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ABSTRACT

Understanding the physical world—governed by laws of motion, spatial relations,
and causality—poses a fundamental challenge for multimodal large language mod-
els (MLLMs). While recent advances such as OpenAl 03 and GPT-40 demonstrate
impressive perceptual and reasoning capabilities, our investigation reveals these
models struggle profoundly with visual physical reasoning, failing to grasp basic
physical laws, spatial interactions, and causal effects in complex scenes. More
importantly, they often fail to follow coherent reasoning chains grounded in visual
evidence, especially when multiple steps are needed to arrive at the correct answer.
To rigorously evaluate this capability, we introduce MVPBench, a curated bench-
mark designed to rigorously evaluate visual physical reasoning through the lens of
visual chain-of-thought (CoT). Each example features interleaved multi-image in-
puts and demands not only the correct final answer but also a coherent, step-by-step
reasoning path grounded in evolving visual cues. This setup mirrors how humans
reason through real-world physical processes over time. To ensure fine-grained eval-
uation, we introduce a graph-based CoT consistency metric that verifies whether
the reasoning path of model adheres to valid physical logic. Additionally, we mini-
mize shortcut exploitation from text priors, encouraging models to rely on visual
understanding. Experimental results reveal a concerning trend: even cutting-edge
MLLMs exhibit poor visual reasoning accuracy and weak image-text alignment in
physical domains. Surprisingly, RL-based post-training alignment—commonly
believed to improve visual reasoning performance—often harms spatial rea-
soning, suggesting a need to rethink current fine-tuning practices.

1 INTRODUCTION

Human comprehension of the world is fundamentally grounded in physical laws: objects fall when re-
leased, and liquids take the shape of their containers Spelke & Breinlinger| (1992); Baillargeon| (2004)).
Such physical regularities form the basis of our causal understanding |Gopnik et al.|(2004); [Lake et al.
(2017), and further link the chain of reasoning when solving complex problems. Recent advances
appear to grasp this physical world that humans experience—a blitz of multimodal large language
models (MLLMs) like OpenAl 03 |OpenAll (2025)), GPT40|OpenAl| (2024), Gemini|Deepmind| (2024)),
InternVL3 [Zhu et al.| (2025)), Kimil.5 KimiTeam|(2025) and many othersLiang et al. (2025)); Zheng
et al.| (2025b) -all claiming human-level physical reasoning after a final reinforcement-learning (RL)
post-training. Recent works |Shao et al.[(2024); |Guo et al.|(2025); |Li et al.| (2025b); [Daxberger et al.
(2025); \Huang et al.[(2025); |[Fan et al.| (2024) show models describing panoramic scenes, solving
game reasoning, even generating Chain-of-Thought (CoT) explanations. At first glance, it feels as
thought plug-and-play embodied intelligence is already on our doorstep.

Full of eager expectation, we asked the lastest MLLMs a child-level physics question. What is the
direction of movement for the car? Fig.[I|left) shows the setup. Surprisingly, GPT-40 responded with
an incorrect prediction. Pushing further, we queried the thought chain of models. The failure patten
was consistent: models saw the pixels but did not reason about forces, geometry, or causality.

“The Second Half,” reminds us Al is entering a phase where evaluation outweighs trainingYao
(2025). Yet current benchmarks used to “prove” spatial reasoning are a weak compass. Most



Textual CoT

Model reasoning (GPT-40)

Step_1:
Confirm the front and rear of the A. As seen in the
image, The arrow labeled A is a vehicle. The front
usually has headlights, while the rear has taillights
and a license plate. So the front of object A is near
the top of the picture, while the tail is near the
\gottom of the picture.
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Determine the direction of Road extension. The
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Confirm the front and rear of the A.

« Object A is the orange vehicle on the road. The front of the
vehicle is at the bottom part of the vehicle (closer to the
camera).

* The rear of the vehicle has luggage and appears further
from the bottom edge of the image.

Step 2
Observe the Road Layout.
* The image shows a curved road with a clear boundary wall
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road. The road markings (yellow solid line and
white dashed lines) extend along the curve of the
Qad, further confirming the direction of the road.

indicates a leftward bend from the perspective of the vehicle.

-

step_3:

Judge the final direction. To sum up, the front of
the A is facing downward, and the rear is facing
upward in the image. This vehicle is driving along
the curve of the road.

Multi-path CoT: Subset:
step_1— step_2—step_3 Direction Judgment
\ step_2— step_l—step_3 )
~_— ~

Figure 1 A one-minute sanity check shatters the illusion of spatial reasoning in MLLMs. Red arrows
indicate objects and multiple reasoning chains are provided to capture diverse yet valid solution strategies.

Step 3

Look at Contextual Road Features. 0

* The vehicle is positioned properly on the right-hand side of
the road (as per right-hand traffic norms), which supports
upward movement.

Question:

In the figure, the arrows point to
object A. What is the direction of
movement for object A?

Answer:

The A is driving along the road
toward the downward direction.

Answer

Given the orientation and curvature. The vehicle is currently
turning rightward from its perspective (which is leftward in
the image). Therefore, the vehicle is moving upwards in the
image along the curved road.

Subject:
Spatial Relations

rely on game-engine videos or CAD renderings whose textures and lighting barely resemble the
messy real worldKang et al.| (2024); [Zheng et al.| (2024). In addition, many questions are phrased
so that a language-only model can guess the answer from commonsense priors, bypassing vision

altogetherZhou et al.| (2025));[Yue et al.| (2024); [il Lee et al.| (2023)). Furthermore— almost none pair

each intermediate visual cue with an explicit reasoning step, so training pipelines receive no pressure
to ground chain-of-thought in what the model seesJiang et al.|(2025b)); [Zhang et al.| (2024)); [Shao
RL post-training therefore optimizes conversational fluency while silently tolerating
physical implausibility. The result is a generation of MLLMs that can describe images eloquently
yet still misjudge which way a car is moving.

To close this evaluation gap, we introduce MVPBench, a Multi-path Visual Physics benchmark that
turns the spotlight on vision-centric reasoning. MVPBench contains 1,211 carefully curated examples
across three real-world domains: i. hands-on physics experiments (electromagnetic induction,
heat conduction, collisions), ii. exam-style word problems requiring symbolic or commonsense
reasoning, and iii. spatial-transformation tasks that challenge 3D understanding (viewpoint shifts,
object rearrangement). Each example pairs multi-image evidence with multiple valid CoT paths,
forcing models to justify every step in view of changing visuals. To evaluate such rich annotations, we
introduce a graph-based CoT metric suite that represents each reasoning chain as a directed acyclic
graph of atomic facts and then assesses step-wise fidelity through exact or fuzzy graph matching,
measures text—image grounding with automated alignment scores, and quantifies multi-path coverage
by rewarding diverse yet logically valid reasoning flows. MVPBench thus re-aligns the compass:
genuine physical understanding demands that models see, think, and prove—not merely narrate.

Extensive experiments reveal two key insights: i. Providing models with the full image sequence
boosts performance by up to 21% points-evidence that temporal context matters. ii. Contrary to
conventional wisdom, RL-based post-training reduces visual-physics scores on MVPBench by 2%
points, indicating that current reward designs sacrifice grounded reasoning for coherence.

To summarize, this paper makes the following contributions:i. To the best of our knowledge,
MVPBench is the first benchmark to combine real-world visual physics, multi-image inputs, and
multi-path CoT annotations. ii. A graph-based evaluation toolkit that jointly measures reasoning
fidelity, visual grounding, and path diversity. iii. The first comprehensive study showing that widely
adopted RL alignment can impair spatial reasoning, calling for vision-centric reward design.

2 RELATED WORKS

Limitations of Multi-modal Large Language Models. Although MLLMs have made significant
progress, recent studies have found that their understanding of the physical world is still weakiLiu|

et al.| (2024);|Guo et al.| (2024); [Bonnen et al.|(2024), and they face major challenges in reasoning
based on visual perceptionZhang et al.| (2025b); [Zheng et al.|(2025a); Bi et al|(2025)). In terms of




physical discipline knowledge, the ability of model to perform multimodal reasoning is limitedHe
et al.| (2024). When faced with tasks involving the prediction of physical interactions, the model
shows insufficient understanding Y1 et al.| (2020); Bear et al.|(2022)). Additionally, there are obvious
deficiencies in the model to accurately interpret object properties and states in physics-based scene
evaluationsWang et al.| (2023b); |Balazadeh et al.[(2025)). Although the spatial reasoning ability of
mllm is constantly improving, it still often struggles to understand spatial relationship problems
through visual perception and reasoningChen et al.|(2024a)). These findings emphasize the need for
more comprehensive and rigorous benchmarks specifically designed to evaluate visual reasoning
capabilities of mllms in physical understanding.

Physical Comprehension Datasets. These datasets have become a crucial area of focus, posing a
significant challenge for MLLMs. Early physical benchmarksBear et al.|(2022); [Zhu et al.| (2023);
Tung et al.| (2023)were developed around simple physical scene reasoning. Inspired by research on
infant intuitive physics, the studyRiochet et al.|(2020) evaluate innate understanding of models in
the physical world. In other aspects of physical datasets, existing benchmarksHe et al.| (2024)); Jiang
et al.[(2024); Lu et al.|(2022); Hao et al.|(2025)); Zhang et al.| (2025c) to evaluate physics problems
mainly focus on commonsense reasoning based on language knowledge. Spatial benchmarksWang
et al. (2023a);|Yang et al.|(2024); Shiri et al.| (2024); |Li et al.| (2024), on the other hand, emphasize
spatial perception and reasoning in 3D scenes, illustrating the early stages of world model. Recent
effor{Chow et al.[(2025)) has expanded to comprehensively assess understanding of models in physical
scenes across various tasks, though they still fail to fully encompass real-world physical knowledge.
By introducing visual CoT as inputs, it forces models to reason across images, making it a closer
approximation to the analysis of complex physical scenes in the real world.

Table 1 Comparison of MVPBench with existing benchmarks for physical understanding. MVPBench
covers a broader range of physical reasoning categories, supports multi-perspective chain-of-thought evaluation,
and provides CoT annotations. In the data format, TC indicates that the dataset utilizes textual CoT, VC means
the use of visual CoT as input, and Vc signifies all that the data is constructed in a vision-centric manner.

Benchmark Data category CoT Evaluation Data format
Physics experiments Physics problems Spatial relations Dynamic prediction|Quality Diversity Efficiency|Vc TC VC

PhysBencHChow et al. (2025 v v v

PhysionBear et al. (2022} v

PhysReasonZhang et al. (2025¢] v v v

PhysGameCao et al. (2024} v v

ContPhy|Zheng et al. [(2024] N

EmbSpatialDu et al. [(2024) v

MVPBench | v v v v | v v v VvV

3 MVPBENCH

The motivation for constructing the MVPBench benchmark stems from recognizing significant gaps in
the current capability of MLLM to deeply comprehend and reason about the physical world. Existing
benchmarks emphasize isolated aspects such as static scene understanding, physics-based reasoning,
or basic spatial awareness, leaving unaddressed the integration of physical reasoning with complex
visual inputs. Therefore, MVPBench aims to rigorously evaluate abilities of MLLMs to visually
reason about diverse physical phenomena in scenarios closely resembling real-world complexities.

To ensure comprehensive coverage of visual reasoning skills, MVPBench incorporates carefully
curated data across multiple distinct yet complementary domains: 1) Physics Experiments tests the
understanding of sequential physical processes through multi-step visual inference. 2) Physics Prob-
lems challenges models to interpret advanced, visually grounded physics questions from academic
examinations. 3) Spatial Relations assesses spatial perception judgment across various scenarios. 4)
Dynamic Prediction evaluates the predictive capabilities of models regarding dynamically evolving
physical interactions. Collectively, these diverse yet targeted subdomains ensure MVPBench not only
addresses existing evaluation gaps but also significantly extends the reasoning depth, robustness, and
versatility of models. Details of data analysis are provided in Appendix
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Q: Which container will the liquid from A, B,
and C enter after passing through the baffles?
A: Most liquid from A and B flows into D,
while E mainly receives flow from C.

Y& Multi-object Collision

Q: What blocks will A collide with and
where will it stop?

A: Object A collides with the purple square,
pushes it forward, and stops in front of it.

B22x
B2 mg(R+r)sinG

Y¢ Optics
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Q: What results from A and B contacting C
F under gravity?
A: Objects C, D, E, and F have not fallen
down.

ey
i‘{ Transformation of Shadow

Q: How will A, B, and C change as the light
source moves right?
A: Both of them shift to the left and become
shorter and smaller.

Figure 2 Examples from MVPBench across four categories. Each example includes an initial scene followed
by reasoning steps. Target objects are marked with red arrows and labeled with letters to reduce textual bias.

3.1 DATA GENERATION

Physics Experiments. We scraped publicly available physics experiment videos, manually filtered
them, and archived the curated clips as MP4 files. From each video, we extracted key frames depicting
(1) the initial setup, (ii) critical intermediate steps, and (iii) the final results. Salient objects were
highlighted with arrows while all textual cues were omitted, forcing models to infer solely from
visual cues, with GPT-4 generating the corresponding scene descriptions. The intermediate steps
encompass essential logical reasoning processes required to complete each experiment. To evaluate
multi-path reasoning verification capability of MLLMs, recorded multiple chains of thought
Jor each instance. All assets are stored in a structured JSON schema that includes mechanics,
thermodynamics, electromagnetism, optics and kinematics. The remaining subsets empoly the same
format as the JSON detailed above, and we omit related discussion in the following section.

Physics Problems. On one hand, we crawled and manually filtered all the problems from relevant
websites, compiling them into PDF files, which were then converted into Markdown format via
OCR and manually aligned. On the other hand, the data was with examples from the PhysReason-
miniZhang et al] (2025¢) dataset. All problems are tightly coupled to images and drawn from
examinations in several countries (predominantly Chinese college entrance examination) for their
open-ended formats that demand advanced reasoning. After meticulous verification, we extracted key
reasoning steps and final answers. These steps include both textual and visual components, with the
image segment forming an additional input alongside the original image. The questions cover five
subcategories including mechanics, thermodynamics, electromagnetism, optics, and kinematics.

Spatial Relations. Spatial relation reasoning is a crucial area in understanding of the physical world.
To address this gap, we have pre-designed four main subcategories to evaluate perception of spatial
relations: (1) Direction judgment: This subcategory formulates problems concerning the directional
judgment of various objects. (2) Distance estimation: This subset encompasses problems related to



estimating the distance relation of different objects. (3) First view transformation: This subcategory
addresses issues pertaining to direction judgment from a egocentric viewpoint regarding various
objects. (4) Topological relation judgment: This subcategory focuses on problems associated with
reachability within directed graphs. The first three subcategories manually screened original images
from public websites, and the fourth subcategory constructed images using the Graph Editor tool.

Dynamic Prediction. To investigate whether MLLMs can predict time-varying physical outcomes
through visual reasoning, we introduce a Dynamic Prediction subset comprising four subcategories:
Multi-object Collision, Liquid Diversion, Physical state and Shadow Transformation predict.
This subset utilizes the PhysBench (Chow et al.| (2025) benchmark, which provides high-quality
dynamic scene videos. All samples are adapted and extended from PhysBench to ensure high-
quality video frames. For each sample, we extract multiple temporally spaced key frames from the
corresponding video to form multi-image inputs, annotating salient objects with arrows.

4 COT EVALUATION METHOD

Step Accuracy Score (SAS) Question:What is the orientation of object A?

Annotated stepl - step2 — step3
Judgement CoT chains | step1 — step3 — step2 Step Relevance Score (SRS)

Model Output
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Figure 3 Evaluation framework for multi-path Chain-of-Thought (CoT) reasoning. MVPBench introduces
a comprehensive protocol to evaluate CoT reasoning from three perspectives: quality, diversity, and efficiency.
For CoT diversity, we propose a graph-based multi-path evaluation method that quantifies the ability of
a model to explore alternative reasoning routes via Path Validity Rate (PVR) and Path Coverage Score (PCS),
advancing beyond prior single-path metrics.

Existing CoT evaluation methods often simplify reasoning assessment to a binary judgment of the
final answer, overlooking the internal reasoning steps. To address this limitation, we propose a holistic
CoT evaluation suite that captures the reasoning process across multiple dimensions, offering a finer-
grained understanding of reasoning capabilities of MLLMs. Notably, we are the first to introduce
an evaluation metric for assessing multi-path reasoning ability of models, which complements
traditional correctness and reflection assessments. Details are presented in Section |.1](correctness),
Section [4.2] (multi-path reasoning), and Section [4.3] (reflection quality).

4.1 CoT QUALITY EVALUATION

To evaluate the correctness of CoT reasoning, we extend existing interpretable metrics by incorpo-
rating both step-wise accuracy and final answer correctness. While prior work such as|Jiang et al.
(2025b) focused on intermediate informativeness, they overlook the contribution of the final answer
to overall quality. Inspired by [Zhang et al.| (2024), we introduce a weighted scoring framework that
balances the quality of intermediate steps with the correctness of the final prediction.

Step Accuracy Score (SAS). We prompt GPT-40|OpenAll (2024) to decompose each CoT prediction
into steps, categorized as logical inference, image captioning, or background/numerical computation
(depending on the dataset). Each step is binary-judged for correctness based on alignment with
references or logical/visual validity. SAS is computed as the proportion of correct steps.

CoT Reasoning Score (CRS). To combine step-wise correctness and final answer validity, we define
a weighted reasoning score as CRS = a.- SAS + (1 — «) - Correct(s 4), where Correct(s4) € {0,1}
denotes whether the final answer is correct, and « is set to 0.7 by default.



Key Step Coverage (KSC). We also measure the proportion of annotated key reasoning steps that
appear in the model output, serving as a recall-style indicator of reasoning completeness.

4.2 COT DIVERSITY EVALUATION

While some recent studies have acknowledged the need for multi-path reasoning evaluation, significant
gaps remain. [Zhang et al.|(2024)) emphasizes that rigid ground-truth templates fail to capture the
diversity of reasoning styles, calling for adaptive key-step extraction. Similarly, Jiang et al.| (2025b)
and |Chow et al.|(2025)) annotate multiple reasoning paths but lack systematic metrics to measure the
ability of models to generate and validate diverse CoT trajectories.

Accordingly, we introduce CoT Diversity Evaluation (CDE), a graph-based framework for assessing
the ability of models to generate logically valid and distinct reasoning chains, with three key stages:

* Reference Graph Construction. Each annotated instance is converted into directed graphs, with
key steps as nodes and logical flows as edges.

* Model Path Embedding. We map the model-generated reasoning steps into the reference graph
by parsing them into directed edge sequences.

» Path Matching and Metric Computation. We define three core metrics for multi-path evaluation:

— Path Validity Rate (PVR): Proportion of model edges matching the reference graph.
— Path Coverage Score (PCS): Normalized length of the longest matched sub-path.

Path Count Adjustment. To fairly compare models with differing numbers of generated and
reference paths, we define adjusted versions of the above metrics.

Let N, and Ng; denote the numbers of predicted and reference paths, respectively. The adjusted path

validity rate is defined as Path Validity Rate,;; = PVR %’Jt%*), and the adjusted path coverage

score is given by Path Coverage Score,q; = PCS x exp <704 . (1]\/\]—; — 1)) where « controls the
penalty for over-generation: higher values enforce stricter adherence to the reference count, while

lower values allow more flexibility.

Structure-Tolerant Matching. From our preliminary experiments we observed that DAG-based
matching is overly sensitive to small structural variations: logically equivalent reasoning paths may
still be penalized if node or edge order differs. To address this, we introduce a Graph Edit Distance
(GED) similarity, which measures the minimal number of edit operations (insertions, deletions,
substitutions) needed to transform the model graph into the reference graph. We map this distance
into a smooth similarity score as Sim = exp(—+ - GED), where v = 0.5 controls sensitivity to
structural differences. We then define the CoT Match Score (CMS) by combining path-level validity

and coverage with structure tolerance: CMS = - w +(1—A)-Sim, where A = 0.7 balances
diversity against robustness to structural variations. This adjustment enables CDE to more faithfully
evaluate both the logical validity and the structural flexibility of model-generated reasoning paths.

4.3 COT EFFICIENCY EVALUATION

The efficiency of reasoning is also crucial for evaluating CoT quality. Models like ol generate
excessively long reasoning chains with extensive reflection and verification steps. To capture this
aspect, we evaluate the relevance of reasoning steps and the validity of reflective ones.

Step Relevance Score (SRS). While long reasoning sequences enable deeper analysis, they often
include irrelevant descriptions unrelated to solving the task. We partition the model’s reasoning
into steps and instruct GPT-4o to identify all relevant steps Prejevant- A step is considered relevant
if its major content directly contributes to problem-solving. SRS, similar to SCS, is defined as the
proportion of relevant steps among all generated steps.

Reflection Validity Rate (RVR). Reflective reasoning can strengthen CoT performance by identifying
errors or providing additional justification, but not all reflections are helpful—some may be redundant
or incorrect. We define a reflection step as valid if it (i) identifies a previous error or (ii) offers new
supporting reasoning. Reflection quality is then measured as the proportion of valid reflections Ry,jig,
detected through linguistic cues such as “Wait” or “Alternatively”.



Table 2 CoT reasoning performance on MVPBench across three dimensions. We assess open- and closed-
source MLLMs on CoT Quality (SAS, KSC, CRS), CoT Diversity (PVR, PCS, CMS), and CoT Efficiency (SRS,
RVR, Avg), under Single and Multi image settings. Best single-image results and largest multi-image gains are

highlighted for closed-source and open-source models. 7 indicates performance improvement with multi-

image input, | indicates a drop, and * denotes invalid outputs. Additional evaluation results for closed-source
models and human performance benchmarks are presented in the Appendices E]and respectively.

Model | CoT Quality | CoT Diversity | CoT Efficiency

SAS KsSC CRS PVR PCS CMS
Single Multi Single Multi Single Multi | Single Multi Single Multi  Single Multi

SRS RVR Avg
Single Multi Single Multi Single Multi

Open-source MLLMs
* *

LLaVA-OV-72B|Li et al. §2025a) 53.09 * 29.47 * 36.49 63.44 70.00 * 74.01 * 96.91 * 99.55 * 98.23 *

LLaVA-CoT Xu et al. §2024) 4847 8587 30.21 22317 3258 9.0117 | 28.87 10327 51.89 3.757 4843 9.0217 | 97.63 0.49] 99.64 0.1217 98.64 0.49]
InternVL2.5-78B|Chen et al. §2024b] 56.35 10.127 4242 5457 4398 4457 | 6728 8437 7209 4791 70.82 5.127 | 9689 083] 9945 0.507 98.17 0.16]
InternVL2.5-78B-MPO|Wang et al. §2024b}| 55.77 7.807 4187 56317 4376 8517 | 7280 93417 76.08 56117 7933 8.117| 97.88 1.67] 99.32 028 98.60 098]
InternVL3-78B|Zhu et al. 2025 57.80 9.26T 4620 5491 4748 9.251 | 66.06 7.02T 70.61 7.53T 7677 8.651 | 97.54 0357 99.52 0.11] 9853 0.137
InternVL3-78B-Instruct/Zhu et al. (2025 | 5586 9.537 42.15 3517 4424 8637 | 6841 9787 7241 3417 7623 8387 | 9688 0297 99.92 050/ 98.40 0.10]
Qwen2.5-VL-7B|Bai et al. §2025) 5240 3.117 3654  1.737  39.24 4321 | 6443 5837 7370 2.127 7400 3.86T | 93.59 0307 99.26 0.02] 9643 0.147
Qwen2.5-VL-72B|Bai et al. 2025} 5715 5557 4329 5331 4608 7241 | 7473 6767 7897 6121 8243 7.347 | 97.46 1501 9943 0247 9845 0.63]
QVQ-72B|Qwen Team §2024] 68.28 2497 44.63 0.76] 53.83 0.88] * * * * * * 8529 3.827 56.27 3.041 7093 3.287

Closed-source MLLMs

GPT-40/OpenAl §12024) 63.26 20.307 46.39 14.757 5045 21.417| 68.04 13.227 72.38 10.017 81.34 13.047| 9842 126, 9939 0.287 98.90 0.49]
OpenAl 03|OpenAl (2025 7529 15871 50.64 11.521 59.11 15837| 68.85 9.817 7491 10241 76.65 9.971 | 9943 231 99.52 0.1317 9948 1.09]
Claude 3.7 Sonnet|/Anthropic §2025] 64.41 16.127 45.66 11.957 50.87 15227 73.70 12.817 75.79 12.047 79.08 13.387| 97.76 0.137 97.34 2.237 97.55 L1187

5 COMPREHENSIVE EVALUATION OF COT-BASED MULTIMODAL REASONING

Overall Results. Table 2]reports model performance across three CoT evaluation dimensions using
SAS, KSC, and SRS for both logical inference and image captioning. Diversity is assessed via PVR
and RCS, and robustness is measured by averaging SRS and RVR, with RVR set to 100 for models
lacking reflection ability. Table [3|complements this by presenting subcategory-level evaluation across
all CoT metrics on MVPBench. Model and setup details are in Appendix

GPT-40 demonstrates strong overall performance, while OpenAl 03 surpasses it in quality and
efficiency, achieving the highest scores. Among open-source models, the InternVL series is most
competitive, with InternVL3-v1-78B and MPO-tuned InternVL2.5 showing strong performance across
all dimensions. QVQ performs well in CoT quality but lacks robustness, often producing verbose and
loosely related content, from which we derive the following key observations.

CoT Diversity Does Not Guarantee High Reasoning Accuracy. While diversity helps explore
multiple reasoning paths, our results show it does not inherently improve reasoning quality. For
example, Qwen2.5-VL-72B achieves the highest diversity but underperforms QVQ-72B in quality,
despite the latter lacking diversity evaluation. This suggests a trade-off: greater diversity may lead to
less focused or accurate reasoning if not properly guided. In contrast, OpenAl 03 attains top quality
with moderate diversity, highlighting the importance of goal-directed reasoning.

Reflection enhances quality but with limited reliability. As shown in Table 2] QVQ with reflection
surpasses its base model Qwen2.5-VL-72B by 7.75% in CRS and 11.13% in SAS, even with longer
CoT sequences, approaching GPT-4o in quality. However, its reflection validity rate is only about
56%, meaning nearly half of reflection attempts fail to aid accuracy, which compromises efficiency
and introduces redundant reasoning steps.

Long CoT Models May Be More Prone to Distraction. Models generating longer CoT tend to exhibit
lower relevance, often producing content unrelated to the question, reflected by lower KSC scores
(compared to QVQ). Some short-CoT models like LLaVA-OV-72B also show low relevance, usually
due to repetitive outputs on specific question types. Fine-grained analysis shows models often lose
focus when describing images, generating exhaustive but irrelevant captions.

Post-training may harm generalization. While post-training—particularly mixed preference opti-
mization (MPO)—is frequently employed to align models more closely with specific downstream
tasks, it does not universally enhance CoT reasoning quality. As in Figure [} InternVL2.5-78B-MPO
underperforms its base counterpart InternVL2.5-78B, and InternVL3-78B similarly trails InternVL3-
78B-Instruct in Physics Experiments subset. Although MPO can effectively boost performance on
human-preference-aligned subsets such as physics questions, it tends to negatively impact subsets re-
quiring stronger visual perception or temporal prediction capabilities. This phenomenon suggests that



MPO may introduce distributional biases or lead to overfitting to specific tasks, thereby compromising
generalization, visual grounding, and multimodal coherence—particularly evident in visual-centric
reasoning tasks. MVPBench, with its comprehensive and balanced design across multiple reasoning
categories, effectively highlights these limitations.

6 UNDERSTANDING THE EVALUATIVE POWER OF MVPBENCH

Table 3 Subcategory-level evaluation of CoT reasoning in MVPBench. We present subcategory-level scores
for three core reasoning metrics and evaluated across both open- and closed-source MLLMs. Top-performing
models within each category are highlighted in blue (open-source) and red (closed-source). For models
(SpaceQwen2.5 and SpaceThinker) fine-tuned specifically for spatial reasoning and their corresponding base
model (Qwen2.5VL-3B), we evaluate only on the Spatial-Relation subset, * denotes no output.

Model Phys-Experiment Phys-Problems Spatial-Relation Dyn-Prediction
Quality Diversity Efficiency | Quality Diversity Efficiency |Quality Diversity Efficiency |Quality Diversity Efficiency

Open-source MLLMs

LLaVA-OV-72B|Li et al. (2025a) 3721 66.61 94.77 3294 79.72 99.05 3416 59.79 99.36 | 41.66  89.93 99.72
LLaVA-CoT |Xu et al. |(2024] 33.79 5234 97.35 20.86  45.46 98.97 31.89 5431 98.45 4377 4161 99.78
InternVL2.5-78B|Chen et al. (2024b) 4395 7338 94.25 | 4744 7132 98.83 39.75  71.08 99.59 | 4478 8749 100
InternVL2.5-78B-MPO|Wang et al. ((2024b) 41.60  79.43 97.19 | 51.54  75.87 98.97 3783 7142 98.48 | 44.06  90.60 99.76
InternVL3-78B|Zhu et al. [(2025] 37.00  83.39 91.49 | 5826 68.23 98.92 3931 7043 99.14 | 46.68  88.05 99.95
InternVL3-78B-Instruct/Zhu et al. [(2025] 4201 7457 94.87 52.64  69.79 99.81 | 38.10  70.96 98.96 | 4420 89.58 99.96
Qwen2.5-VL-7B Bai et al. [(2025) 37.00  80.15 91.49 | 4234  67.10 98.55 3520  68.57 95.82 | 40.30  82.16 99.85
Qwen2.5-VL-72B Bai et al. (2025 41.19 8259 96.72 | 57.01  79.69 99.36 | 39.18  59.67 98.06 | 46.94 98.75 99.65
QVQ-72B|Qwen Team (2024] 49.63  0.00 71.65 | 60.97  0.00 63.71 3850  0.00 69.24 6620  0.00 79.13
Qwen2.5VL-3BBai et al. [(2025) * * * * * * 2224 1340 95.03 * * *

SpaceQwen2.5-VL-3BlJia et al. (2025) * * * * * * 20.84  34.86 93.72 * * *

SpaceThinker-Qwen2.5VL-3B|Chen et al. [(2025] * * * * * * 2393 3115 97.87 * * *

Closed-source MLLMs

GPT-40|OpenAl (2024) 50.21  76.36 97.53 5229  69.52 9877 | 43.64  69.33 99.72 ‘ 5235 9114 99.59
OpenAl 03|OpenAI(2025] 57.73  75.58 97.44 | 6536  68.57 99.06 | 4392 7126 99.83  69.44 9118 99.71
Claude 3.7 Sonnet|Anthropic (2025] 49.13 7897 97.38 57.02 7215 94.71 4241 7271 99.67 ‘ 5492 9247 98.45

Our dataset, MVPBench, is specifically constructed to test multimodal reasoning under diverse
and fine-grained physical scenarios. We explore its impact on evaluation outcomes from there
perspectives: the effectiveness of fine-tuning spatial reasoning, category diversity and input modality.

The effectiveness of specialized fine-tuning strategies aimed explicitly at spatial reasoning. To
further explore MLLMs specifically fine-tuned for spatial reasoning capabilities, we selected three
representative models for rigorous comparison: Qwen2.5VL-3BBai et al.| (2025)) as a baseline
model without specialized spatial reasoning fine-tuning, and two models (SpaceQwen2.5-VL-3BJia
et al.[(2025) and SpaceThinker-Qwen2.5VL-3BChen et al.| (2025))) employing different specialized
fine-tuning strategies to enhance spatial reasoning. We conducted rigorous evaluations on the Spatial-
Relation subset within MVPBench, comparing the models across three dimensions: CoT Quality,
Diversity, and Efficiency. The detailed results are presented in the table[3] Compared with the baseline
Qwen2.5VL-3B, both spatially fine-tuned models show smaller CoT-Quality drops on multi-image
tasks. SpaceThinker-Qwen2.5VL-3B beats Qwen2.5VL-3B in CoT-Quality, indicating that synthetic
reasoning-trace fine-tuning strengthens multi-step visual reasoning. CoT-Diversity rises markedly
with fine-tuning (34.86% and 31.15%) versus the baseline’s 13.40%, yielding richer, more flexible
reasoning paths. The baseline gains a bit in CoT-Efficiency but loses CoT-Quality under multi-image
complexity, while SpaceThinker-Qwen2.5VL-3B achieves the highest efficiency (97.87%) with a
slight dip for multi-image input. Overall, targeted spatial-reasoning fine-tuning delivers clear gains in
quality and diversity that outweigh minor efficiency trade-offs.

Category diversity influences evaluation difficulty. MVPBench spans a variety of physical rea-
soning subcategories, each posing distinct challenges. We observe that model performance varies
substantially across these categories, underscoring the impact of task type on evaluation difficulty.
For example, InternVL3-78B achieves a Quality score of 58.26 on the more abstract Phys-Problems
category, but performs better with a score of 66.68 on the more concrete Dyn-Prediction tasks (see
Table [3). Notably, across all open-source models, the Spatial-Relation subset yields the lowest
average Quality score (37.10), suggesting it poses the greatest challenge. This indicates that current
MLLMs still struggle with fine-grained spatial reasoning, revealing a critical gap in their perceptual
and relational understanding of physical scenes. This performance gap illustrates how reasoning
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Figure 4 Performance comparison between
single-image and multi-image inputs on CoT
evaluation. This figure highlights the perfor-
mance difference when reasoning with multi-
ple images versus a single image across var-
ious MLLMs. Multi-image inputs generally
enhance performance, while QVQ shows a
drop—indicating potential challenges in multi-
image integration.

Figure 5 CoT Performance of MLLMs with post-
training versus without post-training. InternVL2.5 and
InternVL3-instruct represent models without post-training,
whereas InternVL2.5-MPO and InternVL3 denote their post-
trained counterparts. Please note that each metric axis has
its own independent scale. The results clearly indicate that
post-training often fails to enhance the reasoning perfor-
mance of models and degrades it.

complexity varies by category and highlights the importance of category-aware evaluation for robust
and meaningful model comparisons.

Multi-image input significantly boosts model performance. To evaluate the impact of input modality,
we conducted comparative experiments using both single-image and multi-image inputs under
identical prompts and evaluation metrics. This design isolates the effect of visual input quantity,
allowing for a controlled analysis of performance variance. As illustrated in Fig[4} nearly all models
benefit from multi-image inputs, achieving notable gains in both CoT Quality and Diversity scores.
Closed-source models show particularly striking improvements, with GPT-40 leading the trend—its
CoT Quality score rises from 50 to 72, a relative increase of 44%, and its Diversity score jumps from
70 to 85, a 21% improvement. Other closed-source models like Claude 3.7 Sonnet and OpenAl 03 also
exhibit significant gains, with Quality scores increasing by 15% and Diversity by 13%. Open-source
models, such as InternVL3-78B, show more modest improvements, rising from a Quality score of
47.5 t0 56.7 (a 19% increase) and a Diversity score improvement of around 10%. However, QVQ-
72B is an outlier, showing a performance drop of roughly 1-2 points in quality, indicating potential
challenges in multi-image integration. Overall, these results highlight the superior adaptability of
closed-source models, particularly GPT-4o0, in leveraging multi-image inputs to enhance fine-grained
physical reasoning and diversity in responses.

7 CONCLUSION

We introduce MVPBench, a benchmark designed to rigorously evaluate visual chain-of-thought
reasoning in multimodal large language models (MLLMs). It target tasks that require grounded,
multi-step inference over visual evidence and goes beyond surface-level image description. Our
evaluation reveals than even state-of-the-art models like GPT-40 and OpenAl 03 often struggle with
physical reasoning. To diagnose these failures, we introduce a graph-based CoT consistency metric
to assess reasoning validity, uncovering frequent violations of basic physical principles. Notably,
we find that reinforcement learning-based alignment can impair physical reasoning, highlighting a
misalignment between current fine-tuning strategies and the demands of physical perceptual reasoning.
These findings call for post-training strategies that better integrate visual grounding, causal structure,
and structured explananation in MLLMs.
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9 REPRODUCIBILITY STATEMENT

We provide a comprehensive description of the dataset collection and preprocessing steps in the
appendix[C] including detailed documentation to ensure clarity and transparency. The implementation
details and evaluation settings for each benchmarked model are also thoroughly reported in the
appendix [H| To further promote reproducibility, we have included all the code, configuration files and
experimental scripts in the supplementary materials, and provided the access link to our dataset at the
appendix overview.
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APPENDIX OVERVIEW

Our supplementary includes the following sections:

Section [Ar More experiment results. Extended Empirical Analysis on Closed-source and
Post-trained Models.

Section [B; More Exploration. Analysis of human performance and error analysis.
Section [C: More Dataset Details.

Section D More Qualitative Examples. More visualization of our evaluation demos.
Section [E} Limitations. Discussion of limitations of our work.

Section [F; Broader impacts. Discussion of societal impacts of our work.

Section [G} Detailed Evaluation prompts.

Section [H: Setup. Details for model design, implementation.

Section I} The Use of LLM:s.

To further promote reproducibility, we provide our dataset, which can be accessed via an anonymous

link.
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A MORE EXPERIMENT RESULTS

A.1 MORE CLOSED-SOURCE MODEL EXPERIMENTS

Table 4 Additional Evaluation Results for Closed-Source Models on CoT Reasoning Performance across
Three Dimensions in MVPBench. 1 indicates performance improvement with multi-image input, | indicates a
drop.

Model | CoT Quality | CoT Diversity | CoT Efficiency

SAS KSC CRS
Single Multi Single Multi Single Multi

PVR PCS CMS
Single Multi Single Multi Single Multi

SRS RVR Avg
Single Multi Single Multi Single Multi

Closed-source MLLMs
Gemini-2.5-flash-preview-04-17|Deepmind (2024} | 60.56 12.321 49.29 8.541 50.05 11.63T|56.44 9.237 59.35 7.121 57.20 8.457
Grok3xATI[2025) 62.48 3.447 52.05 4.137 52.69 4.501 | 61.57 10.13T 68.05 6.89T 63.78 8.437

97.59. 0.37] 92.00 2.007 94.71 0.827
89.55 2.53| 86.00 6.267 87.77 1.877

To evaluate additional closed-source models, we randomly sampled 25 instances from each sub-
dataset of MVPBench, resulting in 100 samples in total. As shown in Table ] and Table [3] the
results of these models largely confirm the trends observed with tested models discussed earlier:
performance varies notably across different sub-datasets, and multi-image input consistently leads to
substantial improvements. Interestingly, Gemini Deepmind|(2024) demonstrates strong quality in the
Physics Experiments subset, yet performs surprisingly poorly in the Spatial Relations task—even
falling behind several open-source models.

A.2 MORE POST-TRAINING MODEL EXPERIMENTS

To further investigate the impact of post-training on model generalization, we conducted additional
experiments comparing different base models and distinct post-training methods. Specifically,
we compared two base models without post-training, Qwen2.5VL-7B and Qwen2VL-2B, against
their respective post-trained counterparts: MM Eureka-7B, which employs large-scale rule-based
reinforcement learning (RL), and R1-VL-2B, utilizing Step-wise Group Relative Policy Optimization
(StepGRPO). The comparative analysis indicates clear trends consistent with our earlier findings
in the InternVL series. As shown in Figure [6] Qwen2.5VL-7B exhibits superior Step Accuracy
(56.63%) compared to MM Eureka-7B (52.39%). Similarly, Qwen2VL-2B outperforms R1-VL-2B
in Path Validity Rate (42.87% versus 35.72%) and Path Coverage Score (61.63% versus 50.48%),
demonstrating significant performance drops associated with post-training methods. Although certain
metrics like Key Step Coverage show modest improvements in post-trained models (MM Eureka-
7B: 36.66% vs. Qwen2.5VL-7B: 31.39%), the overall pattern emphasizes a general reduction in
multimodal coherence and visual-centric reasoning effectiveness post-training. These findings align
with observations from the InternVL models discussed in the main text and reinforce the conclusion
that various post-training approaches, despite improving alignment to specific tasks, may impair
generalization, particularly in visual-centric and dynamic reasoning tasks.

B MORE EXPLORATION

B.1 HUMAN PERFORMANCE

To estimate human performance, we recruited four undergraduate students who had received sys-
tematic training in physics and were familiar with fundamental physical concepts. Each student was
asked to solve the same 100 instances used in our closed-source model evaluation. Unlike other
benchmarks, MVPBench is formulated as a visual question answering (VQA) task, and the evaluation
of quality and efficiency relies on the generation of detailed, step-by-step reasoning chains. Therefore,
our human performance assessment focuses solely on the diversity metric. For each instance, students
were provided with the question, answer, image(s), and annotated key reasoning steps. They were
instructed to produce as many distinct reasoning chains as possible that could lead to the correct
answer by covering all the provided key steps. The resulting outputs were then used to compute the
diversity scores.
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= Qwen2.5VL-7B(w/o post-training) MM Eureka-7B(w/ post-training)

== Quen2VL-2B(wlo post-training) R1-VL-2B(w/ post-training)
Step
Accuracy Score

Reflection
CoT Efficiency = \Validity Rate

CoT
Reasoning Rate

Step

Path Relevance Score

Validity Rate

CoT
Coverage Score Match Score

Figure 6 CoT Performance of MLLMs with post-training versus without post-training. Qwen2.5VL-7B
and Qwen2VL-2B represent models without post-training, whereas MM Eureka-7B and R1-VL-2B denote their
post-trained counterparts.Please note that each metric axis has its own independent scale.The results clearly
indicate that post-training fails to enhance the reasoning performance of models and degrades it.

Table 5 Expanded Subcategory-level Evaluation of CoT Reasoning in MVPBench: Closed-Source
Models and Human Baselines. We present a detailed subcategory-level evaluation of CoT reasoning along the
dimensions of Quality, Diversity, and Efficiency, comparing closed-source MLLMs with human performance on
MVPBench.

Dyn-Prediction
Quality Diversity Efficiency

Model Phys-Experiment

Quality Diversity Efficiency

Phys-Problems
Quality Diversity Efficiency

Spatial-Relation
Quality Diversity Efficiency

Human Performance
‘ - 98.72 - ‘ - 96.42 - ‘ - 99.13 - ‘ - 95.76

Closed-source MLLMs
Gemini-2.5-flash-preview-04-17|Deepmind (2024] | 61.85  68.64 100.00 | 63.37  39.10 85.56 2836  73.04 93.26 46.62  48.00 100.00
Grok3xAT|(2025] 4385 6554 87.60 58.16  72.26 78.50 50.60 58.72 85.66 58.16  58.59 99.33

B.2 ERROR ANALYSIS

To delve into the fine-grained predictions, we select the best-performing MLLM, GPT-400penAl
(2024)), to understand its modes of success and failure. Our proposed CoT evaluation strategy has
produced a detailed assessment of model output, including step-wise scores and explanation, reducing
extensive manual effort in identifying and analyzing errors. As shown in Figure[/} we conduct our
analysis on the two-step output from the CoT evaluation across the entire dataset, focusing on two
key dimensions.

Reasoning Errors Dominate Across Subcategories. In particular, the proportion of visual perception
errors in the physics-related subset is remarkably low—only 2.12% and 1.98% under single- and
multi-image inputs, respectively. This finding contrasts with prior observations in MathVerse Zhang
et al.| (2024), highlighting the distinct characteristics of our benchmark. We posit that, within our
dataset, GPT-40 is generally able to perceive the visual input correctly, but often fails during the
reasoning process, leading to incorrect final answers.

16



Spatial-Relation Emerge as a Major Source of Perception Failures. In the spatial-relation subset,
visual perception errors account for a striking 33.01% and 26.41% under single- and multi-image
settings, respectively—substantially higher than in other subsets. This aligns with earlier findings
that both closed-source and open-source MLLMs consistently perform worst on spatial relation tasks
in terms of the quality metric. These results further support our initial hypothesis: current models
struggle significantly with visual grounding when interpreting spatial relationships, underscoring a
persistent bottleneck in multimodal understanding.

Spatial-Relation Phys-Experiment Dyn-Prediction Phys-Problems

. . . ; - ; : ) Visual Perception
Reasoning Error  Visual Perception Reasoning Error V'”‘é;’;:"’""“ Reasoning Error Visual Perception Reasoning Error B— Error

73.59% ZEer:::/n 85.94% 14.06% 89.83% Error 10.47% 97.88% 2.12%

f i i ) : ] . - . _ Visual Perception
Reasoning Error / Visual Perception Reasoning Error . Visual Perception Reasoning Error Visual Perception Reasoning Error = Eror

66.99% Erer, 81.03% e 93.09% S 98.02% 198%

Figure 7 Distribution of GPT-40 OpenAl| (2024) Errors across Different Types. We report the error
distribution of GPT-40 on MVPBench, categorized into two types: Visual Perception Errors and Reasoning
Errors, across four representative subcategories. The first row illustrates the error distribution under single-image
input settings, while the second row presents results under multi-image inputs.

C MORE DATASET DETAILS

C.1 DATA COLLECTION

To support the evaluation of multimodal physical reasoning, we constructed a diverse and well-
structured dataset spanning four distinct subdomains: (1) physics experiment videos, (2) conceptual
physics questions, (3) spatial reasoning images, and (4) dynamic physical scene videos. The
annotation process was carried out between March 28 and May 14, 2025, by a team of 31
annotators with backgrounds in physics, science education, and computer vision. Each data
modality followed a carefully designed protocol to ensure quality, consistency, and relevance to
downstream reasoning tasks.

Table 6 Annotation summary across the four data modalities.

Data Type Sample Count Average Length Annotators
Physics Experiment Videos 440 60 seconds 16
Conceptual Physics Problems 320 200 words 7
Spatial Reasoning Images 400 1 image 4
Dynamic Scene Videos 100 2 seconds 4

Physics Experiment Videos. This subset consists of 440 real-world videos sourced primarily from
science education creators on Bilibili, such as "Lighthouse Laboratory" and "Interesting physics in
life". These videos depict demonstrative physics experiments across domains including mechanics,
optics, electromagnetism, and thermodynamics. Each video was segmented into a sequence of 3 to
5 keyframes capturing critical steps of a physical process. Annotators provided a natural language
description for the initial state, intermediate key steps (each with conclusions), and a final outcome.
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Visual markers (e.g., arrows, labeled objects) were optionally added to enhance clarity. Multiple
plausible reasoning chains were manually curated to reflect different logical paths. All samples
underwent double annotation with inter-annotator agreement checks and periodic expert reviews. The
average duration per video was approximately 60 seconds.

Conceptual Physics Problems. This subset includes 320 multiple-choice and short-answer physics
questions derived from high school curricula and online education platforms. Each item was manually
adapted to include visual support (e.g., diagrams or plots), and transformed into a question-answer
format with structured reasoning chains. Annotators selected questions where visual content was
essential to reasoning, added visual cues to images (e.g., red dots, arrows), and reformulated options
into logical deduction steps. Stepwise reasoning was expressed using Markdown-compatible mathe-
matical expressions to support neural symbolic processing. The annotation reference document for
this task was "MCoT-phytest.docx." All data underwent double annotation and review for logical
soundness, visual accuracy, and completeness. On average, each problem included 200 words of
reasoning and annotations.

Spatial Reasoning Images. This subset comprises 400 images curated from public domain resources
such as Unsplash, Pixabay, and Archive.org. It addresses four categories of spatial reasoning:
directional relations, distance estimation, perspective transformations, and topological connectivity.
Annotators formulated tasks such as "What direction is object A facing?" or "From the first-view
perspective of object A, where is object B?", using generic language to avoid lexical leakage. Key
steps were illustrated using labeled visual cues and blue/red markings. Logical reasoning was written
in natural language chains, each step tied to a specific visual cue or interpretation. Annotation was
guided by the document "MCoT-spatial.docx" and performed by 4 annotators with experience in
spatial cognition and vision tasks.

Dynamic Physical Scene Videos. The final subset includes 100 short video clips (average duration 2
seconds) selected from the PhysBench dataset. The tasks focus on predicting physical dynamics, such
as object collision trajectories, liquid flow directions, and stability outcomes. Annotators extracted
representative keyframes from each video and documented the physical evolution using a minimal
chain of reasoning steps. For instance, a liquid falling through barriers would be annotated by
highlighting key deflection events and predicting the final compartment of flow. Problems were
written in standardized English using referential expressions (e.g., object A, path B). All dynamic
samples followed the procedure detailed in "dynamic-prediction.docx," and were annotated by 4
individuals with expertise in physics simulation and time-series interpretation.

| |
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—L —l ‘0=
@ thw Data logical data ELJ; Dataset
CE Extracting Initial frame ( Data checking
3 *% and cleaning

l

| |
| |
| |
| |
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I |
! !
physical logic | annotation !
i [
| |
| |
| |
| |
| |
| |

Capture video || —=  Logical Step a==
keyframes ~%  Description E Data Summary
U%bld | Aﬂ d !
==p Unlabeled | | | =), Annotate j
logical data : 7 _0%57 Dataset —_: vathmal data

Figure 8 Data collection process. Initially, all visual and textual data undergo rigorous manual selection to
ensure accuracy and relevance. Subsequently, expert annotators manually identify and highlight key objects
and events, marking them visually with indicators such as arrows, and provide precise textual annotations for
each critical step. Finally, multiple reasoning chains and key step annotations are meticulously constructed and
validated manually, ensuring high-quality, reliable data for evaluating multimodal reasoning capabilities.
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C.2 DETAILED OF MVPBENCH COMPOSITION

Physics Experiments. The Physics Experiments subset of MVPBench contains a curated collection
of 400 experimental questions, each designed to evaluate a model’s understanding of sequential
physical processes through multi-step visual inference. These experiments span five fundamental
categories: Mechanics (222 questions), Thermodynamics (90 questions), Electromagnetism (42
questions), Optics (33 questions), and Kinematics (13 questions). Models must visually interpret
the sequence of events and logically deduce the physical processes involved. In Mechanics tasks,
models must interpret scenarios involving force interactions and motion, whereas Thermodynamics
problems require reasoning about heat transfer and energy dynamics. Electromagnetism experiments
involve interpreting visual representations of electric circuits and magnetic fields. Optics tasks test
understanding of light behavior, reflection, and refraction, while Kinematics scenarios focus on
analyzing motion trajectories and velocities. These tasks collectively ensure that the evaluated models
develop comprehensive visual reasoning abilities similar to how humans mentally simulate physical
experiments.

Physics Problems. The Physics Problems subset contains a total of 311 challenging, visually
grounded physics questions, primarily sourced from academic examination databases such as Chinses
Gaokao physics questions, the International Physics Olympiad (IPhO), and Chinese Mock Examina-
tions at Various Levels, further augmented by additional questions from the PhysReason-mini dataset.
These problems span five core physics categories: Mechanics (58 questions), Thermodynamics (56
questions), Electromagnetism (90 questions), Optics (53 questions), and Kinematics (54 questions).
Mechanics questions may involve complex analysis of force interactions or equilibrium scenarios,
while Thermodynamics problems often present visual cues related to heat exchange and energy
conversion processes. Electromagnetism tasks require reasoning about visually depicted electric
circuits and magnetic field interactions. Optics questions focus on image formation, lens behavior, and
optical phenomena, and Kinematics challenges typically demand interpretation of visual trajectories,
acceleration, and velocity vectors. This detailed structuring and multimodal approach aim to assess
models’ capabilities in accurately interpreting visual information and applying advanced reasoning to
solve intricate physics problems.

Spatial Relations. The Spatial Relations subset assesses spatial perception through 400 carefully
designed questions, divided into four specific subcategories. (1) Direction Judgment (100 questions):
This subcategory requires models to accurately determine the relative directional positioning of
various objects within a scene, emphasizing an understanding of spatial orientation and relational
positioning. (2) Distance Estimation (100 questions): Tasks here involve estimating the distance and
depth relations between objects or between objects and the camera viewpoint, highlighting the impor-
tance of accurate depth perception and visual estimation skills. (3) First-view Transformation (100
questions): This subcategory challenges models to reason about spatial directions from an egocentric
viewpoint, simulating real-world scenarios where orientation judgments are made from a first-person
perspective. (4) Topological Relation Judgment (100 questions): This category focuses specifically on
assessing the reachability and connectivity within directed graphs, using images constructed through
graphical editing tools. Overall, this subset is designed to rigorously evaluate models’ capabilities in
processing complex spatial scenarios and performing accurate spatial reasoning, reflecting essential
cognitive processes used in navigating and interpreting real-world visual environments.

Dynamic Prediction. The Dynamic Prediction subset comprises 100 tasks designed to evaluate the
predictive capabilities of models regarding dynamically evolving physical interactions, structured into
four subcategories: (1) Multi-object Collision (25 questions): This category requires models to predict
outcomes involving interactions among multiple objects, such as collisions, considering momentum,
energy transfer, and motion trajectories. (2) Liquid Diversion (25 questions): Tasks involve predicting
fluid paths through variously configured channels or obstacles, necessitating models to understand
fluid dynamics visually. (3) Physical State Prediction (25 questions): These problems challenge
models to anticipate changes in the physical states of objects, such as transitions between solid, liquid,
and gas phases, based on visual cues and temporal sequences. (4) Shadow Transformation Prediction
(25 questions): This subcategory assesses the ability of models to predict and interpret the changes in
shadows cast by objects due to movements or shifts in light sources, requiring sophisticated temporal
and spatial reasoning. These tasks collectively aim to test models’ capacity to interpret and forecast
dynamic physical phenomena, thereby closely replicating human cognitive processes involved in
visual prediction and temporal reasoning.
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C.3 DATA ANALYSIS

Tablepresents core statistics of the MVPBench dataset, which consists of 1,211 samples with a
total of 4,701 images, covering both unique and repeated images. Each question and corresponding
answer is distinct, underscoring the dataset’s broad range and depth across various physical reasoning
scenarios. Furthermore, question lengths display considerable variation, with some reaching up to
100 words, though the majority of questions are moderately sized. Answers generally involve multiple
reasoning steps, reflecting a significant complexity level within the dataset. Notably, the dataset
includes multiple Image-CoTs per sample—visual chains of thought specifically crafted as input
to guide and assess model reasoning processes. The average number of Image-CoTs per sample is
approximately 3.90, with some samples containing up to 5, ensuring rich visual context for enhanced
multimodal reasoning. Additionally, each sample captures several chains of thought, facilitating the
evaluation of multi-path reasoning capabilities.

The dataset includes multiple subsets(Figure[J), with Physics Experiments and Spatial Relations form-
ing the most significant components, emphasizing sequential reasoning through multi-step physical
processes and complex spatial perception tasks, respectively. Additionally, a substantial contribution
from the Physics Problems subset highlights the emphasis on advanced textual comprehension in our
benchmark. The inclusion of Dynamic Prediction subset further ensures comprehensive evaluation
under conditions involving temporal changes and challenging visual contexts. Collectively, the
structured distribution across these subsets fosters a balanced assessment of diverse visual reasoning
capabilities crucial for a robust understanding of physical phenomena.

Statistic Value —
Total samples 1,211 Z g S
Total images 4,701 %, :a% & 5‘2\.
Unique images 4,688 | % o
Unique questions 1,211 5P, e
Unique answers 1,211 Eleg N
‘Po,,,.g
- 7,405 tisn, Megh;;:“
Max. question length 100 1
Avg. question length 28.01 b
Max. answer steps 9 o S 2
Avg. answer steps 2.93 wibh - B Troe
& El= o,
Max. Image-CoTs per sample 5 = 5 i,
Se? H 2 e,
Avg. Image-CoTs per sample 3.90 & £ 2z "%,
. N ek
Max. reasoning paths 16 F2d 33
Avg. reasoning paths 2.67 z 2

Table 7 Key statistics of MVPBench. Summarizes
dataset size, question/answer properties, and multi-
path reasoning annotations for evaluating complex
reasoning in MLLMs.

Figure 9 Category distribution in MVPBench.
Covers 4 major reasoning categories and 18 fine-
grained subcategories.

C.4 ADDITIONAL STATISTICS OF DATASET

This section presents further statistical analyses to offer deeper insights into the composition and
characteristics of the dataset. As Shown in Figure [I0] Figure (a) provides an overview of the
distribution of physics concepts encountered within the reasoning steps. It reveals that certain
foundational concepts such as "light," "force," and "pressure" are notably prevalent, indicating their
central importance within the reasoning processes of datasets. The distribution of these concepts
emphasizes their relative significance and highlights the necessity for models to grasp core physics
principles robustly. Figure (b) illustrates the distribution of query word counts through a histogram
accompanied by a kernel density estimation curve, effectively capturing the general complexity and
length patterns of the queries. The data suggests a predominance of moderately sized questions,
though there exists a notable tail extending towards longer, more complex queries, underscoring the
variety in question complexity.
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The distribution of reasoning chains, depicted in Figure (c), offers valuable insights into the diversity
of dataset in reasoning paths per sample. Most samples incorporate one or two distinct chains,
highlighting the presence of alternative reasoning pathways. Nonetheless, there is a non-negligible
proportion of instances with several reasoning chains, indicating complexity and diversity in the
reasoning processes required by the dataset. Figure (d) examines the distribution of reasoning
steps per sample. The analysis indicates variability in the complexity of the reasoning tasks, with
most samples containing a moderate number of steps. This reflects the balance of dataset between
simplicity and complexity, essential for comprehensively evaluating reasoning proficiency.

Reasoning complexity, as shown in Figure (e), combines reasoning steps and the number of reasoning
chains to provide a composite indicator of overall reasoning demand. The distribution confirms
that while many instances involve relatively straightforward reasoning, a meaningful subset presents
significant complexity, requiring intricate, multi-faceted reasoning capabilities. Finally, Figure (f)
explores the distribution of images included per sample. It demonstrates a balanced use of visual
information, with most samples featuring several images to guide visual reasoning tasks effectively.
This emphasis on visual context underscores the intent to robustly assess models’ capabilities in
interpreting and reasoning about visually grounded information.

We further compute the ratio between the Relevant Steps (Generated) and the Key Steps (Ground
Truth) to examine the step-level differences between the annotated reasoning chains and those
generated by the models. The results are summarized in table|[S]

Table 8 Comparison of Relevant and Key Steps in Reasoning Chains.

Model Ratio
Open-source MLLMs
LLaVA-OV-72B 3.87
LLaVA-CoT 4.29
InternVL2.5-78B 5.15
InternVL2.5-78B-MPO  5.18
InternVL3-78B 5.01
InternVL3-78B-Instruct  5.02
Qwen2.5-VL-7B 5.14
Qwen2.5-VL-72B 5.03
QVQ-72B 6.75
Closed-source MLLMs
GPT-4o0 5.46
OpenAl 03 493

Claude 3.7 Sonnet 6.09

C.5 ANALYSIS EGARDING THE EVALUATION COST

We acknowledge that the proposed multi-path visual reasoning evaluation framework may incur
additional token consumption and time overhead in practical applications. To address these concerns,
we have conducted a comprehensive and detailed statistical analysis of the evaluation cost.

Specifically, we summarized and analyzed all API calls on the complete MVPBench dataset using the
official GPT-4o0 pricing ( input 2.50$ / 1M tokens, output 10.00$ / IM tokens). The detailed results
are summarized in the table

The statistics above indicate that although our evaluation method introduces more sophisticated
assessment dimensions, the overall economic cost remains within a reasonable range. The total cost
for evaluating all 1211 samples is approximately $29.

With an average cost per sample of approximately $0.0060, the evaluation cost per 1000 samples is
about $6, demonstrating that the evaluation expenses are manageable and affordable. This makes our
evaluation method economically feasible even for large-scale testing scenarios. Additionally, each
sample evaluation takes on average only 5.28 seconds, resulting in a total assessment time of merely
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Figure 10 Additional statistic. Figure a is the Physics Concepts Distribution, this horizontal bar chart shows
the frequency of physical concepts that appear in the reasoning steps. The Y-axis represents physical concepts
, and the X-axis represents the number of occurrences. Figure b is the Query Word Count Distribution, this
histogram shows the distribution of the number of words in the questions. The X-axis represents the number of
words, and the Y-axis represents the frequency. Figure c is the Reasoning Chains Distribution, this histogram
shows how many different reasoning paths each sample contains. Figure d is the Reasoning Steps Distribution,
this histogram shows how many reasoning steps each sample contains. The X-axis represents the number of
steps, and the Y-axis represents the frequency. Figure e is the Reasoning Complexity Distribution, this histogram
shows the distribution of complexity indicators. Complexity is defined as the number of reasoning steps x the
number of different reasoning paths. Figure f is the Sample Images Distribution, this histogram shows how many
images each sample contains.

7.1 hours on one cheap GPU(Even parallel acceleration can be achieved through multi-terminal
operation) for the entire benchmark. PhysReasonZhang et al.| (2025¢), by contrast,inspect ~ 8.1
annotated steps (= 441 answer tokens) per problem, invoking the scorer for each and driving the
per-item budget to & 1.6k tokens—about $0.048, eight times MVPBench—so its authors released a
trimmed 200-question mini set to keep costs in check. MME-CoTJiang et al.| (20254)) is similarly
token-hungry: its three-axis scheme slices the chain-of-thought, adds a reflection sweep, and repeats
for robustness, greatly increasing latency. MVPBench attains the same analytical breadth—CoT
Quality, Efficiency, and a dedicated CoT Diversity metrics—yet requires only one forward pass.
Quality and Efficiency are judged directly from the full answer, while Diversity leverages a compact
directed-graph encoding of all admissible reasoning paths, a single alignment thus yields fine-grained
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Table 9 Evaluation cost and efficiency.

Metric Num
Average Prompt tokens per sample 984.47 tokens
Average Completion tokens per sample  354.31 tokens
Average Tokens per sample 1338.78 tokens
Average Time Consumption per sample 5.28s
Average Cost per call $0.006004

coverage without iterative decomposition. The result is richer diagnostics at roughly one-tenth the
cost of PhysReason and markedly less time than MME-CoT. Although our method increases the use
of tokens, it brings significant benefits, proving that the additional token usage and time consumption
are justified.

In summary, our evaluation method achieves a favorable balance between additional cost and the
substantial scientific benefits provided. We again thank the reviewers for raising this important
concern.

D MORE QUALITATIVE EXAMPLES

In this section, we present additional qualitative examples to offer deeper insights into our evaluation
framework and illustrate the practical application of our metrics. The examples are organized
into three subsections, each highlighting a specific evaluation dimension: Quality, Diversity, and
Efficiency.

D.1 EXAMPLES OF QUALITY EVALUATION.

This subsection includes eight illustrative examples, as shown in Figure[T]to Figure[I8] focusing
specifically on evaluating the quality of the reasoning provided by various models. Each example
showcases detailed analyses of model responses, assessing Step Accuracy Score (SAS) and Key Step
Coverage (KSC).
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1242

1243
1244
1245
1246
1247
1248
1249
1250 Step Accuracy Score (SAS) & Key Step Coverage (KSC)
1251 Question: Fill Awith water, ignite B, what happens next
Answer: B continues to burn in the water for a period of time
1252 (B Key Steps Annotation:
1 1. Light B, and during the burning process, B will melt
253 4 ang drip wax <image_2>
1254 <image_1> 2. The wax drips meet the water, they will quickly
4] Key Caption: solidify <image_3>
Aisa Femr= A
1255 s aansparent glassbow 3. The solidified wax droplets can insulate the water and
Bisared candle i i i i
1256 B, allowing B to continue burning <image_4>
1257 Single-image Input : <image_1>
12 5 8 GPT-40:
Response :
1259 o solve this problem, let's break down the steps and reasoning: 1. Identify the Objects: - A is the area where water is being poured, which is
the bowl.- B is the candle placed in the center of the bowl. 2. Action 1: Fill A with Water - Water is poured into the bowl (A). The water level
1 260 rises around the candle (B). 3. Action 2: Ignite B - The candle (B) is lit. The flame will burn the wick and melt the wax around it. 4.
Observation and Reasoning:- As the candle burns, it consumes oxygen from the air around it. - The heat from the flame will cause the air
1 261 inside the bowl to expand slightly. - If the water level is high enough, it might touch the base of the candle, but the candle will continue to
burn as long as the wick is above water and there is enough oxygen. 5. Final Outcome: - The candle will continue to burn until the wick is
consumed or the oxygen is depleted. - If the water level rises significantly due to the melted wax or other factors, it might eventually
1262 extinguish the flame if it reaches the wick. Final Answer: The candle will burn until the wick is consumed or the water level rises enough to
extinguish the flame.
1263 @ step Partition & Judgment:
step_type: background information
1 264 conclusion: To solve this problem let's break down the steps and reasoning
1 265 step_type: image description
V' conclusion: Ais the area where water is bein ich i
: \g poured which is the bowl
1266
step_type: image description
1267 V" conclusion: B s the candle placed in the center of the bowl
step_type: image description
1 26 8 " conclusion: Water is poured into the bowl A The water level rises around the candle B
step_type: image description
1269 /" concusion The candle B is it The flame will burn the wick and melt the wax around it
1 270 step_type: logical inference
X i 'he candle burns and consumes oxygen from the air around it
1 271 : The heat from the flame will cause the air inside the bowl to expand slightly
step_type: logical inference
1272 X ise: The water level s high enough to touch the base of the candle
+ The candle will continue to burn as long as the wick is above water and there is enough oxygen
1 273 step_type: logical inference
X premise: The candle will continue to burn until the wick is consumed or the oxygen is depleted
1274 If the water level rises signifi due to the melted wax or other factors it might eventually extinguish the flame if it
reaches the wick
1275 step_type: logical inference
v premi: 'he candle will burn until the wick is consumed or the water level rises enough to extinguish the flame
1 276 conclusion: B continues to burn in the water for a period of time
final_answer: right
1277
SAS =5/8, Answer =1
1278 '
1279 @ Key Step Annotation Matching:
1280 Key Caption:
1281 - Aisatransparent glass bowl
+/ - Bisacomplete red candle
1282
Key Conclusion:
1 283 « - Light B, and during the burning process, B will melt and drip wax
1284 5 - The wax drips meet the water, they will quickly solidify
1285 X - Thesolidified wax droplets can insulate the water and B, allowing B to continue burning
1286 KCs =3/5
1287
1288 - . . s .
Figure 11 Examples of Single-Image SAS-KSC Evaluation on Physics Experiment Data.
1289
1290
1291
1292
1293
1294
1295
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Multi-image Input : <image_1,2,3,4>

GPT-40:
Response :

To analyze what happens step by step, let's break down the process based on the images and the instructions: Step 1: Fill A with water -
Observation: A is a transparent bowl, and water is being poured into it. The red candle (B) is already placed upright in the center of the bowl.
- Reasoning: The water level rises in the bowl, but the candle remains above the water surface because it is designed to float or is fixed in
place. Step 2: Ignite B - Observation: The wick of the red candle (B) is lit, producing a flame. - Reasoning: The candle burns as usual, with
the flame consuming the wax and wick. The flame is unaffected by the surrounding water because the wick and wax are above the waterline.
Step 3: What happens next? - Observation: The candle continues to burn, and the heat from the flame melts the wax near the wick. The
melted wax may drip down or pool around the base of the candle. -Reasoning: The water in the bowl acts as a heat sink, preventing the
candle from overheating or melting excessively. The flame remains stable as long as the wick is above the water and has access to oxygen.
Step 4: Final Outcome - Observation: The candle burns steadily while floating or standing in the water. The water prevents the melted wax
from spreading too far, and the flame remains unaffected. - Reasoning: The setup creates a visually interesting effect where the candle
appears to burn "on water." The water also adds safety by reducing the risk of fire spreading. Final Answer: When you fill A (the bowl) with
water and ignite B (the candle), the candle burns steadily while floating or standing in the water. The water acts as a heat sink and safety
barrier, creating an intriguing visual effect of a burning candle surrounded by water.

@ step Partition & Judgment:

step_type: background information
conclusion: Fill A with water ignite B what happens next

step_type: background information
conclusion: Object A is a transparent glass bowl and Object B is a complete red candle

step_type: image description
conclusion: Ais a transparent bowl and water is being poured into it The red candle B is already placed upright in the center of the bow!

step_type: logical inference
premise: The water level rises in the bowl but the candle remains above the water surface because it is designed to float or is fixed in

v place
conclusion: The candle remains above the water surface

step_type: image description
v conclusion: The wick of the red candle B is lit producing a flame

step_type: logical inference

premise: The candle burns as usual with the flame consuming the wax and wick The flame is unaffected by the surrounding water
~/  because the wick and wax are above the waterline

conclusion: The flame is unaffected by the surrounding water

step_type: image description
~/  conclusion: The candle continues to burn and the heat from the flame melts the wax near the wick The melted wax may drip down or
pool around the base of the candle

step_type: logical inference

premise: The water in the bowl acts as a heat sink preventing the candle from overheating or melting excessively The flame remains
X stableas long as the wick is above the water and has access to oxygen

conclusion: The flame remains stable as long as the wick is above the water

step_type: image description
~/  conclusion: The candle burns steadily while floating or standing in the water The water prevents the melted wax from spreading too far
and the flame remains unaffected

step_type: logical inference

premise: The setup creates a visually interesting effect where the candle appears to burn on water The water also adds safety by reducing
the risk of fire spreading

conclusion: The candle appears to burn on water

step_type: logical inference

premise: When you fill A the bowl with water and ignite B the candle the candle burns steadily while floating or standing in the water.
7  Thewater acts as a heat sink and safety barrier creating an intriguing visual effect of a burning candle surrounded by water

conclusion: B continues to burn in the water for a period of time

final_answer: right

SAS =8/9, Answer =1
@ Key Step Annotation Matching:

Key Caption:
« - Aisatransparent glass bow!
v/ - Bisacomplete red candle
Key Conclusion:
« - LightB, and during the burning process, B will melt and drip wax
X - Thewax drips meet the water, they will quickly solidify

« - Thesolidified wax droplets can insulate the water and B, allowing B to continue burning

KCS =4/5

Figure 12 Examples of Multi-Image SAS-KSC Evaluation on Physics Experiment Data: Enhanced
Visual Context Enables Richer Reasoning and Performance Gains.
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Step Accuracy Score (SAS) & Key Step Coverage (KSC)

Answer: The internal resistance of the silicon photovoltaic cell is 5.5 Q
_ i <image_2>
E‘o Key Steps Annotation:

H‘_) (I;&’”J A

<image_1>
Question: As shown in the figure, curve a is the 2. Next, at the operating point, the resistor shows U_R =
photocell’s U-1 characteristic at a fixed light level, and 25Vwith1=0.2A.

curve b is the U-I line for resistor R. When the two are 5 . PP _ ”/V/K~
connected to form a closed circuit, what is the 3. ﬁ%nscse/(t)hzeéngegng resistance is r = (E - U_R)/1= (3.6 L——‘?\

photocell’s internal resistance? <image_3>

1. First, using U = E — Ir, the red point at | = 0 gives E =
36 V.

Single-image Input : <image_1>
GPT-4o:

Response :

Solution outline (concise, without exposing private internal deliberation): 1. The operating point of the circuit is given by
the intersection of curve a (the battery’s U-1 characteristic at this light intensity) and straight line b (the U-1 relation of the
external resistor R). 2. From the graph, the two curves cross at 1=0.25 A, U=25V. 3. For the battery, the open-circuit
(no-load) terminal voltage is the vertical-axis intercept of curve a, which the graph shows to be about U0 ~ 3.6 V. 4. The
battery’s internal resistance r at that light intensity is obtained from r = (U0 — U) / I. Substituting the coordinates of the
operating point: r= (3.6 V-25V) - 025A =11V + 0.25 A 4.4 Q. 5. Answer: The internal resistance of the silicon
photocell at the given light intensity is approximately 4.4 Q.

@ step Partition & Judgment:
step_type: background information
conclusion: The operating point of the circuit is given by the intersection of curve a (the battery’s U-I characteristic at this light
intensity) and straight line b (the U-1 relation of the external resistor R).",

X step_type: image description
conclusion: From the graph, the two curves cross at [ < 0.25A, U= 2.5 V.

v step_type: image description
conclusion: For the battery, the open-circuit (no-load) terminal voltage is the vertical-axis intercept of curve a, which the graph
shows to be about U0 = 3.6 V.
X step_type: logical inference
premise: The battery’s internal resistance r at that light intensity is obtained from r = (U0 — U) / .
conclusion: Substituting the coordinates of the operating point: r = (3.6 V—-25V) + 0.25A=11V + 025A=44 Q.
« step_type: logical inference

premise: The battery’s internal resistance r at that light intensity is obtained from r = (U0 —U) /.
conclusion: Substituting the correct coordinates of the operating point: r= (3.6 V-25V) + 0.25A=11V + 0.25A=44 Q.

SAS = 2/5, Answer =0

@ Key Step Annotation Matching:

Key Conclusion:

«/ -First, focus on the red dot marked in the figure. According to Ohm's Law, U=E-Ir. When | = 0, E = U. Therefore,
the red dot where the graph line a intersects the vertical axis represents E =3.6V.

-Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor Ur is 2.5V,
and the current Ur is 0.2A.

-The internal resistance r of the silicon photovoltaic cell is r = (E-U)/I = (3.6-2.5)/0.2=5.5 Q.

KCS=1/3

Figure 13 Examples of Single-Image SAS-KSC Evaluation on Physics Problems Data with GPT-4o.
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Multi-image Input : <image_1,2,3>
GPT-40:
Response :

When the silicon photocell is connected to the resistor R, the working point of the circuit is the intersection P of curve a
(photocell U-1 characteristic) and line b (resistor U-1 characteristic). 1. From the graph this intersection is at current 1~ 0.20 A
terminal voltage U ~ 2.5 V. 2. The open-circuit (no-load) voltage of the photocell, i.e. the intercept of curve a on the U-axis, is
about E =~ 3.6 V. 3. For a source with emf E, terminal voltage U and current |, the internal resistance r = (E — U) / I. 4.
Substituting the values read from the graph , r = (3.6 V — 2.5 V) / 0.20 A =5.5Q. 5. Therefore, the internal resistance of the
silicon photocell at this light intensity is about r = 5.5 Q.

@ step Partition & Judgment:

step_type: background information
conclusion: When the silicon photocell is connected to the resistor R, the working point of the circuit is the intersection P of curve a
(photocell U-I characteristic) and line b (resistor U-I characteristic).

v/ step_type: image description
conclusion: From the graph this intersection is at current I = 0.20 A and terminal voltage U~ 2.5 V.

v step_type: image description
conclusion: The open-circuit (no-load) voltage of the photocell, i.e. the intercept of curve a on the U-axis, is about E ~ 3.6 V.

v  step_type: background information
conclusion: For a source with emf E, terminal voltage U and current 1, the internal resistance risr=(E—U) /.

step_type: logical inference
premise: E=3.6V,U=25V,1=0.20A
v/ conclusion: Substituting the values read from the graph, r= (3.6 V-2.5V)/0.20 A, r~5.5 Q.

v step_type: logical inference
premise: E=3.6V,U=25V,1=0.20A.
conclusion: Therefore, the internal resistance of the silicon photocell at this light intensity is about r ~ 5.5 Q.

SAS =6/6, Answer =1
@ Key Step Annotation Matching:

Key Conclusion:

«/  -First, focus on the red dot marked in the figure. According to Ohm's Law, U=E-Ir. When | = 0, E = U. Therefore,
the red dot where the graph line a intersects the vertical axis represents E =3.6V.

<

-Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor Ur is 2.5V,
and the current Ur is 0.2A.

«  -Theinternal resistance r of the silicon photovoltaic cell is r = (E-U)/I = (3.6-2.5)/0.2=5.5 Q.

KCS =3/3

Figure 14 Examples of Multi-Image SAS-KSC Evaluation on Physics Tasks with GPT-40: Enhanced
Visual Context Boosts Reasoning and Performance.
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Multi-image Input : <image_1,2,3>
InternvI3-78B:

Response :

To determine the internal resistance of the silicon photocell when it forms a closed loop with the resistor R at a certain light
intensity, we need to use the given U-1 graph. 1. Identify the Open-Circuit Voltage $U_{oc} $: The open-circuit voltage is the
voltage across the battery when no current flows (i. e., \( | = 0 \)).From the graph, when \( 1 = 0\), \( U = 3.6 \) V. Therefore,
$U_{oc} $= 3.6 \) V. 2. Determine the Short-Circuit Current $I_{sc}$ :The short-circuit current is the current when the voltage
across the battery is zero (i. e., \( U = 0)). From the graph, when \( U = 0\), \( I = 0.4\) A. Therefore, \( $I_{sc}$=0.4\) A. 3.
Calculate the Internal Resistance $r$ :The internal resistance of the battery can be calculated using the formula: $r =
\frac{U_{oc}}HI_{sc}}$. Substituting the values: $r = \frac{3.6 \text{ V}}{0.4 \text{ A}} =9 Q8. 4. The internal resistance of
the silicon photocell at this light intensity is 9 Q.

@ Step Partition & Judgment:

«/ step_type: image description
conclusion: The open-circuit voltage is the voltage across the battery when no current flows (i.e., | = 0). From the graph, when | = 0,
U=36V.

X step_type: image description
conclusion: The short-circuit current is the current when the voltage across the battery is zero (i.e., U = 0). From the graph, when U =
0,1=04A.

X step_type: logical inference
premise: U_oc=3.6V.l_sc=0.4A.
conclusion: The internal resistance of the battery can be calculated using the formula: r = U_oc / I_sc. Substituting the values: r = 3.6
V/04A=9Q.

X step_type: logical inference

premise: U_oc=3.6V.l_sc=04A.
conclusion: The internal resistance of the silicon photocell at this light intensity is 9 Q.

SAS = 1/4, Answer =0
@ Key Step Annotation Matching:

Key Conclusion:

«”  -First, focus on the red dot marked in the figure. According to Ohm's Law, U=E-Ir. When | = 0, E = U. Therefore,
the red dot where the graph line a intersects the vertical axis represents E =3.6V.

-Next, pay attention to the red dot marked in the figure. At this point, the voltage across the resistor Ur is 2.5V,
and the current Ur is 0.2A.

-The internal resistance r of the silicon photovoltaic cell is r = (E-U)/I = (3.6-2.5)/0.2=5.5 Q.

KCS=1/3

Figure 15 Examples of Multi-Image SAS-KSC Evaluation on Physics Problems Data with InternVL2.5.
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Step Accuracy Score (SAS) & Key Step Coverage (KSC)

Question: From A's perspective, which direction is B
Answer: B is located to the left rear of A
E Key Steps Annotation:

1. Aisayellow and black car at the top of the intersection
B is a yellow and black car near the bottom <jmage 2>

3. Biislocated below, slightly to the right <image_4>

4, From A’s view, B is in the left rear <image_5>

<image_1>

Single-image Input : <image_1>
GPT-40:

Response :

To determine the direction of object B from the first-person perspective of object A, follow these steps: 1.Identify the Orientation of Object A:
- Object A is a vehicle facing towards the top left of the image, moving diagonally across the intersection. 2.Determine Object A's Forward
Direction: - From the perspective of object A, the forward direction is towards the top left corner of the image. 3.Locate Object B Relative to
Object A:- Object B is positioned towards the bottom of the image, moving upwards. 4. Determine the Direction from A to B: - From object
A's perspective, object B is located to the right and slightly behind. 5.Final Direction: - Therefore, from the first-person perspective of object A,
object B is to the right.

@ Step Partition & Judgment:

step_type: background information
conclusion: To determine the direction of object B from the first-person perspective of object A, follow these steps

« step_type: image description

conclusion: Object A is a vehicle facing towards the top left of the image, moving diagonally across the intersection
v step_type: logical inference

premise: Object A is a vehicle facing towards the top left of the image.

conclusion: From the perspective of object A, the forward direction is towards the top left corner of the image

X step_type: image description
conclusion: Object B is positioned towards the bottom of the image, moving upwards

X step_type: logical inference
premise: From the perspective of object A, the forward direction is towards the top left corner of the image. Object B is positioned
towards the bottom of the image
conclusion: From object A's perspective, object B is located to the right and slightly behind

X step_type: logical inference

premise: From object A's perspective, object B is located to the right and slightly behind
conclusion: Therefore, from the first-person perspective of object A, object B is to the right

SAS =2/6, Answer =0

@ Key Step Annotation Matching:

Key Conclusion:

v/ - Identify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a
yellow and black car near the bottom of the intersection

X - Determine the direction of object A. Object A is located on the road with its back facing the camera, facing
towards the upper left corner of the image

X - Determine the relative position of object B. Object B is located below Object A, slightly to the right

X - Determine direction. From the first person perspective of object A, object B is located in the left rear

KCS=1/4

Figure 16 Examples of Single-Image SAS-KSC Evaluation on Spatial Relations Data with GPT-4o.
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Multi-image Input : <image_1,2,3,4,5>
GPT-4o0:
Response :

To determine the direction of object B from the perspective of object A, follow these steps: 1. Identify the Position of Object A:
- Object A is the taxi at the top left of the image. 2. Draw a Line from Object A to Object B: Imagine or draw a straight line from
the front of Object A (the taxi) to Object B (the other taxi at the bottom right). 3. Determine the Relative Direction: - From the
perspective of Object A, determine which way Object B is located relative to the direction Object A is facing. Object B is
positioned slightly to the right and directly in front of Object A. 4. Use the Blue Arrow for Clarification: - The blue arrow in the
final image shows the direction from Object A to Object B, pointing forward and slightly to the right. 5. Conclusion: Object B is
in front of and to the right of Object A. 6. Final Direction: From the perspective of Object A, Object B is in front and to the right.

@ step Partition & Judgment:

step_type: image description
conclusion: Object A is the taxi at the top left of the image.

v step_type: image description
conclusion: Object B is the taxi at the bottom right of the image.

«/ step_type: logical inference
premise: Object A is the taxi at the top left of the image. Object B is the taxi at the bottom right of the image.
conclusion: Draw a line from the front of Object A to Object B.

X step_type: logical inference
premise: Draw a line from the front of Object A to Object B.
conclusion: Object B is positioned slightly to the right and directly in front of Object A.

«/ Step_type: image description
conclusion: The blue arrow in the image shows the direction from Object A to Object B

X step_type: logical inference
premise: The blue arrow in the image shows the direction from Object A to Object B.
conclusion: The blue arrow points forward and slightly to the right.

X step_type: logical inference

premise: Object B is positioned slightly to the right and directly in front of Object A.
conclusion: From the perspective of Object A, Object B is in front and to the right.

SAS =3/7, Answer =0
@ Key Step Annotation Matching:

Key Conclusion:

v/ -ldentify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a
yellow and black car near the bottom of the intersection.

X -Determine the direction of object A. Object A is located on the road with its back facing the camera, facing
towards the upper left corner of the image.

X -Determine the relative position of object B. Object B is located below Object A, slightly to the right.

X -Determine direction. From the first person perspective of object A, object B is located in the left rear.

KCS=1/4

Figure 17 Examples of Multi-Image SAS-KSC Evaluation on Spatial Relations Data with GPT-4o:
Enhenced Visual Context Enables Richer Reasoning and Performance Gains.
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Multi-image Input : <image 1,2,3,4,5>

Intern\VVL2.5:

Response :

To determine the direction of object B from the first-person perspective of object A, we need to analyze the images provided step-by-step: 1.
Identify Object A's Perspective: - Object A is a vehicle located at the top left of the intersection, facing towards the right side of the image.
The arrow pointing from object A indicates its forward direction. 2. Identify Object B's Position: Object B is another vehicle located at the
bottom center of the intersection, facing upwards in the image. The arrow pointing from object B indicates its forward direction. 3. Determine
Object A's Forward Direction:- From the first-person perspective of object A, the vehicle is facing towards the right side of the image, which
corresponds to the east direction in a typical map orientation. 4. Determine Object B's Relative Position: - Object B is positioned below object
A'in the image. From object A's perspective, this means object B is located towards the south. 5. Analyze the Relative Direction: Since object
A is facing east, and object B is positioned towards the south from object A's perspective, object B is located to the right and slightly behind
object A. 6. Final Direction: From object A's perspective, object B is in the southeast direction.

@ step Partition & Judgment:

step_type: background information
conclusion: To determine the direction of object B from the first-person perspective of object A, we need to analyze the images
provided step-by-step

 Step_type: image description
conclusion: Object A is a vehicle located at the top left of the intersection, facing towards the right side of the image. The arrow
pointing from object A indicates its forward direction.

v/ step_type: image description
conclusion: Object B is another vehicle located at the bottom center of the intersection, facing upwards in the image. The arrow
pointing from object B indicates its forward direction.

X step_type: logical inference

premise: From the first-person perspective of object A, the vehicle is facing towards the right side of the image.
conclusion: Object A is facing towards the east direction in a typical map orientation.

X step_type: logical inference
premise: Object B is positioned below object A in the image.
conclusion: From object A's perspective, this means object B is located towards the south.
X step_type: logical inference
premise: Object A is facing east, and object B is positioned towards the south from object A's perspective.
conclusion: Object B is located to the right and slightly behind object A.
X step_type: logical inference

premise: From object A's perspective, object B is positioned towards the south
conclusion: Object B is in the southeast direction.

SAS = 2/7, Answer =0
@ Key Step Annotation Matching:

Key Conclusion:

v/ -ldentify object A and object B. Object A is a yellow and black car at the top of the intersection. Object B is a
yellow and black car near the bottom of the intersection.

X -Determine the direction of object A. Object A is located on the road with its back facing the camera, facing
towards the upper left corner of the image.

X -Determine the relative position of object B. Object B is located below Object A, slightly to the right.

X -Determine direction. From the first person perspective of object A, object B is located in the left rear.

KCS=1/4

Figure 18 Examples of Multi-Image SAS-KSC Evaluation on Spatial Relations Data with InternVL3.

31



D.2 EXAMPLES OF DIVERSITY EVALUATION.

Figure[I9]provides an example illustrating our diversity evaluation metrics - Path Validity Rate (PVR)
and Path Coverage Score (PCS). We find that models vary in their ability to explore diverse reasoning
paths when processing both single-image and multi-image inputs.

Path Validity Rate (PVR) & Path Coverage Score (PCS)

Question: If Ais quickly flicked away by B, what happens next
Answer: C falls almost straight down into the glass

(£ Key Steps Annotation:

g8 Multi-path CoT: 1. Aand C are at rest and have inertia
<image_1> stepl — step2 — step3 Sifligenc
. 2. Aflies out due to impact, C remains
Ll G stepl — step3 — step2 stationary due to menPna <image_3>
Alis a playing card
B is a opening glass 3. Cfalls into a glass due to gravity
<image_4>

C is a coin resting on A

Single-image Input : <image_1>
GPT-40:
Model Path :

stepl — step2 — step3
Reference Graph Construction:

. match
‘é? V
& %y
mm(lZ)
. O—O\ / final  PVR:3/3 — PVR,q; =PVR x ===

1

final
3 O \ Model: O—-O—oo—oOflnal §
O O 3 PCS: 4/4 —— PCS4qj = PCS x e(CxG=1)
GT: O—»O—.O—.Oﬁnal

LCS (Model, GT) =4

Multi-image Input : <image_1,2,3,4>
GPT-40:
Model Path :

stepl — step2 — step3 stepl — step3 — step2

Reference Graph Construction:

match %
2 3 @ mln(Z 2)
. O—O\ fina  PVR:3/3 — PVRgqj =PVR x

3 Ofmal
O\O :/ \ Model: O—'O——O—»Oflnal
GT: O—O'_'O_’Ofmal

LCS (Model, GT) =4

d,l "

PCS: 4/4 —— PCS44j = PCS X eCeGD)

Figure 19 Examples of Single- and Multi-Image PVR-PCS Evaluation on Spatial Relations Data with
GPT-4o.

D.3 EXAMPLES OF EFFICIENCY EVALUATION.
Figure 20| focuses on evaluating step relevance, clearly indicating how accurately and succinctly the
models identify and utilize pertinent information from visual and textual inputs. Figure 21]specifically

illustrates a scenario examining reflection validity, detailing the ability of model to avoid redundant
or incorrect reasoning paths.
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Step Relevance Score (SRS)

Question: From object A's view, which direction is object B
Answer: Object B is located to the left rear of Object A

[ Key Steps Annotation:

1. Afaces the camera from the side and is located in the
middle of the road facing to the right <image_2>

<image_1> 2. Bis located in the upper left corner of A, on the right
[l Key Caption: side of the road <image_3>
Ak e blapk Al 2 W 3. From object A's view, B is located in the left rear
B is the white car on the left direction <image 4>

Single-image Input : <image_1>
Qwen2.5-VL-72B:
Response :

To determine the direction of object B from the first-person perspective of object A, let's follow these steps: 1. Identify Object A and Object
B - Object Ais indicated by the red arrow pointing to the right side of the image. - Object B is indicated by the red arrow pointing to the
left side of the image. 2. Determine the Position of Object A: - Object A is located on the right side of the image, near the black car. 3.
Determine the Position of Object B: - Object B is located on the left side of the image, near the white truck. 4. Establish the First-Person
Perspective of Object A: - If we imagine standing at the position of Object A, we need to consider the relative positions of other objects
from this viewpoint. 5. Calculate the Direction of Object B from Object A: - From the position of Object A (right side), Object B (left side)
would be to the left when looking straight ahead. 6. Consider the Orientation of the Scene: - The scene is a street view with a crosswalk. The
direction “left" from Object A's perspective aligns with the left side of the image. Final Answer: From the first-person perspective of Object
A, Object B is to the left.

@ step Partition & Judgment:

step_type: image description
conclusion: Object A is indicated by the red arrow pointing to the right side of the image

v

v step_type: image description
conclusion: Object B is indicated by the red arrow pointing to the left side of the image

step_type: image description

v conclusion: Object A is located on the right side of the image near the black car
step_type: image description

v/ conclusion: Object B is located on the left side of the image near the white truck
step_type: logical inference

v conclusion: Consider the relative positions of other objects from Object A's viewpoint
step_type: logical inference

v conclusion: From the position of Object A Object B would be to the left when looking straight ahead
step_type: background information

X conclusion: The scene is a street view with a crosswalk
ste| e: logical inference

v p_typ g

conclusion: The direction left from Object A's perspective aligns with the left side of the image

SRS =7/8

Figure 20 Examples of Step Relevance Score Evaluation.
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Reflection Validity Rate (RVR)

Question: How can you speed up the separation of B's peels
Answer: Combined thermal and osmotic effects reduce peel adhesion strength

@ Key Steps Annotation:

1. 85C water flows from Ato F <image_2>

STl 2. Granular diffusion occurs when D transfers C crystals
4] Key Caption: into F <image_3>

A Thgrmos (B) orange 3. Osmotic pressure differential drives solution
(C) baking soda (D) spoon... penetration into B's peel <image 4>

Single-image Input : <image_1>
QVQ-72B: L
Response: — Tmmmmmmsmmomomsesoes

So I've got this problem here: "How to accelerate the separation of B peels?" And looking at the image, item B is an orange. So, | need to
figure out how to speed up the process of separating the peel from the fruit. Let me think about this step by step. First, | need to understand
what's involved in separating the peel from an orange. Normally, you'd take the orange and peel it manually, right? But that can be time-
consuming and messy. So, maybe there's a better way to do it quickly. One idea that comes to mind is using a tool designed for peeling fruits.
For example, there are citrus peelers that can help remove the peel efficiently. Maybe one of the other items in the image can be used for this
purpose. Let's see: - A: A pink thermos bottle — Doesn't seem relevant for peeling an orange. - C: A small white bowl — Could be used for
holding the peeled orange, but not for peeling. - D: An orange spoon — This might be useful for scooping out the flesh after peeling, but
again, not directly for separating the peel. - E: A white spoon — Similar to D, probably not for peeling. - F: A glass mug — Not suitable for
peeling. Hmm, so none of these items seem specifically designed for peeling oranges. Maybe | need to think of a different approach.
Another thought: perhaps using heat or cold to make the peel easier to remove. For instance, microwaving the orange briefly could make the
peel looser, allowing for easier separation. Alternatively, refrigerating it might have the opposite effect, making the peel tighter and harder to
remove. So, maybe heat is a better option. But the image shows a thermos bottle, which is used for keeping drinks hot or cold. If | had to use
that, perhaps filling it with hot water and letting the orange sit in warm water for a bit could soften the peel and make it easier to remove.
However, I'm not sure if that's the most efficient way. Wait a minute, maybe | can use the thermos bottle to heat up the orange directly. But
that seems unsafe and impractical. Let's discard that idea. Let me consider another angle. Perhaps cutting the orange with a knife could help
in separating the peel. For example, scoring the peel and then lifting it off. But that seems like a standard peeling method and might not
necessarily accelerate the process...

® Step Partition & Judgment:

X conclusion: None of the items are specifically designed for peeling oranges
error_type: Wrong Conclusion

conclusion: Using heat to make the peel easier to remove might be a better option
X error_type: Wrong Conclusion

conclusion: Using the thermos bottle to heat up the orange directly seems unsafe and impractical
v error_type: N/A

conclusion: Cutting the orange with a knife is a standard method and might not accelerate the process
X error_type: Wrong Conclusion

RVR =1/4

Figure 21 Examples of Reflection Validity Rate Evaluation.

E LIMITATION

Our benchmark design, while aiming for rigorous evaluation of visual physical reasoning, inherits
several limitations from both dataset construction and evaluation methodology. (i) Scene and Domain
Coverage: Despite our efforts to include diverse physical scenarios, MVPBench cannot fully capture
the long-tail distribution of real-world physics. This may limit the generalizability of conclusions
drawn from our evaluation. To address this, we plan to iteratively expand the dataset with community
feedback and new task paradigms. (ii) Annotation Subjectivity: Ground-truth reasoning chains,
although carefully curated, may still carry annotator bias in step granularity or interpretation of visual
cues. We mitigate this by introducing a graph-based CoT consistency metric to allow flexible yet
principled comparisons across models. (iii) Model Usage Constraints: Our evaluation depends on
the output of proprietary MLLMs (e.g., GPT-40), which restricts full control over model internals
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and fine-tuning procedures. As such, we treat model predictions as black-box outputs and encourage
future work to validate findings across both open and closed-source systems for robustness.

F BROADER IMPACTS

Positive Impacts: On the positive side, this work has the potential to significantly enhance human-Al
collaboration in fields such as education, scientific research, and accessibility, by enabling models to
perform more transparent and interpretable reasoning across visual and textual modalities.

Negative Impacts: The potential negative societal impacts of our work are similar to those associated
with other MLLMs and LLMs. The development of Visual CoT and MLLMs, while advancing Al,
poses societal risks such as increased privacy invasion, the perpetuation of biases, the potential for
misinformation, job displacement, and ethical concerns regarding accountability and consent.

Mitigation Strategies: To mitigate the aforementioned risks, several strategies are considered
throughout the development and deployment of our model. First, we adopt a rigorous data curation
process aimed at minimizing the propagation of harmful biases, ensuring that training data is as
diverse, inclusive, and representative as possible. Second,privacy-preserving techniques such as data
anonymization and adherence to data protection regulations (e.g., GDPR) are employed to safeguard
user information. Third, we emphasize responsible release practices, including usage guidelines,
model cards, and risk documentation, to inform users of the model’s intended scope and limitations.
Lastly, we advocate for continued interdisciplinary collaboration with ethicists, legal experts, and
affected communities to ensure that the deployment of MLLMs aligns with broader societal values
and norms.

G DETAILED EVALUATION PROMPTS

G.1 CoT QUALITY EVALUATION PROMPTS

35



SAS Evaluation Prompt 1

# Task Overview
Given a solution with multiple reasoning steps for an image-based problem, reformat it into
well-structured steps and evaluate their correctness.

# Step 1: Reformatting the Solution

Convert the unstructured solution into distinct reasoning steps while:
- Preserving all original content and order

- Not adding new interpretations

- Not omitting any steps

## Step Types

1. Logical Inference Steps
- Contains exactly one logical deduction
- Must produce a new derived conclusion
- Cannot be just a summary or observation

2. Image Description Steps
- Pure visual observations
- Only includes directly visible elements
- No inferences or assumptions

3. Background Information Steps
- External knowledge or question context
- No inference process involved

## Step Requirements

- Each step must be atomic (one conclusion per step)

- No content duplication across steps

- Initial analysis counts as background information

- Final answer determination counts as logical inference

# Step 2: Evaluating Correctness
Evaluate each step against:

## Ground Truth Matching
For image descriptions:
- Key elements must match ground truth descriptions

For logical inferences:
- Conclusion must EXACTLY match or be DIRECTLY entailed by ground truth

## Reasonableness Check (if no direct match)

Step must:

- Premises must not contradict any ground truth or correct answer
- Logic is valid

- Conclusion must not contradict any ground truth

- Conclusion must support or be neutral to correct answer

- J

36



1944

1945
1946 .
:Z:g #Hit Judgement. Categpries
- "Match": Aligns with ground truth
1950 - "Reasonable": Valid but not in ground truth
oa - "Wrong": Invalid or contradictory
:Zgz - "N/A": For background information steps
1934 # Output Requirements
1955 1. The output format MUST be in valid JSON format without ANY other content.
1956 2. For highly repetitive patterns, output it as a single step.
1957 3. Output maximum 35 steps. Always include the final step that contains the answer.
1958
1959 Here is the json output format:
1960 ## Output Format
1961 [
1962 {
1963 "step_type": "image description|logical inference|background information",
1964 "premise": "Evidence (only for logical inference)",
1965 "conclusion": "Step result”,
1966 "judgment": "Match|Reasonable|Wrong|N/A"
1967 +H
1968 ]
1969
1970 Here is the problem, and the solution that needs to be reformatted to steps:
1971
1972 [Problem]
1973
1974 {question}
1975
1976 [Solution]
1977
1978 {solution}
1979
1980 [Correct Answer]
1981
1982 {answer}
1222 [Ground Truth Information]
1985 .
. {gt_annotation}
1987
1988
1989
1990
1991
1992
1993
1994
1995 . J
1996
1997
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KSC Evaluation Prompt

You are an expert system for verifying solutions to image-based problems. Your task is to
match the ground truth middle steps with the provided solution.

INPUT FORMAT:

1. Problem: The original question/task

2. A Solution of a model

3. Ground Truth: Essential steps required for a correct answer

MATCHING PROCESS:
You need to match each ground truth middle step with the solution:

Match Criteria:

- The middle step should exactly match in the content or is directly entailed by a certain content
in the solution

- All the details must be matched, including the specific value and content

- You should judge all the middle steps for whethere there is a match in the solution

OUTPUT FORMAT:
JSON array of judgments:

[
i
"step_index": <integer>,
"judgment": "Matched" | "Unmatched",

1
]

ADDITIONAL RULES:

1. Only output the json array with no additional information.

2. Judge each ground truth middle step in order without omitting any step.
Here is the problem, answer, solution, and the ground truth middle steps:
[Problem]

{question}

[Answer]

{answer}

[Solution]

{solution}

[Ground Truth Information]

{gt_annotation}

G.2 CoOT DIVERSITY EVALUATION PROMPTS
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Diversity Evaluation Prompt

You are given a question about a physical experiment and several key reasoning steps.

Your goal is to identify ALL possible valid reasoning chains that logically connect the
question to the final answer.

Each reasoning chain should include all key steps exactly once, arranged in a logically
valid order.

Steps may be combined in different logical orders as long as the overall reasoning
makes sense.

Think carefully: there may be multiple valid chains based on how the steps can be
logically ordered.

Your job is to find as many valid logical chains as possible.

INPUT FORMAT:

1. Question: The original question/task

2. Final Answer: Answer to the original question

2. Key Reasoning Steps: A list of essential reasoning steps, each with an ID and
explanation.

Output format

JSON array of judgments:

[

["key step 1", "key step 2", "key step 3"],
["key step 1", "key step 3", "key step 2"]
]

ADDITIONAL RULES:
1. Only output the json array with no additional information.

Here is the question, answer, and the Key Reasoning Steps:
[Question]

{question}
[Final Answer]
{answer}
[Solution]

{solution}
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G.3 CoT EFFICIENCY EVALUATION PROMPTS

PVR Rate Prompt 1

# Task Overview
Given a solution with multiple reasoning steps for an image-based problem, evaluate the
relevance to get a solution (ignore correct or wrong) of each step.

# Step 1: Reformatting the Solution

Convert the unstructured solution into distinct reasoning steps while:
- Preserving all original content and order

- Not adding new interpretations

- Not omitting any steps

## Step Types

1. Logical Inference Steps
- Contains exactly one logical deduction
- Must produce a new derived conclusion
- Cannot be just a summary or observation

2. Image Description Steps
- Pure visual observations
- Only includes directly visible elements
- No inferences or assumptions

3. Background Information Steps
- External knowledge or question context
- No inference process involved

## Step Requirements

- Each step must be atomic (one conclusion per step)

- No content duplication across steps

- Initial analysis counts as background information

- Final answer determination counts as logical inference

# Step 2: Evaluating Relevancy
A relevant step is considered as: 75% content of the step must be related to trying to get
a solution (ignore correct or wrong) to the question.

*IMPORTANT NOTE**:

Evaluate relevancy independent of correctness. As long as the step is trying to get to a
solution, it is considered relevant. Logical fallacy, knowledge mistake, inconsistent with
previous steps, or other mistakes do not affect relevance.

A logically wrong step can be relevant if the reasoning attempts to address the question.
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PVR Rate Prompt 2

The following behaviour is considered as relevant:

i. The step is planning, summarizing, thinking, verifying, calculating, or confirming an
intermediate/final conclusion helpful to get a solution.

ii. The step is summarizing or reflecting on previously reached conclusion relevant to
get a solution.

iii. Repeating the information in the question or give the final answer.

iv. A relevant image depiction shoule be in one of following situation: 1. help to obtain
a conclusion helpful to solve the question later; 2. help to identify certain patterns in the
image later; 3. directly contributes to the answer

v. Depicting or analyzing the options of the question is also relevant.

vi. Repeating previous relevant steps are also considered relevant.

The following behaviour is considered as irrelevant:

i. Depicting image information that does not related to what is asking in the question.
Example: The question asks how many cars are present in all the images. If the step
focuses on other visual elements like the road or building, the step is considered as
irrelevant.

ii. Self-thought not related to what the question is asking.

iii. Other information that is tangential for answering the question.

# Output Format
[
{H

"step_type": "image description|logical inference|background information",
"conclusion": "A brief summary of step result",
"relevant": "Yes|No"

i
]

# Output Rules

Direct JSON output without any other output

Output at most 40 steps

Here is the problem, and the solution that needs to be reformatted to steps:
[Problem]

{question}

[Solution]

{solution}
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2214

2215
2216
2217 PCS Prompt
2218 # Task
2219 Evaluate reflection steps in image-based problem solutions, where reflections are self-corrections or
2220 reconsiderations of previous statements.
2221

# Reflection Step Identification
2222 Reflections typically begin with phrases like:
2223 - "But xxx"
2224 - "Alternatively, xxx"
2295 - "Maybe I should"
2996 - "Let me double-check"

- "Wait xxx"
2227 - "Perhaps xxx"
2228 It will throw an doubt of its previously reached conclusion or raise a new thought.
2229 4 Evaluation Criteri

valuation Criteria

2esu Correct reflections must:
2231 1. Reach accurate conclusions aligned with ground truth
2232 2. Use new insights to find the mistake of the previous conclusion or verify its correctness.
2233
2234 Invalid reflections include:

1. Repetition - Restating previous content or method without new insights
2235 2. Wrong Conclusion - Reaching incorrect conclusions vs ground truth
2236 3. Incompleteness - Proposing but not executing new analysis methods
2237 4. Other - Additional error types
2238

# Input Format
2239
2240 [Problem]
2241 {question}
2242 [Solution]

olution
2243 {solution}
2244
2245 [Ground Truth]
2246 {gt_annotation}
2247
2248 # Output Requirements
2249 1. The output format must be in valid JSON format without any other content.
2250 2. Output maximum 30 reflection steps.
220 Here is the json output format:
2252 ## Output Format
2253 *'json
2254 [
2255 i . .
"conclusion": "One-sentence summary of reflection outcome",

2256 "judgment": "Correct|Wrong",
2257 "error_type": "N/A|Repetition|Wrong Conclusion|Incompleteness|Other"
2258 1
2259 ]
2260 # Rules
2261 1. Preserve original content and order
2262 2. No new interpretations
2263 3. Include ALL reflection steps
2264 4. Empty list if no reflections found

5. Direct JSON output without any other output
2265 . J
2266
2267
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H SETUP

H.1 EXPERIMENT SETUP

Evaluation Models. To comprehensively assess performance on MVPBench, we selected a diverse
array of multimodal large language models (MLLMs), encompassing both open-source and closed-
source frameworks. Among open-source models, we evaluated LLaVA-OV 72BLi et al.[ (2025a)),
LLaVA-CoTXu et al.|(2024)), InternVL2.5 78BChen et al.|(2024b), InternVL2.5-MPO 78BWang et al.
(2024b), InternVL3 (78B, 78B-Instruct)Zhu et al.|(2025), Qwen2.5-VL (7B, 72B)Bai et al.|(2025)),
QVQ-72BQwen Team|(2024), as well as the recently included Qwen2VL-2BWang et al.| (2024a)), MM
Eureka-7BMeng et al|(2025), and R1-VL-2BZhang et al.|(2025a), representing various architectures
and multimodal integration strategies. Specifically, InternVL2.5-78B-MPO and InternVL3-78B-
Instruct underwent mixed preference optimization (MPO) post-training, while InternVL2.5-78B
and InternVL3-78B remained unmodified. Furthermore, Qwen2.5VL-7B and Qwen2VL-2B, along
with their respective post-trained variants—MM Eureka-7B, which employs large-scale rule-based
reinforcement learning (RL), and R1-VL-2B, utilizing Step-wise Group Relative Policy Optimization
(StepGRPO)—are of significant interest. Additionally, prominent closed-source models such as
GPT-400penAl| (2024), OpenAl 030penAll (2025), Claude 3.7 SonnetAnthropic|(2025), Gemini-
2.5Deepmind| (2024), and Grok3xAll (2025) were selected based on their state-of-the-art multimodal
reasoning capabilities. This expanded and carefully curated selection ensures a balanced and thorough
evaluation encompassing both openly accessible and proprietary MLLM systems.

Implementation Details. All our experiments are conducted under a zero-shot setting, showcasing
the generalization capacity of MLLMs for physical reasoning without few-shot prompting or further
fine-tuning. By default, we employ the CoT prompting technique Wei et al.| (2022)), which encourages
MLLMs to perform complete reasoning steps for fine-grained evaluation. All experiments are
conducted on NVIDIA V100 GPUs.

H.2 MODEL HYPERPARAMETERS

To ensure reproducibility and clarity regarding model settings used during evaluation, Table [I0]
provides detailed information on the hyperparameters and generation setups for each evaluated
multimodal large language model (MLLM). Parameters not explicitly stated indicate that the default
settings provided by the respective models were employed. This comprehensive specification
facilitates transparent comparisons across models and experimental replication.

I THE USE OF LLMs

We employed large language models (LLMs) in a strictly auxiliary manner for (i) surface-level
editing of the manuscript (grammar correction, minor rephrasing, and stylistic refinement), and (ii)
technical assistance during dataset preparation, including checking the consistency of JSON schema,
detecting formatting errors, and drafting preliminary scene descriptions for all curated datasets. All
final annotations, dataset curation decisions, experimental designs, and analyses were exclusively
performed and validated by the authors.
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Table 10 Generating parameters for MLLMs. Parameters not explicitly stated indicate the use of the model’s

default system settings.

Model

Generation Setup

LLaVA-OV-72B

LLaVA-CoT

InternVL2.5-78B

InternVL2.5-78 B-MPO

InternVL3-78B

InternVL3-78B-Instruct

Qwen2.5-VL-7B

Qwen2.5-VL-72B

QVQ-72B

MM-Eureka-7B

Qwen2VL-2B

R1-VL-2B

GPT-40
OpenAl 03
Claude 3.7 Sonnet
Gemini-2.5-flash-preview-04-17

Grok3

torch.dtype=torch.floatle,
max_new_tokens=2048, temperature=0.7,
device_map=balanced, min_pixels=256x28%x28,
max_pixels=768+x28%28
torch.dtype=torch.floatle,
max_new_tokens=2048, temperature=0.7,
device_map=balanced
torch.dtype=torch.floatle,
max_new_tokens=2048, temperature=0.7,
device_map=balanced_low_0
torch.dtype=torch.floatle,
max_new_tokens=1024, temperature=0.7,
device_map=balanced_low_0
torch.dtype=torch.floatle,
max_new_tokens=1024, temperature=0.7,
device_map=balanced_low_0
torch.dtype=torch.floatle,
max_new_tokens=1024, do_sample=False,
temperature=0.7, device_map=balanced_low_0
torch.dtype=torch.floatle,
max_new_tokens=1024, do_sample=False,
temperature=0.7, device_map=balanced
torch.dtype=torch.bfloatlé,
temperature=0.7, max_new_tokens=1024,
device_map=balanced, min_pixels=256x28%x28,
max_pixels=768x28%28
torch.dtype=torch.floatlé,
max_new_tokens=512, do_sample=False,
temperature=0.7, min_pixels=256%x28%x28,
max_pixels=768x28%28, device_map=balanced,
torch.dtype=torch.floatle,
max_new_tokens=2048, do_sample=False,
temperature=0.7, device_map=balanced
torch.dtype=torch.bfloatlé,
max_new_tokens=2048, do_sample=False,
temperature=0.7, device_map=balanced
torch.dtype=torch.floatle,
max_new_tokens=2048, use_cache=True,
temperature=0.7

dtype=torch.floatl6, sampling=False,
temperature=0.2, max_new_tokens=1024
dtype=torch.floatl6, sampling=False,
temperature=0.2, max_new_tokens=1024
dtype=torch.floatl6, sampling=False,
temperature=0.2, max_new_tokens=1024
dtype=torch.floatl6, sampling=False,
temperature=0.2, max_new_tokens=1024
dtype=torch.float32, sampling=False,
temperature=0.2, max_new_tokens=1024
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