
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SEEING IS NOT REASONING: MVPBENCH FOR GRAPH-BASED EVALUATION OF MULTI-PATH VISUAL PHYSICAL CoT

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding the physical world—governed by laws of motion, spatial relations, and causality—poses a fundamental challenge for multimodal large language models (MLLMs). While recent advances such as OpenAI o3 and GPT-4o demonstrate impressive perceptual and reasoning capabilities, our investigation reveals these models struggle profoundly with visual physical reasoning, failing to grasp basic physical laws, spatial interactions, and causal effects in complex scenes. More importantly, they often fail to follow coherent reasoning chains grounded in visual evidence, especially when multiple steps are needed to arrive at the correct answer. To rigorously evaluate this capability, we introduce **MVPBench**, a curated benchmark designed to rigorously evaluate visual physical reasoning through the lens of visual chain-of-thought (CoT). Each example features interleaved multi-image inputs and demands not only the correct final answer but also a coherent, step-by-step reasoning path grounded in evolving visual cues. This setup mirrors how humans reason through real-world physical processes over time. To ensure fine-grained evaluation, we introduce a **graph-based CoT consistency metric** that verifies whether the reasoning path of model adheres to valid physical logic. Additionally, we minimize shortcut exploitation from text priors, encouraging models to rely on visual understanding. Experimental results reveal a concerning trend: even cutting-edge MLLMs exhibit poor visual reasoning accuracy and weak image-text alignment in physical domains. Surprisingly, **RL-based post-training alignment—commonly believed to improve visual reasoning performance—often harms spatial reasoning**, suggesting a need to rethink current fine-tuning practices.

1 INTRODUCTION

Human comprehension of the world is fundamentally grounded in physical laws: objects fall when released, and liquids take the shape of their containers Spelke & Breinlinger (1992); Baillargeon (2004). Such physical regularities form the basis of our causal understanding Gopnik et al. (2004); Lake et al. (2017), and further link the chain of reasoning when solving complex problems. Recent advances appear to grasp this physical world that humans experience—a blitz of multimodal large language models (MLLMs) like OpenAI o3 OpenAI (2025), GPT4o OpenAI (2024), Gemini Deepmind (2024), InternVL3 Zhu et al. (2025), Kimi1.5 KimiTeam (2025) and many others Liang et al. (2025); Zheng et al. (2025b) -all claiming *human-level physical reasoning* after a final reinforcement-learning (RL) post-training. Recent works Shao et al. (2024); Guo et al. (2025); Li et al. (2025b); Daxberger et al. (2025); Huang et al. (2025); Fan et al. (2024) show models describing panoramic scenes, solving game reasoning, even generating Chain-of-Thought (CoT) explanations. At first glance, it feels as though **plug-and-play embodied intelligence is already on our doorstep**.

Full of eager expectation, we asked the lastest MLLMs a child-level physics question. *What is the direction of movement for the car?* Fig. 1(left) shows the setup. Surprisingly, GPT-4o responded with an incorrect prediction. Pushing further, we queried the thought chain of models. The failure pattern was consistent: models *saw* the pixels but did not *reason* about forces, geometry, or causality.

“The Second Half,” reminds us AI is entering a phase where evaluation outweighs training Yao (2025). Yet current benchmarks used to “prove” spatial reasoning are a weak compass. Most

Figure 1 A one-minute sanity check shatters the illusion of spatial reasoning in MLLMs. Red arrows indicate objects and multiple reasoning chains are provided to capture diverse yet valid solution strategies.

rely on game-engine videos or CAD renderings whose textures and lighting barely resemble the messy real worldKang et al. (2024); Zheng et al. (2024). In addition, many questions are phrased so that a language-only model can guess the answer from commonsense priors, bypassing vision altogetherZhou et al. (2025); Yue et al. (2024); il Lee et al. (2025). Furthermore—almost none pair each intermediate visual cue with an explicit reasoning step, so training pipelines receive no pressure to ground chain-of-thought in what the model *sees*;Jiang et al. (2025b); Zhang et al. (2024); Shao et al. (2024) RL post-training therefore optimizes conversational fluency while silently tolerating physical implausibility. The result is **a generation of MLLMs that can describe images eloquently yet still misjudge which way a car is moving**.

To close this evaluation gap, we introduce **MVPBench**, a Multi-path Visual Physics benchmark that turns the spotlight on vision-centric reasoning. MVPBench contains 1,211 carefully curated examples across three real-world domains: *i.* hands-on physics experiments (electromagnetic induction, heat conduction, collisions), *ii.* exam-style word problems requiring symbolic or commonsense reasoning, and *iii.* spatial-transformation tasks that challenge 3D understanding (viewpoint shifts, object rearrangement). Each example pairs *multi-image evidence* with *multiple valid CoT paths*, forcing models to justify every step in view of changing visuals. To evaluate such rich annotations, we introduce a **graph-based CoT metric suite** that represents each reasoning chain as a directed acyclic graph of atomic facts and then assesses step-wise fidelity through exact or fuzzy graph matching, measures text–image grounding with automated alignment scores, and quantifies multi-path coverage by rewarding diverse yet logically valid reasoning flows. MVPBench thus re-aligns the compass: genuine physical understanding demands that models *see, think, and prove*—not merely narrate.

Extensive experiments reveal two key insights: *i.* Providing models with the full image sequence boosts performance by up to 21% points—evidence that temporal context matters. *ii.* Contrary to conventional wisdom, RL-based post-training *reduces* visual-physics scores on MVPBench by 2% points, indicating that current reward designs sacrifice grounded reasoning for coherence.

To summarize, this paper makes the following contributions: *i.* To the best of our knowledge, **MVPBench** is the first benchmark to combine real-world visual physics, multi-image inputs, and *multi-path* CoT annotations. *ii.* A **graph-based evaluation toolkit** that jointly measures reasoning fidelity, visual grounding, and path diversity. *iii.* The first comprehensive study showing that widely adopted RL alignment can impair spatial reasoning, calling for vision-centric reward design.

2 RELATED WORKS

Limitations of Multi-modal Large Language Models in Visual Physical Reasoning. Despite rapid progress, recent studies show that MLLMs still exhibit substantial weaknesses in understanding the physical world from visual input. Their visual physical understanding remains fragile Liu et al. (2024); Guo et al. (2024); Bonnen et al. (2024), and they face major challenges when reasoning over

108 visual perception in complex scenes Zhang et al. (2025b); Zheng et al. (2025a); Bi et al. (2025). In
 109 terms of physical discipline knowledge, models show limited ability to perform multimodal reasoning
 110 over discipline-level problems He et al. (2024). When tasked with predicting physical interactions and
 111 long-term object dynamics, they often fail to capture the underlying causal structure Yi et al. (2020);
 112 Bear et al. (2022) Moreover, MLLMs struggle to accurately infer object properties and latent states
 113 in physics-based scene evaluations Wang et al. (2023b); Balazadeh et al. (2025). Even their spatial
 114 reasoning, while improving, frequently breaks down on visual tasks that require precise understanding
 115 of spatial relations and configurations Chen et al. (2024a). Taken together, these findings highlight
 116 the need for more comprehensive and rigorous benchmarks that specifically target the visual physical
 117 and spatial reasoning capabilities of MLLMs.

118 **Physical Comprehension Datasets.** These datasets have become a crucial area of focus, posing a
 119 significant challenge for MLLMs. Early physical benchmarks Bear et al. (2022); Zhu et al. (2023);
 120 Tung et al. (2023) were developed around simple physical scene reasoning. Inspired by research on
 121 infant intuitive physics, the study Riochet et al. (2020) evaluate innate understanding of models in
 122 the physical world. In other aspects of physical datasets, existing benchmarks He et al. (2024); Jiang
 123 et al. (2024); Lu et al. (2022); Hao et al. (2025); Zhang et al. (2025c) to evaluate physics problems
 124 mainly focus on commonsense reasoning based on language knowledge. Spatial benchmarks Wang
 125 et al. (2023a); Yang et al. (2024); Shiri et al. (2024); Li et al. (2024), on the other hand, emphasize
 126 spatial perception and reasoning in 3D scenes, illustrating the early stages of world model. Recent
 127 effort Chow et al. (2025) has expanded to comprehensively assess understanding of models in physical
 128 scenes across various tasks, though they still fail to fully encompass real-world physical knowledge.
 129 **By introducing visual CoT as inputs, it forces models to reason across images, making it a closer
 130 approximation to the analysis of complex physical scenes in the real world.**

131 **Table 1 Comparison of MVPBench with existing benchmarks for physical understanding.** MVPBench
 132 covers a broader range of physical reasoning categories, supports multi-perspective chain-of-thought evaluation,
 133 and provides CoT annotations. In the data format, TC indicates that the dataset utilizes textual CoT, VC means
 134 the use of visual CoT as input, and Vc signifies all that the data is constructed in a vision-centric manner.

Benchmark	Data category				CoT Evaluation	Data format				
	Physics experiments	Physics problems	Spatial relations	Dynamic prediction						
PhysBench Chow et al. (2025)			✓	✓					✓	
Physion Bear et al. (2022)					✓					
PhysReason Zhang et al. (2025c)		✓								✓
PhysGame Cao et al. (2024)					✓					✓
ContPhy Zheng et al. (2024)					✓					
EmbSpatial Du et al. (2024)			✓							
MVPBench	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

3 MVPBENCH

148 The motivation for constructing the MVPBench benchmark stems from recognizing significant gaps in
 149 the current capability of MLLM to deeply comprehend and reason about the physical world. Existing
 150 benchmarks emphasize isolated aspects such as static scene understanding, physics-based reasoning,
 151 or basic spatial awareness, leaving unaddressed the integration of physical reasoning with complex
 152 visual inputs. Therefore, MVPBench aims to rigorously evaluate abilities of MLLMs to visually
 153 reason about diverse physical phenomena in scenarios closely resembling real-world complexities.

154 To ensure comprehensive coverage of visual reasoning skills, MVPBench incorporates carefully
 155 curated data across multiple distinct yet complementary domains: 1) *Physics Experiments* tests the
 156 understanding of sequential physical processes through multi-step visual inference. 2) *Physics Pro-
 157 blems* challenges models to interpret advanced, visually grounded physics questions from academic
 158 examinations. 3) *Spatial Relations* assesses spatial perception judgment across various scenarios. 4)
 159 *Dynamic Prediction* evaluates the predictive capabilities of models regarding dynamically evolving
 160 physical interactions. Collectively, these diverse yet targeted subdomains ensure MVPBench not only
 161 addresses existing evaluation gaps but also significantly extends the reasoning depth, robustness, and
 162 versatility of models. Details of data analysis are provided in Appendix C.

Figure 2 Examples from MVPBench across four categories. Each example includes an initial scene followed by reasoning steps. Target objects are marked with red arrows and labeled with letters to reduce textual bias.

3.1 DATA GENERATION

Physics Experiments. We scraped publicly available physics experiment videos, manually filtered them, and archived the curated clips as MP4 files. From each video, we extracted key frames depicting (i) the initial setup, (ii) critical intermediate steps, and (iii) the final results. Salient objects were highlighted with arrows while all textual cues were omitted, forcing models to infer solely from visual cues, with GPT-4 generating the corresponding scene descriptions. The intermediate steps encompass essential logical reasoning processes required to complete each experiment. **To evaluate multi-path reasoning verification capability of MLLMs, recorded multiple chains of thought for each instance.** All assets are stored in a structured JSON schema that includes mechanics, thermodynamics, electromagnetism, optics and kinematics. The remaining subsets employ the same format as the JSON detailed above, and we omit related discussion in the following section.

Physics Problems. On one hand, we crawled and manually filtered all the problems from relevant websites, compiling them into PDF files, which were then converted into Markdown format via OCR and manually aligned. On the other hand, the data was with examples from the PhysReason-miniZhang et al. (2025c) dataset. All problems are tightly coupled to images and drawn from examinations in several countries (predominantly Chinese college entrance examination) for their open-ended formats that demand advanced reasoning. After meticulous verification, we extracted key reasoning steps and final answers. These steps include both textual and visual components, with the image segment forming an additional input alongside the original image. The questions cover five subcategories including mechanics, thermodynamics, electromagnetism, optics, and kinematics.

Spatial Relations. Spatial relation reasoning is a crucial area in understanding of the physical world. To address this gap, we have pre-designed four main subcategories to evaluate perception of spatial relations: (1) **Direction judgment:** This subcategory formulates problems concerning the directional judgment of various objects. (2) **Distance estimation:** This subset encompasses problems related to

216 estimating the distance relation of different objects. **(3) First view transformation:** This subcategory
 217 addresses issues pertaining to direction judgment from a egocentric viewpoint regarding various
 218 objects. **(4) Topological relation judgment:** This subcategory focuses on problems associated with
 219 reachability within directed graphs. The first three subcategories manually screened original images
 220 from public websites, and the fourth subcategory constructed images using the Graph Editor tool.

221 **Dynamic Prediction.** To investigate whether MLLMs can predict time-varying physical outcomes
 222 through visual reasoning, we introduce a Dynamic Prediction subset comprising four subcategories:
 223 **Multi-object Collision, Liquid Diversion, Physical state and Shadow Transformation** predict.
 224 This subset utilizes the PhysBench Chow et al. (2025) benchmark, which provides high-quality
 225 dynamic scene videos. All samples are adapted and extended from PhysBench to ensure high-
 226 quality video frames. For each sample, we extract multiple temporally spaced key frames from the
 227 corresponding video to form multi-image inputs, annotating salient objects with arrows.

229 4 COT EVALUATION METHOD

223 **Figure 3 Evaluation framework for multi-path Chain-of-Thought (CoT) reasoning.** MVPBench introduces
 224 a comprehensive protocol to evaluate CoT reasoning from three perspectives: quality, diversity, and efficiency.
 225 **For CoT diversity, we propose a graph-based multi-path evaluation method** that quantifies the ability of
 226 a model to explore alternative reasoning routes via Path Validity Rate (PVR) and Path Coverage Score (PCS),
 227 advancing beyond prior single-path metrics.

228 Existing CoT evaluation methods often simplify reasoning assessment to a binary judgment of the
 229 final answer, overlooking the internal reasoning steps. To address this limitation, we propose a holistic
 230 CoT evaluation suite that captures the reasoning process across multiple dimensions, offering a finer-
 231 grained understanding of reasoning capabilities of MLLMs. **Notably, we are the first to introduce**
 232 **an evaluation metric for assessing multi-path reasoning ability of models, which complements**
 233 **traditional correctness and reflection assessments.** Details are presented in Section 4.1 (correctness),
 234 Section 4.2 (multi-path reasoning), and Section 4.3 (reflection quality).

235 4.1 CoT QUALITY EVALUATION

236 To evaluate the correctness of CoT reasoning, we extend existing interpretable metrics by incor-
 237 porating both step-wise accuracy and final answer correctness. While prior work such as Jiang et al.
 238 (2025b) focused on intermediate informativeness, they overlook the contribution of the final answer
 239 to overall quality. Inspired by Zhang et al. (2024), we introduce a **weighted scoring framework** that
 240 balances the quality of intermediate steps with the correctness of the final prediction.

241 **Step Accuracy Score (SAS).** We prompt GPT-4o OpenAI (2024) to decompose each CoT prediction
 242 into steps, categorized as logical inference, image captioning, or background/numerical computation
 243 (depending on the dataset). Each step is binary-judged for correctness based on alignment with
 244 references or logical/visual validity. SAS is computed as the proportion of correct steps.

245 **CoT Reasoning Score (CRS).** To combine step-wise correctness and final answer validity, we define
 246 a weighted reasoning score as $CRS = \alpha \cdot SAS + (1 - \alpha) \cdot \text{Correct}(s_A)$, where $\text{Correct}(s_A) \in \{0, 1\}$
 247 denotes whether the final answer is correct, and α is set to 0.7 by default.

270 **Key Step Coverage (KSC).** We also measure the proportion of annotated key reasoning steps that
271 appear in the model output, serving as a recall-style indicator of reasoning completeness.
272

273 **4.2 CoT DIVERSITY EVALUATION**
274

275 While some recent studies have acknowledged the need for multi-path reasoning evaluation, significant
276 gaps remain. Zhang et al. (2024) emphasizes that rigid ground-truth templates fail to capture the
277 diversity of reasoning styles, calling for adaptive key-step extraction. Similarly, Jiang et al. (2025b)
278 and Chow et al. (2025) annotate multiple reasoning paths but lack systematic metrics to measure the
279 ability of models to generate and validate diverse CoT trajectories.
280

281 Accordingly, we introduce **CoT Diversity Evaluation (CDE)**, a graph-based framework for assessing
282 the ability of models to generate logically valid and distinct reasoning chains, with three key stages:
283

- 284 • **Reference Graph Construction.** Each annotated instance is converted into directed graphs, with
285 key steps as nodes and logical flows as edges.
286
- 287 • **Model Path Embedding.** We map the model-generated reasoning steps into the reference graph
288 by parsing them into directed edge sequences.
289
- 290 • **Path Matching and Metric Computation.** We define three core metrics for multi-path evaluation:
 - 291 – **Path Validity Rate (PVR):** Proportion of model edges matching the reference graph.
292
 - 293 – **Path Coverage Score (PCS):** Normalized length of the longest matched sub-path.
294

295 **Path Count Adjustment.** To fairly compare models with differing numbers of generated and
296 reference paths, we define adjusted versions of the above metrics.
297

298 Let N_p and N_{gt} denote the numbers of predicted and reference paths, respectively. The adjusted path
299 validity rate is defined as $\text{Path Validity Rate}_{\text{adj}} = \text{PVR} \times \frac{\min(N_p, N_{gt})}{N_{gt}}$, and the adjusted path coverage
300 score is given by $\text{Path Coverage Score}_{\text{adj}} = \text{PCS} \times \exp\left(-\alpha \cdot \left(\frac{N_p}{N_{gt}} - 1\right)\right)$, where α controls the
301 penalty for over-generation: higher values enforce stricter adherence to the reference count, while
302 lower values allow more flexibility.
303

304 **Structure-Tolerant Matching.** From our preliminary experiments we observed that DAG-based
305 matching is overly sensitive to small structural variations: logically equivalent reasoning paths may
306 still be penalized if node or edge order differs. To address this, we introduce a **Graph Edit Distance**
307 (**GED**) similarity, which measures the minimal number of edit operations (insertions, deletions,
308 substitutions) needed to transform the model graph into the reference graph. We map this distance
309 into a smooth similarity score as $\text{Sim} = \exp(-\gamma \cdot \text{GED})$, where $\gamma = 0.5$ controls sensitivity to
310 structural differences. We then define the CoT Match Score (CMS) by combining path-level validity
311 and coverage with structure tolerance: $\text{CMS} = \lambda \cdot \frac{(\text{PVR} + \text{PCS})}{2} + (1 - \lambda) \cdot \text{Sim}$, where $\lambda = 0.7$ balances
312 diversity against robustness to structural variations. This adjustment enables CDE to more faithfully
313 evaluate both the logical validity and the structural flexibility of model-generated reasoning paths.
314

315 **4.3 CoT EFFICIENCY EVALUATION**
316

317 The efficiency of reasoning is also crucial for evaluating CoT quality. Models like o1 generate
318 excessively long reasoning chains with extensive reflection and verification steps. To capture this
319 aspect, we evaluate the relevance of reasoning steps and the validity of reflective ones.
320

321 **Step Relevance Score (SRS).** While long reasoning sequences enable deeper analysis, they often
322 include irrelevant descriptions unrelated to solving the task. We partition the model’s reasoning
323 into steps and instruct GPT-4o to identify all relevant steps P_{relevant} . A step is considered relevant
324 if its major content directly contributes to problem-solving. SRS, similar to SCS, is defined as the
325 proportion of relevant steps among all generated steps.
326

327 **Reflection Validity Rate (RVR).** Reflective reasoning can strengthen CoT performance by identifying
328 errors or providing additional justification, but not all reflections are helpful—some may be redundant
329 or incorrect. We define a reflection step as valid if it (i) identifies a previous error or (ii) offers new
330 supporting reasoning. Reflection quality is then measured as the proportion of valid reflections R_{valid} ,
331 detected through linguistic cues such as “Wait” or “Alternatively”.
332

324 **Table 2** CoT reasoning performance on MVPBench across three dimensions. We assess open- and closed-
325 source MLLMs on *CoT Quality* (SAS, KSC, CRS), *CoT Diversity* (PVR, PCS, CMS), and *CoT Efficiency* (SRS,
326 RVR, Avg), under *Single* and *Multi* image settings. Best single-image results and largest multi-image gains are
327 highlighted for closed-source and open-source models. \uparrow indicates performance improvement with multi-
328 image input, \downarrow indicates a drop, and $*$ denotes invalid outputs. Additional evaluation results for closed-source
329 models and human performance benchmarks are presented in the Appendices A.1 and B.1, respectively.

Model	CoT Quality						CoT Diversity						CoT Efficiency					
	SAS		KSC		CRS		PVR		PCS		CMS		SRS		RVR		Avg	
	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi
<i>Open-source MLLMs</i>																		
LLaVA-OV-72B Li et al. (2025a)	53.09	*	29.47	*	36.49	*	63.44	*	70.00	*	74.01	*	96.91	*	99.55	*	98.23	*
LLaVA-CoT Xu et al. (2024)	48.47	8.58\uparrow	30.21	2.23\uparrow	32.58	9.01\uparrow	28.87	10.32\uparrow	51.89	3.75\uparrow	48.43	9.02\uparrow	97.63	0.49\downarrow	99.64	0.12\uparrow	98.64	0.49\downarrow
InternVL2.5-78B Chen et al. (2024b)	56.35	10.12\uparrow	42.42	5.45\uparrow	43.98	4.45\uparrow	67.28	8.43\uparrow	72.09	4.79\uparrow	70.82	5.12\uparrow	96.89	0.83\uparrow	99.45	0.50\uparrow	98.17	0.16\downarrow
InternVL2.5-78B-MPO Wang et al. (2024b)	55.77	7.80\uparrow	41.87	5.63\uparrow	43.76	8.51\uparrow	72.80	9.34\uparrow	76.08	5.61\uparrow	79.33	8.11\uparrow	97.88	1.67\uparrow	99.32	0.28\uparrow	98.60	0.98\downarrow
InternVL3-78B Zhu et al. (2025)	57.80	9.26\uparrow	46.20	5.49\uparrow	47.48	9.25\uparrow	66.06	7.02\uparrow	70.61	7.53\uparrow	76.77	8.65\uparrow	97.54	0.35\uparrow	99.52	0.11\uparrow	98.53	0.13\uparrow
InternVL3-78B-Instruct Zhu et al. (2025)	55.86	9.53\uparrow	42.15	3.51\uparrow	44.24	8.63\uparrow	68.41	9.78\uparrow	72.41	3.41\uparrow	76.23	8.38\uparrow	96.88	0.29\uparrow	99.92	0.50\downarrow	98.40	0.10\downarrow
Qwen2.5-VL-7B Bai et al. (2025)	52.40	3.11\uparrow	36.54	1.73\uparrow	39.24	4.32\uparrow	64.43	5.83\uparrow	73.70	2.12\uparrow	74.00	3.86\uparrow	93.59	0.30\uparrow	99.26	0.02\uparrow	96.43	0.14\uparrow
Qwen2.5-VL-72B Bai et al. (2025)	57.15	5.55\uparrow	43.29	5.33\uparrow	46.08	7.24\uparrow	74.73	6.76\uparrow	78.97	6.12\uparrow	82.43	7.34\uparrow	97.46	1.50\uparrow	99.43	0.24\uparrow	98.45	0.63\downarrow
QVQ-72B Qwen Team (2024)	68.28	2.49\uparrow	44.63	0.76\uparrow	53.83	0.88\downarrow	*	*	*	*	*	*	85.29	3.82\uparrow	56.27	3.04\uparrow	70.93	3.28\uparrow
<i>Closed-source MLLMs</i>																		
GPT-4o OpenAI (2024)	63.26	20.30\uparrow	46.39	14.75\uparrow	50.45	21.41\uparrow	68.04	13.22\uparrow	72.38	10.01\uparrow	81.34	13.04\uparrow	98.42	1.26\downarrow	99.39	0.28\uparrow	98.90	0.49\downarrow
OpenAI o3 OpenAI (2025)	75.29	15.87\uparrow	50.64	11.52\uparrow	59.11	15.83\uparrow	68.85	9.81\uparrow	74.91	10.24\uparrow	76.65	9.97\uparrow	99.43	2.31\uparrow	99.52	0.13\uparrow	99.48	1.09\downarrow
Claude 3.7 Sonnet Anthropic (2025)	64.41	16.12\uparrow	45.66	11.95\uparrow	50.87	15.22\uparrow	73.70	12.81\uparrow	75.79	12.04\uparrow	79.08	13.38\uparrow	97.76	0.13\uparrow	97.34	2.23\uparrow	97.55	1.18\uparrow

5 COMPREHENSIVE EVALUATION OF CoT-BASED MULTIMODAL REASONING

Overall Results. Table 2 reports model performance across three CoT evaluation dimensions using SAS, KSC, and SRS for both logical inference and image captioning. Diversity is assessed via PVR and RCS, and robustness is measured by averaging SRS and RVR, with RVR set to 100 for models lacking reflection ability. Table 3 complements this by presenting subcategory-level evaluation across all CoT metrics on MVPBench. Model and setup details are in Appendix H.

GPT-4o demonstrates strong overall performance, while OpenAI o3 surpasses it in quality and efficiency, achieving the highest scores. Among open-source models, the InternVL series is most competitive, with InternVL3-vl-78B and MPO-tuned InternVL2.5 showing strong performance across all dimensions. QVQ performs well in CoT quality but lacks robustness, often producing verbose and loosely related content, from which we derive the following key observations.

CoT Diversity Does Not Guarantee High Reasoning Accuracy. While diversity helps explore multiple reasoning paths, our results show it does not inherently improve reasoning quality. For example, Qwen2.5-VL-72B achieves the highest diversity but underperforms QVQ-72B in quality, despite the latter lacking diversity evaluation. This suggests a trade-off: greater diversity may lead to less focused or accurate reasoning if not properly guided. In contrast, OpenAI o3 attains top quality with moderate diversity, highlighting the importance of goal-directed reasoning.

Reflection enhances quality but with limited reliability. As shown in Table 2, QVQ with reflection surpasses its base model Qwen2.5-VL-72B by 7.75% in CRS and 11.13% in SAS, even with longer CoT sequences, approaching GPT-4o in quality. However, its reflection validity rate is only about 56%, meaning nearly half of reflection attempts fail to aid accuracy, which compromises efficiency and introduces redundant reasoning steps.

Long CoT Models May Be More Prone to Distraction. Models generating longer CoT tend to exhibit lower relevance, often producing content unrelated to the question, reflected by lower KSC scores (compared to QVQ). Some short-CoT models like LLaVA-OV-72B also show low relevance, usually due to repetitive outputs on specific question types. Fine-grained analysis shows models often lose focus when describing images, generating exhaustive but irrelevant captions.

Post-training may harm generalization. While post-training—particularly mixed preference optimization (MPO)—is frequently employed to align models more closely with specific downstream tasks, it does not universally enhance CoT reasoning quality. As in Figure 5, InternVL2.5-78B-MPO underperforms its base counterpart InternVL2.5-78B, and InternVL3-78B similarly trails InternVL3-78B-Instruct in Physics Experiments subset. Although MPO can effectively boost performance on human-preference-aligned subsets such as physics questions, it tends to negatively impact subsets requiring stronger visual perception or temporal prediction capabilities. This phenomenon suggests that

378 MPO may introduce distributional biases or lead to overfitting to specific tasks, thereby compromising
 379 generalization, visual grounding, and multimodal coherence—particularly evident in visual-centric
 380 reasoning tasks. MVPBench, with its comprehensive and balanced design across multiple reasoning
 381 categories, effectively highlights these limitations.

384 6 UNDERSTANDING THE EVALUATIVE POWER OF MVPBENCH

385 **Table 3 Subcategory-level evaluation of CoT reasoning in MVPBench.** We present subcategory-level scores
 386 for three core reasoning metrics and evaluated across both open- and closed-source MLLMs. Top-performing
 387 models within each category are highlighted in blue (open-source) and red (closed-source). For models
 388 (SpaceQwen2.5 and SpaceThinker) fine-tuned specifically for spatial reasoning and their corresponding base
 389 model (Qwen2.5VL-3B), we evaluate only on the Spatial-Relation subset, * denotes no output.

393 Model	394 Phys-Experiment			395 Phys-Problems			396 Spatial-Relation			397 Dyn-Prediction		
	398 Quality	399 Diversity	400 Efficiency	401 Quality	402 Diversity	403 Efficiency	404 Quality	405 Diversity	406 Efficiency	407 Quality	408 Diversity	409 Efficiency
<i>Open-source MLLMs</i>												
LLaVA-OV-72B Li et al. (2025a)	37.21	66.61	94.77	32.94	79.72	99.05	34.16	59.79	99.36	41.66	89.93	99.72
LLaVA-CoT Xu et al. (2024)	33.79	52.34	97.35	20.86	45.46	98.97	31.89	54.31	98.45	43.77	41.61	99.78
InternVL2.5-78B Chen et al. (2024b)	43.95	73.38	94.25	47.44	71.32	98.83	39.75	71.08	99.59	44.78	87.49	100
InternVL2.5-78B-MPO Wang et al. (2024b)	41.60	79.43	97.19	51.54	75.87	98.97	37.83	71.42	98.48	44.06	90.60	99.76
InternVL3-78B Zhu et al. (2025)	37.00	83.39	91.49	58.26	68.23	98.92	39.31	70.43	99.14	46.68	88.05	99.95
InternVL3-78B-Instruct Zhu et al. (2025)	42.01	74.57	94.87	52.64	69.79	99.81	38.10	70.96	98.96	44.20	89.58	99.96
Qwen2.5-VL-7B Bai et al. (2025)	37.00	80.15	91.49	42.34	67.10	98.55	35.20	68.57	95.82	40.30	82.16	99.85
Qwen2.5-VL-72B Bai et al. (2025)	41.19	82.59	96.72	57.01	79.69	99.36	39.18	59.67	98.06	46.94	98.75	99.65
QVO-72B Qwen Team (2024)	49.63	0.00	71.65	60.97	0.00	63.71	38.50	0.00	69.24	66.20	0.00	79.13
Qwen2.5VL-3BBai et al. (2025)	*	*	*	*	*	*	22.24	13.40	95.03	*	*	*
SpaceQwen2.5-VL-3BJia et al. (2025)	*	*	*	*	*	*	20.84	34.86	93.72	*	*	*
SpaceThinker-Qwen2.5VL-3B Chen et al. (2025)	*	*	*	*	*	*	23.93	31.15	97.87	*	*	*
<i>Closed-source MLLMs</i>												
GPT-4o OpenAI (2024)	50.21	76.36	97.53	52.29	69.52	98.77	43.64	69.33	99.72	52.35	91.14	99.59
OpenAI o3 OpenAI (2025)	57.73	75.58	97.44	65.36	68.57	99.06	43.92	71.26	99.83	69.44	91.18	99.71
Claude 3.7 Sonnet Anthropic (2025)	49.13	78.97	97.38	57.02	72.15	94.71	42.41	72.71	99.67	54.92	92.47	98.45

406 Our dataset, MVPBench, is specifically constructed to test multimodal reasoning under diverse
 407 and fine-grained physical scenarios. We explore its impact on evaluation outcomes from three
 408 perspectives: the effectiveness of fine-tuning spatial reasoning, category diversity and input modality.

409 **The effectiveness of specialized fine-tuning strategies aimed explicitly at spatial reasoning.** To
 410 further explore MLLMs specifically fine-tuned for spatial reasoning capabilities, we selected three
 411 representative models for rigorous comparison: Qwen2.5VL-3BBai et al. (2025) as a baseline
 412 model without specialized spatial reasoning fine-tuning, and two models (SpaceQwen2.5-VL-3BJia
 413 et al. (2025) and SpaceThinker-Qwen2.5VL-3BChen et al. (2025)) employing different specialized
 414 fine-tuning strategies to enhance spatial reasoning. We conducted rigorous evaluations on the Spatial-
 415 Relation subset within MVPBench, comparing the models across three dimensions: CoT Quality,
 416 Diversity, and Efficiency. The detailed results are presented in the table 3. Compared with the baseline
 417 Qwen2.5VL-3B, both spatially fine-tuned models show smaller CoT-Quality drops on multi-image
 418 tasks. SpaceThinker-Qwen2.5VL-3B beats Qwen2.5VL-3B in CoT-Quality, indicating that synthetic
 419 reasoning-trace fine-tuning strengthens multi-step visual reasoning. CoT-Diversity rises markedly
 420 with fine-tuning (34.86% and 31.15%) versus the baseline’s 13.40%, yielding richer, more flexible
 421 reasoning paths. The baseline gains a bit in CoT-Efficiency but loses CoT-Quality under multi-image
 422 complexity, while SpaceThinker-Qwen2.5VL-3B achieves the highest efficiency (97.87%) with a
 423 slight dip for multi-image input. Overall, targeted spatial-reasoning fine-tuning delivers clear gains in
 424 quality and diversity that outweigh minor efficiency trade-offs.

425 **Category diversity influences evaluation difficulty.** MVPBench spans a variety of physical reasoning
 426 subcategories, each posing distinct challenges. We observe that model performance varies
 427 substantially across these categories, underscoring the impact of task type on evaluation difficulty.
 428 For example, InternVL3-78B achieves a Quality score of 58.26 on the more abstract *Phys-Problems*
 429 category, but performs better with a score of 66.68 on the more concrete *Dyn-Prediction* tasks (see
 430 Table 3). Notably, across all open-source models, the *Spatial-Relation* subset yields the lowest
 431 average Quality score (37.10), suggesting it poses the greatest challenge. This indicates that current
 432 MLLMs still struggle with fine-grained spatial reasoning, revealing a critical gap in their perceptual
 433 and relational understanding of physical scenes. This performance gap illustrates how reasoning

Figure 4 Performance comparison between single-image and multi-image inputs on CoT evaluation. This figure highlights the performance difference when reasoning with multiple images versus a single image across various MLLMs. Multi-image inputs generally enhance performance, while QVQ shows a drop—indicating potential challenges in multi-image integration.

complexity varies by category and highlights the importance of category-aware evaluation for robust and meaningful model comparisons.

Multi-image input significantly boosts model performance. To evaluate the impact of input modality, we conducted comparative experiments using both single-image and multi-image inputs under identical prompts and evaluation metrics. This design isolates the effect of visual input quantity, allowing for a controlled analysis of performance variance. As illustrated in Fig 4, nearly all models benefit from multi-image inputs, achieving notable gains in both CoT Quality and Diversity scores. Closed-source models show particularly striking improvements, with GPT-4o leading the trend—it’s CoT Quality score rises from 50 to 72, a relative increase of 44%, and its Diversity score jumps from 70 to 85, a 21% improvement. Other closed-source models like Claude 3.7 Sonnet and OpenAI o3 also exhibit significant gains, with Quality scores increasing by 15% and Diversity by 13%. Open-source models, such as InternVL3-78B, show more modest improvements, rising from a Quality score of 47.5 to 56.7 (a 19% increase) and a Diversity score improvement of around 10%. However, QVQ-72B is an outlier, showing a performance drop of roughly 1-2 points in quality, indicating potential challenges in multi-image integration. Overall, these results highlight the superior adaptability of closed-source models, particularly GPT-4o, in leveraging multi-image inputs to enhance fine-grained physical reasoning and diversity in responses.

7 CONCLUSION

We introduce MVPBench, a benchmark designed to rigorously evaluate visual chain-of-thought reasoning in multimodal large language models (MLLMs). It targets tasks that require grounded, multi-step inference over visual evidence and goes beyond surface-level image description. Our evaluation reveals that even state-of-the-art models like GPT-4o and OpenAI o3 often struggle with physical reasoning. To diagnose these failures, we introduce a graph-based CoT consistency metric to assess reasoning validity, uncovering frequent violations of basic physical principles. Notably, we find that reinforcement learning-based alignment can impair physical reasoning, highlighting a misalignment between current fine-tuning strategies and the demands of physical perceptual reasoning. These findings call for post-training strategies that better integrate visual grounding, causal structure, and structured explanation in MLLMs.

Figure 5 CoT Performance of MLLMs with post-training versus without post-training. InternVL2.5 and InternVL3-instruct represent models without post-training, whereas InternVL2.5-MPO and InternVL3 denote their post-trained counterparts. Please note that each metric axis has its own independent scale. The results clearly indicate that post-training often fails to enhance the reasoning performance of models and degrades it.

486 8 ETHICS STATEMENT
487

488 This work does not involve human subjects, personally identifiable information, or sensitive data.
489 All datasets used are publicly available and released under appropriate licenses. The research was
490 conducted in compliance with ethical standards, with no foreseeable risks of harm, privacy violations,
491 or misuse.

492
493 9 REPRODUCIBILITY STATEMENT
494

495 We provide a comprehensive description of the dataset collection and preprocessing steps in the
496 appendix C, including detailed documentation to ensure clarity and transparency. The implementation
497 details and evaluation settings for each benchmarked model are also thoroughly reported in the
498 appendix H. To further promote reproducibility, we have included all the code, configuration files and
499 experimental scripts in the supplementary materials, and provided the access link to our dataset at the
500 appendix overview.

501
502 REFERENCES
503

504 Anthropic. Claude 3.7 sonnet. <https://claude.ai/new>, 2025.

505 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang,
506 Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding,
507 Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang
508 Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

509 Renee Baillargeon. Infants' physical world. *Current Directions in Psychological Science*, 13(3):89–94, 2004.

511 Vahid Balazadeh, Mohammadmehd Ataei, Hyunmin Cheong, Amir Hosein Khasahmadi, and Rahul G. Krishnan.
512 Physics context builders: A modular framework for physical reasoning in vision-language models. *arXiv
513 preprint arXiv:2412.08619*, 2025.

514 Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R. T. Pramod, Cameron
515 Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B. Tenenbaum,
516 Daniel L. K. Yamins, and Judith E. Fan. Physion: Evaluating physical prediction from vision in humans and
517 machines. *arXiv preprint arXiv:2106.08261*, 2022.

518 Jing Bi, Junjia Guo, Susan Liang, Guangyu Sun, Luchuan Song, Yunlong Tang, Jinxi He, Jiarui Wu, Ali
519 Vosoughi, Chen Chen, and Chenliang Xu. Verify: A benchmark of visual explanation and reasoning for
520 investigating multimodal reasoning fidelity. *arXiv preprint arXiv:2503.11557*, 2025.

521 Tyler Bonnen, Stephanie Fu, Yutong Bai, Thomas O'Connell, Yoni Friedman, Nancy Kanwisher, Joshua B.
522 Tenenbaum, and Alexei A. Efros. Evaluating multiview object consistency in humans and image models.
523 *arXiv preprint arXiv:2409.05862*, 2024.

525 Meng Cao, Haoran Tang, Haoze Zhao, Hangyu Guo, Jiaheng Liu, Ge Zhang, Ruyang Liu, Qiang Sun, Ian Reid,
526 and Xiaodan Liang. Physgame: Uncovering physical commonsense violations in gameplay videos. *arXiv
527 preprint arXiv:2412.01800*, 2024.

528 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh, Leonidas
529 Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. *arXiv
530 preprint arXiv:2401.12168*, 2024a.

531 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang Xie.
532 Sft or rl? an early investigation into training rl-like reasoning large vision-language models. <https://github.com/UCSC-VLAA/VLAA-Thinking>, 2025.

533 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao
534 Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen, Jiapeng Luo, Jiahao
535 Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han Lv, Yi Wang, Wenqi Shao, Pei
536 Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye Ge, Kai Chen, Min Dou, Lewei Lu, Xizhou
537 Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Expanding performance boundaries of
538 open-source multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
539 2024b.

540 Wei Chow, Jiageng Mao, Boyi Li, Daniel Seita, Vitor Guizilini, and Yue Wang. Physbench: Benchmarking and
541 enhancing vision-language models for physical world understanding. *arXiv preprint arXiv:2501.16411*, 2025.

542 Erik Daxberger, Nina Wenzel, David Griffiths, Haiming Gang, Justin Lazarow, Gefen Kohavi, Kai Kang, Marcin
543 Eichner, Yinfai Yang, Afshin Dehghan, and Peter Grasch. Mm-spatial: Exploring 3d spatial understanding in
544 multimodal llms, 2025.

545 Google Deepmind. Gemini: A family of highly capable multimodal models, 2024.

546 Mengfei Du, Binhao Wu, Zejun Li, Xuanjing Huang, and Zhongyu Wei. Embspatial-bench: Benchmarking
547 spatial understanding for embodied tasks with large vision-language models, 2024.

548 Jiaqi Fan, Jianhua Wu, Jincheng Gao, Jianhao Yu, Yafei Wang, Hongqing Chu, and Bingzhao Gao. Mllm-sul:
549 Multimodal large language model for semantic scene understanding and localization in traffic scenarios, 2024.

550 Alison Gopnik, Clark Glymour, David M Sobel, Laura E Schulz, Tamar Kushnir, and David Danks. A theory of
551 causal learning in children: Causal maps and bayes nets. *Psychological Review*, 111(1):3–32, 2004.

552 Dingkun Guo, Yuqi Xiang, Shuqi Zhao, Xinghao Zhu, Masayoshi Tomizuka, Mingyu Ding, and Wei Zhan.
553 Phygrasp: Generalizing robotic grasping with physics-informed large multimodal models. *arXiv preprint
arXiv:2402.16836*, 2024.

554 Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Peng Gao, Hongsheng Li, and Pheng-Ann Heng.
555 Can we generate images with cot? let's verify and reinforce image generation step by step, 2025.

556 Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and Yu Cheng. Can
557 mllms reason in multimodality? emma: An enhanced multimodal reasoning benchmark. *arXiv preprint
arXiv:2501.05444*, 2025.

558 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie
559 Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challenging
560 benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint
arXiv:2402.14008*, 2024.

561 Jiaxin Huang, Runnan Chen, Ziwen Li, Zhengqing Gao, Xiao He, Yandong Guo, Mingming Gong, and Tongliang
562 Liu. Mllm-for3d: Adapting multimodal large language model for 3d reasoning segmentation, 2025.

563 Kang il Lee, Minbeom Kim, Seunghyun Yoon, Minsung Kim, Dongryeol Lee, Hyukhun Koh, and Kyomin Jung.
564 Vlind-bench: Measuring language priors in large vision-language models, 2025.

565 Mengdi Jia, Zekun Qi, Shaochen Zhang, Wenyao Zhang, Xinqiang Yu, Jiawei He, He Wang, and Li Yi.
566 Omnispatial: Towards comprehensive spatial reasoning benchmark for vision language models. *arXiv
preprint arXiv:2506.03135*, 2025.

567 Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liupei Wang, Jianhan Jin, Claire Guo,
568 Shen Yan, Bo Zhang, Chaoyou Fu, Peng Gao, and Hongsheng Li. Mme-cot: Benchmarking chain-of-thought
569 in large multimodal models for reasoning quality, robustness, and efficiency, 2025a.

570 Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liupei Wang, Jianhan Jin, Claire
571 Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal models for reasoning
572 quality, robustness, and efficiency. *arXiv preprint arXiv:2502.09621*, 2025b.

573 Zhihuan Jiang, Zhen Yang, Jinhao Chen, Zhengxiao Du, Weihan Wang, Bin Xu, and Jie Tang. Visscience:
574 An extensive benchmark for evaluating k12 educational multi-modal scientific reasoning. *arXiv preprint
arXiv:2409.13730*, 2024.

575 Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, and Jiashi Feng. How far is
576 video generation from world model: A physical law perspective. *arXiv preprint arXiv:2411.02385*, 2024.

577 KimiTeam. Kimi k1.5: Scaling reinforcement learning with llms, 2025.

578 Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building machines that
579 learn and think like people. *Behavioral and Brain Sciences*, 40, 2017.

580 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei
581 Li, Ziwei Liu, and Chunyuan Li. LLava-onevision: Easy visual task transfer. *Transactions on Machine
582 Learning Research*, 2025a.

583 Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, and Furu Wei.
584 Imagine while reasoning in space: Multimodal visualization-of-thought, 2025b.

594 Jianing Li, Xi Nan, Ming Lu, Li Du, and Shanghang Zhang. Proximity qa: Unleashing the power of multi-modal
595 large language models for spatial proximity analysis. *arXiv preprint arXiv:2401.17862*, 2024.

596

597 Chen Liang, Li Lei, Zhao Haozhe, Song Yifan, and Vinci. R1-v: Reinforcing super generalization ability in
598 vision-language models with less than \$3. <https://github.com/Deep-Agent/R1-V>, 2025.

599

600 Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-world robotic manipulation through
600 mark-based visual prompting. *arXiv preprint arXiv:2403.03174*, 2024.

601

602 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
603 Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question
603 answering. *arXiv preprint arXiv:2209.09513*, 2022.

604

605 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi, Wenhui
606 Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with rule-based large-scale
606 reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.

607

608 OpenAI. Hello GPT-4o. <https://openai.com/index/hello-gpt-4o/>, 2024. Accessed: [Insert
609 Access Date].

610

611 OpenAI. GPT o3. <https://chatgpt.com/?model=o3>, 2025.

612

613 Qwen Team. QVQ: To See the World with Wisdom, December 2024.

614

615 Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus, Véronique Izard, and
615 Emmanuel Dupoux. Intphys: A framework and benchmark for visual intuitive physics reasoning. *arXiv
615 preprint arXiv:1803.07616*, 2020.

616

617 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng
618 Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset and benchmark for
618 chain-of-thought reasoning. *arXiv preprint arXiv:2403.16999*, 2024.

619

620 Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin Yu, Gholamreza Haffari, and Yuan-Fang Li. An empirical
620 analysis on spatial reasoning capabilities of large multimodal models. *arXiv preprint arXiv:2411.06048*,
621 2024.

622

623 Elizabeth S Spelke and Katherine Breinlinger. Origins of physical knowledge. *Psychological Review*, 99(4):
623 605–632, 1992.

624

625 Hsiao-Yu Tung, Mingyu Ding, Zhenfang Chen, Daniel Bear, Chuang Gan, Joshua B. Tenenbaum, Daniel LK
625 Yamins, Judith E Fan, and Kevin A. Smith. Physion++: Evaluating physical scene understanding that requires
626 online inference of different physical properties. *arXiv preprint arXiv:2306.15668*, 2023.

627

628 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
628 Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou,
629 Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's perception of the world at
630 any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

631

632 Tai Wang, Xiaohan Mao, Chenming Zhu, Runsen Xu, Ruiyuan Lyu, Peisen Li, Xiao Chen, Wenwei Zhang,
633 Kai Chen, Tianfan Xue, Xihui Liu, Cewu Lu, Dahua Lin, and Jiangmiao Pang. Embodiedscan: A holistic
633 multi-modal 3d perception suite towards embodied ai. *arXiv preprint arXiv:2312.16170*, 2023a.

634

635 Weiyun Wang, Zhe Chen, Wenhui Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou Zhu,
636 Lewei Lu, Yu Qiao, and Jifeng Dai. Enhancing the reasoning ability of multimodal large language models via
636 mixed preference optimization. *arXiv preprint arXiv:2411.10442*, 2024b.

637

638 Yi Ru Wang, Jiafei Duan, Dieter Fox, and Siddhartha Srinivasa. Newton: Are large language models capable of
639 physical reasoning? *arXiv preprint arXiv:2310.07018*, 2023b.

640

641 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le, and
642 Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in Neural
642 Information Processing Systems*, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022.

643

644 xAI. Grok 3. <https://grok.com>, 2025.

645

646 Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. Llava-cot: Let vision language models
646 reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

647

Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in space: How
647 multimodal large language models see, remember, and recall spaces. *arXiv preprint arXiv:2412.14171*, 2024.

648 Shunyu Yao. The second half. <https://ysymyth.github.io/The-Second-Half/>, 2025. Accessed:
649 2025-05-13.

650 Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B. Tenenbaum.
651 Clevrer: Collision events for video representation and reasoning. *arXiv preprint arXiv:1910.01442*, 2020.

652

653 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
654 Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng,
655 Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhua Chen. Mmmu: A massive multi-
656 discipline multimodal understanding and reasoning benchmark for expert agi, 2024.

657 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao. R1-vl:
658 Learning to reason with multimodal large language models via step-wise group relative policy optimization.
659 *arXiv preprint arXiv:2503.12937*, 2025a.

660 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu,
661 Kai-Wei Chang, Peng Gao, et al. Mathverse: Does your multi-modal llm truly see the diagrams in visual
662 math problems? *arXiv preprint arXiv:2403.14624*, 2024.

663 Shan Zhang, Aotian Chen, Yanpeng Sun, Jindong Gu, Yi-Yu Zheng, Piotr Koniusz, Kai Zou, Anton van den
664 Hengel, and Yuan Xue. Open eyes, then reason: Fine-grained visual mathematical understanding in mllms.
665 *arXiv preprint arXiv:2501.06430*, 2025b.

666 Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando, Mike Zheng Shou,
667 Lingling Zhang, and Jun Liu. Physreason: A comprehensive benchmark towards physics-based reasoning.
668 *arXiv preprint arXiv:2502.12054*, 2025c.

669

670 Xiangxi Zheng, Linjie Li, Zhengyuan Yang, Ping Yu, Alex Jinpeng Wang, Rui Yan, Yuan Yao, and Lijuan Wang.
671 V-image: A game evaluation framework for assessing visual-centric capabilities in multimodal large language
672 models. *arXiv preprint arXiv:2504.06148*, 2025a.

673 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong. Easyrl: An
674 efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>,
675 2025b.

676 Zhicheng Zheng, Xin Yan, Zhenfang Chen, Jingzhou Wang, Qin Zhi Eddie Lim, Joshua B Tenenbaum, and
677 Chuang Gan. Contphy: Continuum physical concept learning and reasoning from videos. In *International
678 Conference on Machine Learning*. PMLR, 2024.

679 Pengfei Zhou, Fanrui Zhang, Xiaopeng Peng, Zhaopan Xu, Jiaxin Ai, Yansheng Qiu, Chuanhao Li, Zhen Li,
680 Ming Li, Yukang Feng, Jianwen Sun, Haoquan Zhang, Zizhen Li, Xiaofeng Mao, Wangbo Zhao, Kai Wang,
681 Xiaojun Chang, Wenqi Shao, Yang You, and Kaipeng Zhang. Mdk12-bench: A multi-discipline benchmark
682 for evaluating reasoning in multimodal large language models, 2025.

683 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie
684 Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu, Xingguang Wei, Hongjie
685 Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng, Songze Li, Yinan He, Tan Jiang,
686 Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong,
687 Wenwen Qu, Peng Sun, Penglong Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai
688 Chen, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui
689 Wang. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models.
690 *arXiv preprint arXiv:2504.10479*, 2025.

691 Mingwei Zhu, Leigang Sha, Yu Shu, Kangjia Zhao, Tiancheng Zhao, and Jianwei Yin. Benchmarking sequential
692 visual input reasoning and prediction in multimodal large language models. *arXiv preprint arXiv:2310.13473*,
693 2023.

694

695

696

697

698

699

700

701

APPENDIX OVERVIEW

Our supplementary includes the following sections:

- **Section A: More experiment results.** Extended Empirical Analysis on Closed-source and Post-trained Models.
- **Section B: More Exploration.** Analysis of human performance and error analysis.
- **Section C: More Dataset Details.**
- **Section D: More Qualitative Examples.** More visualization of our evaluation demos.
- **Section E: Limitations.** Discussion of limitations of our work.
- **Section F: Broader impacts.** Discussion of societal impacts of our work.
- **Section G: Detailed Evaluation prompts.**
- **Section H: Setup.** Details for model design, implementation.
- **Section I: The Use of LLMs.**
- **Section J: Rebuttal.**

To further promote reproducibility, we provide our dataset, which can be accessed via an anonymous link.

756 **A MORE EXPERIMENT RESULTS**
757

758 **A.1 MORE CLOSED-SOURCE MODEL EXPERIMENTS**
759

760 **Table 4 Additional Evaluation Results for Closed-Source Models on CoT Reasoning Performance across**
761 **Three Dimensions in MVPBench.** \uparrow indicates performance improvement with multi-image input, \downarrow indicates a
762 drop.

763

764

Model	CoT Quality						CoT Diversity						CoT Efficiency					
	SAS		KSC		CRS		PVR		PCS		CMS		SRS		RVR		Avg	
	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi	Single	Multi
<i>Closed-source MLLMs</i>																		
Gemini-2.5-flash-preview-04-17 Deepmind (2024)	60.56	$\textcolor{blue}{12.32\uparrow}$	49.29	$\textcolor{blue}{8.54\uparrow}$	50.05	$\textcolor{blue}{11.63\uparrow}$	56.44	$\textcolor{blue}{9.23\uparrow}$	59.35	$\textcolor{blue}{7.12\uparrow}$	57.20	$\textcolor{blue}{8.45\uparrow}$	97.59	$\textcolor{red}{0.37\downarrow}$	92.00	$\textcolor{blue}{2.00\uparrow}$	94.71	$\textcolor{blue}{0.82\uparrow}$
Grok3xAI (2025)	62.48	$\textcolor{blue}{3.44\uparrow}$	52.05	$\textcolor{blue}{4.13\uparrow}$	52.69	$\textcolor{blue}{4.50\uparrow}$	61.57	$\textcolor{blue}{10.13\uparrow}$	68.05	$\textcolor{blue}{6.89\uparrow}$	63.78	$\textcolor{blue}{8.43\uparrow}$	89.55	$\textcolor{red}{2.53\downarrow}$	86.00	$\textcolor{blue}{6.26\uparrow}$	87.77	$\textcolor{blue}{1.87\uparrow}$

770

771 To evaluate additional closed-source models, we randomly sampled 25 instances from each sub-
772 dataset of MVPBench, resulting in 100 samples in total. As shown in Table 4 and Table 11, the
773 results of these models largely confirm the trends observed with tested models discussed earlier:
774 performance varies notably across different sub-datasets, and multi-image input consistently leads to
775 substantial improvements. Interestingly, Gemini Deepmind (2024) demonstrates strong quality in the
776 *Physics Experiments* subset, yet performs surprisingly poorly in the *Spatial Relations* task—even
777 falling behind several open-source models.

778

779 **A.2 MORE POST-TRAINING MODEL EXPERIMENTS**
780

781 To further investigate the impact of post-training on model generalization, we conducted additional
782 experiments comparing different base models and distinct post-training methods. Specifically,
783 we compared two base models without post-training, Qwen2.5VL-7B and Qwen2VL-2B, against
784 their respective post-trained counterparts: MM Eureka-7B, which employs large-scale rule-based
785 reinforcement learning (RL), and R1-VL-2B, utilizing Step-wise Group Relative Policy Optimization
786 (StepGRPO). The comparative analysis indicates clear trends consistent with our earlier findings
787 in the InternVL series. As shown in Figure 6, Qwen2.5VL-7B exhibits superior Step Accuracy
788 (56.63%) compared to MM Eureka-7B (52.39%). Similarly, Qwen2VL-2B outperforms R1-VL-2B
789 in Path Validity Rate (42.87% versus 35.72%) and Path Coverage Score (61.63% versus 50.48%),
790 demonstrating significant performance drops associated with post-training methods. Although certain
791 metrics like Key Step Coverage show modest improvements in post-trained models (MM Eureka-
792 7B: 36.66% vs. Qwen2.5VL-7B: 31.39%), the overall pattern emphasizes a general reduction in
793 multimodal coherence and visual-centric reasoning effectiveness post-training. These findings align
794 with observations from the InternVL models discussed in the main text and reinforce the conclusion
795 that various post-training approaches, despite improving alignment to specific tasks, may impair
796 generalization, particularly in visual-centric and dynamic reasoning tasks.

797 **B MORE EXPLORATION**
798

799 **B.1 HUMAN PERFORMANCE**
800

801 To estimate human performance, we recruited four undergraduate students who had received sys-
802 tematic training in physics and were familiar with fundamental physical concepts. Each student was
803 asked to solve the same 100 instances used in our closed-source model evaluation. Unlike other
804 benchmarks, MVPBench is formulated as a visual question answering (VQA) task, and the evaluation
805 of *quality* and *efficiency* relies on the generation of detailed, step-by-step reasoning chains. Therefore,
806 our human performance assessment focuses solely on the *diversity* metric. For each instance, students
807 were provided with the question, answer, image(s), and annotated key reasoning steps. They were
808 instructed to produce as many distinct reasoning chains as possible that could lead to the correct
809 answer by covering all the provided key steps. The resulting outputs were then used to compute the
diversity scores.

Figure 6 CoT Performance of MLLMs with post-training versus without post-training. Qwen2.5VL-7B and Qwen2VL-2B represent models without post-training, whereas MM Eureka-7B and R1-VL-2B denote their post-trained counterparts. Please note that each metric axis has its own independent scale. The results clearly indicate that post-training fails to enhance the reasoning performance of models and degrades it.

Table 5 Expanded Subcategory-level Evaluation of CoT Reasoning in MVPBench: Closed-Source Models and Human Baselines. We present a detailed subcategory-level evaluation of CoT reasoning along the dimensions of *Quality*, *Diversity*, and *Efficiency*, comparing closed-source MLLMs with human performance on MVPBench.

Model	Phys-Experiment			Phys-Problems			Spatial-Relation			Dyn-Prediction		
	Quality	Diversity	Efficiency	Quality	Diversity	Efficiency	Quality	Diversity	Efficiency	Quality	Diversity	Efficiency
<i>Human Performance</i>												
	-	98.72	-	-	96.42	-	-	99.13	-	-	95.76	-
<i>Closed-source MLLMs</i>												
Gemini-2.5-flash-preview-04-17 Deepmind (2024)	61.85	68.64	100.00	63.37	39.10	85.56	28.36	73.04	93.26	46.62	48.00	100.00
Grok3xAI (2025)	43.85	65.54	87.60	58.16	72.26	78.50	50.60	58.72	85.66	58.16	58.59	99.33

B.2 ERROR ANALYSIS

To delve into the fine-grained predictions, we select the best-performing MLLM, GPT-4oOpenAI (2024), to understand its modes of success and failure. Our proposed CoT evaluation strategy has produced a detailed assessment of model output, including step-wise scores and explanation, reducing extensive manual effort in identifying and analyzing errors. As shown in Figure 7, we conduct our analysis on the two-step output from the CoT evaluation across the entire dataset, focusing on two key dimensions.

Reasoning Errors Dominate Across Subcategories. In particular, the proportion of visual perception errors in the physics-related subset is remarkably low—only 2.12% and 1.98% under single- and multi-image inputs, respectively. This finding contrasts with prior observations in MathVerse Zhang et al. (2024), highlighting the distinct characteristics of our benchmark. We posit that, within our dataset, GPT-4o is generally able to perceive the visual input correctly, but often fails during the reasoning process, leading to incorrect final answers.

864 **Spatial-Relation Emerge as a Major Source of Perception Failures.** In the spatial-relation subset,
 865 visual perception errors account for a striking 33.01% and 26.41% under single- and multi-image
 866 settings, respectively—substantially higher than in other subsets. This aligns with earlier findings
 867 that both closed-source and open-source MLLMs consistently perform worst on spatial relation tasks
 868 in terms of the quality metric. These results further support our initial hypothesis: current models
 869 struggle significantly with visual grounding when interpreting spatial relationships, underscoring a
 870 persistent bottleneck in multimodal understanding.

888 **Figure 7 Distribution of GPT-4o OpenAI (2024) Errors across Different Types.** We report the error
 889 distribution of GPT-4o on MVPBench, categorized into two types: *Visual Perception Errors* and *Reasoning
 890 Errors*, across four representative subcategories. The first row illustrates the error distribution under single-image
 891 inputs, while the second row presents results under multi-image inputs.

C MORE DATASET DETAILS

C.1 DATA COLLECTION

897 To support the evaluation of multimodal physical reasoning, we constructed a diverse and well-
 898 structured dataset spanning four distinct subdomains: (1) physics experiment videos, (2) conceptual
 899 physics questions, (3) spatial reasoning images, and (4) dynamic physical scene videos. **The
 900 annotation process was carried out between March 28 and May 14, 2025, by a team of 31
 901 annotators with backgrounds in physics, science education, and computer vision.** Each data
 902 modality followed a carefully designed protocol to ensure quality, consistency, and relevance to
 903 downstream reasoning tasks.

904 **Table 6** Annotation summary across the four data modalities.

Data Type	Sample Count	Average Length	Annotators
Physics Experiment Videos	440	60 seconds	16
Conceptual Physics Problems	320	200 words	7
Spatial Reasoning Images	400	1 image	4
Dynamic Scene Videos	100	2 seconds	4

913 **Physics Experiment Videos.** This subset consists of 440 real-world videos sourced primarily from
 914 science education creators on Bilibili, such as "Lighthouse Laboratory" and "Interesting physics in
 915 life". These videos depict demonstrative physics experiments across domains including mechanics,
 916 optics, electromagnetism, and thermodynamics. Each video was segmented into a sequence of 3 to
 917 5 keyframes capturing critical steps of a physical process. Annotators provided a natural language
 description for the initial state, intermediate key steps (each with conclusions), and a final outcome.

918 Visual markers (e.g., arrows, labeled objects) were optionally added to enhance clarity. Multiple
 919 plausible reasoning chains were manually curated to reflect different logical paths. All samples
 920 underwent double annotation with inter-annotator agreement checks and periodic expert reviews. The
 921 average duration per video was approximately 60 seconds.

922 **Conceptual Physics Problems.** This subset includes 320 multiple-choice and short-answer physics
 923 questions derived from high school curricula and online education platforms. Each item was manually
 924 adapted to include visual support (e.g., diagrams or plots), and transformed into a question-answer
 925 format with structured reasoning chains. Annotators selected questions where visual content was
 926 essential to reasoning, added visual cues to images (e.g., red dots, arrows), and reformulated options
 927 into logical deduction steps. Stepwise reasoning was expressed using Markdown-compatible math-
 928 ematical expressions to support neural symbolic processing. The annotation reference document for
 929 this task was "MCoT-phytest.docx." All data underwent double annotation and review for logical
 930 soundness, visual accuracy, and completeness. On average, each problem included 200 words of
 931 reasoning and annotations.

932 **Spatial Reasoning Images.** This subset comprises 400 images curated from public domain resources
 933 such as Unsplash, Pixabay, and Archive.org. It addresses four categories of spatial reasoning:
 934 directional relations, distance estimation, perspective transformations, and topological connectivity.
 935 Annotators formulated tasks such as "What direction is object A facing?" or "From the first-view
 936 perspective of object A, where is object B?", using generic language to avoid lexical leakage. Key
 937 steps were illustrated using labeled visual cues and blue/red markings. Logical reasoning was written
 938 in natural language chains, each step tied to a specific visual cue or interpretation. Annotation was
 939 guided by the document "MCoT-spatial.docx" and performed by 4 annotators with experience in
 940 spatial cognition and vision tasks.

941 **Dynamic Physical Scene Videos.** The final subset includes 100 short video clips (average duration 2
 942 seconds) selected from the PhysBench dataset. The tasks focus on predicting physical dynamics, such
 943 as object collision trajectories, liquid flow directions, and stability outcomes. Annotators extracted
 944 representative keyframes from each video and documented the physical evolution using a minimal
 945 chain of reasoning steps. For instance, a liquid falling through barriers would be annotated by
 946 highlighting key deflection events and predicting the final compartment of flow. Problems were
 947 written in standardized English using referential expressions (e.g., object A, path B). All dynamic
 948 samples followed the procedure detailed in "dynamic-prediction.docx," and were annotated by 4
 949 individuals with expertise in physics simulation and time-series interpretation.

950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967 **Figure 8 Data collection process.** Initially, all visual and textual data undergo rigorous manual selection to
 968 ensure accuracy and relevance. Subsequently, expert annotators manually identify and highlight key objects
 969 and events, marking them visually with indicators such as arrows, and provide precise textual annotations for
 970 each critical step. Finally, multiple reasoning chains and key step annotations are meticulously constructed and
 971 validated manually, ensuring high-quality, reliable data for evaluating multimodal reasoning capabilities.

972 C.2 DETAILED OF MVPBENCH COMPOSITION 973

974
975 **Physics Experiments.** The Physics Experiments subset of MVPBench contains a curated collection
976 of 400 experimental questions, each designed to evaluate a model’s understanding of sequential
977 physical processes through multi-step visual inference. These experiments span five fundamental
978 categories: Mechanics (222 questions), Thermodynamics (90 questions), Electromagnetism (42
979 questions), Optics (33 questions), and Kinematics (13 questions). Models must visually interpret
980 the sequence of events and logically deduce the physical processes involved. In Mechanics tasks,
981 models must interpret scenarios involving force interactions and motion, whereas Thermodynamics
982 problems require reasoning about heat transfer and energy dynamics. Electromagnetism experiments
983 involve interpreting visual representations of electric circuits and magnetic fields. Optics tasks test
984 understanding of light behavior, reflection, and refraction, while Kinematics scenarios focus on
985 analyzing motion trajectories and velocities. These tasks collectively ensure that the evaluated models
986 develop comprehensive visual reasoning abilities similar to how humans mentally simulate physical
987 experiments.

988 **Physics Problems.** The Physics Problems subset contains a total of 311 challenging, visually
989 grounded physics questions, primarily sourced from academic examination databases such as Chinese
990 Gaokao physics questions, the International Physics Olympiad (IPhO), and Chinese Mock Examinations
991 at Various Levels, further augmented by additional questions from the PhysReason-mini dataset.
992 These problems span five core physics categories: Mechanics (58 questions), Thermodynamics (56
993 questions), Electromagnetism (90 questions), Optics (53 questions), and Kinematics (54 questions).
994 Mechanics questions may involve complex analysis of force interactions or equilibrium scenarios,
995 while Thermodynamics problems often present visual cues related to heat exchange and energy
996 conversion processes. Electromagnetism tasks require reasoning about visually depicted electric
997 circuits and magnetic field interactions. Optics questions focus on image formation, lens behavior, and
998 optical phenomena, and Kinematics challenges typically demand interpretation of visual trajectories,
999 acceleration, and velocity vectors. This detailed structuring and multimodal approach aim to assess
models’ capabilities in accurately interpreting visual information and applying advanced reasoning to
solve intricate physics problems.

1000 **Spatial Relations.** The Spatial Relations subset assesses spatial perception through 400 carefully
1001 designed questions, divided into four specific subcategories. (1) Direction Judgment (100 questions):
1002 This subcategory requires models to accurately determine the relative directional positioning of
1003 various objects within a scene, emphasizing an understanding of spatial orientation and relational
1004 positioning. (2) Distance Estimation (100 questions): Tasks here involve estimating the distance and
1005 depth relations between objects or between objects and the camera viewpoint, highlighting the impor-
1006 tance of accurate depth perception and visual estimation skills. (3) First-view Transformation (100
1007 questions): This subcategory challenges models to reason about spatial directions from an egocentric
1008 viewpoint, simulating real-world scenarios where orientation judgments are made from a first-person
1009 perspective. (4) Topological Relation Judgment (100 questions): This category focuses specifically on
1010 assessing the reachability and connectivity within directed graphs, using images constructed through
1011 graphical editing tools. Overall, this subset is designed to rigorously evaluate models’ capabilities in
1012 processing complex spatial scenarios and performing accurate spatial reasoning, reflecting essential
1013 cognitive processes used in navigating and interpreting real-world visual environments.

1014 **Dynamic Prediction.** The Dynamic Prediction subset comprises 100 tasks designed to evaluate the
1015 predictive capabilities of models regarding dynamically evolving physical interactions, structured into
1016 four subcategories: (1) Multi-object Collision (25 questions): This category requires models to predict
1017 outcomes involving interactions among multiple objects, such as collisions, considering momentum,
1018 energy transfer, and motion trajectories. (2) Liquid Diversion (25 questions): Tasks involve predicting
1019 fluid paths through variously configured channels or obstacles, necessitating models to understand
1020 fluid dynamics visually. (3) Physical State Prediction (25 questions): These problems challenge
1021 models to anticipate changes in the physical states of objects, such as transitions between solid, liquid,
1022 and gas phases, based on visual cues and temporal sequences. (4) Shadow Transformation Prediction
1023 (25 questions): This subcategory assesses the ability of models to predict and interpret the changes in
1024 shadows cast by objects due to movements or shifts in light sources, requiring sophisticated temporal
1025 and spatial reasoning. These tasks collectively aim to test models’ capacity to interpret and forecast
dynamic physical phenomena, thereby closely replicating human cognitive processes involved in
visual prediction and temporal reasoning.

1026 C.3 DATA ANALYSIS

1028 Table 7 presents core statistics of the MVPBench dataset, which consists of 1,211 samples with a
 1029 total of 4,701 images, covering both unique and repeated images. Each question and corresponding
 1030 answer is distinct, underscoring the dataset's broad range and depth across various physical reasoning
 1031 scenarios. Furthermore, question lengths display considerable variation, with some reaching up to
 1032 100 words, though the majority of questions are moderately sized. Answers generally involve multiple
 1033 reasoning steps, reflecting a significant complexity level within the dataset. Notably, the dataset
 1034 includes multiple Image-CoTs per sample—visual chains of thought specifically crafted as input
 1035 to guide and assess model reasoning processes. The average number of Image-CoTs per sample is
 1036 approximately 3.90, with some samples containing up to 5, ensuring rich visual context for enhanced
 1037 multimodal reasoning. Additionally, each sample captures several chains of thought, facilitating the
 1038 evaluation of multi-path reasoning capabilities.

1039 The dataset includes multiple subsets (Figure 9), with Physics Experiments and Spatial Relations forming
 1040 the most significant components, emphasizing sequential reasoning through multi-step physical
 1041 processes and complex spatial perception tasks, respectively. Additionally, a substantial contribution
 1042 from the Physics Problems subset highlights the emphasis on advanced textual comprehension in our
 1043 benchmark. The inclusion of Dynamic Prediction subset further ensures comprehensive evaluation
 1044 under conditions involving temporal changes and challenging visual contexts. Collectively, the
 1045 structured distribution across these subsets fosters a balanced assessment of diverse visual reasoning
 1046 capabilities crucial for a robust understanding of physical phenomena.

1047 Statistic	1048 Value
1049 Total samples	1,211
1050 Total images	4,701
1051 Unique images	4,688
1052 Unique questions	1,211
1053 Unique answers	1,211
1054 Max. question length	100
1055 Avg. question length	28.01
1056 Max. answer steps	9
1057 Avg. answer steps	2.93
1058 Max. Image-CoTs per sample	5
1059 Avg. Image-CoTs per sample	3.90
1060 Max. reasoning paths	16
1061 Avg. reasoning paths	2.67

1062 **Table 7 Key statistics of MVPBench.** Summarizes
 1063 dataset size, question/answer properties, and multi-
 1064 path reasoning annotations for evaluating complex
 1065 reasoning in MLLMs.

1066 C.4 ADDITIONAL STATISTICS OF DATASET

1067 This section presents further statistical analyses to offer deeper insights into the composition and
 1068 characteristics of the dataset. As shown in Figure 10, Figure (a) provides an overview of the
 1069 distribution of physics concepts encountered within the reasoning steps. It reveals that certain
 1070 foundational concepts such as "light," "force," and "pressure" are notably prevalent, indicating their
 1071 central importance within the reasoning processes of datasets. The distribution of these concepts
 1072 emphasizes their relative significance and highlights the necessity for models to grasp core physics
 1073 principles robustly. Figure (b) illustrates the distribution of query word counts through a histogram
 1074 accompanied by a kernel density estimation curve, effectively capturing the general complexity and
 1075 length patterns of the queries. The data suggests a predominance of moderately sized questions,
 1076 though there exists a notable tail extending towards longer, more complex queries, underscoring the
 1077 variety in question complexity.

1066 **Figure 9 Category distribution in MVPBench.**
 1067 Covers 4 major reasoning categories and 18 fine-
 1068 grained subcategories.

1080 The distribution of reasoning chains, depicted in Figure (c), offers valuable insights into the diversity
1081 of dataset in reasoning paths per sample. Most samples incorporate one or two distinct chains,
1082 highlighting the presence of alternative reasoning pathways. Nonetheless, there is a non-negligible
1083 proportion of instances with several reasoning chains, indicating complexity and diversity in the
1084 reasoning processes required by the dataset. Figure (d) examines the distribution of reasoning
1085 steps per sample. The analysis indicates variability in the complexity of the reasoning tasks, with
1086 most samples containing a moderate number of steps. This reflects the balance of dataset between
1087 simplicity and complexity, essential for comprehensively evaluating reasoning proficiency.

1088 Reasoning complexity, as shown in Figure (e), combines reasoning steps and the number of reasoning
1089 chains to provide a composite indicator of overall reasoning demand. The distribution confirms
1090 that while many instances involve relatively straightforward reasoning, a meaningful subset presents
1091 significant complexity, requiring intricate, multi-faceted reasoning capabilities. Finally, Figure (f)
1092 explores the distribution of images included per sample. It demonstrates a balanced use of visual
1093 information, with most samples featuring several images to guide visual reasoning tasks effectively.
1094 This emphasis on visual context underscores the intent to robustly assess models' capabilities in
1095 interpreting and reasoning about visually grounded information.

1096 We further compute the ratio between the Relevant Steps (Generated) and the Key Steps (Ground
1097 Truth) to examine the step-level differences between the annotated reasoning chains and those
1098 generated by the models. The results are summarized in table 8.

1099
1100 **Table 8** Comparison of Relevant and Key Steps in Reasoning Chains.

Model	Ratio
<i>Open-source MLLMs</i>	
LLaVA-OV-72B	3.87
LLaVA-CoT	4.29
InternVL2.5-78B	5.15
InternVL2.5-78B-MPO	5.18
InternVL3-78B	5.01
InternVL3-78B-Instruct	5.02
Qwen2.5-VL-7B	5.14
Qwen2.5-VL-72B	5.03
QVQ-72B	6.75
<i>Closed-source MLLMs</i>	
GPT-4o	5.46
OpenAI o3	4.93
Claude 3.7 Sonnet	6.09

1119 C.5 ANALYSIS EGARDING THE EVALUATION COST

1120
1121 We acknowledge that the proposed multi-path visual reasoning evaluation framework may incur
1122 additional token consumption and time overhead in practical applications. To address these concerns,
1123 we have conducted a comprehensive and detailed statistical analysis of the evaluation cost.

1124 Specifically, we summarized and analyzed all API calls on the complete MVPBench dataset using the
1125 official GPT-4o pricing (input 2.50\$ / 1M tokens, output 10.00\$ / 1M tokens). The detailed results
1126 are summarized in the table 9.

1127 The statistics above indicate that although our evaluation method introduces more sophisticated
1128 assessment dimensions, the overall economic cost remains within a reasonable range. The total cost
1129 for evaluating all 1211 samples is approximately \$29.

1130 With an average cost per sample of approximately \$0.0060, the evaluation cost per 1000 samples is
1131 about \$6, demonstrating that the evaluation expenses are manageable and affordable. This makes our
1132 evaluation method economically feasible even for large-scale testing scenarios. Additionally, each
1133 sample evaluation takes on average only 5.28 seconds, resulting in a total assessment time of merely

Figure 10 Additional statistic. Figure a is the Physics Concepts Distribution, this horizontal bar chart shows the frequency of physical concepts that appear in the reasoning steps. The Y-axis represents physical concepts, and the X-axis represents the number of occurrences. Figure b is the Query Word Count Distribution, this histogram shows the distribution of the number of words in the questions. The X-axis represents the number of words, and the Y-axis represents the frequency. Figure c is the Reasoning Chains Distribution, this histogram shows how many different reasoning paths each sample contains. Figure d is the Reasoning Steps Distribution, this histogram shows how many reasoning steps each sample contains. The X-axis represents the number of steps, and the Y-axis represents the frequency. Figure e is the Reasoning Complexity Distribution, this histogram shows the distribution of complexity indicators. Complexity is defined as the number of reasoning steps \times the number of different reasoning paths. Figure f is the Sample Images Distribution, this histogram shows how many images each sample contains.

7.1 hours on one cheap GPU(Even parallel acceleration can be achieved through multi-terminal operation) for the entire benchmark. PhysReasonZhang et al. (2025c), by contrast, inspect ≈ 8.1 annotated steps (≈ 441 answer tokens) per problem, invoking the scorer for each and driving the per-item budget to $\approx 1.6k$ tokens—about \$0.048, eight times MVPBench—so its authors released a trimmed 200-question mini set to keep costs in check. MME-CoT Jiang et al. (2025a) is similarly token-hungry: its three-axis scheme slices the chain-of-thought, adds a reflection sweep, and repeats for robustness, greatly increasing latency. MVPBench attains the same analytical breadth—CoT Quality, Efficiency, and a dedicated CoT Diversity metrics—yet requires only one forward pass. Quality and Efficiency are judged directly from the full answer, while Diversity leverages a compact directed-graph encoding of all admissible reasoning paths, a single alignment thus yields fine-grained

1188 **Table 9** Evaluation cost and efficiency.
1189

Metric	Num
Average Prompt tokens per sample	984.47 tokens
Average Completion tokens per sample	354.31 tokens
Average Tokens per sample	1338.78 tokens
Average Time Consumption per sample	5.28 s
Average Cost per call	\$0.006004

1197 coverage without iterative decomposition. The result is richer diagnostics at roughly one-tenth the
1198 cost of PhysReason and markedly less time than MME-CoT. Although our method increases the use
1199 of tokens, it brings significant benefits, proving that the additional token usage and time consumption
1200 are justified.

1201 In summary, our evaluation method achieves a favorable balance between additional cost and the
1202 substantial scientific benefits provided. We again thank the reviewers for raising this important
1203 concern.

1205 D MORE QUALITATIVE EXAMPLES

1208 In this section, we present additional qualitative examples to offer deeper insights into our evaluation
1209 framework and illustrate the practical application of our metrics. The examples are organized
1210 into three subsections, each highlighting a specific evaluation dimension: Quality, Diversity, and
1211 Efficiency.

1212 D.1 EXAMPLES OF QUALITY EVALUATION.

1214 This subsection includes eight illustrative examples, as shown in Figure 11 to Figure 18, focusing
1215 specifically on evaluating the quality of the reasoning provided by various models. Each example
1216 showcases detailed analyses of model responses, assessing Step Accuracy Score (SAS) and Key Step
1217 Coverage (KSC).

1242
1243
1244
1245
1246
1247
1248
1249

1250
1251
1252
1253
1254
1255
1256

1257
1258
1259
1260
1261
1262

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

1288
1289
1290
1291
1292
1293
1294
1295

Step Accuracy Score (SAS) & Key Step Coverage (KSC)

Key Caption:
A is a transparent glass bowl
B is a red candle

Question: Fill A with water, ignite B, what happens next
Answer: B continues to burn in the water for a period of time

Key Steps Annotation:

1. Light B, and during the burning process, B will melt and drip wax <image_2>
2. The wax drips meet the water, they will quickly solidify <image_3>
3. The solidified wax droplets can insulate the water and B, allowing B to continue burning <image_4>

Single-image Input : <image_1>

GPT-4o:

Response :

To solve this problem, let's break down the steps and reasoning: 1. Identify the Objects: - A is the area where water is being poured, which is the bowl. - B is the candle placed in the center of the bowl. 2. Action 1: Fill A with Water - Water is poured into the bowl (A). The water level rises around the candle (B). 3. Action 2: Ignite B - The candle (B) is lit. The flame will burn the wick and melt the wax around it. 4. Observation and Reasoning: - As the candle burns, it consumes oxygen from the air around it. - The heat from the flame will cause the air inside the bowl to expand slightly. - If the water level is high enough, it might touch the base of the candle, but the candle will continue to burn as long as the wick is above water and there is enough oxygen. 5. Final Outcome: - The candle will continue to burn until the wick is consumed or the oxygen is depleted. - If the water level rises significantly due to the melted wax or other factors, it might eventually extinguish the flame if it reaches the wick. Final Answer: The candle will burn until the wick is consumed or the water level rises enough to extinguish the flame.

Step Partition & Judgment:

<p>✓ step_type: background information conclusion: To solve this problem let's break down the steps and reasoning</p> <p>✓ step_type: image description conclusion: A is the area where water is being poured which is the bowl</p> <p>✓ step_type: image description conclusion: B is the candle placed in the center of the bowl</p> <p>✓ step_type: image description conclusion: Water is poured into the bowl A The water level rises around the candle B</p> <p>✓ step_type: image description conclusion: The candle B is lit The flame will burn the wick and melt the wax around it</p> <p>✗ step_type: logical inference premise: The candle burns and consumes oxygen from the air around it conclusion: The heat from the flame will cause the air inside the bowl to expand slightly</p> <p>✗ step_type: logical inference premise: The water level is high enough to touch the base of the candle conclusion: The candle will continue to burn as long as the wick is above water and there is enough oxygen</p> <p>✗ step_type: logical inference premise: The candle will continue to burn until the wick is consumed or the oxygen is depleted conclusion: The candle will continue to burn until the wick is consumed or the water level rises significantly due to the melted wax or other factors it might eventually extinguish the flame if it reaches the wick</p> <p>✓ step_type: logical inference premise: The candle will burn until the wick is consumed or the water level rises enough to extinguish the flame</p> <p>✓ conclusion: B continues to burn in the water for a period of time</p> <p>final_answer: right</p>	<p>SAS = 5/8, Answer = 1</p> <p>Key Step Annotation Matching:</p> <p>Key Caption:</p> <ul style="list-style-type: none">✓ - A is a transparent glass bowl✓ - B is a complete red candle <p>Key Conclusion:</p> <ul style="list-style-type: none">✓ - Light B, and during the burning process, B will melt and drip wax✗ - The wax drips meet the water, they will quickly solidify✗ - The solidified wax droplets can insulate the water and B, allowing B to continue burning <p>KCS = 3/5</p>
---	---

Figure 11 Examples of Single-Image SAS-KSC Evaluation on Physics Experiment Data.

1296
1297
1298
1299
1300

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

1344
1345
1346
1347
1348
1349

Multi-image Input : <image_1,2,3,4>

GPT-4o:

Response :

To analyze what happens step by step, let's break down the process based on the images and the instructions: Step 1: Fill A with water - Observation: A is a transparent bowl, and water is being poured into it. The red candle (B) is already placed upright in the center of the bowl. - Reasoning: The water level rises in the bowl, but the candle remains above the water surface because it is designed to float or is fixed in place. Step 2: Ignite B - Observation: The wick of the red candle (B) is lit, producing a flame. - Reasoning: The candle burns as usual, with the flame consuming the wax and wick. The flame is unaffected by the surrounding water because the wick and wax are above the waterline. Step 3: What happens next? - Observation: The candle continues to burn, and the heat from the flame melts the wax near the wick. The melted wax may drip down or pool around the base of the candle. -Reasoning: The water in the bowl acts as a heat sink, preventing the candle from overheating or melting excessively. The flame remains stable as long as the wick is above the water and has access to oxygen. Step 4: Final Outcome - Observation: The candle burns steadily while floating or standing in the water. The water prevents the melted wax from spreading too far, and the flame remains unaffected. - Reasoning: The setup creates a visually interesting effect where the candle appears to burn "on water." The water also adds safety by reducing the risk of fire spreading. Final Answer: When you fill A (the bowl) with water and ignite B (the candle), the candle burns steadily while floating or standing in the water. The water acts as a heat sink and safety barrier, creating an intriguing visual effect of a burning candle surrounded by water.

Step Partition & Judgment:

step_type: background information
conclusion: Fill A with water ignite B what happens next

step_type: background information
conclusion: Object A is a transparent glass bowl and Object B is a complete red candle

✓ step_type: image description
conclusion: A is a transparent bowl and water is being poured into it The red candle B is already placed upright in the center of the bowl

✓ step_type: logical inference
premise: The water level rises in the bowl but the candle remains above the water surface because it is designed to float or is fixed in place
conclusion: The candle remains above the water surface

✓ step_type: image description
conclusion: The wick of the red candle B is lit producing a flame

step_type: logical inference
premise: The candle burns as usual with the flame consuming the wax and wick The flame is unaffected by the surrounding water because the wick and wax are above the waterline
conclusion: The flame is unaffected by the surrounding water

✓ step_type: image description
conclusion: The candle continues to burn and the heat from the flame melts the wax near the wick The melted wax may drip down or pool around the base of the candle

step_type: logical inference
premise: The water in the bowl acts as a heat sink preventing the candle from overheating or melting excessively The flame remains stable as long as the wick is above the water and has access to oxygen
conclusion: The flame remains stable as long as the wick is above the water

✓ step_type: image description
conclusion: The candle burns steadily while floating or standing in the water The water prevents the melted wax from spreading too far and the flame remains unaffected

step_type: logical inference
premise: The setup creates a visually interesting effect where the candle appears to burn on water The water also adds safety by reducing the risk of fire spreading
conclusion: The candle appears to burn on water

step_type: logical inference
premise: When you fill A the bowl with water and ignite B the candle the candle burns steadily while floating or standing in the water.
conclusion: B continues to burn in the water for a period of time
final_answer: right

SAS = 8/9, Answer = 1

Key Step Annotation Matching:

Key Caption:

✓ - A is a transparent glass bowl
✓ - B is a complete red candle

Key Conclusion:

✓ - Light B, and during the burning process, B will melt and drip wax
✗ - The wax drips meet the water, they will quickly solidify
✓ - The solidified wax droplets can insulate the water and B, allowing B to continue burning

KCS = 4/5

Figure 12 Examples of Multi-Image SAS-KSC Evaluation on Physics Experiment Data: Enhanced Visual Context Enables Richer Reasoning and Performance Gains.

1350

1351

1352

1353

1354

1355

Step Accuracy Score (SAS) & Key Step Coverage (KSC)

<image_1>

Question: As shown in the figure, curve a is the photovoltaic cell's U-I characteristic at a fixed light level, and curve b is the U-I line for resistor R. When the two are connected to form a closed circuit, what is the photovoltaic cell's internal resistance?

Answer: The internal resistance of the silicon photovoltaic cell is 5.5Ω <image_2>

Key Steps Annotation:

1. First, using $U = E - Ir$, the red point at $I = 0$ gives $E = 3.6 \text{ V}$.
2. Next, at the operating point, the resistor shows $U_R = 2.5 \text{ V}$ with $I = 0.2 \text{ A}$.
3. Hence the internal resistance is $r = (E - U_R)/I = (3.6 - 2.5)/0.2 \approx 5.5 \Omega$.

<image_3>

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Single-image Input : <image_1>

GPT-4o:

Response :

Solution outline (concise, without exposing private internal deliberation): 1. The operating point of the circuit is given by the intersection of curve a (the battery's U-I characteristic at this light intensity) and straight line b (the U-I relation of the external resistor R). 2. From the graph, the two curves cross at $I \approx 0.25 \text{ A}$, $U \approx 2.5 \text{ V}$. 3. For the battery, the open-circuit (no-load) terminal voltage is the vertical-axis intercept of curve a, which the graph shows to be about $U_0 \approx 3.6 \text{ V}$. 4. The battery's internal resistance r at that light intensity is obtained from $r = (U_0 - U) / I$. Substituting the coordinates of the operating point: $r = (3.6 \text{ V} - 2.5 \text{ V}) / 0.25 \text{ A} = 1.1 \text{ V} / 0.25 \text{ A} \approx 4.4 \Omega$. 5. Answer: The internal resistance of the silicon photovoltaic cell at the given light intensity is approximately 4.4Ω .

Step Partition & Judgment:

✗ step_type: background information

✗ conclusion: The operating point of the circuit is given by the intersection of curve a (the battery's U-I characteristic at this light intensity) and straight line b (the U-I relation of the external resistor R).",

✗ step_type: image description

✗ conclusion: From the graph, the two curves cross at $I \approx 0.25 \text{ A}$, $U \approx 2.5 \text{ V}$.

✓ step_type: image description

✓ conclusion: For the battery, the open-circuit (no-load) terminal voltage is the vertical-axis intercept of curve a, which the graph shows to be about $U_0 \approx 3.6 \text{ V}$.

✗ step_type: logical inference

✗ premise: The battery's internal resistance r at that light intensity is obtained from $r = (U_0 - U) / I$.

✗ conclusion: Substituting the coordinates of the operating point: $r = (3.6 \text{ V} - 2.5 \text{ V}) / 0.25 \text{ A} = 1.1 \text{ V} / 0.25 \text{ A} \approx 4.4 \Omega$.

✓ step_type: logical inference

✓ premise: The battery's internal resistance r at that light intensity is obtained from $r = (U_0 - U) / I$.

✓ conclusion: Substituting the correct coordinates of the operating point: $r = (3.6 \text{ V} - 2.5 \text{ V}) / 0.25 \text{ A} = 1.1 \text{ V} / 0.25 \text{ A} \approx 4.4 \Omega$.

SAS = 2/5, Answer = 0

Key Step Annotation Matching:

Key Conclusion:

✓ -First, focus on the red dot marked in the figure. According to Ohm's Law, $U=E-Ir$. When $I=0$, $E=U$. Therefore, the red dot where the graph line a intersects the vertical axis represents $E=3.6V$.

✗ -Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor U_R is $2.5V$, and the current U_R is $0.2A$.

✗ -The internal resistance r of the silicon photovoltaic cell is $r = (E-U)/I = (3.6-2.5)/0.2 = 5.5 \Omega$.

KCS = 1/3

Figure 13 Examples of Single-Image SAS-KSC Evaluation on Physics Problems Data with GPT-4o.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

Multi-image Input : <image_1,2,3>

1415 GPT-4o:

1416 **Response :**

1417 When the silicon photocell is connected to the resistor R, the working point of the circuit is the intersection P of curve a
1418 (photocell U-I characteristic) and line b (resistor U-I characteristic). 1. From the graph this intersection is at current $I \approx 0.20$ A
1419 terminal voltage $U \approx 2.5$ V. 2. The open-circuit (no-load) voltage of the photocell, i.e. the intercept of curve a on the U-axis, is
1420 about $E \approx 3.6$ V. 3. For a source with emf E, terminal voltage U and current I, the internal resistance $r = (E - U) / I$. 4.
1421 Substituting the values read from the graph, $r = (3.6 \text{ V} - 2.5 \text{ V}) / 0.20 \text{ A} \approx 5.5 \Omega$. 5. Therefore, the internal resistance of the
1422 silicon photocell at this light intensity is about $r \approx 5.5 \Omega$.

1423 **Step Partition & Judgment:**

- 1424 **step_type:** background information
- 1425 **conclusion:** When the silicon photocell is connected to the resistor R, the working point of the circuit is the intersection P of curve a
(photocell U-I characteristic) and line b (resistor U-I characteristic).
- 1426 **✓ step_type:** image description
- 1427 **conclusion:** From the graph this intersection is at current $I \approx 0.20$ A and terminal voltage $U \approx 2.5$ V.
- 1428 **✓ step_type:** image description
- 1429 **conclusion:** The open-circuit (no-load) voltage of the photocell, i.e. the intercept of curve a on the U-axis, is about $E \approx 3.6$ V.
- 1430 **✓ step_type:** background information
- 1431 **conclusion:** For a source with emf E, terminal voltage U and current I, the internal resistance $r = (E - U) / I$.
- 1432 **step_type:** logical inference
- 1433 **premise:** $E = 3.6 \text{ V}$, $U = 2.5 \text{ V}$, $I = 0.20 \text{ A}$
- 1434 **✓ conclusion:** Substituting the values read from the graph, $r = (3.6 \text{ V} - 2.5 \text{ V}) / 0.20 \text{ A}$, $r \approx 5.5 \Omega$.
- 1435 **✓ step_type:** logical inference
- 1436 **premise:** $E = 3.6 \text{ V}$, $U = 2.5 \text{ V}$, $I = 0.20 \text{ A}$.
- 1437 **conclusion:** Therefore, the internal resistance of the silicon photocell at this light intensity is about $r \approx 5.5 \Omega$.

SAS = 6/6, Answer =1

Key Step Annotation Matching:

1439 **Key Conclusion:**

- 1440 **✓** -First, focus on the red dot marked in the figure. According to Ohm's Law, $U = E - Ir$. When $I = 0$, $E = U$. Therefore,
the red dot where the graph line a intersects the vertical axis represents **E = 3.6V**.
- 1441 **✓** -Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor **Ur is 2.5V**,
and the current **Ur is 0.2A**.
- 1442 **✓** -The internal resistance r of the silicon photovoltaic cell is $r = (E - U) / I = (3.6 - 2.5) / 0.2 = 5.5 \Omega$.

KCS = 3/3

1448 **Figure 14 Examples of Multi-Image SAS-KSC Evaluation on Physics Tasks with GPT-4o: Enhanced**
1449 **Visual Context Boosts Reasoning and Performance.**

1450
1451
1452
1453
1454
1455
1456
1457

1458

1459

1460

1461 Internvl3-78B:

1462

Response :

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

Multi-image Input : <image_1,2,3>

Internvl3-78B:

Response :

To determine the internal resistance of the silicon photocell when it forms a closed loop with the resistor R at a certain light intensity, we need to use the given U-I graph. 1. Identify the Open-Circuit Voltage U_{oc} : The open-circuit voltage is the voltage across the battery when no current flows (i. e., $I = 0$). From the graph, when $I = 0$, $U = 3.6$ V. Therefore, $U_{oc} = 3.6$ V. 2. Determine the Short-Circuit Current I_{sc} : The short-circuit current is the current when the voltage across the battery is zero (i. e., $U = 0$). From the graph, when $U = 0$, $I = 0.4$ A. Therefore, $I_{sc} = 0.4$ A. 3. Calculate the Internal Resistance r : The internal resistance of the battery can be calculated using the formula: $r = \frac{U_{oc}}{I_{sc}}$. Substituting the values: $r = \frac{3.6}{0.4} = 9$ Ω . 4. The internal resistance of the silicon photocell at this light intensity is 9Ω .

Step Partition & Judgment:

✓ **step_type:** image description

conclusion: The open-circuit voltage is the voltage across the battery when no current flows (i.e., $I = 0$). From the graph, when $I = 0$, $U = 3.6$ V.

✗ **step_type:** image description

conclusion: The short-circuit current is the current when the voltage across the battery is zero (i. e., $U = 0$). From the graph, when $U = 0$, $I = 0.4$ A.

✗ **step_type:** logical inference

premise: $U_{oc} = 3.6$ V. $I_{sc} = 0.4$ A.

conclusion: The internal resistance of the battery can be calculated using the formula: $r = U_{oc} / I_{sc}$. Substituting the values: $r = 3.6$ V / 0.4 A = 9Ω .

✗ **step_type:** logical inference

premise: $U_{oc} = 3.6$ V. $I_{sc} = 0.4$ A.

conclusion: The internal resistance of the silicon photocell at this light intensity is 9Ω .

SAS = 1/4, Answer =0**Key Step Annotation Matching:****Key Conclusion:**

✓ -First, focus on the red dot marked in the figure. According to Ohm's Law, $U=E-Ir$. When $I = 0$, $E = U$. Therefore, the red dot where the graph line intersects the vertical axis represents **E = 3.6V**.

✗ -Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor **Ur is 2.5V**, and the current **Ur is 0.2A**.

✗ -The internal resistance r of the silicon photovoltaic cell is $r = (E-U)/I = (3.6-2.5)/0.2 = 5.5 \Omega$.

KCS = 1/3**Figure 15 Examples of Multi-Image SAS-KSC Evaluation on Physics Problems Data with InternVL2.5.**

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Step Accuracy Score (SAS) & Key Step Coverage (KSC)

Question: From A's perspective, which direction is B
Answer: B is located to the left rear of A

<image_1>

Key Steps Annotation:

1. A is a yellow and black car at the top of the intersection
B is a yellow and black car near the bottom <image_2>
2. A faces the upper left, back toward the camera <image_3>
3. B is located below, slightly to the right <image_4>
4. From A's view, B is in the left rear <image_5>

Single-image Input : <image_1>

GPT-4o:

Response :

To determine the direction of object B from the first-person perspective of object A, follow these steps: 1. Identify the Orientation of Object A: - Object A is a vehicle facing towards the top left of the image, moving diagonally across the intersection. 2. Determine Object A's Forward Direction: - From the perspective of object A, the forward direction is towards the top left corner of the image. 3. Locate Object B Relative to Object A: - Object B is positioned towards the bottom of the image, moving upwards. 4. Determine the Direction from A to B: - From object A's perspective, object B is located to the right and slightly behind. 5. Final Direction: - Therefore, from the first-person perspective of object A, object B is to the right.

Step Partition & Judgment:

step_type: background information

conclusion: To determine the direction of object B from the first-person perspective of object A, follow these steps

- ✓ **step_type:** image description
conclusion: Object A is a vehicle facing towards the top left of the image, moving diagonally across the intersection
- ✓ **step_type:** logical inference
premise: Object A is a vehicle facing towards the top left of the image.
conclusion: From the perspective of object A, the forward direction is towards the top left corner of the image
- ✗ **step_type:** image description
conclusion: Object B is positioned towards the bottom of the image, moving upwards
- ✗ **step_type:** logical inference
premise: From the perspective of object A, the forward direction is towards the top left corner of the image. Object B is positioned towards the bottom of the image
conclusion: From object A's perspective, object B is located to the right and slightly behind
- ✗ **step_type:** logical inference
premise: From object A's perspective, object B is located to the right and slightly behind
conclusion: Therefore, from the first-person perspective of object A, object B is to the right

SAS = 2/6, Answer = 0

Key Step Annotation Matching:

Key Conclusion:

- ✓ - Identify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a yellow and black car near the bottom of the intersection
- ✗ - Determine the direction of object A. Object A is located on the road with its back facing the camera, facing towards the upper left corner of the image
- ✗ - Determine the relative position of object B. Object B is located below Object A, slightly to the right
- ✗ - Determine direction. From the first person perspective of object A, object B is located in the left rear

KCS = 1/4

Figure 16 Examples of Single-Image SAS-KSC Evaluation on Spatial Relations Data with GPT-4o.

1566
1567
1568
1569
1570
1571

1572
1573

1574 GPT-4o:

1575

Response :

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

Multi-image Input : <image_1,2,3,4,5>

1572

1573

1574

GPT-4o:

Response :

To determine the direction of object B from the perspective of object A, follow these steps: 1. Identify the Position of Object A: - Object A is the taxi at the top left of the image. 2. Draw a Line from Object A to Object B: Imagine or draw a straight line from the front of Object A (the taxi) to Object B (the other taxi at the bottom right). 3. Determine the Relative Direction: - From the perspective of Object A, determine which way Object B is located relative to the direction Object A is facing. Object B is positioned slightly to the right and directly in front of Object A. 4. Use the Blue Arrow for Clarification: - The blue arrow in the final image shows the direction from Object A to Object B, pointing forward and slightly to the right. 5. Conclusion: Object B is in front of and to the right of Object A. 6. Final Direction: From the perspective of Object A, Object B is in front and to the right.

Step Partition & Judgment:

1583 **step_type:** image description

conclusion: Object A is the taxi at the top left of the image.

1585 **✓ step_type:** image description

conclusion: Object B is the taxi at the bottom right of the image.

1587 **✓ step_type:** logical inference

premise: Object A is the taxi at the top left of the image. Object B is the taxi at the bottom right of the image.

conclusion: Draw a line from the front of Object A to Object B.

1589 **✗ step_type:** logical inference

premise: Draw a line from the front of Object A to Object B.

conclusion: Object B is positioned slightly to the right and directly in front of Object A.

1592 **✓ step_type:** image description

conclusion: The blue arrow in the image shows the direction from Object A to Object B

1594 **✗ step_type:** logical inference

premise: The blue arrow in the image shows the direction from Object A to Object B.

conclusion: The blue arrow points forward and slightly to the right.

1596 **✗ step_type:** logical inference

premise: Object B is positioned slightly to the right and directly in front of Object A.

conclusion: From the perspective of Object A, Object B is in front and to the right.

SAS = 3/7, Answer = 0

Key Step Annotation Matching:

1602 **Key Conclusion:**

1603 **✓** -Identify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a yellow and black car near the bottom of the intersection.

1604 **✗** -Determine the direction of object A. Object A is located on the road with its back facing the camera, facing towards the upper left corner of the image.

1606 **✗** -Determine the relative position of object B. Object B is located below Object A, slightly to the right.

1607 **✗** -Determine direction. From the first person perspective of object A, object B is located in the left rear.

KCS = 1/4

Figure 17 Examples of Multi-Image SAS-KSC Evaluation on Spatial Relations Data with GPT-4o: Enhanced Visual Context Enables Richer Reasoning and Performance Gains.

1615

1616

1617

1618

1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Multi-image Input : <image_1,2,3,4,5>

InternVL2.5:

Response :

To determine the direction of object B from the first-person perspective of object A, we need to analyze the images provided step-by-step: 1. Identify Object A's Perspective: - Object A is a vehicle located at the top left of the intersection, facing towards the right side of the image. The arrow pointing from object A indicates its forward direction. 2. Identify Object B's Position: Object B is another vehicle located at the bottom center of the intersection, facing upwards in the image. The arrow pointing from object B indicates its forward direction. 3. Determine Object A's Forward Direction: - From the first-person perspective of object A, the vehicle is facing towards the right side of the image, which corresponds to the east direction in a typical map orientation. 4. Determine Object B's Relative Position: - Object B is positioned below object A in the image. From object A's perspective, this means object B is located towards the south. 5. Analyze the Relative Direction: Since object A is facing east, and object B is positioned towards the south from object A's perspective, object B is located to the right and slightly behind object A. 6. Final Direction: From object A's perspective, object B is in the southeast direction.

⌚ Step Partition & Judgment:

step_type: background information

conclusion: To determine the direction of object B from the first-person perspective of object A, we need to analyze the images provided step-by-step

✓ step_type: image description

conclusion: Object A is a vehicle located at the top left of the intersection, facing towards the right side of the image. The arrow pointing from object A indicates its forward direction.

✓ step_type: image description

conclusion: Object B is another vehicle located at the bottom center of the intersection, facing upwards in the image. The arrow pointing from object B indicates its forward direction.

✗ step_type: logical inference

premise: From the first-person perspective of object A, the vehicle is facing towards the right side of the image.

conclusion: Object A is facing towards the east direction in a typical map orientation.

✗ step_type: logical inference

premise: Object B is positioned below object A in the image.

conclusion: From object A's perspective, this means object B is located towards the south.

✗ step_type: logical inference

premise: Object A is facing east, and object B is positioned towards the south from object A's perspective.

conclusion: Object B is located to the right and slightly behind object A.

✗ step_type: logical inference

premise: From object A's perspective, object B is positioned towards the south

conclusion: Object B is in the southeast direction.

SAS = 2/7, Answer = 0

⌚ Key Step Annotation Matching:

Key Conclusion:

✓ -Identify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a yellow and black car near the bottom of the intersection.

✗ -Determine the direction of object A. Object A is located on the road with its back facing the camera, facing towards the upper left corner of the image.

✗ -Determine the relative position of object B. Object B is located below Object A, slightly to the right.

✗ -Determine direction. From the first person perspective of object A, object B is located in the left rear.

KCS = 1/4

Figure 18 Examples of Multi-Image SAS-KSC Evaluation on Spatial Relations Data with InternVL3.

1674 D.2 EXAMPLES OF DIVERSITY EVALUATION.

1675

1676 Figure 19 provides an example illustrating our diversity evaluation metrics - Path Validity Rate (PVR)
1677 and Path Coverage Score (PCS). We find that models vary in their ability to explore diverse reasoning
1678 paths when processing both single-image and multi-image inputs.

1680 **Path Validity Rate (PVR) & Path Coverage Score (PCS)**

1689 **Question:** If A is quickly flicked away by B, what happens next
1690 **Answer:** C falls almost straight down into the glass

1691 **Key Steps Annotation:**

1692 **Multi-path CoT:**

1693 $step1 \rightarrow step2 \rightarrow step3$

1694 $step1 \rightarrow step3 \rightarrow step2$

1695 1. A and C are at rest and have inertia
1696 <image_2>

1697 2. A flies out due to impact, C remains
1698 stationary due to inertia <image_3>

1699 3. C falls into a glass due to gravity
1700 <image_4>

1703 **Single-image Input : <image_1>**

1704 GPT-4o:

1705 **Model Path :**

1706 $step1 \rightarrow step2 \rightarrow step3$

1707 **Reference Graph Construction:**

1712 $PVR: 3/3 \longrightarrow PVR_{adj} = PVR \times \frac{\min(1,2)}{2}$

1713 $PCS: 4/4 \longrightarrow PCS_{adj} = PCS \times e^{(-\alpha \cdot (\frac{1}{2} - 1))}$

1714 **Multi-image Input : <image_1,2,3,4>**

1715 GPT-4o:

1716 **Model Path :**

1717 $step1 \rightarrow step2 \rightarrow step3 \quad step1 \rightarrow step3 \rightarrow step2$

1718 **Reference Graph Construction:**

1723 $PVR: 3/3 \longrightarrow PVR_{adj} = PVR \times \frac{\min(2,2)}{2}$

1724 $PCS: 4/4 \longrightarrow PCS_{adj} = PCS \times e^{(-\alpha \cdot (\frac{2}{2} - 1))}$

1725 **Figure 19 Examples of Single- and Multi-Image PVR-PCS Evaluation on Spatial Relations Data with**
1726 **GPT-4o.**

1727 D.3 EXAMPLES OF EFFICIENCY EVALUATION.

1728 Figure 20 focuses on evaluating step relevance, clearly indicating how accurately and succinctly the
1729 models identify and utilize pertinent information from visual and textual inputs. Figure 21 specifically
1730 illustrates a scenario examining reflection validity, detailing the ability of model to avoid redundant
1731 or incorrect reasoning paths.

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Step Relevance Score (SRS)

Key Caption:

A is the black car on the right
B is the white car on the left

Key Steps Annotation:

1. A faces the camera from the side and is located in the middle of the road facing to the right <image_2>
2. B is located in the upper left corner of A, on the right side of the road <image_3>
3. From object A's view, B is located in the left rear direction <image_4>

Single-image Input : <image_1>

Qwen2.5-VL-72B:

Response :

To determine the direction of object B from the first-person perspective of object A, let's follow these steps: 1. Identify Object A and Object B - Object A is indicated by the red arrow pointing to the right side of the image. - Object B is indicated by the red arrow pointing to the left side of the image. 2. Determine the Position of Object A: - Object A is located on the right side of the image, near the black car. 3. Determine the Position of Object B: - Object B is located on the left side of the image, near the white truck. 4. Establish the First-Person Perspective of Object A: - If we imagine standing at the position of Object A, we need to consider the relative positions of other objects from this viewpoint. 5. Calculate the Direction of Object B from Object A: - From the position of Object A (right side), Object B (left side) would be to the left when looking straight ahead. 6. Consider the Orientation of the Scene: - The scene is a street view with a crosswalk. The direction "left" from Object A's perspective aligns with the left side of the image. Final Answer: From the first-person perspective of Object A, Object B is to the left.

Step Partition & Judgment:

- ✓ **step_type:** image description
conclusion: Object A is indicated by the red arrow pointing to the right side of the image
- ✓ **step_type:** image description
conclusion: Object B is indicated by the red arrow pointing to the left side of the image
- ✓ **step_type:** image description
conclusion: Object A is located on the right side of the image near the black car
- ✓ **step_type:** image description
conclusion: Object B is located on the left side of the image near the white truck
- ✓ **step_type:** logical inference
conclusion: Consider the relative positions of other objects from Object A's viewpoint
- ✓ **step_type:** logical inference
conclusion: From the position of Object A Object B would be to the left when looking straight ahead
- ✗ **step_type:** background information
conclusion: The scene is a street view with a crosswalk
- ✓ **step_type:** logical inference
conclusion: The direction left from Object A's perspective aligns with the left side of the image

SRS = 7/8

Figure 20 Examples of Step Relevance Score Evaluation.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Reflection Validity Rate (RVR)

Question: How can you speed up the separation of B's peels

Answer: Combined thermal and osmotic effects reduce peel adhesion strength

Key Steps Annotation:

1. 85C water flows from A to F <image_2>
2. Granular diffusion occurs when D transfers C crystals into F <image_3>
3. Osmotic pressure differential drives solution penetration into B's peel <image_4>

Single-image Input : <image_1>

QVQ-72B:

Response :

So I've got this problem here: "How to accelerate the separation of B peels?" And looking at the image, item B is an orange. So, I need to figure out how to speed up the process of separating the peel from the fruit. Let me think about this step by step. First, I need to understand what's involved in separating the peel from an orange. Normally, you'd take the orange and peel it manually, right? But that can be time-consuming and messy. So, maybe there's a better way to do it quickly. One idea that comes to mind is using a tool designed for peeling fruits. For example, there are citrus peelers that can help remove the peel efficiently. Maybe one of the other items in the image can be used for this purpose. Let's see: - A: A pink thermos bottle – Doesn't seem relevant for peeling an orange. - C: A small white bowl – Could be used for holding the peeled orange, but not for peeling. - D: An orange spoon – This might be useful for scooping out the flesh after peeling, but again, not directly for separating the peel. - E: A white spoon – Similar to D, probably not for peeling. - F: A glass mug – Not suitable for peeling. Hmm, so none of these items seem specifically designed for peeling oranges. **Maybe I need to think of a different approach.** **Another thought: perhaps using heat or cold to make the peel easier to remove.** For instance, microwaving the orange briefly could make the peel looser, allowing for easier separation. Alternatively, refrigerating it might have the opposite effect, making the peel tighter and harder to remove. So, maybe heat is a better option. But the image shows a thermos bottle, which is used for keeping drinks hot or cold. If I had to use that, perhaps filling it with hot water and letting the orange sit in warm water for a bit could soften the peel and make it easier to remove. However, I'm not sure if that's the most efficient way. Wait a minute, maybe I can use the thermos bottle to heat up the orange directly. But that seems unsafe and impractical. Let's discard that idea. Let me consider another angle. Perhaps cutting the orange with a knife could help in separating the peel. For example, scoring the peel and then lifting it off. **But that seems like a standard peeling method and might not necessarily accelerate the process...**

Step Partition & Judgment:

- ...
✗ **conclusion:** None of the items are specifically designed for peeling oranges
error_type: Wrong Conclusion
- ✗ **conclusion:** Using heat to make the peel easier to remove might be a better option
error_type: Wrong Conclusion
- ✓ **conclusion:** Using the thermos bottle to heat up the orange directly seems unsafe and impractical
error_type: N/A
- ✗ **conclusion:** Cutting the orange with a knife is a standard method and might not accelerate the process
error_type: Wrong Conclusion
...

RVR = 1/4

Figure 21 Examples of Reflection Validity Rate Evaluation.

E LIMITATION

Our benchmark design, while aiming for rigorous evaluation of visual physical reasoning, inherits several limitations from both dataset construction and evaluation methodology. (i) **Scene and Domain Coverage:** Despite our efforts to include diverse physical scenarios, MVPBench cannot fully capture the long-tail distribution of real-world physics. This may limit the generalizability of conclusions drawn from our evaluation. To address this, we plan to iteratively expand the dataset with community feedback and new task paradigms. (ii) **Annotation Subjectivity:** Ground-truth reasoning chains, although carefully curated, may still carry annotator bias in step granularity or interpretation of visual cues. We mitigate this by introducing a graph-based CoT consistency metric to allow flexible yet principled comparisons across models. (iii) **Model Usage Constraints:** Our evaluation depends on the output of proprietary MLLMs (e.g., GPT-4o), which restricts full control over model internals

1836 and fine-tuning procedures. As such, we treat model predictions as black-box outputs and encourage
1837 future work to validate findings across both open and closed-source systems for robustness.
1838

1839 **F BROADER IMPACTS**
1840

1841 **Positive Impacts:** On the positive side, this work has the potential to significantly enhance human-AI
1842 collaboration in fields such as education, scientific research, and accessibility, by enabling models to
1843 perform more transparent and interpretable reasoning across visual and textual modalities.
1844

1845 **Negative Impacts:** The potential negative societal impacts of our work are similar to those associated
1846 with other MLLMs and LLMs. The development of Visual CoT and MLLMs, while advancing AI,
1847 poses societal risks such as increased privacy invasion, the perpetuation of biases, the potential for
1848 misinformation, job displacement, and ethical concerns regarding accountability and consent.
1849

1850 **Mitigation Strategies:** To mitigate the aforementioned risks, several strategies are considered
1851 throughout the development and deployment of our model. First, we adopt a rigorous data curation
1852 process aimed at minimizing the propagation of harmful biases, ensuring that training data is as
1853 diverse, inclusive, and representative as possible. Second, privacy-preserving techniques such as data
1854 anonymization and adherence to data protection regulations (e.g., GDPR) are employed to safeguard
1855 user information. Third, we emphasize responsible release practices, including usage guidelines,
1856 model cards, and risk documentation, to inform users of the model’s intended scope and limitations.
1857 Lastly, we advocate for continued interdisciplinary collaboration with ethicists, legal experts, and
1858 affected communities to ensure that the deployment of MLLMs aligns with broader societal values
1859 and norms.
1860

1861 **G DETAILED EVALUATION PROMPTS**
1862

1863 **G.1 CoT QUALITY EVALUATION PROMPTS**
1864

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

SAS Evaluation Prompt

1

Task Overview
Given a solution with multiple reasoning steps for an image-based problem, reformat it into well-structured steps and evaluate their correctness.

Step 1: Reformatting the Solution
Convert the unstructured solution into distinct reasoning steps while:

- Preserving all original content and order
- Not adding new interpretations
- Not omitting any steps

Step Types

1. Logical Inference Steps
 - Contains exactly one logical deduction
 - Must produce a new derived conclusion
 - Cannot be just a summary or observation
2. Image Description Steps
 - Pure visual observations
 - Only includes directly visible elements
 - No inferences or assumptions
3. Background Information Steps
 - External knowledge or question context
 - No inference process involved

Step Requirements

- Each step must be atomic (one conclusion per step)
- No content duplication across steps
- Initial analysis counts as background information
- Final answer determination counts as logical inference

Step 2: Evaluating Correctness
Evaluate each step against:

Ground Truth Matching
For image descriptions:

- Key elements must match ground truth descriptions

For logical inferences:

- Conclusion must EXACTLY match or be DIRECTLY entailed by ground truth

Reasonableness Check (if no direct match)
Step must:

- Premises must not contradict any ground truth or correct answer
- Logic is valid
- Conclusion must not contradict any ground truth
- Conclusion must support or be neutral to correct answer

1944
1945
1946
1947

SAS Evaluation Prompt

2

```
1948 ## Judgement Categories
1949 - "Match": Aligns with ground truth
1950 - "Reasonable": Valid but not in ground truth
1951 - "Wrong": Invalid or contradictory
1952 - "N/A": For background information steps
1953
1954 # Output Requirements
1955 1. The output format MUST be in valid JSON format without ANY other content.
1956 2. For highly repetitive patterns, output it as a single step.
1957 3. Output maximum 35 steps. Always include the final step that contains the answer.
1958
1959 Here is the json output format:
1960 ## Output Format
1961 [
1962   {
1963     "step_type": "image description|logical inference|background information",
1964     "premise": "Evidence (only for logical inference)",
1965     "conclusion": "Step result",
1966     "judgment": "Match|Reasonable|Wrong|N/A"
1967   }
1968 ]
1969
1970 Here is the problem, and the solution that needs to be reformatted to steps:
1971
1972 [Problem]
1973
1974 {question}
1975
1976 [Solution]
1977
1978 {solution}
1979
1980 [Correct Answer]
1981
1982 {answer}
1983
1984 [Ground Truth Information]
1985
1986 {gt_annotation}
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
```

1998
1999
2000
2001 **KSC Evaluation Prompt**
2002
2003
2004 You are an expert system for verifying solutions to image-based problems. Your task is to
2005 match the ground truth middle steps with the provided solution.
2006
2007 INPUT FORMAT:
2008 1. Problem: The original question/task
2009 2. A Solution of a model
2010 3. Ground Truth: Essential steps required for a correct answer
2011
2012 MATCHING PROCESS:
2013
2014 You need to match each ground truth middle step with the solution:
2015
2016 Match Criteria:
2017 - The middle step should exactly match in the content or is directly entailed by a certain content
2018 in the solution
2019 - All the details must be matched, including the specific value and content
2020 - You should judge all the middle steps for whether there is a match in the solution
2021
2022 OUTPUT FORMAT:
2023 JSON array of judgments:
2024 [
2025 {
2026 "step_index": <integer>,
2027 "judgment": "Matched" | "Unmatched",
2028 }
2029]
2030
2031 ADDITIONAL RULES:
2032 1. Only output the json array with no additional information.
2033 2. Judge each ground truth middle step in order without omitting any step.
2034
2035 Here is the problem, answer, solution, and the ground truth middle steps:
2036
2037 [Problem]
2038
2039 {question}
2040
2041 [Answer]
2042
2043 {answer}
2044
2045 [Solution]
2046
2047 {solution}
2048
2049 [Ground Truth Information]
2050
2051 {gt_annotation}

G.2 CoT DIVERSITY EVALUATION PROMPTS

2052

2053

2054

Diversity Evaluation Prompt

2055
2056 You are given a question about a physical experiment and several key reasoning steps.

2057

2058 Your goal is to identify ALL possible valid reasoning chains that logically connect the
2059 question to the final answer.
2060

2061 Each reasoning chain should include all key steps exactly once, arranged in a logically
2062 valid order.
2063

2064 Steps may be combined in different logical orders as long as the overall reasoning
2065 makes sense.
2066

2067 Think carefully: there may be multiple valid chains based on how the steps can be
2068 logically ordered.
2069

2070 Your job is to find as many valid logical chains as possible.
2071 INPUT FORMAT:

2072 1. Question: The original question/task
2073 2. Final Answer: Answer to the original question
2074 2. Key Reasoning Steps: A list of essential reasoning steps, each with an ID and
2075 explanation.
2076

2077 Output format
2078

2079 2080 JSON array of judgments:
2081 [

2082 ["key_step_1", "key_step_2", "key_step_3"],
2083 ["key_step_1", "key_step_3", "key_step_2"]
2084]
2085

2086 ADDITIONAL RULES:
2087

2088 1. Only output the json array with no additional information.
2089

2090 Here is the question, answer, and the Key Reasoning Steps:
2091 [Question]
2092

2093 {question}
2094

2095 [Final Answer]
2096

2097 {answer}
2098

2099 [Solution]
2100

2101 {solution}
2102

2103

2104

2105

2106 G.3 CoT EFFICIENCY EVALUATION PROMPTS

2107

2108

2109

PVR Rate Prompt

1

2110

Task Overview

2111

Given a solution with multiple reasoning steps for an image-based problem, evaluate the relevance to get a solution (ignore correct or wrong) of each step.

2112

2113

2114

Step 1: Reformatting the Solution

2115

Convert the unstructured solution into distinct reasoning steps while:

2116

- Preserving all original content and order
- Not adding new interpretations
- Not omitting any steps

2117

2118

2119

Step Types

2120

1. Logical Inference Steps

2121

- Contains exactly one logical deduction
- Must produce a new derived conclusion
- Cannot be just a summary or observation

2122

2123

2124

2. Image Description Steps

2125

- Pure visual observations
- Only includes directly visible elements
- No inferences or assumptions

2126

2127

2128

2129

3. Background Information Steps

2130

- External knowledge or question context
- No inference process involved

2131

2132

2133

Step Requirements

2134

- Each step must be atomic (one conclusion per step)

2135

- No content duplication across steps

2136

- Initial analysis counts as background information

2137

- Final answer determination counts as logical inference

2138

2139

Step 2: Evaluating Relevancy

2140

A relevant step is considered as: 75% content of the step must be related to trying to get a solution (ignore correct or wrong) to the question.

2141

2142

IMPORTANT NOTE:

2143

Evaluate relevancy independent of correctness. As long as the step is trying to get to a solution, it is considered relevant. Logical fallacy, knowledge mistake, inconsistent with previous steps, or other mistakes do not affect relevance.

2144

A logically wrong step can be relevant if the reasoning attempts to address the question.

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

PVR Rate Prompt

2

The following behaviour is considered as relevant:

- i. The step is planning, summarizing, thinking, verifying, calculating, or confirming an intermediate/final conclusion helpful to get a solution.
- ii. The step is summarizing or reflecting on previously reached conclusion relevant to get a solution.
- iii. Repeating the information in the question or give the final answer.
- iv. A relevant image depiction should be in one of following situations: 1. help to obtain a conclusion helpful to solve the question later; 2. help to identify certain patterns in the image later; 3. directly contributes to the answer
- v. Depicting or analyzing the options of the question is also relevant.
- vi. Repeating previous relevant steps are also considered relevant.

The following behaviour is considered as irrelevant:

- i. Depicting image information that does not relate to what is asking in the question. Example: The question asks how many cars are present in all the images. If the step focuses on other visual elements like the road or building, the step is considered as irrelevant.
- ii. Self-thought not related to what the question is asking.
- iii. Other information that is tangential for answering the question.

Output Format

```
[  
  {  
    "step_type": "image description|logical inference|background information",  
    "conclusion": "A brief summary of step result",  
    "relevant": "Yes|No"  
  }  
]
```

Output Rules

Direct JSON output without any other output

Output at most 40 steps

Here is the problem, and the solution that needs to be reformatted to steps:

[Problem]

{question}

[Solution]

{solution}

PCS Prompt

```

2214
2215
2216
2217
2218 # Task
2219 Evaluate reflection steps in image-based problem solutions, where reflections are self-corrections or
2220 reconsiderations of previous statements.
2221
2222 # Reflection Step Identification
2223 Reflections typically begin with phrases like:
2224 - "But xxx"
2225 - "Alternatively, xxx"
2226 - "Maybe I should"
2227 - "Let me double-check"
2228 - "Wait xxx"
2229 - "Perhaps xxx"
2230 It will throw an doubt of its previously reached conclusion or raise a new thought.
2231
2232 # Evaluation Criteria
2233 Correct reflections must:
2234 1. Reach accurate conclusions aligned with ground truth
2235 2. Use new insights to find the mistake of the previous conclusion or verify its correctness.
2236
2237 Invalid reflections include:
2238 1. Repetition - Restating previous content or method without new insights
2239 2. Wrong Conclusion - Reaching incorrect conclusions vs ground truth
2240 3. Incompleteness - Proposing but not executing new analysis methods
2241 4. Other - Additional error types
2242
2243 # Input Format
2244 ...
2245 [Problem]
2246 {question}
2247
2248 [Solution]
2249 {solution}
2250
2251 [Ground Truth]
2252 {gt_annotation}
2253
2254
2255 # Output Requirements
2256 1. The output format must be in valid JSON format without any other content.
2257 2. Output maximum 30 reflection steps.
2258
2259 Here is the json output format:
2260 ## Output Format
2261 ...
2262 [ {
2263   "conclusion": "One-sentence summary of reflection outcome",
2264   "judgment": "Correct|Wrong",
2265   "error_type": "N/A|Repetition|Wrong Conclusion|Incompleteness|Other"
2266 }
2267 ]
2268
2269 # Rules
2270 1. Preserve original content and order
2271 2. No new interpretations
2272 3. Include ALL reflection steps
2273 4. Empty list if no reflections found
2274 5. Direct JSON output without any other output
2275
2276
2277

```

2268 **H SETUP**
2269

2270 **H.1 EXPERIMENT SETUP**
2271

2272 **Evaluation Models.** To comprehensively assess performance on MVPBench, we selected a diverse
2273 array of multimodal large language models (MLLMs), encompassing both open-source and closed-
2274 source frameworks. Among open-source models, we evaluated LLaVA-OV 72BLi et al. (2025a),
2275 LLaVA-CoTXu et al. (2024), InternVL2.5 78BChen et al. (2024b), InternVL2.5-MPO 78BWang et al.
2276 (2024b), InternVL3 (78B, 78B-Instruct)Zhu et al. (2025), Qwen2.5-VL (7B, 72B)Bai et al. (2025),
2277 QVQ-72BQwen Team (2024), as well as the recently included Qwen2VL-2BWang et al. (2024a), MM
2278 Eureka-7BMeng et al. (2025), and R1-VL-2BZhang et al. (2025a), representing various architectures
2279 and multimodal integration strategies. Specifically, InternVL2.5-78B-MPO and InternVL3-78B-
2280 Instruct underwent mixed preference optimization (MPO) post-training, while InternVL2.5-78B and
2281 InternVL3-78B remained unmodified. Furthermore, Qwen2.5VL-7B and Qwen2VL-2B, along
2282 with their respective post-trained variants—MM Eureka-7B, which employs large-scale rule-based
2283 reinforcement learning (RL), and R1-VL-2B, utilizing Step-wise Group Relative Policy Optimization
2284 (StepGRPO)—are of significant interest. Additionally, prominent closed-source models such as
2285 GPT-4oOpenAI (2024), OpenAI o3OpenAI (2025), Claude 3.7 SonnetAnthropic (2025), Gemini-
2286 2.5Deepmind (2024), and Grok3xAI (2025) were selected based on their state-of-the-art multimodal
2287 reasoning capabilities. This expanded and carefully curated selection ensures a balanced and thorough
2288 evaluation encompassing both openly accessible and proprietary MLLM systems.

2289 **Implementation Details.** All our experiments are conducted under a zero-shot setting, showcasing
2290 the generalization capacity of MLLMs for physical reasoning without few-shot prompting or further
2291 fine-tuning. By default, we employ the CoT prompting technique Wei et al. (2022), which encourages
2292 MLLMs to perform complete reasoning steps for fine-grained evaluation. All experiments are
2293 conducted on NVIDIA V100 GPUs.

2294 **H.2 MODEL HYPERPARAMETERS**
2295

2296 To ensure reproducibility and clarity regarding model settings used during evaluation, Table 10
2297 provides detailed information on the hyperparameters and generation setups for each evaluated
2298 multimodal large language model (MLLM). Parameters not explicitly stated indicate that the default
2299 settings provided by the respective models were employed. This comprehensive specification
2300 facilitates transparent comparisons across models and experimental replication.

2301 **I THE USE OF LLMs**
2302

2303 We employed large language models (LLMs) in a strictly auxiliary manner for (i) surface-level
2304 editing of the manuscript (grammar correction, minor rephrasing, and stylistic refinement), and (ii)
2305 technical assistance during dataset preparation, including checking the consistency of JSON schema,
2306 detecting formatting errors, and drafting preliminary scene descriptions for all curated datasets. All
2307 final annotations, dataset curation decisions, experimental designs, and analyses were exclusively
2308 performed and validated by the authors.

2309 **J REBUTTAL**
2310

2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

2322
2323
2324
2325
2326

Table 10 Generating parameters for MLLMs. Parameters not explicitly stated indicate the use of the model’s default system settings.

Model	Generation Setup
LLaVA-OV-72B	<code>torch.dtype=torch.float16, max_new_tokens=2048, temperature=0.7, device_map=balanced, min_pixels=256*28*28, max_pixels=768*28*28</code>
LLaVA-CoT	<code>torch.dtype=torch.float16, max_new_tokens=2048, temperature=0.7, device_map=balanced</code>
InternVL2.5-78B	<code>torch.dtype=torch.float16, max_new_tokens=2048, temperature=0.7, device_map=balanced_low_0</code>
InternVL2.5-78B-MPO	<code>torch.dtype=torch.float16, max_new_tokens=1024, temperature=0.7, device_map=balanced_low_0</code>
InternVL3-78B	<code>torch.dtype=torch.float16, max_new_tokens=1024, temperature=0.7, device_map=balanced_low_0</code>
InternVL3-78B-Instruct	<code>torch.dtype=torch.float16, max_new_tokens=1024, do_sample=False, temperature=0.7, device_map=balanced_low_0</code>
Qwen2.5-VL-7B	<code>torch.dtype=torch.float16, max_new_tokens=1024, do_sample=False, temperature=0.7, device_map=balanced</code>
Qwen2.5-VL-72B	<code>torch.dtype=torch.bfloat16, temperature=0.7, max_new_tokens=1024, device_map=balanced, min_pixels=256*28*28, max_pixels=768*28*28</code>
QVQ-72B	<code>torch.dtype=torch.float16, max_new_tokens=512, do_sample=False, temperature=0.7, min_pixels=256*28*28, max_pixels=768*28*28, device_map=balanced,</code>
MM-Eureka-7B	<code>torch.dtype=torch.float16, max_new_tokens=2048, do_sample=False, temperature=0.7, device_map=balanced</code>
Qwen2VL-2B	<code>torch.dtype=torch.bfloat16, max_new_tokens=2048, do_sample=False, temperature=0.7, device_map=balanced</code>
R1-VL-2B	<code>torch.dtype=torch.float16, max_new_tokens=2048, use_cache=True, temperature=0.7</code>
GPT-4o	<code>dtype=torch.float16, sampling=False, temperature=0.2, max_new_tokens=1024</code>
OpenAI o3	<code>dtype=torch.float16, sampling=False, temperature=0.2, max_new_tokens=1024</code>
Claude 3.7 Sonnet	<code>dtype=torch.float16, sampling=False, temperature=0.2, max_new_tokens=1024</code>
Gemini-2.5-flash-preview-04-17	<code>dtype=torch.float16, sampling=False, temperature=0.2, max_new_tokens=1024</code>
Grok3	<code>dtype=torch.float32, sampling=False, temperature=0.2, max_new_tokens=1024</code>

2374

2375

2376
2377
2378
2379
2380
2381
2382 ChatGPT 4o ▾
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401 ChatGPT 4o ▾
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424

In the figure, the arrows point to object A. What is the direction of movement for object A? Please answer the question step by step.

🔗 ↗

To determine the direction of movement for object A (the orange vehicle) in the image, let's go through the reasoning step by step:

Step 1: Understand the Road Structure

- The image shows a curved, two-lane road with lane markings.
- There is a solid yellow line near the center, which typically separates opposing traffic directions (as in most countries).

Step 2: Observe Vehicle Placement

- The vehicle labeled as object A is on the right side of the solid yellow line (from the vehicle's perspective), which usually indicates it is in its designated lane, assuming right-hand traffic rules (as in most countries).
- The dashed white line to the left of the vehicle typically separates two lanes of traffic moving in the **same** direction.
- This implies a **multi-lane one-way road** OR the vehicle is about to enter a **two-way section** (less likely due to the curve and markings).

Step 3: Direction of Curvature

- The road curves to the **left** from the driver's perspective.
- The vehicle appears to be moving **towards the top of the image**, as the front of the vehicle (windshield, driver area) is pointed that way.
- The shadowing and motion blur also support this direction.

Step 4: Arrow and Label Interpretation

- The red arrow points from the **front of the vehicle** (object A) toward the left side of the image.
- This is not the direction of movement but likely used just to label the object as A.

✓ Conclusion

Object A (the vehicle) is moving forward along the road, which is **towards the top-left corner of the image**.

Figure 22 Example of CoTS with GPT-4o.

2425
2426
2427
2428
2429

2430 **Table 11 Expanded Subcategory-level Evaluation of CoT Reasoning in MVPBench: Human Baselines.**
2431 We present a detailed subcategory-level evaluation of CoT reasoning along the dimensions of *Quality*, *Diversity*,
2432 and *Efficiency*.

2433

2434

2435 Human Performance	2436 Phys-Experiment			2436 Phys-Problems			2436 Spatial-Relation			2436 Dyn-Prediction		
	2436 Quality	2436 Diversity	2436 Efficiency	2436 Quality	2436 Diversity	2436 Efficiency	2436 Quality	2436 Diversity	2436 Efficiency	2436 Quality	2436 Diversity	2436 Efficiency
	94.31	98.72	100.00	93.28	96.42	99.12	100.00	99.13	100.00	99.82	95.76	100.00

2437

2438

2439 **Table 12 Sensitivity analysis of the weighting hyperparameters.** Top-performing models within each
2440 category are highlighted in blue (open-source) and red (closed-source).

2441

2442 Model	2442 Phys-Experiment			2442 Phys-Problems			2442 Spatial-Relation			2442 Dyn-Prediction		
	2442 $\gamma = 0.8$	2442 $\gamma = 0.5$	2442 $\gamma = 0.2$	2442 $\gamma = 0.8$	2442 $\gamma = 0.5$	2442 $\gamma = 0.2$	2442 $\gamma = 0.8$	2442 $\gamma = 0.5$	2442 $\gamma = 0.2$	2442 $\gamma = 0.8$	2442 $\gamma = 0.5$	2442 $\gamma = 0.2$
<i>Open-source MLLMs</i>												
LLaVA-OV-72B Li et al. (2025a)	53.27	66.61	79.65	76.68	79.72	82.18	46.31	59.79	72.75	85.37	89.93	93.22
LLaVA-CoT Xu et al. (2024)	40.41	52.34	63.35	32.15	45.46	58.28	36.81	54.31	72.54	20.14	41.61	61.52
InternVL2.5-78B Chen et al. (2024b)	63.02	73.38	84.15	63.34	71.32	79.52	63.71	71.08	79.13	83.57	87.49	91.02
InternVL2.5-78B-MPO Wang et al. (2024b)	72.27	79.43	87.39	73.16	75.87	78.29	64.21	71.42	78.51	87.05	90.60	93.67
InternVL3-78B Zhu et al. (2025)	73.14	83.39	93.49	61.26	68.23	75.52	63.32	70.43	77.12	84.48	88.05	92.05
InternVL3-78B-Instruct Zhu et al. (2025)	65.16	74.57	83.23	62.32	69.79	76.24	64.15	70.96	77.48	85.77	89.58	93.26
Qwen2.5-VL-7B Bai et al. (2025)	75.42	80.15	86.43	65.71	67.10	69.41	51.32	68.57	85.36	78.41	82.16	86.33
Qwen2.5-VL-72B Bai et al. (2025)	77.53	82.59	87.72	71.39	79.69	87.52	45.61	59.67	72.64	96.12	98.75	99.85
QVQ-72B Qwen Team (2024)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<i>Closed-source MLLMs</i>												
GPT-40 OpenAI (2024)	62.28	76.36	91.01	62.72	69.52	77.32	56.46	69.33	81.27	89.57	91.14	93.21
OpenAI o3 OpenAI (2025)	68.52	75.58	82.43	62.76	68.57	75.41	65.72	71.26	77.41	90.41	91.18	92.61
Claude 3.7 Sonnet Anthropic (2025)	75.43	78.97	82.05	68.07	72.15	76.14	59.31	72.71	85.72	92.03	92.47	93.54

2453

2454

2455 **Table 13 Evaluated Results on unbalanced dataset** Top-performing models within each category are
2456 highlighted in blue (open-source) and red (closed-source).

2457

2457 Model	2457 Phys-Experiment			2457 Phys-Problems			2457 Spatial-Relation			2457 Dyn-Prediction		
	2457 Quality	2457 Diversity	2457 Efficiency	2457 Quality	2457 Diversity	2457 Efficiency	2457 Quality	2457 Diversity	2457 Efficiency	2457 Quality	2457 Diversity	2457 Efficiency
<i>Open-source MLLMs</i>												
LLaVA-OV-72B Li et al. (2025a)	38.32	67.83	97.31	32.98	80.32	99.01	37.32	58.32	99.12	41.66	89.93	99.72
LLaVA-CoT Xu et al. (2024)	34.41	52.68	97.23	21.14	45.78	98.76	33.21	54.21	99.02	43.77	41.61	99.78
InternVL2.5-78B Chen et al. (2024b)	44.61	73.32	94.67	47.48	73.41	98.87	44.29	70.03	99.53	44.78	87.49	100
InternVL2.5-78B-MPO Wang et al. (2024b)	41.75	79.98	97.42	52.69	76.18	99.18	40.52	72.01	96.12	44.06	90.60	99.76
InternVL3-78B Zhu et al. (2025)	38.31	84.52	92.01	58.32	68.91	98.95	43.98	73.65	98.26	46.68	88.05	99.95
InternVL3-78B-Instruct Zhu et al. (2025)	44.02	74.66	94.82	52.65	69.80	99.79	42.01	74.86	97.97	44.20	89.58	99.96
InternVL2.5-VL-7B Bai et al. (2025)	37.66	81.02	96.77	42.76	67.80	98.45	36.31	67.87	96.01	40.30	82.16	99.85
Qwen2.5-VL-72B Bai et al. (2025)	41.32	83.21	96.54	57.32	80.04	99.32	40.12	60.97	98.12	46.94	98.75	99.65
QVQ-72B Qwen Team (2024)	51.32	0.00	72.54	60.86	0.00	65.31	40.15	0.00	70.41	69.20	0.00	79.13
<i>Closed-source MLLMs</i>												
GPT-40 OpenAI (2024)	51.73	76.63	97.34	53.55	69.97	99.03	48.31	68.32	99.82	52.35	91.14	99.59
OpenAI o3 OpenAI (2025)	58.36	76.22	97.53	66.30	69.27	99.05	46.19	73.15	99.42	69.44	91.18	99.71
Claude 3.7 Sonnet Anthropic (2025)	49.45	79.52	97.39	57.98	74.51	93.12	46.10	73.76	99.87	54.92	92.47	98.45

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483