and degrades it.

Table 5 Expanded Subcategory-level Evaluation of CoT Reasoning in MVPBench: Closed-Source
Models and Human Baselines. We present a detailed subcategory-level evaluation of CoT reasoning along the
dimensions of Quality, Diversity, and Efficiency, comparing closed-source MLLMs with human performance on
MVPBench.

Model Phys-Experiment Phys-Problems Spatial-Relation Dyn-Prediction
Quality Diversity Efficiency Quality Diversity Efficiency Quality Diversity Efficiency Quality Diversity Efficiency

Human Performance
- 98.72 - - 96.42 - - 99.13 - - 95.76 -

Closed-source MLLMs
Gemini-2.5-flash-preview-04-17 Deepmind (2024) 61.85 68.64 100.00 63.37 39.10 85.56 28.36 73.04 93.26 46.62 48.00 100.00
Grok3xAI (2025) 43.85 65.54 87.60 58.16 72.26 78.50 50.60 58.72 85.66 58.16 58.59 99.33

B.2 ERROR ANALYSIS

To delve into the fine-grained predictions, we select the best-performing MLLM, GPT-4oOpenAI
(2024), to understand its modes of success and failure. Our proposed CoT evaluation strategy has
produced a detailed assessment of model output, including step-wise scores and explanation, reducing
extensive manual effort in identifying and analyzing errors. As shown in Figure 7, we conduct our
analysis on the two-step output from the CoT evaluation across the entire dataset, focusing on two
key dimensions.

Reasoning Errors Dominate Across Subcategories. In particular, the proportion of visual perception
errors in the physics-related subset is remarkably low—only 2.12% and 1.98% under single- and
multi-image inputs, respectively. This finding contrasts with prior observations in MathVerse Zhang
et al. (2024), highlighting the distinct characteristics of our benchmark. We posit that, within our
dataset, GPT-4o is generally able to perceive the visual input correctly, but often fails during the
reasoning process, leading to incorrect final answers.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Spatial-Relation Emerge as a Major Source of Perception Failures. In the spatial-relation subset,
visual perception errors account for a striking 33.01% and 26.41% under single- and multi-image
settings, respectively—substantially higher than in other subsets. This aligns with earlier findings
that both closed-source and open-source MLLMs consistently perform worst on spatial relation tasks
in terms of the quality metric. These results further support our initial hypothesis: current models
struggle significantly with visual grounding when interpreting spatial relationships, underscoring a
persistent bottleneck in multimodal understanding.

Spatial-Relation

Reasoning Error
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Visual Perception

         Error

        26.41%

Reasoning Error
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Visual Perception

         Error

        33.01%
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         1.98%

Figure 7 Distribution of GPT-4o OpenAI (2024) Errors across Different Types. We report the error
distribution of GPT-4o on MVPBench, categorized into two types: Visual Perception Errors and Reasoning
Errors, across four representative subcategories. The first row illustrates the error distribution under single-image
input settings, while the second row presents results under multi-image inputs.

C MORE DATASET DETAILS

C.1 DATA COLLECTION

To support the evaluation of multimodal physical reasoning, we constructed a diverse and well-
structured dataset spanning four distinct subdomains: (1) physics experiment videos, (2) conceptual
physics questions, (3) spatial reasoning images, and (4) dynamic physical scene videos. The
annotation process was carried out between March 28 and May 14, 2025, by a team of 31
annotators with backgrounds in physics, science education, and computer vision. Each data
modality followed a carefully designed protocol to ensure quality, consistency, and relevance to
downstream reasoning tasks.

Table 6 Annotation summary across the four data modalities.

Data Type Sample Count Average Length Annotators
Physics Experiment Videos 440 60 seconds 16
Conceptual Physics Problems 320 200 words 7
Spatial Reasoning Images 400 1 image 4
Dynamic Scene Videos 100 2 seconds 4

Physics Experiment Videos. This subset consists of 440 real-world videos sourced primarily from
science education creators on Bilibili, such as "Lighthouse Laboratory" and "Interesting physics in
life". These videos depict demonstrative physics experiments across domains including mechanics,
optics, electromagnetism, and thermodynamics. Each video was segmented into a sequence of 3 to
5 keyframes capturing critical steps of a physical process. Annotators provided a natural language
description for the initial state, intermediate key steps (each with conclusions), and a final outcome.
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Visual markers (e.g., arrows, labeled objects) were optionally added to enhance clarity. Multiple
plausible reasoning chains were manually curated to reflect different logical paths. All samples
underwent double annotation with inter-annotator agreement checks and periodic expert reviews. The
average duration per video was approximately 60 seconds.

Conceptual Physics Problems. This subset includes 320 multiple-choice and short-answer physics
questions derived from high school curricula and online education platforms. Each item was manually
adapted to include visual support (e.g., diagrams or plots), and transformed into a question-answer
format with structured reasoning chains. Annotators selected questions where visual content was
essential to reasoning, added visual cues to images (e.g., red dots, arrows), and reformulated options
into logical deduction steps. Stepwise reasoning was expressed using Markdown-compatible mathe-
matical expressions to support neural symbolic processing. The annotation reference document for
this task was "MCoT-phytest.docx." All data underwent double annotation and review for logical
soundness, visual accuracy, and completeness. On average, each problem included 200 words of
reasoning and annotations.

Spatial Reasoning Images. This subset comprises 400 images curated from public domain resources
such as Unsplash, Pixabay, and Archive.org. It addresses four categories of spatial reasoning:
directional relations, distance estimation, perspective transformations, and topological connectivity.
Annotators formulated tasks such as "What direction is object A facing?" or "From the first-view
perspective of object A, where is object B?", using generic language to avoid lexical leakage. Key
steps were illustrated using labeled visual cues and blue/red markings. Logical reasoning was written
in natural language chains, each step tied to a specific visual cue or interpretation. Annotation was
guided by the document "MCoT-spatial.docx" and performed by 4 annotators with experience in
spatial cognition and vision tasks.

Dynamic Physical Scene Videos. The final subset includes 100 short video clips (average duration 2
seconds) selected from the PhysBench dataset. The tasks focus on predicting physical dynamics, such
as object collision trajectories, liquid flow directions, and stability outcomes. Annotators extracted
representative keyframes from each video and documented the physical evolution using a minimal
chain of reasoning steps. For instance, a liquid falling through barriers would be annotated by
highlighting key deflection events and predicting the final compartment of flow. Problems were
written in standardized English using referential expressions (e.g., object A, path B). All dynamic
samples followed the procedure detailed in "dynamic-prediction.docx," and were annotated by 4
individuals with expertise in physics simulation and time-series interpretation.

Raw Data

Extracting 
physical logic

Capture video 
keyframes

Unlabeled 
logical data

Initial frame 
annotation

Logical Step 
Description

Annotated
Dataset

Unlabeled 
logical data

Annotated
Dataset

Data checking 
and cleaning

Data Summary

Final data

Figure 8 Data collection process. Initially, all visual and textual data undergo rigorous manual selection to
ensure accuracy and relevance. Subsequently, expert annotators manually identify and highlight key objects
and events, marking them visually with indicators such as arrows, and provide precise textual annotations for
each critical step. Finally, multiple reasoning chains and key step annotations are meticulously constructed and
validated manually, ensuring high-quality, reliable data for evaluating multimodal reasoning capabilities.
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C.2 DETAILED OF MVPBENCH COMPOSITION

Physics Experiments. The Physics Experiments subset of MVPBench contains a curated collection
of 400 experimental questions, each designed to evaluate a model’s understanding of sequential
physical processes through multi-step visual inference. These experiments span five fundamental
categories: Mechanics (222 questions), Thermodynamics (90 questions), Electromagnetism (42
questions), Optics (33 questions), and Kinematics (13 questions). Models must visually interpret
the sequence of events and logically deduce the physical processes involved. In Mechanics tasks,
models must interpret scenarios involving force interactions and motion, whereas Thermodynamics
problems require reasoning about heat transfer and energy dynamics. Electromagnetism experiments
involve interpreting visual representations of electric circuits and magnetic fields. Optics tasks test
understanding of light behavior, reflection, and refraction, while Kinematics scenarios focus on
analyzing motion trajectories and velocities. These tasks collectively ensure that the evaluated models
develop comprehensive visual reasoning abilities similar to how humans mentally simulate physical
experiments.

Physics Problems. The Physics Problems subset contains a total of 311 challenging, visually
grounded physics questions, primarily sourced from academic examination databases such as Chinese
Gaokao physics questions, the International Physics Olympiad (IPhO), and Chinese Mock Examina-
tions at Various Levels, further augmented by additional questions from the PhysReason-mini dataset.
These problems span five core physics categories: Mechanics (58 questions), Thermodynamics (56
questions), Electromagnetism (90 questions), Optics (53 questions), and Kinematics (54 questions).
Mechanics questions may involve complex analysis of force interactions or equilibrium scenarios,
while Thermodynamics problems often present visual cues related to heat exchange and energy
conversion processes. Electromagnetism tasks require reasoning about visually depicted electric
circuits and magnetic field interactions. Optics questions focus on image formation, lens behavior, and
optical phenomena, and Kinematics challenges typically demand interpretation of visual trajectories,
acceleration, and velocity vectors. This detailed structuring and multimodal approach aim to assess
models’ capabilities in accurately interpreting visual information and applying advanced reasoning to
solve intricate physics problems.

Spatial Relations. The Spatial Relations subset assesses spatial perception through 400 carefully
designed questions, divided into four specific subcategories. (1) Direction Judgment (100 questions):
This subcategory requires models to accurately determine the relative directional positioning of
various objects within a scene, emphasizing an understanding of spatial orientation and relational
positioning. (2) Distance Estimation (100 questions): Tasks here involve estimating the distance and
depth relations between objects or between objects and the camera viewpoint, highlighting the impor-
tance of accurate depth perception and visual estimation skills. (3) First-view Transformation (100
questions): This subcategory challenges models to reason about spatial directions from an egocentric
viewpoint, simulating real-world scenarios where orientation judgments are made from a first-person
perspective. (4) Topological Relation Judgment (100 questions): This category focuses specifically on
assessing the reachability and connectivity within directed graphs, using images constructed through
graphical editing tools. Overall, this subset is designed to rigorously evaluate models’ capabilities in
processing complex spatial scenarios and performing accurate spatial reasoning, reflecting essential
cognitive processes used in navigating and interpreting real-world visual environments.

Dynamic Prediction. The Dynamic Prediction subset comprises 100 tasks designed to evaluate the
predictive capabilities of models regarding dynamically evolving physical interactions, structured into
four subcategories: (1) Multi-object Collision (25 questions): This category requires models to predict
outcomes involving interactions among multiple objects, such as collisions, considering momentum,
energy transfer, and motion trajectories. (2) Liquid Diversion (25 questions): Tasks involve predicting
fluid paths through variously configured channels or obstacles, necessitating models to understand
fluid dynamics visually. (3) Physical State Prediction (25 questions): These problems challenge
models to anticipate changes in the physical states of objects, such as transitions between solid, liquid,
and gas phases, based on visual cues and temporal sequences. (4) Shadow Transformation Prediction
(25 questions): This subcategory assesses the ability of models to predict and interpret the changes in
shadows cast by objects due to movements or shifts in light sources, requiring sophisticated temporal
and spatial reasoning. These tasks collectively aim to test models’ capacity to interpret and forecast
dynamic physical phenomena, thereby closely replicating human cognitive processes involved in
visual prediction and temporal reasoning.
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C.3 DATA ANALYSIS

Table 7 presents core statistics of the MVPBench dataset, which consists of 1,211 samples with a
total of 4,701 images, covering both unique and repeated images. Each question and corresponding
answer is distinct, underscoring the dataset’s broad range and depth across various physical reasoning
scenarios. Furthermore, question lengths display considerable variation, with some reaching up to
100 words, though the majority of questions are moderately sized. Answers generally involve multiple
reasoning steps, reflecting a significant complexity level within the dataset. Notably, the dataset
includes multiple Image-CoTs per sample—visual chains of thought specifically crafted as input
to guide and assess model reasoning processes. The average number of Image-CoTs per sample is
approximately 3.90, with some samples containing up to 5, ensuring rich visual context for enhanced
multimodal reasoning. Additionally, each sample captures several chains of thought, facilitating the
evaluation of multi-path reasoning capabilities.

The dataset includes multiple subsets(Figure 9), with Physics Experiments and Spatial Relations form-
ing the most significant components, emphasizing sequential reasoning through multi-step physical
processes and complex spatial perception tasks, respectively. Additionally, a substantial contribution
from the Physics Problems subset highlights the emphasis on advanced textual comprehension in our
benchmark. The inclusion of Dynamic Prediction subset further ensures comprehensive evaluation
under conditions involving temporal changes and challenging visual contexts. Collectively, the
structured distribution across these subsets fosters a balanced assessment of diverse visual reasoning
capabilities crucial for a robust understanding of physical phenomena.

Statistic Value
Total samples 1,211
Total images 4,701
Unique images 4,688
Unique questions 1,211
Unique answers 1,211

Max. question length 100
Avg. question length 28.01
Max. answer steps 9
Avg. answer steps 2.93

Max. Image-CoTs per sample 5
Avg. Image-CoTs per sample 3.90
Max. reasoning paths 16
Avg. reasoning paths 2.67

Table 7 Key statistics of MVPBench. Summarizes
dataset size, question/answer properties, and multi-
path reasoning annotations for evaluating complex
reasoning in MLLMs.

Figure 9 Category distribution in MVPBench.
Covers 4 major reasoning categories and 18 fine-
grained subcategories.

C.4 ADDITIONAL STATISTICS OF DATASET

This section presents further statistical analyses to offer deeper insights into the composition and
characteristics of the dataset. As Shown in Figure 10, Figure (a) provides an overview of the
distribution of physics concepts encountered within the reasoning steps. It reveals that certain
foundational concepts such as "light," "force," and "pressure" are notably prevalent, indicating their
central importance within the reasoning processes of datasets. The distribution of these concepts
emphasizes their relative significance and highlights the necessity for models to grasp core physics
principles robustly. Figure (b) illustrates the distribution of query word counts through a histogram
accompanied by a kernel density estimation curve, effectively capturing the general complexity and
length patterns of the queries. The data suggests a predominance of moderately sized questions,
though there exists a notable tail extending towards longer, more complex queries, underscoring the
variety in question complexity.
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The distribution of reasoning chains, depicted in Figure (c), offers valuable insights into the diversity
of dataset in reasoning paths per sample. Most samples incorporate one or two distinct chains,
highlighting the presence of alternative reasoning pathways. Nonetheless, there is a non-negligible
proportion of instances with several reasoning chains, indicating complexity and diversity in the
reasoning processes required by the dataset. Figure (d) examines the distribution of reasoning
steps per sample. The analysis indicates variability in the complexity of the reasoning tasks, with
most samples containing a moderate number of steps. This reflects the balance of dataset between
simplicity and complexity, essential for comprehensively evaluating reasoning proficiency.

Reasoning complexity, as shown in Figure (e), combines reasoning steps and the number of reasoning
chains to provide a composite indicator of overall reasoning demand. The distribution confirms
that while many instances involve relatively straightforward reasoning, a meaningful subset presents
significant complexity, requiring intricate, multi-faceted reasoning capabilities. Finally, Figure (f)
explores the distribution of images included per sample. It demonstrates a balanced use of visual
information, with most samples featuring several images to guide visual reasoning tasks effectively.
This emphasis on visual context underscores the intent to robustly assess models’ capabilities in
interpreting and reasoning about visually grounded information.

We further compute the ratio between the Relevant Steps (Generated) and the Key Steps (Ground
Truth) to examine the step-level differences between the annotated reasoning chains and those
generated by the models. The results are summarized in table 8.

Table 8 Comparison of Relevant and Key Steps in Reasoning Chains.

Model Ratio
Open-source MLLMs

LLaVA-OV-72B 3.87
LLaVA-CoT 4.29

InternVL2.5-78B 5.15
InternVL2.5-78B-MPO 5.18

InternVL3-78B 5.01
InternVL3-78B-Instruct 5.02

Qwen2.5-VL-7B 5.14
Qwen2.5-VL-72B 5.03

QVQ-72B 6.75

Closed-source MLLMs
GPT-4o 5.46

OpenAI o3 4.93
Claude 3.7 Sonnet 6.09

C.5 ANALYSIS EGARDING THE EVALUATION COST

We acknowledge that the proposed multi-path visual reasoning evaluation framework may incur
additional token consumption and time overhead in practical applications. To address these concerns,
we have conducted a comprehensive and detailed statistical analysis of the evaluation cost.

Specifically, we summarized and analyzed all API calls on the complete MVPBench dataset using the
official GPT-4o pricing ( input 2.50$ / 1M tokens, output 10.00$ / 1M tokens). The detailed results
are summarized in the table 9.

The statistics above indicate that although our evaluation method introduces more sophisticated
assessment dimensions, the overall economic cost remains within a reasonable range. The total cost
for evaluating all 1211 samples is approximately $29.

With an average cost per sample of approximately $0.0060, the evaluation cost per 1000 samples is
about $6, demonstrating that the evaluation expenses are manageable and affordable. This makes our
evaluation method economically feasible even for large-scale testing scenarios. Additionally, each
sample evaluation takes on average only 5.28 seconds, resulting in a total assessment time of merely
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(c) (d)

( e ) ( f )

Figure 10 Additional statistic. Figure a is the Physics Concepts Distribution, this horizontal bar chart shows
the frequency of physical concepts that appear in the reasoning steps. The Y-axis represents physical concepts
, and the X-axis represents the number of occurrences. Figure b is the Query Word Count Distribution, this
histogram shows the distribution of the number of words in the questions. The X-axis represents the number of
words, and the Y-axis represents the frequency. Figure c is the Reasoning Chains Distribution, this histogram
shows how many different reasoning paths each sample contains. Figure d is the Reasoning Steps Distribution,
this histogram shows how many reasoning steps each sample contains. The X-axis represents the number of
steps, and the Y-axis represents the frequency. Figure e is the Reasoning Complexity Distribution, this histogram
shows the distribution of complexity indicators. Complexity is defined as the number of reasoning steps × the
number of different reasoning paths. Figure f is the Sample Images Distribution, this histogram shows how many
images each sample contains.

7.1 hours on one cheap GPU(Even parallel acceleration can be achieved through multi-terminal
operation) for the entire benchmark. PhysReasonZhang et al. (2025c), by contrast,inspect ≈ 8.1
annotated steps (≈ 441 answer tokens) per problem, invoking the scorer for each and driving the
per-item budget to ≈ 1.6k tokens—about $0.048, eight times MVPBench—so its authors released a
trimmed 200-question mini set to keep costs in check. MME-CoTJiang et al. (2025a) is similarly
token-hungry: its three-axis scheme slices the chain-of-thought, adds a reflection sweep, and repeats
for robustness, greatly increasing latency. MVPBench attains the same analytical breadth—CoT
Quality, Efficiency, and a dedicated CoT Diversity metrics—yet requires only one forward pass.
Quality and Efficiency are judged directly from the full answer, while Diversity leverages a compact
directed-graph encoding of all admissible reasoning paths, a single alignment thus yields fine-grained
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Table 9 Evaluation cost and efficiency.

Metric Num
Average Prompt tokens per sample 984.47 tokens

Average Completion tokens per sample 354.31 tokens
Average Tokens per sample 1338.78 tokens

Average Time Consumption per sample 5.28 s
Average Cost per call $0.006004

coverage without iterative decomposition. The result is richer diagnostics at roughly one-tenth the
cost of PhysReason and markedly less time than MME-CoT. Although our method increases the use
of tokens, it brings significant benefits, proving that the additional token usage and time consumption
are justified.

In summary, our evaluation method achieves a favorable balance between additional cost and the
substantial scientific benefits provided. We again thank the reviewers for raising this important
concern.

D MORE QUALITATIVE EXAMPLES

In this section, we present additional qualitative examples to offer deeper insights into our evaluation
framework and illustrate the practical application of our metrics. The examples are organized
into three subsections, each highlighting a specific evaluation dimension: Quality, Diversity, and
Efficiency.

D.1 EXAMPLES OF QUALITY EVALUATION.

This subsection includes eight illustrative examples, as shown in Figure 11 to Figure 18, focusing
specifically on evaluating the quality of the reasoning provided by various models. Each example
showcases detailed analyses of model responses, assessing Step Accuracy Score (SAS) and Key Step
Coverage (KSC).
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Step Accuracy Score (SAS) & Key Step Coverage (KSC)

Question: Fill A with water, ignite B, what happens next 

Answer: B continues to burn in the water for a period of time

Response :

GPT-4o:

Step Partition & Judgment: 

To solve this problem, let's break down the steps and reasoning: 1. Identify the Objects: - A is the area where water is being poured, which is 

the bowl.- B is the candle placed in the center of the bowl. 2. Action 1: Fill A with Water - Water is poured into the bowl (A). The water level 

rises around the candle (B). 3. Action 2: Ignite B - The candle (B) is lit. The flame will burn the wick and melt the wax around it. 4. 

Observation and Reasoning:- As the candle burns, it consumes oxygen from the air around it. - The heat from the flame will cause the air 

inside the bowl to expand slightly. - If the water level is high enough, it might touch the base of the candle, but the candle will continue to 

burn as long as the wick is above water and there is enough oxygen. 5. Final Outcome: - The candle will continue to burn until the wick is 

consumed or the oxygen is depleted. - If the water level rises significantly due to the melted wax or other factors, it might eventually 

extinguish the flame if it reaches the wick. Final Answer: The candle will burn until the wick is consumed or the water level rises enough to 

extinguish the flame.

step_type：background information

conclusion：To solve this problem let's break down the steps and reasoning

step_type：image description

conclusion：A is the area where water is being poured which is the bowl

step_type：image description

conclusion：B is the candle placed in the center of the bowl

step_type：image description

conclusion：Water is poured into the bowl A The water level rises around the candle B

step_type：image description

conclusion：The candle B is lit The flame will burn the wick and melt the wax around it

step_type：logical inference

premise：The candle burns and consumes oxygen from the air around it

conclusion：The heat from the flame will cause the air inside the bowl to expand slightly

step_type：logical inference

premise：The water level is high enough to touch the base of the candle

conclusion：The candle will continue to burn as long as the wick is above water and there is enough oxygen

step_type：logical inference

premise：The candle will continue to burn until the wick is consumed or the oxygen is depleted

conclusion：If the water level rises significantly due to the melted wax or other factors it might eventually extinguish the flame if it 

reaches the wick

step_type：logical inference

premise：The candle will burn until the wick is consumed or the water level rises enough to extinguish the flame

conclusion：B continues to burn in the water for a period of time

final_answer：right

Key Caption:

-  A is a transparent glass bowl

-  B is a complete red candle

Key Conclusion:

-  Light B, and during the burning process, B will melt and drip wax

-  The wax drips meet the water, they will quickly solidify

-  The solidified wax droplets can insulate the water and B, allowing B to continue burning

SAS = 5/8,  Answer = 1 

Key Step Annotation Matching: 

KCS = 3/5 

Key Steps Annotation:

Key Caption: 

A is a transparent glass bowl

B is a red candle

Light B, and during the burning process, B will melt       
and drip wax 

The wax drips meet the water, they will quickly 
solidify

The solidified wax droplets can insulate the water and 
B, allowing B to continue burning

1. 
 

2. 
 

3.  

<image_2>

<image_3>

<image_4>

<image_1>

Single-image Input :  <image_1>

 

Figure 11 Examples of Single-Image SAS–KSC Evaluation on Physics Experiment Data.
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Response :

GPT-4o:

Step Partition & Judgment: 

To analyze what happens step by step, let's break down the process based on the images and the instructions: Step 1: Fill A with water - 

Observation: A is a transparent bowl, and water is being poured into it. The red candle (B) is already placed upright in the center of the bowl. 

- Reasoning: The water level rises in the bowl, but the candle remains above the water surface because it is designed to float or is fixed in 

place. Step 2: Ignite B - Observation: The wick of the red candle (B) is lit, producing a flame. - Reasoning: The candle burns as usual, with 

the flame consuming the wax and wick. The flame is unaffected by the surrounding water because the wick and wax are above the waterline. 

Step 3: What happens next? - Observation: The candle continues to burn, and the heat from the flame melts the wax near the wick. The 

melted wax may drip down or pool around the base of the candle. -Reasoning: The water in the bowl acts as a heat sink, preventing the 

candle from overheating or melting excessively. The flame remains stable as long as the wick is above the water and has access to oxygen. 

Step 4: Final Outcome - Observation: The candle burns steadily while floating or standing in the water. The water prevents the melted wax 

from spreading too far, and the flame remains unaffected. - Reasoning: The setup creates a visually interesting effect where the candle 

appears to burn "on water." The water also adds safety by reducing the risk of fire spreading. Final Answer: When you fill A (the bowl) with 

water and ignite B (the candle), the candle burns steadily while floating or standing in the water. The water acts as a heat sink and safety 

barrier, creating an intriguing visual effect of a burning candle surrounded by water.

step_type: background information  

conclusion: Fill A with water ignite B what happens next   

step_type: background information  

conclusion: Object A is a transparent glass bowl and Object B is a complete red candle  

step_type: image description  

conclusion: A is a transparent bowl and water is being poured into it The red candle B is already placed upright in the center of the bowl  

step_type: logical inference  

premise: The water level rises in the bowl but the candle remains above the water surface because it is designed to float or is fixed in 

place  

conclusion: The candle remains above the water surface  

step_type: image description    

conclusion: The wick of the red candle B is lit producing a flame  

step_type: logical inference  

premise: The candle burns as usual with the flame consuming the wax and wick The flame is unaffected by the surrounding water 

because the wick and wax are above the waterline  

conclusion: The flame is unaffected by the surrounding water  

step_type: image description  

conclusion: The candle continues to burn and the heat from the flame melts the wax near the wick The melted wax may drip down or 

pool around the base of the candle  

step_type: logical inference  

premise: The water in the bowl acts as a heat sink preventing the candle from overheating or melting excessively The flame remains 

stable as long as the wick is above the water and has access to oxygen  

conclusion: The flame remains stable as long as the wick is above the water  

step_type: image description  

conclusion: The candle burns steadily while floating or standing in the water The water prevents the melted wax from spreading too far 

and the flame remains unaffected  

step_type: logical inference  

premise: The setup creates a visually interesting effect where the candle appears to burn on water The water also adds safety by reducing 

the risk of fire spreading  

conclusion: The candle appears to burn on water  

step_type: logical inference  

premise: When you fill A the bowl with water and ignite B the candle the candle burns steadily while floating or standing in the water. 

The water acts as a heat sink and safety barrier creating an intriguing visual effect of a burning candle surrounded by water  

conclusion: B continues to burn in the water for a period of time  

final_answer: right

Key Caption:

-  A is a transparent glass bowl

-  B is a complete red candle

Key Conclusion:

-  Light B, and during the burning process, B will melt and drip wax

-  The wax drips meet the water, they will quickly solidify

-  The solidified wax droplets can insulate the water and B, allowing B to continue burning

SAS = 8/9,  Answer = 1 

Key Step Annotation Matching: 

KCS = 4/5 

Multi-image Input :  <image_1,2,3,4>

 

Figure 12 Examples of Multi-Image SAS–KSC Evaluation on Physics Experiment Data: Enhanced
Visual Context Enables Richer Reasoning and Performance Gains.
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Step Accuracy Score (SAS) & Key Step Coverage (KSC)

Answer: The internal resistance of the silicon photovoltaic cell is 5.5 Ω

Response :

GPT-4o:

Step Partition & Judgment: 

Solution outline (concise, without exposing private internal deliberation): 1. The operating point of the circuit is given by

the intersection of curve a (the battery’s U-I characteristic at this light intensity) and straight line b (the U-I relation of the

external resistor R). 2. From the graph, the two curves cross at I ≈ 0.25 A , U ≈ 2.5 V. 3. For the battery, the open-circuit

(no-load) terminal voltage is the vertical-axis intercept of curve a, which the graph shows to be about U0 ≈ 3.6 V . 4. The

battery’s internal resistance r at that light intensity is obtained from r = (U0 – U) / I. Substituting the coordinates of the

operating point: r = (3.6 V – 2.5 V) ÷ 0.25 A = 1.1 V ÷ 0.25 A≈ 4.4 Ω . 5. Answer: The internal resistance of the silicon

photocell at the given light intensity is approximately 4.4 Ω.

step_type：background information

conclusion：The operating point of the circuit is given by the intersection of curve a (the battery’s U-I characteristic at this light 

intensity) and straight line b (the U-I relation of the external resistor R).",

step_type：image description

conclusion：From the graph, the two curves cross at I ≈ 0.25 A, U ≈ 2.5 V.

step_type：image description

conclusion：For the battery, the open-circuit (no-load) terminal voltage is the vertical-axis intercept of curve a, which the graph 

shows to be about U0 ≈ 3.6 V.

step_type：logical inference

premise：The battery’s internal resistance r at that light intensity is obtained from r = (U0 – U) / I.

conclusion：Substituting the coordinates of the operating point: r = (3.6 V – 2.5 V) ÷ 0.25 A = 1.1 V ÷ 0.25 A ≈ 4.4 Ω.

step_type：logical inference

premise：The battery’s internal resistance r at that light intensity is obtained from r = (U0 – U) / I.

conclusion：Substituting the correct coordinates of the operating point: r = (3.6 V – 2.5 V) ÷ 0.25 A = 1.1 V ÷ 0.25 A ≈ 4.4 Ω.

Key Conclusion:

-First, focus on the red dot marked in the figure. According to Ohm's Law, U=E-Ir. When I = 0, E = U. Therefore, 
the red dot where the graph line a intersects the vertical axis represents E =3.6V.

-Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor Ur is 2.5V, 
and the current Ur is 0.2A.

-The internal resistance r of the silicon photovoltaic cell is r = (E-U)/I = (3.6-2.5)/0.2=5.5 Ω.

SAS = 2/5,  Answer = 0 

Key Step Annotation Matching: 

KCS = 1/3 

Key Steps Annotation:

First, using U = E − Ir, the red point at I = 0 gives E = 
3.6 V.

Next, at the operating point, the resistor shows U_R = 
2.5 V with I = 0.2 A.

Hence the internal resistance is r = (E − U_R)/I = (3.6 
− 2.5)/0.2 ≈ 5.5 Ω.

1. 

2. 

3.  

<image_1>

Single-image Input :  <image_1>

Question: As shown in the figure, curve a is the

photocell’s U-I characteristic at a fixed light level, and

curve b is the U-I line for resistor R. When the two are

connected to form a closed circuit, what is the

photocell’s internal resistance?

<image_2>

<image_3>

Figure 13 Examples of Single-Image SAS–KSC Evaluation on Physics Problems Data with GPT-4o.
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Response :

GPT-4o:

Step Partition & Judgment: 

When the silicon photocell is connected to the resistor R, the working point of the circuit is the intersection P of curve a

(photocell U-I characteristic) and line b (resistor U-I characteristic). 1. From the graph this intersection is at current I ≈ 0.20 A

terminal voltage U ≈ 2.5 V. 2. The open-circuit (no-load) voltage of the photocell, i.e. the intercept of curve a on the U-axis, is

about E ≈ 3.6 V. 3. For a source with emf E, terminal voltage U and current I, the internal resistance r = (E – U) / I. 4.

Substituting the values read from the graph , r = (3.6 V – 2.5 V) / 0.20 A ≈5.5Ω. 5. Therefore, the internal resistance of the

silicon photocell at this light intensity is about r ≈ 5.5 Ω.

step_type：background information

conclusion：When the silicon photocell is connected to the resistor R, the working point of the circuit is the intersection P of curve a 

(photocell U-I characteristic) and line b (resistor U-I characteristic).

step_type：image description

conclusion：From the graph this intersection is at current I ≈ 0.20 A and terminal voltage U ≈ 2.5 V.

step_type：image description

conclusion：The open-circuit (no-load) voltage of the photocell, i.e. the intercept of curve a on the U-axis, is about E ≈ 3.6 V.

step_type: background information

conclusion: For a source with emf E, terminal voltage U and current I, the internal resistance r is r = (E – U) / I.

step_type：logical inference

premise：E = 3.6 V, U = 2.5 V, I = 0.20 A

conclusion：Substituting the values read from the graph, r = (3.6 V – 2.5 V) / 0.20 A, r ≈ 5.5 Ω.

step_type：logical inference

premise：E = 3.6 V, U = 2.5 V, I = 0.20 A.

conclusion：Therefore, the internal resistance of the silicon photocell at this light intensity is about r ≈ 5.5 Ω.

Key Conclusion:

-First, focus on the red dot marked in the figure. According to Ohm's Law, U=E-Ir. When I = 0, E = U. Therefore, 
the red dot where the graph line a intersects the vertical axis represents E =3.6V.

-Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor Ur is 2.5V, 
and the current Ur is 0.2A.

-The internal resistance r of the silicon photovoltaic cell is r = (E-U)/I = (3.6-2.5)/0.2=5.5 Ω.

SAS = 6/6,  Answer =1

Key Step Annotation Matching: 

KCS = 3/3 

Multi-image Input : <image_1,2,3>

Figure 14 Examples of Multi-Image SAS–KSC Evaluation on Physics Tasks with GPT-4o: Enhanced
Visual Context Boosts Reasoning and Performance.
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Response :

Internvl3-78B:

Step Partition & Judgment: 

To determine the internal resistance of the silicon photocell when it forms a closed loop with the resistor R at a certain light

intensity, we need to use the given U-I graph. 1. Identify the Open-Circuit Voltage $U_{oc} $: The open-circuit voltage is the

voltage across the battery when no current flows (i. e., \( I = 0 \)).From the graph, when \( I = 0 \), \( U = 3.6 \) V. Therefore,

$U_{oc} $= 3.6 \) V. 2. Determine the Short-Circuit Current $I_{sc}$ :The short-circuit current is the current when the voltage

across the battery is zero (i. e., \( U = 0 \)). From the graph, when \( U = 0 \), \( I = 0.4 \) A. Therefore, \( $I_{sc}$= 0.4 \) A. 3.

Calculate the Internal Resistance $r$ :The internal resistance of the battery can be calculated using the formula: $r =

\frac{U_{oc}}{I_{sc}}$. Substituting the values: $r = \frac{3.6 \text{ V}}{0.4 \text{ A}} = 9 Ω$. 4. The internal resistance of

the silicon photocell at this light intensity is 9 Ω.

step_type：image description

conclusion：The open-circuit voltage is the voltage across the battery when no current flows (i.e., I = 0). From the graph, when I = 0, 

U = 3.6 V.

step_type：image description

conclusion：The short-circuit current is the current when the voltage across the battery is zero (i.e., U = 0). From the graph, when U = 

0, I = 0.4 A.

step_type：logical inference

premise：U_oc = 3.6 V. I_sc = 0.4 A.

conclusion：The internal resistance of the battery can be calculated using the formula: r = U_oc / I_sc. Substituting the values: r = 3.6 

V / 0.4 A = 9 Ω.

step_type：logical inference

premise：U_oc = 3.6 V. I_sc = 0.4 A.

conclusion：The internal resistance of the silicon photocell at this light intensity is 9 Ω.

Key Conclusion:

-First, focus on the red dot marked in the figure. According to Ohm's Law, U=E-Ir. When I = 0, E = U. Therefore, 
the red dot where the graph line a intersects the vertical axis represents E =3.6V.

-Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor Ur is 2.5V, 
and the current Ur is 0.2A.

-The internal resistance r of the silicon photovoltaic cell is r = (E-U)/I = (3.6-2.5)/0.2=5.5 Ω.

SAS = 1/4,  Answer =0

Key Step Annotation Matching: 

KCS = 1/3 

Multi-image Input : <image_1,2,3>

Figure 15 Examples of Multi-Image SAS–KSC Evaluation on Physics Problems Data with InternVL2.5.
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Step Accuracy Score (SAS) & Key Step Coverage (KSC)

Answer: B is located to the left rear of A

Response :

GPT-4o:

Step Partition & Judgment: 

To determine the direction of object B from the first-person perspective of object A, follow these steps: 1.Identify the Orientation of Object A:   

- Object A is a vehicle facing towards the top left of the image, moving diagonally across the intersection. 2.Determine Object A's Forward 

Direction: - From the perspective of object A, the forward direction is towards the top left corner of the image. 3.Locate Object B Relative to 

Object A:- Object B is positioned towards the bottom of the image, moving upwards. 4. Determine the Direction from A to B: - From object 

A's perspective, object B is located to the right and slightly behind. 5.Final Direction: - Therefore, from the first-person perspective of object A, 

object B is to the right.

step_type：background information

conclusion：To determine the direction of object B from the first-person perspective of object A, follow these steps

step_type：image description

conclusion：Object A is a vehicle facing towards the top left of the image, moving diagonally across the intersection

step_type：logical inference

premise: Object A is a vehicle facing towards the top left of the image.

conclusion：From the perspective of object A, the forward direction is towards the top left corner of the image

step_type：image description

conclusion：Object B is positioned towards the bottom of the image, moving upwards

step_type：logical inference

premise：From the perspective of object A, the forward direction is towards the top left corner of the image. Object B is positioned 

towards the bottom of the image

conclusion：From object A's perspective, object B is located to the right and slightly behind

step_type：logical inference

premise：From object A's perspective, object B is located to the right and slightly behind

conclusion：Therefore, from the first-person perspective of object A, object B is to the right

Key Conclusion:

- Identify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a 

yellow and black car near the bottom of the intersection

- Determine the direction of object A. Object A is located on the road with its back facing the camera, facing 

towards the upper left corner of the image

- Determine the relative position of object B. Object B is located below Object A, slightly to the right

- Determine direction. From the first person perspective of object A, object B is located in the left rear

SAS = 2/6,  Answer = 0 

Key Step Annotation Matching: 

KCS = 1/4 

Key Steps Annotation:

A is a yellow and black car at the top of the intersection 
B is a yellow and black car near the bottom

A faces the upper left, back toward the camera

B is located below, slightly to the right

From A’s view, B is in the left rear

1. 
 

2. 
 
3.

4.  
<image_1>

Single-image Input :  <image_1>

 

Question: From A's perspective, which direction is B 

<image_5>

<image_2>

<image_4>

<image_3>

Figure 16 Examples of Single-Image SAS–KSC Evaluation on Spatial Relations Data with GPT-4o.
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Response :

GPT-4o:

Step Partition & Judgment: 

To determine the direction of object B from the perspective of object A, follow these steps: 1. Identify the Position of Object A:

- Object A is the taxi at the top left of the image. 2. Draw a Line from Object A to Object B: Imagine or draw a straight line from

the front of Object A (the taxi) to Object B (the other taxi at the bottom right). 3. Determine the Relative Direction: - From the

perspective of Object A, determine which way Object B is located relative to the direction Object A is facing. Object B is

positioned slightly to the right and directly in front of Object A. 4. Use the Blue Arrow for Clarification: - The blue arrow in the

final image shows the direction from Object A to Object B, pointing forward and slightly to the right. 5. Conclusion: Object B is

in front of and to the right of Object A. 6. Final Direction: From the perspective of Object A, Object B is in front and to the right.

step_type：image description

conclusion：Object A is the taxi at the top left of the image.

step_type：image description

conclusion：Object B is the taxi at the bottom right of the image.

step_type：logical inference

premise: Object A is the taxi at the top left of the image. Object B is the taxi at the bottom right of the image.

conclusion：Draw a line from the front of Object A to Object B.

step_type：logical inference

premise: Draw a line from the front of Object A to Object B.

conclusion：Object B is positioned slightly to the right and directly in front of Object A.

step_type：image description

conclusion：The blue arrow in the image shows the direction from Object A to Object B

step_type：logical inference

premise：The blue arrow in the image shows the direction from Object A to Object B.

conclusion：The blue arrow points forward and slightly to the right.

step_type：logical inference

premise：Object B is positioned slightly to the right and directly in front of Object A.

conclusion：From the perspective of Object A, Object B is in front and to the right.

Key Conclusion:

-Identify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a 
yellow and black car near the bottom of the intersection.

-Determine the direction of object A. Object A is located on the road with its back facing the camera, facing 
towards the upper left corner of the image.

-Determine the relative position of object B. Object B is located below Object A, slightly to the right.

-Determine direction. From the first person perspective of object A, object B is located in the left rear.

SAS = 3/7,  Answer = 0 

Key Step Annotation Matching: 

KCS = 1/4 

Multi-image Input :  <image_1,2,3,4,5>

Figure 17 Examples of Multi-Image SAS–KSC Evaluation on Spatial Relations Data with GPT-4o:
Enhenced Visual Context Enables Richer Reasoning and Performance Gains.
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Response :

InternVL2.5:

Step Partition & Judgment: 

To determine the direction of object B from the first-person perspective of object A, we need to analyze the images provided step-by-step: 1.

Identify Object A's Perspective: - Object A is a vehicle located at the top left of the intersection, facing towards the right side of the image.

The arrow pointing from object A indicates its forward direction. 2. Identify Object B's Position: Object B is another vehicle located at the

bottom center of the intersection, facing upwards in the image. The arrow pointing from object B indicates its forward direction. 3. Determine

Object A's Forward Direction:- From the first-person perspective of object A, the vehicle is facing towards the right side of the image, which

corresponds to the east direction in a typical map orientation. 4. Determine Object B's Relative Position: - Object B is positioned below object

A in the image. From object A's perspective, this means object B is located towards the south. 5. Analyze the Relative Direction: Since object

A is facing east, and object B is positioned towards the south from object A's perspective, object B is located to the right and slightly behind

object A. 6. Final Direction: From object A's perspective, object B is in the southeast direction.

step_type：background information

conclusion：To determine the direction of object B from the first-person perspective of object A, we need to analyze the images 

provided step-by-step

step_type：image description

conclusion：Object A is a vehicle located at the top left of the intersection, facing towards the right side of the image. The arrow 

pointing from object A indicates its forward direction.

step_type：image description

conclusion：Object B is another vehicle located at the bottom center of the intersection, facing upwards in the image. The arrow 

pointing from object B indicates its forward direction.

step_type：logical inference

premise: From the first-person perspective of object A, the vehicle is facing towards the right side of the image.

conclusion：Object A is facing towards the east direction in a typical map orientation.

step_type：logical inference

premise: Object B is positioned below object A in the image.

conclusion：From object A's perspective, this means object B is located towards the south.

step_type：logical inference

premise：Object A is facing east, and object B is positioned towards the south from object A's perspective.

conclusion：Object B is located to the right and slightly behind object A.

step_type：logical inference

premise：From object A's perspective, object B is positioned towards the south

conclusion：Object B is in the southeast direction.

Key Conclusion:

-Identify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a 
yellow and black car near the bottom of the intersection.

-Determine the direction of object A. Object A is located on the road with its back facing the camera, facing 
towards the upper left corner of the image.

-Determine the relative position of object B. Object B is located below Object A, slightly to the right.

-Determine direction. From the first person perspective of object A, object B is located in the left rear.

SAS = 2/7,  Answer = 0 

Key Step Annotation Matching: 

KCS = 1/4 

Multi-image Input :  <image_1,2,3,4,5>

Figure 18 Examples of Multi-Image SAS–KSC Evaluation on Spatial Relations Data with InternVL3.
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D.2 EXAMPLES OF DIVERSITY EVALUATION.

Figure 19 provides an example illustrating our diversity evaluation metrics - Path Validity Rate (PVR)
and Path Coverage Score (PCS). We find that models vary in their ability to explore diverse reasoning
paths when processing both single-image and multi-image inputs.

Path Validity Rate (PVR) & Path Coverage Score (PCS)

Question: If A is quickly flicked away by B, what happens next 

Answer: C falls almost straight down into the glass

Model Path :

GPT-4o:

Reference Graph Construction: 

Key Caption: 

A is a playing card

B is a opening glass

C is a coin resting on A

<image_1>

Single-image Input :  <image_1>

 

Key Steps Annotation:

A and C are at rest and have inertia

A flies out due to impact, C remains 
stationary due to inertia

C falls into a glass due to gravity

1. 
 

2. 
 

3.  

<image_2>

<image_3>

<image_4>

Multi-path CoT: 

𝑠𝑡𝑒𝑝1 → 𝑠𝑡𝑒𝑝2 → 𝑠𝑡𝑒𝑝3

𝑠𝑡𝑒𝑝1 → 𝑠𝑡𝑒𝑝3 → 𝑠𝑡𝑒𝑝2

𝑠𝑡𝑒𝑝1 → 𝑠𝑡𝑒𝑝2 → 𝑠𝑡𝑒𝑝3

2

Multi-image Input :  <image_1,2,3,4>

 

PVR: 3/3 

PCS: 4/4 

3

3 2

1

final

2 3

1 final

match

1 2 3

finalModel:

1 2 3

finalGT:

LCS (Model, GT) = 4

𝑷𝑽𝑹𝒂𝒅𝒋 = PVR ×
𝒎𝒊𝒏(𝟏,𝟐)

𝟐
 

𝑷𝑪𝑺𝒂𝒅𝒋 = PCS ×  𝒆(−𝜶∙(
𝟏

𝟐
−𝟏))

Model Path :

GPT-4o:

Reference Graph Construction: 

𝑠𝑡𝑒𝑝1 → 𝑠𝑡𝑒𝑝2 → 𝑠𝑡𝑒𝑝3

2

PVR: 3/3 

PCS: 4/4 

3

3 2

1

final

2 3

1 final

match

1 2 3

finalModel:

1 2 3

finalGT:

LCS (Model, GT) = 4

𝑷𝑽𝑹𝒂𝒅𝒋 = PVR ×
𝒎𝒊𝒏(𝟐,𝟐)

𝟐
 

𝑷𝑪𝑺𝒂𝒅𝒋 = PCS ×  𝒆(−𝜶∙(
𝟐

𝟐
−𝟏))

𝑠𝑡𝑒𝑝1 → 𝑠𝑡𝑒𝑝3 → 𝑠𝑡𝑒𝑝2

Figure 19 Examples of Single- and Multi-Image PVR-PCS Evaluation on Spatial Relations Data with
GPT-4o.

D.3 EXAMPLES OF EFFICIENCY EVALUATION.

Figure 20 focuses on evaluating step relevance, clearly indicating how accurately and succinctly the
models identify and utilize pertinent information from visual and textual inputs. Figure 21 specifically
illustrates a scenario examining reflection validity, detailing the ability of model to avoid redundant
or incorrect reasoning paths.
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Step Relevance Score (SRS)

Question: From object A's view, which direction is object B

Answer: Object B is located to the left rear of Object A

Response :

Qwen2.5-VL-72B:

Step Partition & Judgment: 

To determine the direction of object B from the first-person perspective of object A, let's follow these steps: 1. Identify Object A and Object 

B   - Object A is indicated by the red arrow pointing to the right side of the image. - Object B is indicated by the red arrow pointing to the 

left side of the image. 2. Determine the Position of Object A: - Object A is located on the right side of the image, near the black car. 3. 

Determine the Position of Object B: - Object B is located on the left side of the image, near the white truck. 4. Establish the First-Person 

Perspective of Object A:  - If we imagine standing at the position of Object A, we need to consider the relative positions of other objects 

from this viewpoint. 5. Calculate the Direction of Object B from Object A: - From the position of Object A (right side), Object B (left side) 

would be to the left when looking straight ahead. 6. Consider the Orientation of the Scene: - The scene is a street view with a crosswalk. The 

direction "left" from Object A's perspective aligns with the left side of the image. Final Answer: From the first-person perspective of Object 

A, Object B is to the left.

step_type：image description

conclusion：Object A is indicated by the red arrow pointing to the right side of the image

step_type：image description

conclusion：Object B is indicated by the red arrow pointing to the left side of the image

step_type：image description

conclusion：Object A is located on the right side of the image near the black car

step_type：image description

conclusion：Object B is located on the left side of the image near the white truck

step_type：logical inference

conclusion：Consider the relative positions of other objects from Object A's viewpoint

step_type：logical inference

conclusion：From the position of Object A Object B would be to the left when looking straight ahead

step_type：background information

conclusion：The scene is a street view with a crosswalk

step_type：logical inference

conclusion：The direction left from Object A's perspective aligns with the left side of the image

SRS = 7/8 

Key Steps Annotation:

Key Caption: 

A is the black car on the right

B is the white car on the left

A faces the camera from the side and is located in the 
middle of the road facing to the right 

B is located in the upper left corner of A, on the right 
side of the road

From object A's view, B is located in the left rear 
direction

1. 
 

2. 
 

3.  

<image_2>

<image_3>

<image_4>

<image_1>

Single-image Input :  <image_1>

 

Figure 20 Examples of Step Relevance Score Evaluation.
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Reflection Validity Rate (RVR)

Question: How can you speed up the separation of B's peels

Answer: Combined thermal and osmotic effects reduce peel adhesion strength

Response :

QVQ-72B:

Step Partition & Judgment: 

So I've got this problem here: "How to accelerate the separation of B peels?" And looking at the image, item B is an orange. So, I need to 

figure out how to speed up the process of separating the peel from the fruit. Let me think about this step by step. First, I need to understand 

what's involved in separating the peel from an orange. Normally, you'd take the orange and peel it manually, right? But that can be time-

consuming and messy. So, maybe there's a better way to do it quickly. One idea that comes to mind is using a tool designed for peeling fruits. 

For example, there are citrus peelers that can help remove the peel efficiently. Maybe one of the other items in the image can be used for this 

purpose. Let's see: - A: A pink thermos bottle – Doesn't seem relevant for peeling an orange. - C: A small white bowl – Could be used for 

holding the peeled orange, but not for peeling. - D: An orange spoon – This might be useful for scooping out the flesh after peeling, but 

again, not directly for separating the peel. - E: A white spoon – Similar to D, probably not for peeling. - F: A glass mug – Not suitable for 

peeling. Hmm, so none of these items seem specifically designed for peeling oranges. Maybe I need to think of a different approach. 

Another thought: perhaps using heat or cold to make the peel easier to remove. For instance, microwaving the orange briefly could make the 

peel looser, allowing for easier separation. Alternatively, refrigerating it might have the opposite effect, making the peel tighter and harder to 

remove. So, maybe heat is a better option. But the image shows a thermos bottle, which is used for keeping drinks hot or cold. If I had to use 

that, perhaps filling it with hot water and letting the orange sit in warm water for a bit could soften the peel and make it easier to remove. 

However, I'm not sure if that's the most efficient way. Wait a minute, maybe I can use the thermos bottle to heat up the orange directly. But 

that seems unsafe and impractical. Let's discard that idea. Let me consider another angle. Perhaps cutting the orange with a knife could help 

in separating the peel. For example, scoring the peel and then lifting it off. But that seems like a standard peeling method and might not 

necessarily accelerate the process…

…

conclusion: None of the items are specifically designed for peeling oranges

error_type: Wrong Conclusion

conclusion: Using heat to make the peel easier to remove might be a better option

error_type: Wrong Conclusion

conclusion: Using the thermos bottle to heat up the orange directly seems unsafe and impractical

error_type: N/A

conclusion: Cutting the orange with a knife is a standard method and might not accelerate the process

error_type: Wrong Conclusion

…

RVR = 1/4 

Key Steps Annotation:

Key Caption: 

(A) Thermos (B) orange 

(C) baking soda (D) spoon…

85C water flows from A to F 

Granular diffusion occurs when D transfers C crystals 
into F

Osmotic pressure differential drives solution 
penetration into B's peel

1. 
 

2. 
 

3.  

<image_2>

<image_3>

<image_4>

<image_1>

Single-image Input :  <image_1>

 
redundant reflection

Figure 21 Examples of Reflection Validity Rate Evaluation.

E LIMITATION

Our benchmark design, while aiming for rigorous evaluation of visual physical reasoning, inherits
several limitations from both dataset construction and evaluation methodology. (i) Scene and Domain
Coverage: Despite our efforts to include diverse physical scenarios, MVPBench cannot fully capture
the long-tail distribution of real-world physics. This may limit the generalizability of conclusions
drawn from our evaluation. To address this, we plan to iteratively expand the dataset with community
feedback and new task paradigms. (ii) Annotation Subjectivity: Ground-truth reasoning chains,
although carefully curated, may still carry annotator bias in step granularity or interpretation of visual
cues. We mitigate this by introducing a graph-based CoT consistency metric to allow flexible yet
principled comparisons across models. (iii) Model Usage Constraints: Our evaluation depends on
the output of proprietary MLLMs (e.g., GPT-4o), which restricts full control over model internals
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and fine-tuning procedures. As such, we treat model predictions as black-box outputs and encourage
future work to validate findings across both open and closed-source systems for robustness.

F BROADER IMPACTS

Positive Impacts: On the positive side, this work has the potential to significantly enhance human-AI
collaboration in fields such as education, scientific research, and accessibility, by enabling models to
perform more transparent and interpretable reasoning across visual and textual modalities.

Negative Impacts: The potential negative societal impacts of our work are similar to those associated
with other MLLMs and LLMs. The development of Visual CoT and MLLMs, while advancing AI,
poses societal risks such as increased privacy invasion, the perpetuation of biases, the potential for
misinformation, job displacement, and ethical concerns regarding accountability and consent.

Mitigation Strategies: To mitigate the aforementioned risks, several strategies are considered
throughout the development and deployment of our model. First, we adopt a rigorous data curation
process aimed at minimizing the propagation of harmful biases, ensuring that training data is as
diverse, inclusive, and representative as possible. Second,privacy-preserving techniques such as data
anonymization and adherence to data protection regulations (e.g., GDPR) are employed to safeguard
user information. Third, we emphasize responsible release practices, including usage guidelines,
model cards, and risk documentation, to inform users of the model’s intended scope and limitations.
Lastly, we advocate for continued interdisciplinary collaboration with ethicists, legal experts, and
affected communities to ensure that the deployment of MLLMs aligns with broader societal values
and norms.

G DETAILED EVALUATION PROMPTS

G.1 COT QUALITY EVALUATION PROMPTS
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SAS Evaluation Prompt
# Task Overview
Given a solution with multiple reasoning steps for an image-based problem, reformat it into 
well-structured steps and evaluate their correctness.

# Step 1: Reformatting the Solution
Convert the unstructured solution into distinct reasoning steps while:
- Preserving all original content and order
- Not adding new interpretations
- Not omitting any steps

## Step Types
1. Logical Inference Steps
   - Contains exactly one logical deduction
   - Must produce a new derived conclusion
   - Cannot be just a summary or observation

2. Image Description Steps
   - Pure visual observations
   - Only includes directly visible elements
   - No inferences or assumptions

3. Background Information Steps
   - External knowledge or question context
   - No inference process involved

## Step Requirements
- Each step must be atomic (one conclusion per step)
- No content duplication across steps
- Initial analysis counts as background information
- Final answer determination counts as logical inference

# Step 2: Evaluating Correctness
Evaluate each step against:

## Ground Truth Matching
For image descriptions:
- Key elements must match ground truth descriptions

For logical inferences:
- Conclusion must EXACTLY match or be DIRECTLY entailed by ground truth

## Reasonableness Check (if no direct match)
Step must:
- Premises must not contradict any ground truth or correct answer
- Logic is valid
- Conclusion must not contradict any ground truth 
- Conclusion must support or be neutral to correct answer

1
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SAS Evaluation Prompt
## Judgement Categories
- "Match": Aligns with ground truth
- "Reasonable": Valid but not in ground truth
- "Wrong": Invalid or contradictory
- "N/A": For background information steps

# Output Requirements
1. The output format MUST be in valid JSON format without ANY other content.
2. For highly repetitive patterns, output it as a single step.
3. Output maximum 35 steps. Always include the final step that contains the answer.

Here is the json output format:
## Output Format
[
  {{
    "step_type": "image description|logical inference|background information",
    "premise": "Evidence (only for logical inference)",
    "conclusion": "Step result",
    "judgment": "Match|Reasonable|Wrong|N/A"
  }}
]

Here is the problem, and the solution that needs to be reformatted to steps:

[Problem]

{question}

[Solution]

{solution}

[Correct Answer]

{answer}

[Ground Truth Information]

{gt_annotation}

2
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KSC  Evaluation Prompt
You are an expert system for verifying solutions to image-based problems. Your task is to 
match the ground truth middle steps with the provided solution.

INPUT FORMAT:
1. Problem: The original question/task
2. A Solution of a model
3. Ground Truth: Essential steps required for a correct answer

MATCHING PROCESS:

You need to match each ground truth middle step with the solution:

Match Criteria:
- The middle step should exactly match in the content or is directly entailed by a certain content 
in the solution
- All the details must be matched, including the specific value and content
- You should judge all the middle steps for whethere there is a match in the solution

OUTPUT FORMAT:
JSON array of judgments:
[
  {{
    "step_index": <integer>,
    "judgment": "Matched" | "Unmatched",
  }}
]

ADDITIONAL RULES:
1. Only output the json array with no additional information.
2. Judge each ground truth middle step in order without omitting any step.

Here is the problem，answer, solution, and the ground truth middle steps:

[Problem]

{question}

[Answer]

{answer}

[Solution]

{solution}

[Ground Truth Information]

{gt_annotation}

G.2 COT DIVERSITY EVALUATION PROMPTS
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You are given a question about a physical experiment and several key reasoning steps. 

Your goal is to identify ALL possible valid reasoning chains that logically connect the 
question to the final answer.

Each reasoning chain should include all key steps exactly once, arranged in a logically 
valid order. 

Steps may be combined in different logical orders as long as the overall reasoning 
makes sense.

Think carefully: there may be multiple valid chains based on how the steps can be 
logically ordered. 

Your job is to find as many valid logical chains as possible.
INPUT FORMAT: 
1. Question: The original question/task
2. Final Answer: Answer to the original question
2. Key Reasoning Steps: A list of essential reasoning steps, each with an ID and 
explanation.

Output format 

JSON array of judgments:
[
["key_step_1", "key_step_2", "key_step_3"],
["key_step_1", "key_step_3", "key_step_2"] 
]

ADDITIONAL RULES:
1. Only output the json array with no additional information.

Here is the question, answer, and the Key Reasoning Steps:
[Question]

{question}

[Final Answer]

{answer}

[Solution]

{solution}

Diversity Evaluation Prompt

Diversity Evaluation Prompt
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G.3 COT EFFICIENCY EVALUATION PROMPTS

PVR Rate  Prompt

# Task Overview
Given a solution with multiple reasoning steps for an image-based problem, evaluate the 
relevance to get a solution (ignore correct or wrong) of each step.

# Step 1: Reformatting the Solution
Convert the unstructured solution into distinct reasoning steps while:
- Preserving all original content and order
- Not adding new interpretations
- Not omitting any steps

## Step Types
1. Logical Inference Steps
   - Contains exactly one logical deduction
   - Must produce a new derived conclusion
   - Cannot be just a summary or observation

2. Image Description Steps
   - Pure visual observations
   - Only includes directly visible elements
   - No inferences or assumptions

3. Background Information Steps
   - External knowledge or question context
   - No inference process involved

## Step Requirements
- Each step must be atomic (one conclusion per step)
- No content duplication across steps
- Initial analysis counts as background information
- Final answer determination counts as logical inference

# Step 2: Evaluating Relevancy
A relevant step is considered as: 75% content of the step must be related to trying to get 
a solution (ignore correct or wrong) to the question. 

**IMPORTANT NOTE**: 
Evaluate relevancy independent of correctness. As long as the step is trying to get to a 
solution, it is considered relevant. Logical fallacy, knowledge mistake, inconsistent with 
previous steps, or other mistakes do not affect relevance.
A logically wrong step can be relevant if the reasoning attempts to address the question.

1

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

PVR Rate  Prompt

The following behaviour is considered as relevant:
i. The step is planning, summarizing, thinking, verifying, calculating, or confirming an 
intermediate/final conclusion helpful to get a solution.
ii. The step is summarizing or reflecting on previously reached conclusion relevant to 
get a solution.
iii. Repeating the information in the question or give the final answer.
iv. A relevant image depiction shoule be in one of following situation: 1. help to obtain 
a conclusion helpful to solve the question later; 2. help to identify certain patterns in the 
image later; 3. directly contributes to the answer
v. Depicting or analyzing the options of the question is also relevant.
vi. Repeating previous relevant steps are also considered relevant. 

The following behaviour is considered as irrelevant: 
i. Depicting image information that does not related to what is asking in the question.  
Example: The question asks how many cars are present in all the images. If the step 
focuses on other visual elements like the road or building, the step is considered as 
irrelevant.
ii. Self-thought not related to what the question is asking.
iii. Other information that is tangential for answering the question.

# Output Format
[
  {{
    "step_type": "image description|logical inference|background information",
    "conclusion": "A brief summary of step result",
    "relevant": "Yes|No"
  }}
]

# Output Rules
Direct JSON output without any other output
Output at most 40 steps

Here is the problem, and the solution that needs to be reformatted to steps:

[Problem]

{question}

[Solution]

{solution}

2
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PCS Prompt
# Task
Evaluate reflection steps in image-based problem solutions, where reflections are self-corrections or 
reconsiderations of previous statements.

# Reflection Step Identification 
Reflections typically begin with phrases like:
- "But xxx"
- "Alternatively, xxx" 
- "Maybe I should"
- "Let me double-check"
- "Wait xxx"
- "Perhaps xxx"
It will throw an doubt of its previously reached conclusion or raise a new thought.

# Evaluation Criteria
Correct reflections must:
1. Reach accurate conclusions aligned with ground truth
2. Use new insights to find the mistake of the previous conclusion or verify its correctness. 

Invalid reflections include:
1. Repetition - Restating previous content or method without new insights
2. Wrong Conclusion - Reaching incorrect conclusions vs ground truth
3. Incompleteness - Proposing but not executing new analysis methods
4. Other - Additional error types

# Input Format
```
[Problem]
{question}

[Solution]
{solution}

[Ground Truth]
{gt_annotation}
```

# Output Requirements
1. The output format must be in valid JSON format without any other content.
2. Output maximum 30 reflection steps.

Here is the json output format:
## Output Format
```json
[
  {{
    "conclusion": "One-sentence summary of reflection outcome",
    "judgment": "Correct|Wrong",
    "error_type": "N/A|Repetition|Wrong Conclusion|Incompleteness|Other"
  }}
]
```
# Rules
1. Preserve original content and order
2. No new interpretations
3. Include ALL reflection steps
4. Empty list if no reflections found
5. Direct JSON output without any other output
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H SETUP

H.1 EXPERIMENT SETUP

Evaluation Models. To comprehensively assess performance on MVPBench, we selected a diverse
array of multimodal large language models (MLLMs), encompassing both open-source and closed-
source frameworks. Among open-source models, we evaluated LLaVA-OV 72BLi et al. (2025a),
LLaVA-CoTXu et al. (2024), InternVL2.5 78BChen et al. (2024b), InternVL2.5-MPO 78BWang et al.
(2024b), InternVL3 (78B, 78B-Instruct)Zhu et al. (2025), Qwen2.5-VL (7B, 72B)Bai et al. (2025),
QVQ-72BQwen Team (2024), as well as the recently included Qwen2VL-2BWang et al. (2024a), MM
Eureka-7BMeng et al. (2025), and R1-VL-2BZhang et al. (2025a), representing various architectures
and multimodal integration strategies. Specifically, InternVL2.5-78B-MPO and InternVL3-78B-
Instruct underwent mixed preference optimization (MPO) post-training, while InternVL2.5-78B
and InternVL3-78B remained unmodified. Furthermore, Qwen2.5VL-7B and Qwen2VL-2B, along
with their respective post-trained variants—MM Eureka-7B, which employs large-scale rule-based
reinforcement learning (RL), and R1-VL-2B, utilizing Step-wise Group Relative Policy Optimization
(StepGRPO)—are of significant interest. Additionally, prominent closed-source models such as
GPT-4oOpenAI (2024), OpenAI o3OpenAI (2025), Claude 3.7 SonnetAnthropic (2025), Gemini-
2.5Deepmind (2024), and Grok3xAI (2025) were selected based on their state-of-the-art multimodal
reasoning capabilities. This expanded and carefully curated selection ensures a balanced and thorough
evaluation encompassing both openly accessible and proprietary MLLM systems.

Implementation Details. All our experiments are conducted under a zero-shot setting, showcasing
the generalization capacity of MLLMs for physical reasoning without few-shot prompting or further
fine-tuning. By default, we employ the CoT prompting technique Wei et al. (2022), which encourages
MLLMs to perform complete reasoning steps for fine-grained evaluation. All experiments are
conducted on NVIDIA V100 GPUs.

H.2 MODEL HYPERPARAMETERS

To ensure reproducibility and clarity regarding model settings used during evaluation, Table 10
provides detailed information on the hyperparameters and generation setups for each evaluated
multimodal large language model (MLLM). Parameters not explicitly stated indicate that the default
settings provided by the respective models were employed. This comprehensive specification
facilitates transparent comparisons across models and experimental replication.

I THE USE OF LLMS

We employed large language models (LLMs) in a strictly auxiliary manner for (i) surface-level
editing of the manuscript (grammar correction, minor rephrasing, and stylistic refinement), and (ii)
technical assistance during dataset preparation, including checking the consistency of JSON schema,
detecting formatting errors, and drafting preliminary scene descriptions for all curated datasets. All
final annotations, dataset curation decisions, experimental designs, and analyses were exclusively
performed and validated by the authors.
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Table 10 Generating parameters for MLLMs. Parameters not explicitly stated indicate the use of the model’s
default system settings.

Model Generation Setup
LLaVA-OV-72B torch.dtype=torch.float16,

max_new_tokens=2048, temperature=0.7,
device_map=balanced, min_pixels=256*28*28,
max_pixels=768*28*28

LLaVA-CoT torch.dtype=torch.float16,
max_new_tokens=2048, temperature=0.7,
device_map=balanced

InternVL2.5-78B torch.dtype=torch.float16,
max_new_tokens=2048, temperature=0.7,
device_map=balanced_low_0

InternVL2.5-78B-MPO torch.dtype=torch.float16,
max_new_tokens=1024, temperature=0.7,
device_map=balanced_low_0

InternVL3-78B torch.dtype=torch.float16,
max_new_tokens=1024, temperature=0.7,
device_map=balanced_low_0

InternVL3-78B-Instruct torch.dtype=torch.float16,
max_new_tokens=1024, do_sample=False,
temperature=0.7, device_map=balanced_low_0

Qwen2.5-VL-7B torch.dtype=torch.float16,
max_new_tokens=1024, do_sample=False,
temperature=0.7, device_map=balanced

Qwen2.5-VL-72B torch.dtype=torch.bfloat16,
temperature=0.7, max_new_tokens=1024,
device_map=balanced, min_pixels=256*28*28,
max_pixels=768*28*28

QVQ-72B torch.dtype=torch.float16,
max_new_tokens=512, do_sample=False,
temperature=0.7, min_pixels=256*28*28,
max_pixels=768*28*28, device_map=balanced,

MM-Eureka-7B torch.dtype=torch.float16,
max_new_tokens=2048, do_sample=False,
temperature=0.7, device_map=balanced

Qwen2VL-2B torch.dtype=torch.bfloat16,
max_new_tokens=2048, do_sample=False,
temperature=0.7, device_map=balanced

R1-VL-2B torch.dtype=torch.float16,
max_new_tokens=2048, use_cache=True,
temperature=0.7

GPT-4o dtype=torch.float16, sampling=False,
temperature=0.2, max_new_tokens=1024

OpenAI o3 dtype=torch.float16, sampling=False,
temperature=0.2, max_new_tokens=1024

Claude 3.7 Sonnet dtype=torch.float16, sampling=False,
temperature=0.2, max_new_tokens=1024

Gemini-2.5-flash-preview-04-17 dtype=torch.float16, sampling=False,
temperature=0.2, max_new_tokens=1024

Grok3 dtype=torch.float32, sampling=False,
temperature=0.2, max_new_tokens=1024
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Figure 22 Example of CoTS with GPT-4o.
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Table 11 Expanded Subcategory-level Evaluation of CoT Reasoning in MVPBench: Human Baselines.
We present a detailed subcategory-level evaluation of CoT reasoning along the dimensions of Quality, Diversity,
and Efficiency.

Human Performance Phys-Experiment Phys-Problems Spatial-Relation Dyn-Prediction
Quality Diversity Efficiency Quality Diversity Efficiency Quality Diversity Efficiency Quality Diversity Efficiency

94.31 98.72 100.00 93.28 96.42 99.12 100.00 99.13 100.00 99.82 95.76 100.00

Table 12 Sensitivity analysis of the weighting hyperparameters. Top-performing models within each
category are highlighted in blue (open-source) and red (closed-source).

Model Phys-Experiment Phys-Problems Spatial-Relation Dyn-Prediction
γ = 0.8 γ = 0.5 γ = 0.2 γ = 0.8 γ = 0.5 γ = 0.2 γ = 0.8 γ = 0.5 γ = 0.2 γ = 0.8 γ = 0.5 γ = 0.2

Open-source MLLMs
LLaVA-OV-72B Li et al. (2025a) 53.27 66.61 79.65 76.68 79.72 82.18 46.31 59.79 72.75 85.37 89.93 93.22
LLaVA-CoT Xu et al. (2024) 40.41 52.34 63.35 32.15 45.46 58.28 36.81 54.31 72.54 20.14 41.61 61.52
InternVL2.5-78B Chen et al. (2024b) 63.02 73.38 84.15 63.34 71.32 79.52 63.71 71.08 79.13 83.57 87.49 91.02
InternVL2.5-78B-MPO Wang et al. (2024b) 72.27 79.43 87.39 73.16 75.87 78.29 64.21 71.42 78.51 87.05 90.60 93.67
InternVL3-78B Zhu et al. (2025) 73.14 83.39 93.49 61.26 68.23 75.52 63.32 70.43 77.12 84.48 88.05 92.05
InternVL3-78B-Instruct Zhu et al. (2025) 65.16 74.57 83.23 62.32 69.79 76.24 64.15 70.96 77.48 85.77 89.58 93.26
Qwen2.5-VL-7B Bai et al. (2025) 75.42 80.15 86.43 65.71 67.10 69.41 51.32 68.57 85.36 78.41 82.16 86.33
Qwen2.5-VL-72B Bai et al. (2025) 77.53 82.59 87.72 71.39 79.69 87.52 45.61 59.67 72.64 96.12 98.75 99.85
QVQ-72B Qwen Team (2024) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Closed-source MLLMs
GPT-4o OpenAI (2024) 62.28 76.36 91.01 62.72 69.52 77.32 56.46 69.33 81.27 89.57 91.14 93.21
OpenAI o3 OpenAI (2025) 68.52 75.58 82.43 62.76 68.57 75.41 65.72 71.26 77.41 90.41 91.18 92.61
Claude 3.7 Sonnet Anthropic (2025) 75.43 78.97 82.05 68.07 72.15 76.14 59.31 72.71 85.72 92.03 92.47 93.54

Table 13 Evaluated Results on unbalanced dataset Top-performing models within each category are
highlighted in blue (open-source) and red (closed-source).

Model Phys-Experiment Phys-Problems Spatial-Relation Dyn-Prediction
Quality Diversity Efficiency Quality Diversity Efficiency Quality Diversity Efficiency Quality Diversity Efficiency

Open-source MLLMs
LLaVA-OV-72B Li et al. (2025a) 38.32 67.83 97.31 32.98 80.32 99.01 37.32 58.32 99.12 41.66 89.93 99.72
LLaVA-CoT Xu et al. (2024) 34.41 52.68 97.23 21.14 45.78 98.76 33.21 54.21 99.02 43.77 41.61 99.78
InternVL2.5-78B Chen et al. (2024b) 44.61 73.32 94.67 47.48 73.41 98.87 44.29 70.03 99.53 44.78 87.49 100
InternVL2.5-78B-MPO Wang et al. (2024b) 41.75 79.98 97.42 52.69 76.18 99.18 40.52 72.01 96.12 44.06 90.60 99.76
InternVL3-78B Zhu et al. (2025) 38.31 84.52 92.01 58.32 68.91 98.95 43.98 73.65 98.26 46.68 88.05 99.95
InternVL3-78B-Instruct Zhu et al. (2025) 44.02 74.66 94.82 52.65 69.80 99.79 42.01 74.86 97.97 44.20 89.58 99.96
Qwen2.5-VL-7B Bai et al. (2025) 37.66 81.02 96.77 42.76 67.80 98.45 36.31 67.87 96.01 40.30 82.16 99.85
Qwen2.5-VL-72B Bai et al. (2025) 41.32 83.21 96.54 57.32 80.04 99.32 40.12 60.97 98.12 46.94 98.75 99.65
QVQ-72B Qwen Team (2024) 51.32 0.00 72.54 60.86 0.00 65.31 40.15 0.00 70.41 69.20 0.00 79.13

Closed-source MLLMs
GPT-4o OpenAI (2024) 51.73 76.63 97.34 53.55 69.97 99.03 48.31 68.32 99.82 52.35 91.14 99.59
OpenAI o3 OpenAI (2025) 58.36 76.22 97.53 66.30 69.27 99.05 46.19 73.15 99.42 69.44 91.18 99.71
Claude 3.7 Sonnet Anthropic (2025) 49.45 79.52 97.39 57.98 74.51 93.12 46.10 73.76 99.87 54.92 92.47 98.45
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