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ABSTRACT

Video reasoning has emerged as a critical capability for multimodal large language
models (MLLMs), requiring models to move beyond static perception toward coher-
ent understanding of temporal dynamics in complex scenes. Yet existing MLLMs
often exhibit process inconsistency, where intermediate reasoning drifts from
video dynamics even when the final answer is correct, undermining interpretability
and robustness. To address this issue, we introduce MOSS-ChatV, a reinforce-
ment learning framework with a Dynamic Time Warping (DTW)–based process
reward. This rule-based reward aligns reasoning traces with temporally grounded
references, enabling efficient process supervision without auxiliary reward models.
We further identify dynamic state prediction as a key measure of video reasoning
and construct MOSS-Video, a benchmark with annotated reasoning traces, where
the training split is used to fine-tune MOSS-ChatV and the held-out split is re-
served for evaluation. MOSS-ChatV achieves 87.2% on the MOSS-Video (test)
and improves performance on general video benchmarks such as MVBench and
MMVU. The framework consistently yields gains across different architectures,
including Qwen2.5-VL and Phi2, confirming its broad applicability. Evaluations
with GPT-4o-as-judge further show that MOSS-ChatV produces more consistent
and stable reasoning traces.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have shown remarkable progress in vision–language
tasks such as image captioning, visual question answering, and video description (Cheng et al., 2024;
Zhang et al., 2025a; Liang et al., 2024; Caffagni et al., 2024). Extending these advances from images
to videos has attracted great attention, as videos contain richer temporal and causal information.
However, video reasoning—requiring models to connect visual observations with temporal dynamics
and causal dependencies—remains particularly challenging for current MLLMs.

Existing Video-MLLMs are predominantly trained through supervised fine-tuning on large-scale
video–text pairs (Li et al., 2024a). While effective for basic understanding, this paradigm leaves
models weak in reasoning-intensive tasks. A fundamental issue is the scarcity of datasets that provide
fine-grained temporal reasoning supervision. Yet, videos inherently encode dense supervisory signals
in their temporal evolution. The core challenge lies in exploiting these temporal signals to strengthen
reasoning: models must not only recognize the present state but also infer future trajectories from
context and world knowledge. Prior work such as VoT (Fei et al., 2024) has shown the close coupling
between video prediction and reasoning, underscoring that temporal state prediction can serve as a
proxy for reasoning ability. To operationalize this insight, we construct MOSS-Video, a dataset for
video state prediction with annotated reasoning traces. The dataset is partitioned into training and test
splits, enabling process-supervised learning while ensuring held-out evaluation.

Reinforcement learning (RL) offers a promising path for strengthening reasoning in MLLMs. How-
ever, recent studies (e.g., , Video-UTR (Yu et al., 2025)) reveal a “temporal hacking” problem, where
models bypass temporal reasoning and directly guess outcomes. This highlights the necessity of
explicit process-level supervision. RL with process feedback has proven effective in domains such as
mathematics and code generation (Shao et al., 2024; Ye et al., 2025). Motivated by this, we design
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Figure 1: Illustration of the responses across different models on the video state prediction task, where
greentext indicates correctly reasoned key points and red text denotes reasoning errors. Comparative
analysis reveals that MOSS-ChatV captures more fine-grained states (e.g., the surfer’s crouched
position) compared to other models. Crucially, it accurately extrapolates this state (preparing for a
maneuver), thereby achieving more coherent and correct reasoning.

a rule-based Process Reasoning Reward (PRR) for video reasoning. Specifically, we employ a
two-stage “split-align” strategy: (1) decomposing reasoning traces into sequential substeps, and (2)
aligning generated and reference processes via subsequence Dynamic Time Warping (DTW). The
resulting alignment distance provides a reward signal that supervises temporal coherence without the
need for a learned reward model. Leveraging PRR together with the MOSS-Video training split, we
fine-tune MOSS-ChatV using GRPO (DeepSeek-AI et al., 2025), as illustrated in Figure 2.

Extensive experiments validate the effectiveness of our approach. See figure 1 for the case demon-
strations. MOSS-ChatV achieves 87.2% accuracy on the MOSS-Video test set, surpassing strong
closed-source baselines such as GPT-4o. It also improves general video understanding, reaching
67.6% on MVBench (Li et al., 2024b), and performs competitively on real-time benchmarks such as
RTVBench (Xun et al., 2025). Moreover, the framework consistently boosts reasoning quality across
architectures including Qwen2.5-VL and TinyLLaVA-Video. Automatic evaluation with GPT-4o as a
judge further shows that MOSS-ChatV produces more consistent and stable reasoning traces. Our
main contributions are as follows:

• We construct MOSS-Video, a video state prediction dataset with reasoning annotations, split into
training and test partitions for process-supervised reinforcement learning and held-out evaluation.

• We propose a rule-based Process Reasoning Reward (PRR) based on subsequence DTW and
integrate it into a reinforcement learning framework, MOSS-ChatV, trained with GRPO. This
design enables efficient temporal alignment and process supervision without training additional
reward models.

• Through extensive experiments, we demonstrate that MOSS-ChatV achieves state-of-the-art
performance on the MOSS-Video (test), improves general video understanding benchmarks such
as MVBench and MMVU, and yields consistent gains across different architectures including
Qwen2.5-VL and TinyLLaVA-Video.
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2 PRELIMINARY

2.1 VIDEO STATE PREDICTION AND REASONING

We consider video state prediction as follows: given a video V and a query q specifying a target
object, the model must (i) identify the object, (ii) infer its current or imminent state, and (iii) provide a
temporally grounded explanation. An illustrative example is shown in Figure 1. VoT (Fei et al., 2024)
demonstrates that decomposing the task via Chain-of-Thought (CoT)—including task definition,
object recognition/tracking, behavior analysis, answer ranking, and verification—yields a human-like
reasoning path and highlights the tight coupling between prediction and reasoning. Different from
the prompt-based paradigm in VoT, our approach learns this capability via reinforcement learning
with a process-level reward, integrating temporal reasoning into the model’s latent space to enable
end-to-end reasoning and prediction.

2.2 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Recent work (DeepSeek-R1) (DeepSeek-AI et al., 2025) introduced Group Relative Policy Optimiza-
tion (GRPO), which has spurred effective adaptations for multimodal LLMs (Feng et al., 2025; Li
et al., 2025; Wang et al., 2025b; Zhang et al., 2025b). At a high level, for each input, GRPO samples
a group of G candidate responses from the current policy πθ, compares their relative performance via
a scalar reward, and updates the policy without learning a value function. We adopt GRPO as our
optimization backbone due to its simplicity and strong empirical stability.

Notation. For one input, let the sampled response set be O = {oi}Gi=1 with corresponding scalar
rewards {Ri}Gi=1. GRPO computes a standardized advantage for each response:

Ai =
Ri − µ

σ
, µ = mean

(
{Ri}Gi=1

)
, σ = std

(
{Ri}Gi=1

)
. (1)

The learning objective encourages higher-advantage responses under importance weighting, while
regularizing the policy against a fixed reference policy πref:

LGRPO(θ) = Eo∼(πold
θ )

[
1

G

G∑
i=1

min

(
πθ(oi)

πold
θ (oi)

Ai, clip
(

πθ(oi)

πold
θ (oi)

, 1− ϵ, 1 + ϵ

)
Ai

)]
− β DKL

(
πθ

∥∥πref
) (2)

Here πold
θ denotes the behavior policy used for sampling the group, ϵ denotes the range of the clip

operation, and DKL(·∥·) is the Kullback–Leibler divergence. The importance ratio reweights each
response oi to correct for the sampling distribution, while the KL term (scaled by β > 0) controls
policy drift.

Accuracy Reward. For multiple-choice or short-answer settings, a binary accuracy signal provides
a simple yet effective supervision:

Racc(amodel, agt) =

{
1, if amodel = agt,

0, otherwise.
(3)

Format Reward. In many applications, outputs must follow a specified schema (e.g., ,
<think>...</think><answer>...</answer>) to expose intermediate reasoning. Let
omodel denote the full model output and F the required format:

Rfmt(omodel,F) =

{
1, if omodel adheres to F ,
0, otherwise.

(4)

Accuracy and format rewards are effective foundations for RL fine-tuning, but they do not explicitly
supervise temporal logic. In our method (Section 3), we therefore introduce a process-level reward
to align intermediate reasoning with reference temporal processes, complementingRacc andRfmt

within the GRPO framework. Algorithm 1 summarizes the overall optimization steps.
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Figure 2: Overall training pipeline of MOSS-ChatV. (a) Construction of the MOSS-Video dataset
from ShareGPT4Video with multi-level temporal annotations, where future states are masked as
prediction targets. (b) Subsequence DTW alignment: green dashed lines denote strict sequential
matching, while red solid lines allow jumps (jump step=2) to reduce cumulative distance. (c) GRPO
workflow integrating accuracy, format, and process rewards.

3 PROCESS REASONING REWARD

Addressing the limitations of conventional rewards in guiding complex temporal reasoning, we
introduce a Process Reasoning Reward (PRR), denoted as Rproc. This reward leverages reference
annotations embodying an ideal ’gold standard’ reasoning process. Crucially, this mechanism
achieves nuanced process supervision by effectively leveraging efficient, robust algorithms, avoiding
the need for potentially complex or computationally expensive large model-based evaluators.

Reasoning Step Serialization The first step is segmentation for reasoning texts. The model’s
intermediate reasoning (e.g., content within <think>...</think> tags) and the reference coun-
terpart are segmented into sequences of textual steps using NLP tools (e.g., nltk library). Though not
affecting overall temporal information, this segmentation enables finer-grained analysis in the next
step by splitting long texts into sequences.

Let Tgen represent the intermediate reasoning content generated by the model, and Tref represent the
reference reasoning content. These are segmented into sequences of textual steps using NLP tools
(denoted as N ):

Seqgen = {g1, . . . , gm} = N (Tgen) (6)
Seqref = {r1, . . . , rn} = N (Tref ) (7)

Temporal Alignment via Subsequence DTW For the second step, We employ Subsequence
Dynamic Time Warping (SDTW), detailed in Algorithm 2, a highly efficient dynamic programming
algorithm, to quantify the alignment between two sequences with different lengths. SDTW optimally
identifies the best-matching subsequence within the model’s reasoning sequence (Seqgen) that
corresponds to the entire reference sequence (Seqref ), by minimizing a cumulative distance. This
cumulative distance, minimized by SDTW, is built upon the pairwise distances d(gj , ri) between
an individual generated step gj ∈ Seqgen and the annotated reference step ri ∈ Seqref . To define
d(gj , ri), our goal is to comprehensively yet efficiently measure the textual similarity between these
steps. This is achieved by leveraging several rule-based ROUGE scores. We use ROUGE-1 and
ROUGE-2 to capture n-gram overlap between gj and ri. To evaluate sequence-level structural
similarity, ROUGE-L is used for preserving the sentence-internal logical order within each step.

The distance d(gj , ri) is then formally defined as one minus the average of average of these ROUGE
scores:

ROUGEavg(gj , ri) =
ROUGE-1(gj , ri) + ROUGE-2(gj , ri) + ROUGE-L(gj , ri)

3
(8)

d(gj , ri) = 1− ROUGEavg(gj , ri) (9)
The minimum cumulative distance is then defined as:

Dsdtw = SUBSEQUENCE_DTW (D) (10)
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Algorithm 1 GRPO with Process Reasoning Reward (PRR) for one training sample

Require: Training sample (V,Q, agt, Tref); Policy model Mpolicy(πθ); Reference model Mref(πref);
Format F

1: Sample G candidate outputs from policy: O = {oi = (Tgen, amodel)}Gi=1
2: Initialize reward listR = [ ]
3: for each oi ∈ O do
4: Segment reference: Seqref = {r1, . . . , rn} ← N (Tref)
5: Segment generation: Seqgen = {g1, . . . , gm} ← N (Tgen)
6: Build distance matrix D ∈ Rm×n with

Dj,k = 1− ROUGEavg(gj , rk), j ∈ [1,m], k ∈ [1, n].

7: Compute Dsdtw ← SUBSEQUENCE_DTW(D)
8: Process reward: Rproc = exp(−α ·Dsdtw)
9: Total reward:

Ri = Racc(amodel, agt) +Rfmt(oi,F) +Rproc

10: AppendRi toR
11: end for
12: Standardize advantages:

Ai =
Ri − µ

σ
, µ = mean(R), σ = std(R)

13: Compute GRPO objective with clipping:

LGRPO(θ) = Eo∼πold
θ

[
1

G

G∑
i=1

min

(
πθ(oi)

πold
θ (oi)

Ai, clip
(

πθ(oi)

πold
θ (oi)

, 1− ϵ, 1 + ϵ

)
Ai

)]
− β DKL

(
πθ

∥∥πref
)
.

(5)

14: Update policy: Mpolicy.update(LGRPO)

Algorithm 2 Subsequence DTW

1: function SUBSEQUENCE_DTW(D, kref, ktarget) ▷D: Cost matrix (n×m), kref: max reference
jump, ktarget: max target jump

2: Initialize P ∈ R(n+1)×(m+1) with P[0, j]← 0 for j ∈ [0,m], P[i, 0]←∞ for i ∈ [1, n]
3: for i← 1 to n do
4: for j ← 1 to m do
5: diag_cost← P[i− 1, j − 1] ▷ Match current points (diagonal move)
6: up_cost← min1≤k≤min(kref,i) P[i− k, j] ▷ Skip k points in reference sequence

(vertical move)
7: left_cost← min1≤k≤min(ktarget,j) P[i, j − k] ▷ Skip k points in target sequence

(horizontal move)
8: P[i, j]← D[i, j] + min(diag_cost, up_cost, left_cost)
9: end for

10: end for
11: return minj∈[1,m] P[n, j] ▷ Shortest distance to any endpoint in target sequence
12: end function

We adopt Subsequence Dynamic Time Warping (SDTW) for its ability to align a reference reason-
ing path (Seqref ) within potentially longer model-generated sequences (Seqgen), enabling process
supervision with explicit temporal signals. A key advantage is SDTW’s compatibility with reinforce-
ment learning: it avoids penalizing exploratory segments outside the optimal alignment while still
rewarding correct paths. The algorithm provides tunable alignment strictness through parameters
like jump steps (Algorithm 2, figure 2), permitting controlled tolerance for minor deviations in
the reasoning trajectory. This balance of flexibility and precision makes SDTW ideal for guiding
reasoning processes without stifling exploration.
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Distance-to-Reward Transformation The final minimum cumulative distance Dsdtw from SDTW
is transformed into the reward valueRproc via a transformation function T :

Rproc = T (Dsdtw) (11)
T (Dsdtw) = exp(−α ·Dsdtw) (12)

where α > 0 is a tunable hyperparameter that controls the sensitivity or decay rate of the reward with
respect to the distance.

Then we can get the total rewardRtotal,i for the i-th response in the sampled group of responses, by
combining its specific process rewardRproc,i with its accuracyRacc,i and formatRfmt,i:

Rtotal,i = Rproc,i +Racc,i +Rfmt,i (13)
ThisRtotal,i corresponds to theRi used in the GRPO advantage calculation (Equation ??) for the i-th
response within the group {o1, . . . , oG}.
Consequently, the resultingRproc provides a computationally efficient yet powerful reward signal
for reinforcement learning. It uniquely encourages temporal coherence in reasoning, validates the
inclusion and ordering of essential logical steps, and maintains sensitivity to the relevance of generated
content, thereby offering comprehensive guidance towards generating both accurate and logically
sound reasoning processes.

MOSS-Video Dataset To support process-supervised reinforcement learning, we construct MOSS-
Video, a large-scale video state prediction dataset derived from ShareGPT4Video (Chen et al., 2024).
Each sample is annotated with object states and corresponding reasoning traces, enabling models
to predict future states conditioned on visual context. The dataset is partitioned into a training split
(11,654 samples, 1,218 unique videos) and a held-out test split (2,836 samples, 479 unique videos).
Basic statistics are summarized in Table 1, including average video length and annotation span.
Annotation pipelines and further details are provided in Appendix A.

Table 1: Comparison of MOSS-Video with representative video temporal reasoning datasets. Our
dataset uniquely supports state prediction with explicit reasoning annotations.

Dataset #Samples Avg. Video Len (s) Understanding Reasoning Prediction

ViTiB (Zhang et al., 2023) 1,382 – ✓ ✓ ×
NeXT-QA (Xiao et al., 2021) 3,870 40 ✓ × ×
Video-R1-CoT-165K (Feng et al., 2025) 116k – × ✓ ×
MOSS-Video (train) 11,654 27.73 ✓ ✓ ✓
MOSS-Video (test) 2,836 28.21 ✓ ✓ ✓

4 EXPERIMENT

We directly performed reinforcement fine-tuning on the Qwen2.5VL model, leveraging the training
frameworks provided by Open-R1-Video (Wang & Peng, 2025) and Video-R1 (Feng et al., 2025), and
utilizing the MOSS-Video train set. We selected a comprehensive suite of benchmarks for the holistic
evaluation of MOSS-ChatV. This suite includes MVBench (Li et al., 2024b), TempCompass (Liu
et al., 2024a), Video MME (Fu et al., 2024), RTV-Bench (Xun et al., 2025) and the MOSS-Video test
set for our state prediction scenarios. These benchmarks collectively assess a wide range of video
understanding capabilities, including temporal reasoning, action recognition, causal inference, and
narrative comprehension. To demonstrate our method’s generalizability, we further experiment on
TinyLLaVA-Video (Zhang et al., 2025b), validating its effectiveness with a different language model
(Phi2) and visual encoder (SigLIP). The aggregated evaluation results are presented in Table 2. Spe-
cific configurations for our evaluations included a sampling temperature of 0 to ensure deterministic
outputs and an input video resolution of approximately 448x448 pixels. We tested our experiment on
4 NVIDIA A800 and trained MOSS-ChatV on 8 NVIDIA A800.

4.1 RESULTS

In Table 2, our MOSS-ChatV model achieves state-of-the-art performance on MVBench, VideoMME,
RTVBench, and MOSS-Video test compared to baseline models, Qwen2.5-VL, and the same architec-
ture model Video-R1. It also demonstrates improvements over the Qwen2.5-VL on TempCompass.
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Table 2: Results of MOSS-ChatV and baselines on (a) general video understanding benchmarks and
(b) video reasoning benchmarks. All results use 32-frame input setting. Our method consistently
improves performance across both categories.

(a) General Benchmarks

Model # LLM MVBench VideoMME TempCompass

Qwen2.5-VL Bai et al. (2025) Qwen2.5-7B 67.1 59.7 72.2
LLaVA-OneVision Li et al. (2024a) Qwen2-7B 56.7 58.2 –
TinyLLaVA-3B Zhang et al. (2025b) Phi2-3B 28.8 34.5 32.4
TinyLLaVA-3B + PRR Phi2-3B 29.0 35.1 45.1
Video-UTR Yu et al. (2025) Qwen2-7B 58.8 52.6 59.7
VideoChat-R1 Li et al. (2025) Qwen2.5-7B 66.2 58.8 73.9
VideoChat-R1-thinking Li et al. (2025) Qwen2.5-7B – 58.3 75.0
Video-R1 Feng et al. (2025) Qwen2.5-7B 63.9 59.3 73.2

MOSS-ChatV (ours) Qwen2.5-7B 67.6 60.0 72.9

(b) Reasoning Benchmarks

Model RTV-Bench MOSS-Videotest MMVUmc VideoMMMU VCR-Bmc VSI-Bmc VSI-Breg

Qwen2.5-VL 32.8 67.0 60.0 48.1 33.7 35.3 24.3
LLaVA-OneVision 34.5 48.1 – – – – –
TinyLLaVA-3B – 65.9 39.0 – – – –
TinyLLaVA-3B + PRR – 82.5 40.3 – – – –
Video-UTR – 58.9 – – – – –
VideoChat-R1 – 70.8 62.7 50.0 34.5 – –
VideoChat-R1-thinking – 70.1 64.2 49.2 35.3 35.9 30.0
Video-R1 46.5 73.3 64.8 52.3 38.4 30.8 39.7

MOSS-ChatV (ours) 46.6 86.6 66.2 50.2 35.3 35.2 28.2

The results from MOSS-Video test particularly indicate that reasoning capabilities contribute pos-
itively to video prediction tasks. Notably, while neither Qwen2.5-VL nor Video-R1 were trained
on MOSS-Video Train data, but Video-R1 shows significant metric improvements, suggesting the
benefits of reasoning.

Figure 3: Performance impact of varying in-
put frame counts.

We tested MOSS-Video using different input num-
ber of frames, result shown in Figure 3. The results
demonstrate that increasing input frames enhances
state prediction performance. MOSS-ChatV likely
reaches peak accuracy with fewer frames due to its
more efficient information extraction and reasoning
capability.

It is worth emphasizing that our solution utilizes only
a single-task dataset for video prediction, yet achieves
performance gains across general video benchmarks.
The improvements are especially pronounced on
MVBench and VideoMME - both requiring complex
reasoning - demonstrating that our approach effec-
tively unlocks the model’s latent potential. These
results collectively provide evidence that video prediction tasks indeed enhance models’ reasoning
capabilities.

4.2 SDTW VS. DTW

When comparing reasoning sequences, traditional Naive Dynamic Time Warping (DTW) and Subse-
quence DTW exhibit distinct behaviors. Naive DTW attempts to achieve a complete match between
two sequences through warping, which can lead to a single element being mapped to multiple
elements. This significantly inflates the distance metric for sequences of unequal length, a char-
acteristic we find undesirable as it unduly penalizes valid model explorations that extend beyond
the shortest annotated reasoning chain. Our experiments, Figure 4, demonstrate that Naive DTW
can induce a “reward hacking” phenomenon: when the model outputs very short reasoning, the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

a. SDTW b. No Process Reasoning Reward c. DTW 

Re
sp

on
se

 L
en

gt
h 

(n
um

be
r 

of
 t

ok
en

)

Figure 4: Figure (a) shows that with Subsequence DTW (SDTW), response lengths initially fluctuate
due to exploration but gradually converge to a stable range. Figure (b) reports training without
process supervision, where response lengths remain unstable. Figure (c) illustrates Naive DTW,
which induces reward hacking: the model shortens its reasoning drastically to exploit the distance
metric.

DTW distance is minimized, leading to trivial outputs like <think>Based on the video
content, the correct answer is A</think><answer>A</answer>. This obser-
vation also highlights that treating annotated reasoning processes solely as an absolute “gold standard”
for training offers limited benefits for model improvement. Consequently, our strategy positions
annotated reasoning as a “minimal” gold standard. While ensuring the quality of reasoning, this
approach avoids overly restricting the model’s legitimate explorations beyond this baseline, thereby
aiming to more comprehensively unlock and leverage the model’s latent potential.

4.3 ABLATION STUDY

Table 3: Ablation Results

Model MVBench VideoMME MOSS-Video
Qwen2.5-VL-7B 67.09 59.67 67.00
Qwen2.5-VL-7B+SFT (MOSS-ChatV-SFT) 65.12 ↓1.97 55.24 ↓4.43 71.44 ↑4.44
Qwen2.5-VL-7B+T-GRPO (Video-R1) 63.90 ↓3.19 59.30 ↓0.37 73.26 ↑6.26
Qwen2.5-VL-7B+GRPO (MOSS-ChatV-no-PPR) 65.23 ↓1.86 55.30 ↓4.37 84.17 ↑17.17
Qwen2.5-VL-7B+GRPO+Process Reasoning Reward (MOSS-ChatV) 67.60 ↑0.51 59.96 ↑0.29 86.62 ↑19.62

We conduct ablation experiments using the MOSS-Video Train dataset, comparing three variants:
MOSS-ChatV , MOSS-ChatV-no-PRR (MOSS-ChatV without process supervision), and supervised
fine-tuned MOSS-ChatV-SFT. The results (see Table 3) demonstrate that the complete MOSS-ChatV
achieves superior performance across all benchmarks. The absence of process supervision in MOSS-
ChatV-no-PRR leads to degraded temporal reasoning performance, confirming the importance of
alignment signals for video understanding. Notably, even without temporal supervision, MOSS-
ChatV-no-PRR outperforms MOSS-ChatV-SFT, highlighting the advantages of reinforcement learning
over pure supervised training for video reasoning tasks.

4.4 MLLM AS A JUDGE FOR REASONING QUALITY EVALUATION

Table 4: MLLM as a judge for evaluating the performance of reasoning across different models.

Method Reasoning-Answer
Consistency

Reasoning Content
Repetitiveness

Logical Coherence
& Knowledge

Relevance to
Video Content

QWEN2.5-VL 0.69 8.87 6.97 6.82
VIDEO-R1 0.78 4.14 6.87 6.57
MOSS-CHATV-NO-PRR 0.72 7.80 7.80 7.45
MOSS-CHATV 0.79 7.23 7.59 7.35

To investigate the quality of video reasoning texts, we employed GPT-4o as a judge to conduct
a multi-dimensional quality assessment of the reasoning and answers generated by models. This
assessment framework comprises four core metrics, for which GPT-4o assigns a score for each
dimension (detailed dimension and prompts can be found in Appendix B.1).

Process supervision within reinforcement fine-tuning demonstrates a significant contribution to
enhancing the quality of reasoning across multiple dimensions. MOSS-ChatV exhibits a well-
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balanced and overall excellent performance profile, shown in table 4. Compared to Video-R1, while
achieving comparable performance in Reasoning-Answer Consistency, MOSS-ChatV demonstrates
higher information density (i.e., lower repetitiveness), more robust logical coherence, and greater
relevance to video content. Furthermore, when contrasted with its variant MOSS-ChatV-no-PRR,
MOSS-ChatV achieves a higher degree of Reasoning-Answer Consistency. This suggests that process
supervision effectively guides the model towards generating more credible and trustworthy outputs.
Although Qwen2.5-VL records the highest information density, its comparatively lower scores on
other metrics imply that this conciseness might stem from unconstrained cognitive divergence, which
could be detrimental to the generation of high-quality reasoning content.

5 RELATED WORK

5.1 ADVANCED VIDEO-LLM

With the burgeoning development of Multimodal Large Language Models (MLLMs), such as
Qwen (Wang et al., 2024a) and InternVL (Wang et al., 2024b; 2025c), video understanding has
emerged as a critical dimension for evaluating model capabilities. To enhance models’ comprehen-
sion of video content, researchers have employed a variety of strategies. For instance, VideoChat-
GPT (Maaz et al., 2023) focuses on improving model proficiency in video dialogue, description,
and reasoning by introducing video-specific instruction-tuning datasets and a quantitative evaluation
framework. Other approaches, exemplified by models like NVILA (Liu et al., 2024b), LongVU (Shen
et al., 2024), and VideoLLaMA3 (Zhang et al., 2025a), enhance their capacity to process long
videos through various visual token compression techniques, such as removing redundant tokens or
employing MLP-based compression. Furthermore, models such as LLaVA-OV (Li et al., 2024a) are
typically pre-trained on large-scale video-text pair datasets (video training data) and subsequently
fine-tuned using instruction data for tasks like video question answering and description generation
to adapt to diverse video understanding scenarios. These works collectively provide an excellent
foundation for advancing video reasoning capabilities in Video-LLMs. While these methods advance
general video understanding, our work introduces a reinforcement learning framework to directly
supervise the temporal reasoning process.

5.2 REASONING AND REINFORCEMENT LEARNING IN VIDEO-LLMS

To enhance the reasoning capabilities of video models, researchers have made numerous attempts,
such as utilizing rationale construction, structural reasoning, objective granularity, and other meth-
ods (Wang et al., 2025a). Recent advances in Reinforcement Learning (RL) have significantly
improved LLM alignment and specialized capabilities, as seen in reasoning LLMs (DeepSeek-
AI et al., 2025). This success has spurred RL-based enhancements for Multimodal LLMs (Yang
et al., 2025; Meng et al., 2025). Specifically, for video modality, Videochat- R1 (Li et al., 2025) and
TimeZero (Wang et al., 2025b) leverage RL rewards for temporal grounding, while TinyLLaVA-Video-
R1 (Zhang et al., 2025b) demonstrates RL’s effectiveness even on small models. Video-R1 (Feng et al.,
2025) employs contrastive RL to improve temporal understanding. Our approach is distinguished by
a novel, rule-based Process Reasoning Reward (PRR), which offers more granular supervision on the
reasoning path itself.

6 CONCLUSION

Through analyzing the relationship between video state prediction tasks and video reasoning capabili-
ties, we demonstrate their mutual reinforcement. Based on this insight, we introduce MOSS-Video, a
dedicated dataset for training and evaluating video state prediction task. For reinforcement fine-tuning
of video modalities, we propose Process Reasoning Reward (PRR), a rule-based reward mechanism.
Comparative and ablation experiments confirm the effectiveness of our approach. Using single-task
training data alone, we achieve holistic improvements in video analysis performance while maintain-
ing stable reasoning quality. In summary, we find that model reasoning capability in video contexts
deserves greater attention. Through MOSS-ChatV, we verify that reinforcement fine-tuning with
process supervision significantly enhances video reasoning performance, achieving performance
gains and state-of-the-art results even under low-quality video inputs.
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We have taken steps to ensure the reproducibility of the results presented in this paper. The experi-
mental settings, including datasets and model designs, are thoroughly described in Section 4. Source
code will be made publicly available upon acceptance.

9 LLM USAGE STATEMENT

In this work, large language models (LLMs) were used exclusively to assist with writing, editing, and
LaTeX formatting. Their role was confined to enhancing clarity, grammar, and overall presentation;
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A DETAILS OF MOSS-VIDEO

We leverage high-quality ShareGPT4Video as our primary data source, employing two parallel
annotation pipelines to capture both coarse- and fine-grained object states. In the coarse-grained
pipeline, GPT4-o processes each video’s annotation file to produce triplets of the form 〈Object, State,
Timestamp〉, thereby characterizing an object’s state over a defined temporal interval. Concurrently,
in the fine-grained pipeline, GPT4-o extracts more detailed triplets 〈Object, State: Description,
Timestamp〉, which enrich each state with a specific textual description at a precise moment. Finally,
we again invoke GPT4-o to integrate these two annotation streams into a unified temporal model
of object dynamics, from which we automatically generate question–answer pairs that probe the
predicted future states of objects.

Figure A.1: The example of MOSS-Video.

B MLLM-AS-A-JUDGE FOR REASPONSE QUALITY

We used GPT-4-o to verify the reasoning process and the final response results of the reasoning model.
The specific evaluated dimensions are listed below:

Reasoning-Answer Consistency (0 or 1): This is a binary metric. A score of 1 is awarded if the
final conclusion of the reasoning aligns with the content of the model-selected option; otherwise, it
receives a score of 0.

Reasoning Content Repetitiveness (0-10): This assesses the presence of redundant information in
the reasoning process. Higher repetitiveness results in a lower score, aiming to measure information
density and avoid the amplification of potential biases or errors.

Logical Coherence and Knowledge Accuracy (0-10): This directly evaluates the intrinsic quality of
the reasoning process. The more rigorous the logic and the more accurate the application of world
knowledge, the higher the score.

Reasoning-Video Content Relevance (0-10): This measures how closely the reasoning is based on
the video content. Higher relevance yields a higher score, aiming to penalize unfounded speculations
or associations unrelated to the video.

In addition, the specificprompts used can refer to B.1.
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Prompts for Reasoning Process Evaluation

Given the following video captions, extract object-centric information for a video prediction
task.

Reference Video Segments (what can be seen):
for caption in reference_captions:

prompt += f"Time {caption[’time_stamp’]}s:
{caption[’content’]}\n\n"

Prediction Segment (what needs to be predicted):
Time {prediction_caption[’time_stamp’]}s:
{prediction_caption[’content’]}

Task 1: For each object in the video, provide coarse-grained information as <object, state,
time> triplets for both reference and prediction segments.
Task 2: For each object, provide fine-grained information as <object, change description,
time> triplets for how objects change over time.

Format your response as follows:
COARSE-GRAINED INFORMATION:
Object 1:

• At time [timestamp]: [state description]
• At time [timestamp]: [state description]
• . . .

Object 2:
• At time [timestamp]: [state description]
• . . .

FINE-GRAINED INFORMATION:
Object 1:

• From time [start] to [end]: [detailed change description]
• . . .

Object 2:
• From time [start] to [end]: [detailed change description]
• . . .

Focus only on objects that appear in the prediction segment. Be specific and detailed in your
descriptions.

Figure A.2: Prompt template used for evaluating the reasoning process of video question answering
models.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Prompts for Reasoning Process Evaluation

You are a professional video question answering reasoning process evaluator. Your task is to evaluate
the quality of the reasoning process ONLY, based on the provided video frames, question, options, and
a model’s reasoning text. You DO NOT need to judge the correctness of the model’s final answer.

Please evaluate the reasoning process based on the following dimensions:

1. Reasoning Conclusion and Answer Tag Consistency (0 or 1 point):
Criterion: Check whether the conclusion in the reasoning text semantically matches the option marked
by the <answer> tag. You should carefully analyze and consider the logic within the <think> tag.
Scoring:
1 point: Consistent.
0 points: Inconsistent.

2. Reasoning Content Repetitiveness (0–10 points, lower score for more repetition):
Criterion: Assess whether the reasoning content contains unnecessary repetition of words, phrases, or
semantics.
Scoring Guidelines:
9–10 points: Very concise, no unnecessary repetition, high information density.
6–8 points: Slight repetition or reasonable restatement for emphasis, overall flow is smooth.
3–5 points: Obvious repetition, but core idea is still discernible.
0–2 points: Massive repetition, almost no new information.

3. Reasoning Logical Coherence and Knowledge Accuracy (0–10 points):
Criterion: Evaluate if the reasoning steps are clear and coherent, the logical chain complete, and any
assumptions reasonable and correct.
Scoring Guidelines:
9–10 points: Rigorous logic, well-organized, sufficient argumentation, accurate assumptions.
6–8 points: Generally coherent with minor flaws.
3–5 points: Obvious breaks or minor errors not affecting main conclusion.
0–2 points: Chaotic or contradictory logic, erroneous assumptions.

4. Reasoning and Video Content Relevance (0–10 points, lower score for more deviation):
Criterion: Assess whether observations and conclusions are strictly based on provided video frames.
Scoring Guidelines:
9–10 points: Strictly based on video content with strong evidence.
6–8 points: Primarily based on content with minor reasonable inference.
3–5 points: Mostly imagination or misunderstanding of video.
0–2 points: Completely unrelated or speculative.

[Input Information]
Video Frames: {num_frames_provided} frames are provided. (Actual frames are sent as image data)
Question: {question_text}
Model Reasoning Text: {model_reasoning_text}
Model’s Answer Tag Content: <answer>{model_answer_tag_content}</answer>

[Your Evaluation Output]
Please provide your evaluation scores strictly in the following format, one line per dimension, containing
only the score:
Dimension1_Score: [0 or 1]
Dimension2_Score: [0-10]
Dimension3_Score: [0-10]
Dimension4_Score: [0-10]

Figure B.1: Prompt template used for evaluating the reasoning process of video question answering
models.
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