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ABSTRACT

Large Language Models (LLMs) exhibit powerful reasoning capabilities, partic-
ularly when guided by in-context learning (ICL). However, their performance is
brittle to demonstration order: accuracy can swing from perfect to random based
solely on the permutation of input ordering. This sensitivity reveals a fundamen-
tal vulnerability where models rely on spurious positional correlations (noise)
rather than semantic content (signal). To address this reliability gap, we introduce
Self-Inconsistency Optimization (SIO), a simple model-agnostic post-training
framework that teaches models to focus on what is said, not how it is arranged. SIO
generates semantically equivalent inputs through permutation and explicitly trains
the model to align its output distributions using our proposed self-inconsistency loss
which is based on the Jensen–Shannon divergence. We provide a theoretical justifi-
cation for our framework, proving that minimizing this self-inconsistency loss is
sufficient to achieve the desired order invariance. Furthermore, the Bayesian update
design of SIO provides a stable optimization process by decoupling the model’s
prior knowledge from the alignment objective, allowing it to integrate seamlessly
with existing post-training pipelines such as reinforcement learning. Empirical
evaluations on mathematical reasoning benchmarks show that SIO substantially
mitigates order sensitivity while maintaining or even improving task accuracy.
Our source code is available at https://anonymous.4open.science/r/
From-Self-Inconsistency-to-Stability-E0BC.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities, largely driven by
in-context learning (ICL), which allows adaptation to new tasks with a few demonstration exam-
ples (Brown et al., 2020). This eliminates the need for costly retraining (Winata et al., 2023; King &
Flanigan, 2023). However, ICL is notoriously sensitive to the order of these examples, a phenomenon
we refer to as positional noise. As illustrated in Figure 1, an LLM’s performance can vary dramati-
cally with simple permutations of the demonstrations (Lu et al., 2022). This brittleness is a critical
reliability issue, indicating that models learn from spurious positional noise rather than the intended
semantics (Harutyunyan et al., 2024). Such unreliability is a significant barrier to deploying LLMs in
high-stakes applications where consistent and trustworthy behavior is essential (Gero et al., 2023;
Novikova et al., 2025; Bajwa et al., 2021).

This reliance on positional noise over semantic content is well evaluated and documented: Min
et al. (2022) showed that LLM predictions are more sensitive to prompt formatting than to the
correctness of the ground-truth labels in demonstrations, suggesting that models often prioritize
superficial patterns over underlying meaning. Current methods to mitigate this issue have significant
limitations. Inference-time strategies such as prompt optimization and decoding heuristics can
improve performance over random orderings but do not address the model’s fundamental reliance
on positional noise (Lu et al., 2022; Wang et al., 2023; He et al.; Zhao et al., 2021; Zhang et al.,
2024). On the other hand, existing training-based methods often require sophisticated designs such as
distillation and adversarial training, which incur significant computational overhead; they are typically
evaluated only on simple multiple-choice classification tasks and rarely offer formal guarantees of
invariance beyond empirical agreement (Chen et al., 2025; Xiang et al., 2024; Liusie et al., 2024).
Thus, this raises a natural question: How can we efficiently and theoretically ground a post-training
approach to make LLMs robust to positional noise?
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Pretrained LLM

D:3+4=7, D:1+1=2, Q:4+5=? Answer: 9

D:1+1=2, D:3+4=7, Q:4+5=? Answer: 8

Robust LLM

Answer: 9

Answer: 9

D:3+4=7, D:1+1=2, Q:4+5=?

D:1+1=2, D:3+4=7, Q:4+5=?

Figure 1: Our proposed framework makes LLMs robust to in-context example order. The top
panel shows that a standard pretrained LLM is sensitive to the order of demonstrations (D). Changing
the order flips the model’s prediction for the same question (Q) from correct (9) to incorrect (8). In
contrast, the bottom panel shows that our Self-Inconsistency Optimization framework makes the
LLM robust, consistently producing the correct answer regardless of the demonstration order.

To overcome these challenges, we introduce Self-Inconsistency Optimization (SIO), a simple
and theoretically grounded post-training framework designed to instill robustness. The principle is
intuitive: semantically equivalent inputs with ICL samples, regardless of their example ordering,
should yield consistent output distributions (Liusie et al., 2024). To enforce this consistency, we
train the model to align its own output distributions across these equivalent inputs by minimizing
a Jensen–Shannon Divergence-based loss. To achieve this, we introduce a novel Bayesian update
training architecture that decouples the model’s pretrained knowledge from the alignment objective
of Group Sequence Policy Optimization (GSPO) loss (Korbak et al., 2022; Zheng et al., 2025). This
separation is crucial for preserving task accuracy and resolving common training instabilities that
arise from the conflicting objectives inherent in reinforcement learning losses (Shao et al., 2024). Our
contributions are summarized as follows:

• Self-Inconsistency Optimization. We introduce SIO, a general model-agnostic framework that
enables LLMs to process input robustly with reduced sensitivity to the order of in-context examples.

• Theoretical Grounding for Invariance. We provide a formal justification for our approach
and demonstrate that its benefits extend beyond positional noise to other forms of noise, such as
tokenization noise, thereby fundamentally improving model reliability.

• Stabilized Training for Robust Performance. We introduce a stable training architecture inspired
by Bayesian updates that decouples the base model’s knowledge from the alignment objective,
resolving common post-training instabilities.

• Empirical Evaluation. We demonstrate the effectiveness of our framework in two state-of-the-art
LLMs across three mathematical reasoning benchmarks, showing a consistent reduction in order
sensitivity without degrading task performance.

2 PRELIMINARIES

This section establishes the formal notation used throughout the paper and defines the metrics for
evaluating both task performance and invariance to the order of in-context demonstrations in LLMs.

2.1 NOTATIONS AND PROBLEM DEFINITION

We study few-shot ICL under order invariance of demonstrations caused by positional noise. Let πθ

denote an LLM policy parameterized by θ, which induces a conditional distribution Pθ(· | x) over
response sequences given an input prompt x. An input prompt consists of three components: the
task instruction t describing the high-level objective, the query q with corresponding ground-truth
label y, and a set of demonstrations D = {d1, . . . , dk}, where each example is a pair dj = (qj , yj).
We define the signal required to solve the task as S = (t, q,D), which is invariant to the ordering
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of elements in D. In practice, however, prompts present demonstrations as a sequence, and each
permutation induces a distinct noisy ordering. Let Di denote the i-th ordering of D, corresponding
to positional noise ni, and define the permuted input as xi = (t,Di, q). For a given xi, the model
generates a set of candidate responses Ŷi = {ŷ1i , . . . , ŷmi } with ŷji ∼ Pθ(· | xi), where Ŷi may vary
across permutations despite encoding the same underlying signal S. The central challenge is to
design methods that ensure the learned policy πθ is robust to positional noise, so that predictions
depend only on the semantic content of demonstrations rather than their ordering.

2.2 EVALUATION METRICS

Our primary goal is to achieve invariance to the order of demonstrations in ICL without compromising
task accuracy. To comprehensively assess this, we measure not only task accuracy but also three
distinct aspects of stability: correctness fluctuation (Pairwise Accuracy Difference), output set
similarity (Jaccard Distance), and full output distributional divergence (Self-Inconsistency).

Accuracy (↑). This metric evaluates the model’s core task-solving capability using the pass@m
success rate (Chen et al., 2021). A task is considered successfully solved if at least one of the m
generated responses for a given query matches the ground truth. The final accuracy is the average
success rate across the entire test dataset D. Formally, with I(·) as the indicator function,

Accuracy = E(q,y)∼D

[
max

j=1,...,m
I
(
ŷj = y

)]
Pairwise Accuracy Difference (↓). This metric measures the instability in correctness when the
demonstration order is altered (Chen et al., 2022). For each query, we generate responses from two
distinct permutations of the demonstrations, x1 and x2. We then compute the absolute difference
between their pass@m scores. A lower value indicates greater stability, with a score of 0 signifying
that permuting the demonstrations does not change a correct answer to an incorrect one, or vice versa.

∆Acc = E(q,y)∼D

[∣∣∣max
j

I(ŷj1 = y) −max
j

I(ŷj2 = y)
∣∣∣]

Response Set Jaccard Distance (↓). This metric assesses the dissimilarity between the sets of
generated answers resulting from different demonstration orders. For two distinct permutations,
x1 and x2, we compute the Jaccard distance between their corresponding sets of unique generated
responses, Ŷ1 and Ŷ2. The Jaccard distance is defined as 1 minus the Intersection over Union
(IoU) (Jaccard, 1901).

Jaccard Distance(Ŷ1, Ŷ2) = 1− E(q,y)∼D

[
|Ŷ1 ∩ Ŷ2|
|Ŷ1 ∪ Ŷ2|

]
A score of 0 indicates perfect invariance, meaning both permutations produce identical sets of answers.
Conversely, a score of 1 implies the answer sets are completely disjoint.

Self-Inconsistency (↓) To obtain a more holistic measure of stability, we introduce Self-
Inconsistency, which quantifies the divergence in a model’s behavior across multiple demonstration
permutations. A truly invariant model should produce not only the same final answer but also a
consistent reasoning process (e.g., Chain-of-Thought). Therefore, this metric compares the full output
probability distributions, Pθ(·|xi), rather than just the final outputs.

We use the Generalized Jensen–Shannon Divergence (JSD) to measure the divergence among a set of
probability (Englesson & Azizpour, 2021).
Definition 1 (Generalized Jensen–Shannon Divergence). Given a set of N probability distributions
{Pj}Nj=1 and a corresponding weight vector w = (w1, . . . , wN ) where wj > 0 and

∑N
j=1 wj = 1,

the mixture distribution is defined as M =
∑N

j=1 wjPj . The Generalized JSD is the weighted sum of
the Kullback-Leibler divergences (DKL) from each distribution Pj to the mixture M :

JSDw(P1, . . . , PN ) =

N∑
j=1

wj DKL(Pj ∥M).

3
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We define Self-Inconsistency as the JSD of the output distributions from a set of N permuted inputs
{x1, . . . , xN}:

Self-Inconsistency = JSDw

(
Pθ(· | x1), . . . , Pθ(· | xN )

)
By default, we use uniform weights (wj = 1/N ), treating each permutation as equally important. A
lower Self-Inconsistency score signifies greater stability in the model’s generative process.

3 SIO: SELF-INCONSISTENCY OPTIMIZATION

We introduce a framework that enforces order invariance in LLMs by finetuning the model so that its
output distribution is conditionally independent of the ordering of in-context demonstrations. We
begin by outlining the overall methodology and then provide the theoretical foundations.

3.1 OVERVIEW OF SIO

Our proposed methodology, illustrated in Figure 2, consists of three key components. First, we
apply a permutation-based data augmentation strategy, generating multiple training samples from
each data point by reordering its in-context demonstrations and producing corresponding model
responses. Second, we adopt a dual-objective finetuning scheme with a tailored loss function that
jointly optimizes task performance via reinforcement learning and enforces order invariance by
minimizing the divergence between output distributions across permutations. Finally, we introduce
a Bayesian update–based finetuning architecture that stabilizes training by decoupling the model’s
pretrained knowledge from the new alignment objectives.

3.2 DATA AUGMENTATION & GENERATION

To mitigate sensitivity to the ordering of demonstration examples, we reformulate each data point
(q, y) into a structured training instance (X,Y,R), where X denotes a set of augmented inputs, Y
the corresponding sampled responses, and R the associated rewards. The training instances are
constructed as follows. First, we create the augmented inputs X = {x1, . . . , xN} by generating N
unique permutations of the k available demonstrations (where 2 ≤ N ≤ k!) and concatenating each
with the original instruction and query. Next, for each input xi ∈ X , we sample m responses from the
model to form a response set Ŷi = {ŷ1i , . . . , ŷmi }. The union of these individual sets constitutes the
overall response set, Y = {Ŷ1, . . . , ŶN}. Finally, we evaluate each response ŷ ∈ Y using a reward
function (e.g., a binary score for correctness based on the ground truth y) to produce a corresponding
reward, forming the final reward set R. This reward signal is crucial for preserving task performance
during post-training.

3.3 TRAINING OBJECTIVES

With the augmented training data (X,Y,R), we then finetune the model using two complementary
objectives to mitigate the positional noise. The multiple objectives are shown as follows:

Group Sequence Policy Optimization (GSPO). To preserve task performance during post-training,
we apply reinforcement learning using GSPO (Zheng et al., 2025), which aligns sequence-level
probabilities with sequence-level rewards. For each augmented input set X , we have a group of
G = m×N responses in Y . We define the sequence-level importance ratio as si(θ) = πθ(yi|x)

πθold (yi|x)

and the group-standardized advantage as Âi = Ri − R̄, where R̄ is the average reward of the group.
The objective maximizes the clipped surrogate:

max
θ

JGSPO(θ) = Ex∼D,G∼πθold (·|x)

[
1

G

G∑
i=1

min
(
si(θ) Âi, clip

(
si(θ), 1− ϵ, 1 + ϵ

)
Âi

)]
.

Intuitively, this objective up-weights responses that outperform the group average (Âi > 0) and
down-weights those that underperform (Âi < 0), while clipping stabilizes the training with controlled
update. For minimization during training, we use the negative of the objective function, defining the
loss as:

min
θ

LGSPO(θ) = −JGSPO(θ)

4
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Figure 2: The SIO pipeline. Top (Data Generation): Semantically equivalent inputs (X) are
generated via permutation and passed to an LLM to create responses (Y ), which are then scored by a
reward function (R). Bottom (LLM Training): A pretrained LLM is frozen and augmented with
trainable LoRA modules. The unembedding layer is split into a frozen policy network (prior) and a
trainable value network (likelihood); their logits are summed for the final distribution πc. The model
is trained with a composite loss, including: (1) GSPO for reward alignment, (2) Distributional- and
Self-Inconsistency losses for noise invariance, and (3) an L2 penalty for regularization.

Distributional Inconsistency (DI) Loss. To directly enforce invariance, we introduce a loss that
minimizes the divergence between the output distributions of augmented inputs and a target mixture
distribution formed from a frozen reference policy πref (the original pretrained model).

min
θ

LDI

(
πθ ∥πref

)
=

N∑
j=1

wj DKL

(
Pπθ

(· | xj)
∥∥∥Mref

)
, where Mref =

N∑
j=1

wj Pπref
(· | xj).

The weights wj can be uniform (wj = 1/N ) or set dynamically based on rewards. This objective
encourages the model’s output distributions for all permutations to converge towards a common,
stable target, preventing catastrophic forgetting by anchoring the model to its original knowledge.

Self-Inconsistency (SI) Loss. We also penalize the residual divergence among the online distri-
butions themselves to directly enforce consistency. This is a special case of the DI loss, where
LSI(πθ) = LDI

(
πθ ∥πθ

)
with uniform weights (wj = 1/N ).

min
θ

LSI(πθ) = JSDw

(
Pπθ

(· | x1), . . . , Pπθ
(· | xN )

)
.

3.4 STABLE FINETUNING VIA BAYESIAN UPDATE

Standard reinforcement learning can exhibit instability due to a direct optimization conflict between
improving on the reward and staying close to the original policy simultaneously by minimizing the
surrogate loss and KL-divergence penalty against a frozen pretrained reference model on the same
model output. To resolve this, we introduce a finetuning architecture grounded in Bayesian updating,
which reframes post-training task such as alignment as P (posterior) ∝ P (likelihood)×P (prior). We
implement this by conceptually splitting the model’s final unembedding layer into two components.
The first, representing the prior, is the frozen pretrained unembedding layer, which encapsulates
the model’s prior knowledge, P (response), and produces output logits zp. The second component,
representing the likelihood, is a new, trainable low-rank (LoRA) adapter that models the alignment
preference, P (reward|response), and outputs logits zv. The finetuned model’s response is sampled
from the posterior distribution, P (response|reward), which incorporates reward information. The
final logits are computed as the sum zc = zp+zv , which in log-space is equivalent to multiplying their
respective probability distributions, directly implementing the Bayesian update (see Appendix B).
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During training, only the Likelihood Network is updated. The posterior can be viewed as a Product
of Experts (PoE) (Hinton, 2002), where a valid response must have high probability under both the
prior (preserving foundational knowledge) and the likelihood (aligning with new preferences). This
decoupling of objectives intrinsically mitigates model collapse and promotes stable training.

Final Objective for SIO Training. Let πp and πc be the probability distributions corresponding to
the softmax of logits zp and zc, respectively. Our final training loss combines all components:

LSIO(θ) = λ1 LGSPO(πc) + λ2 LDI(πp∥πref) + λ3 LSI(πc) + λ4 ∥zv∥22,
where λi are non-negative hyperparameters. LGSPO learns the task preference, LDI regularizes the
prior network to be self consistent while retaining the pretrained knowledge, LSI enforces invariance
on the final output, and an L2 penalty regularizes the likelihood network. This dual-pronged approach
ensures that the model’s foundational prior knowledge remains stable and consistent with its original
state via LDI and the finetuned model final output (the posterior) is explicitly trained for invariance
across permutations via LSI.

3.5 THEORETICAL JUSTIFICATION

Our framework is theoretically grounded in the principle that demonstration order invariance can be
formalized as enforcing the conditional independence of the model’s output distribution from the
permutation of demonstrations, given the underlying semantic signal. An ideal model’s response
should depend only on the semantic signal, which means the response should be conditionally
independent of the positional noise when the signal is provided. To formalize the principle for model
training, we provide Theorem 1.
Theorem 1 (Conditional-Independence Criterion). Let Y,N, S be random variables representing
the output, noise, and signal, respectively. The output Y is conditionally independent of noise N
given signal S if and only if the conditional probability distribution of the output is the same for all
instances of noise. That is, for every signal s and any two noise instances ni, nj:

P
(
y | S = s, N = ni

)
= P

(
y | S = s, N = nj

)
for all y. (1)

This implies that Y ⊥⊥ N
∣∣ S, meaning p(y | S = s,N = n) = p(y | S = s) for all y, s, n.

Theorem 1 establishes that our objective is equivalent to training the model to produce identical
output distributions for all input permutations that share the same underlying semantic signal. The
proof for Theorem 1 is detailed in Appendix C.

Building on this, we provide Theorem 2 to show that our Self-Inconsistency loss, defined via the
generalized JSD, provides a direct and differentiable means of realizing this objective: minimizing the
JSD to zero is sufficient to guarantee distributional equivalence of model outputs, thereby enforcing
the Conditional-Independence Criterion for mitigating positional noise.

Theorem 2. Let an LLM be parameterized by θ. For a set of N input prompts {xj}Nj=1 sharing
the same signal but differing in noise, if the generalized JSD between the single-step conditional
output distributions {Pθ(Yt|xj , y<t)}Nj=1 is zero for all generation steps t, then the full generative
distributions are identical. That is, if for all t and all valid contexts y<t:

JSD(Pθ(Yt|x1, y<t), . . . , Pθ(Yt|xN , y<t)) = 0

then for any arbitrary response sequence y:

Pθ(y|x1) = Pθ(y|x2) = · · · = Pθ(y|xN ). (2)

Therefore, minimizing our proposed losses, LSI and LDI, drives the JSD toward zero. This satisfies
the condition in Equation 2, directly enforcing the Conditional-Independence Criterion (Equation 1
of Theorem 1) and compelling the model to become invariant to the demonstration order. The proof
for Theorem 2 is given in Appendix D.

4 EXPERIMENT

We conduct experiments to evaluate the performance of our proposed SIO framework, aiming to
answer the following research questions: RQ1: How effectively does SIO reduce an LLM’s sensitivity

6
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Table 1: Positional Noise Robustness Comparison of Gemma-3-4B and Qwen-3-4B Models
Before and After SIO alignment. The table compares performance metrics for Qwen3-4B and
Gemma-3-4B models on three math datasets in their original pretrained state and after alignment
finetuning with our SIO framework. The arrows indicate the desired direction for each metric: (↑)
higher is better, (↓) lower is better. The relative change, ∆%, is calculated as (after−before)

before ×100. Green
and red cells in the ∆% columns denote performance improvement and deterioration, respectively,
while gray indicates no change. The Self-Inconsistency metric is macro-averaged over all test samples
from the combined datasets.

Gemma-3-4B Qwen-3-4B

Dataset Eval Metric Before After ∆% Before After ∆%

AIME
Accuracy (↑) 0.320 0.320 0.000 0.625 0.655 4.800
Jaccard Distance (↓) 0.660 0.650 -1.635 0.162 0.167 3.021
Accuracy Difference (↓) 0.140 0.110 -21.429 0.070 0.090 28.571

GSM8K
Accuracy (↑) 0.930 0.935 0.538 0.980 0.980 0.000
Jaccard Distance (↓) 0.181 0.171 -5.310 0.037 0.029 -21.096
Accuracy Difference (↓) 0.110 0.060 -45.455 0.015 0.005 -66.667

MATH
Accuracy (↑) 0.810 0.840 3.704 0.785 0.795 1.274
Jaccard Distance (↓) 0.363 0.357 -1.461 0.114 0.107 -6.824
Accuracy Difference (↓) 0.120 0.160 33.333 0.020 0.030 50.000

Overall

Accuracy (↑) 0.687 0.698 1.689 0.797 0.810 1.669
Jaccard Distance (↓) 0.401 0.393 -2.143 0.104 0.101 -3.356
Accuracy Difference (↓) 0.123 0.110 -10.787 0.035 0.042 19.143
Self-Inconsistency (↓) 1.528 1.082 -29.150 4.879 3.901 -20.043

to the order of in-context demonstrations? RQ2: Does this improved invariance come at the cost of
task accuracy? RQ3: Can the framework’s robustness generalize to other semantic-preserving input
variations, such as tokenization noise?

4.1 EXPERIMENT SETUP

Models and Datasets. We conduct experiments on two open-source LLMs, Qwen-3-4B (Qwen
Team, 2025) and Gemma-3-4B (Gemma Team, Google DeepMind, 2025). To rigorously evaluate
both task performance and input positional invariance, we selected three mathematical reasoning
benchmarks with progressively increasing difficulty. These include GSM8K (Cobbe et al., 2021),
a dataset of grade-school math word problems; MATH (Hendrycks et al., 2021), a benchmark of
challenging high-school competition problems; and AIME (Neubig, 2024), a set of prestigious and
highly difficult invitational mathematics examination problems.

Training Details. We employed Low-Rank Adaptation (LoRA) for parameter-efficient finetuning,
specifically targeting the attention blocks and the final unembedding layer (Hu et al., 2022). We
believe that positional sensitivity stems from the attention mechanism’s inconsistent identification of
contextual information. Finetuning the attention blocks encourages a consistent focus on semantic
content, regardless of positional variations. The application of LoRA to the unembedding layer
implements the value network in our Bayesian update inspired SIO framework, enabling the model to
learn preference distributions. In addition to LoRA, we also finetuned the weights of the normalization
layers. Further training details, including hyperparameter setup and engineering optimizations, are
available in Appendix E.

4.2 MITIGATING ICL DEMONSTRATION ORDER SENSITIVITY (RQ1)

To quantify the improvement in demonstration order invariance, we evaluated the models on our
key metrics before and after applying Self-Inconsistency Optimization. As summarized in Table 1,
our framework substantially reduced inconsistency for both Gemma-3-4B and Qwen-3-4B. We
observed a relative decrease in Jaccard Distance of up to 21% and a reduction in Pairwise Accuracy
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Table 2: A case study showing a fine-tuned Gemma-3-4b model improves answer consistency across
two input permutations. The pretrained base model failed to produce at least one parsable answer for
one permutation, resulting in an empty set ∅ and showed complete disagreement between contextual
groups (Jaccard Distance = 1.0). The fine-tuned model resolved this, achieving perfect consensus
(Jaccard Distance = 0.0) and accuracy (Absolute Accuracy Difference = 0.0).

Case Study of Answer Consistency Across Two Input Permutation

Component Details

Question Suppose t = 5l+ 384, 2t− t+ 309 = −4l. What is the hundreds digit of
−22
l − 3440

−14 ?

Ground Truth 2

Base Model Finetuned Model Change (∆)
Group 0 Answers ∅ {2.0} +{2.0}
Group 1 Answers {2.0, 4.0} {2.0} −{4.0}
Jaccard Distance 1.0 0.0 -1.0
Abs. Acc. Diff. 1.0 0.0 -1.0

Difference by as much as 66%, indicating that responses generated from different permutations
became substantially more aligned. While most metrics improved, a slight increase in accuracy
difference on MATH suggests that achieving invariance on more difficult numerical reasoning tasks
may require further tuning. The consistent downward trend of the loss curves in Figure 4, which had
not yet fully converged within our compute budget, suggests that further improvements are possible
with additional training. Taken together, these results show that models finetuned with our SIO
framework converge towards a consensus response set that consistently includes the correct
answer, effectively neutralizing the influence of in-context example order.

4.3 PRESERVING TASK ACCURACY (RQ2)

The improved invariance from SIO is achieved without compromising, and in some cases even
improving, task accuracy. As shown in Table 1, post-finetuning performance did not degrade. Instead,
both models showed an average relative accuracy increase of over 1.6% across all datasets. Notably,
Gemma-3-4B’s accuracy on the challenging AIME benchmark increased by 4.8%. The stability of
the accuracy rewards during rollout, illustrated in Figure 3, further indicates that the model does
not sacrifice correctness for consistency. These results provide strong evidence that SIO induces
robustness while maintaining or enhancing the model’s core problem-solving capabilities.

4.4 CASE STUDY

Beyond aggregated statistics, the case study in Table 2 provides granular evidence of our method’s
effectiveness. The example compares outputs from two inputs with identical content but different
demonstration orders. The base model was highly unstable: it failed to produce a valid answer for one
permutation while generating two different answers for the other, resulting in maximal inconsistency
(Jaccard Distance of 1.0). In stark contrast, the SIO-finetuned model achieved perfect consistency,
converging to the single correct answer for both permutations and yielding ideal scores of 0.0 for both
Jaccard Distance and Absolute Accuracy Difference. This case study provides a concrete example of
how our method compels the model to produce identical, accurate responses to semantically
equivalent inputs, neutralizing the influence of demonstration order.

4.5 GENERALIZING TO TOKENIZATION NOISE (RQ3)

To assess whether our framework’s robustness extends beyond demonstration order, we evaluated its
performance against tokenization noise. We augmented the training data with two types of semantic-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Robustness Comparison of Gemma-3-4B and Qwen-3-4B Models Before and After SIO
Alignment Across Various Noise Types. The table compares performance metrics for Qwen3-4B and
Gemma-3-4B models on the GSM8K dataset in their original pretrained state and after alignment
finetuning with our SIO framework. The arrows indicate the desired direction for each metric:
(↑) higher is better, (↓) lower is better. The relative change in percentage, ∆%, is calculated as
(after−before)

before × 100. Green and red cells in the ∆% columns denote performance improvement and
deterioration, respectively, while gray indicates no change.

Gemma-3-4B Qwen-3-4B
Noise Type Eval Metric Before After ∆% Before After ∆%

Order

Accuracy (↑) 0.930 0.935 0.538 0.980 0.980 0.000
Jaccard Distance (↓) 0.181 0.171 -5.310 0.037 0.029 -21.096
Accuracy Difference (↓) 0.110 0.060 -45.455 0.015 0.005 -66.667
Self-Inconsistency (↓) 1.528 1.082 -29.150 4.879 3.901 -20.043

Case

Accuracy (↑) 0.930 0.950 2.151 0.980 0.980 0.000
Jaccard Distance (↓) 0.182 0.174 -4.879 0.027 0.026 -4.494
Accuracy Difference (↓) 0.100 0.095 -5.000 0.005 0.005 0.000
Self-Inconsistency (↓) 11948.600 4177.870 -65.035 45476.500 17317.700 -61.919

Typo

Accuracy (↑) 0.860 0.930 8.140 0.980 0.980 0.000
Jaccard Distance (↓) 0.207 0.185 -10.859 0.021 0.023 10.096
Accuracy Difference (↓) 0.115 0.105 -8.696 0.010 0.005 -50.000
Self-Inconsistency (↓) 11653.200 4058.750 -65.171 44108.600 16635.700 -62.285

Order + Case
+ Typo

Accuracy (↑) 0.910 0.940 3.297 0.980 0.980 0.000
Jaccard Distance (↓) 0.329 0.206 -37.462 0.037 0.033 -11.444
Accuracy Difference (↓) 0.225 0.140 -37.778 0.010 0.010 0.000
Self-Inconsistency (↓) 11950.000 4211.080 -64.761 45205.500 17136.600 -62.092

preserving perturbations designed to simulate real-world input variations: Random Space Insertion
(adding extraneous whitespace) and Random Case Conversion (altering text capitalization). These
variations introduce significant token-level differences without altering the underlying meaning.
Our experiments on the GSM8K dataset, with results summarized in Table 3, demonstrate a direct
correlation between input variation and output inconsistency. The addition of tokenization noise,
combined with demonstration order permutation, increased the self-inconsistency score by nearly four
orders of magnitude compared to order permutation alone. Despite this extreme input variance, SIO
proved highly effective, reducing the Self-Inconsistency score by over 60%. The model’s ability to
stably optimize against such a large loss (see loss curve analysis in Appendix G) further underscores
the robustness of our training architecture. These findings confirm that SIO is a generalizable
framework for improving LLM robustness, effectively mitigating sensitivity to superficial input
variations beyond demonstration order.

5 CONCLUSION

In this work, we address the critical issue of LLM sensitivity to the order of in-context demonstrations.
To mitigate this reliability gap, we introduce Self-Inconsistency Optimization (SIO), a simple model
agnostic post-training framework that enhances robustness to superficial input variations. Our
method encourages the model to prioritize semantic meaning over positional noise by minimizing the
Jensen–Shannon divergence across semantically equivalent prompts.

Theoretically, we establish that reducing self-inconsistency to zero enforces order invariance. To
achieve this in practice without compromising task performance, we propose a Bayesian update-
inspired architecture. This design, implemented as a product-of-experts with a frozen prior model
and a lightweight adapter, effectively separates knowledge retention from preference alignment,
leading to more stable optimization. Empirically, we demonstrate that SIO consistently reduces
distributional instability on the GSM8K, MATH, and AIME benchmarks while maintaining or
improving accuracy. These benefits extend beyond demonstration order to other variations like
tokenization noise. Ultimately, SIO offers a general, theoretically grounded, and practical approach
to developing more robust and trustworthy LLMs, marking a significant step toward their reliable
deployment in high-stakes, real-world applications.
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APPENDIX

A USE OF LLMS

We used a large language model only for spelling and grammar correction of the manuscript text.
The LLM was not involved in research ideation, experimental design, data generation, analysis, or
substantive writing beyond copy-editing. All content and claims were authored and verified by the
authors, who take full responsibility for the paper. The LLM is not an author.

B THEORETICAL JUSTIFICATION FOR THE BAYESIAN FINETUNING
ARCHITECTURE

Our goal is to show that combining the logits of a frozen "policy network" and a trainable "value
network" is equivalent to performing a Bayesian update on their respective probability distributions.

The foundation of our argument rests on two key points: (1) the relationship between logits and
log-probabilities, and (2) the properties of logarithms that translate addition into multiplication.

Step 1: Logits as Unnormalized Log-Probabilities. For a given vocabulary, the probability of a
token t is calculated by applying the softmax function to its corresponding logit, zt:

P (t) =
exp(zt)∑
i exp(zi)

Taking the logarithm of both sides, we get:

logP (t) = log

(
exp(zt)∑
i exp(zi)

)
= zt − log

(∑
i

exp(zi)

)
The term log(

∑
i exp(zi)) is the log-partition function, which is a normalization constant that is the

same for all tokens in the distribution. Let’s denote this constant as C. Thus, we can express the logit
as:

zt = logP (t) + C

This shows that a logit vector is equivalent to the unnormalized log-probabilities of the tokens.

Step 2: Mapping Model Components to Bayesian Terms. We map the components of our
architecture to the terms in Bayes’ theorem, P (posterior) ∝ P (likelihood)× P (prior):

• Prior, Pprior(t): The probability distribution produced by the frozen, pretrained policy network.
Its logits are zpolicy.

• Likelihood, Plikelihood(t): The probability distribution implicitly modeled by the trainable LoRA
value network. Its logits are zvalue.

• Posterior, Pposterior(t): The final, aligned probability distribution from the combined model. Its
logits are zfinal.

Step 3: Derivation from Additive Logits to Multiplicative Probabilities. Our model architecture
combines the logits additively:

zfinal = zpolicy + zvalue

Using the relationship from Step 1, we can substitute the log-probability expressions for each logit
term:

logPposterior(t) + Cpost = (logPprior(t) + Cprior) + (logPlikelihood(t) + Clike)

We can group all the normalization constants into a single new constant, C ′ = Cprior + Clike − Cpost:

logPposterior(t) = logPprior(t) + logPlikelihood(t) + C ′

Using the logarithm property that log(A) + log(B) = log(A×B), we get:

logPposterior(t) = log(Pprior(t)× Plikelihood(t)) + C ′

13
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Exponentiating both sides removes the logarithms:

exp(logPposterior(t)) = exp(log(Pprior(t)× Plikelihood(t)) + C ′)

Pposterior(t) = exp(C ′)× (Pprior(t)× Plikelihood(t))

Since exp(C ′) is a constant, this equation demonstrates the proportionality at the heart of Bayes’
theorem:

Pposterior(t) ∝ Pprior(t)× Plikelihood(t)

This derivation formally proves that our architecture of adding the logits from a frozen policy
network and a trainable value network is not an ad-hoc engineering choice but a direct and principled
implementation of a Bayesian update.

C PROOF OF THEOREM 1

To prove the theorem, we first fix s with Pr(S = s) > 0. By hypothesis equation 1, the conditional
probability P (y | S = s,N = n) is constant with respect to n; let this constant be fs(y). By the law
of total probability, we can marginalize out N :

P (y | S = s) =
∑
n

P (y | S = s,N = n)P (n | S = s)

=
∑
n

fs(y)P (n | S = s)

= fs(y)
∑
n

P (n | S = s)

= fs(y).

This shows that P (y | S = s) = fs(y) = P (y | S = s,N = n) for all y and n, which is the
definition of conditional independence Y ⊥⊥ N | S.

D PROOF OF THEOREM 2

To prove the theorem, we first establish a standard lemma regarding the properties of the generalized
JSD.
Lemma 1. For any set of probability distributions {Pj}Nj=1 and strictly positive weights wj > 0
summing to one, JSDw(P1, . . . , PN ) = 0 if and only if P1 = P2 = · · · = PN .

Proof. The generalized JSD is defined as JSDw(P1, . . . , PN ) =
∑N

j=1 wj DKL(Pj∥M), where

M =
∑N

j=1 wjPj is the mixture distribution.

By Gibbs’ inequality, the Kullback-Leibler (KL) divergence DKL(P∥Q) is non-negative and equals
zero if and only if P = Q. Since the weights wj are strictly positive, each term wj DKL(Pj∥M) in
the JSD sum is non-negative.

The sum is zero if and only if every term is zero. This requires DKL(Pj∥M) = 0 for all j ∈
{1, . . . , N}. This condition holds if and only if Pj = M for all j. Consequently, all distributions
must be identical: P1 = P2 = · · · = PN .

We now prove Theorem 2 by induction on the generated sequence length. Our goal is to show that for
any sequence y = (y1, . . . , yL), the probability Pθ(y | xj) is constant for all j ∈ {1, . . . , N}.

Proof of Theorem 2. We proceed by induction on the sequence length t, from 1 to Lmax.

Base Case (t = 1): For a sequence of length 1, the theorem’s premise states that JSDw({Pθ(Y1 |
xj)}Nj=1) = 0. By Lemma 1, this implies that the next-token distributions are identical:

Pθ(Y1 | x1) = Pθ(Y1 | x2) = · · · = Pθ(Y1 | xN ).

Therefore, for any specific token y1, we have Pθ(y1 | x1) = · · · = Pθ(y1 | xN ). The base case holds.
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Inductive Hypothesis: Assume the claim holds for all prefixes of length t − 1. That is, for any
sequence y<t = (y1, . . . , yt−1), the probability of generating it is constant across all inputs:

Pθ(y<t | x1) = Pθ(y<t | x2) = · · · = Pθ(y<t | xN ).

Inductive Step: We show that the claim holds for sequences of length t. The probability of
generating a sequence y≤t = (y1, . . . , yt) given an input xj can be decomposed using the chain rule
of probability:

Pθ(y≤t | xj) = Pθ(y<t | xj) · Pθ(yt | xj , y<t).

By the inductive hypothesis, the first term, the prefix probability Pθ(y<t | xj), is constant for all j.

For the second term, the theorem’s premise states that for any prefix y<t, the JSD of the next-token
distributions is zero:

JSDw({Pθ(Yt | xj , y<t)}Nj=1) = 0.

Applying Lemma 1, it follows that these conditional distributions are identical. Thus, for our specific
token yt:

Pθ(yt | x1, y<t) = Pθ(yt | x2, y<t) = · · · = Pθ(yt | xN , y<t).

Since both the prefix probability and the conditional next-token probability are constant across all j,
their product, Pθ(y≤t | xj), must also be constant.

This completes the inductive step. Therefore, the theorem holds for any sequence length.

E TRAINING DETAILS

E.1 REWARD-ALIGNED CONSISTENCY LOSS

To enhance training stability and convergence speed in our preference learning framework, we intro-
duce a reward-aligned weighting scheme for computing the weight wj in the mixture distribution
of the consistency loss. Instead of a uniform average, this method strategically assigns weights based
on the reward signal. Specifically, it gives greater weight to low-probability responses that receive
a negative reward and to high-probability responses that receive a positive reward. This alignment
encourages the model to more strongly penalize undesirable, unlikely outputs while reinforcing
desirable, confident predictions, which helps to speed up the convergence of the preference learning.

E.2 PIPELINE IMPLEMENTATION

Our implementation leverages the vLLM library for efficient LLM inference and the Hugging Face
Accelerate library for fine-tuning.

Training Data Generation. Each dataset is preprocessed by partitioning it into four disjoint subsets:
demonstration, training, validation, and test. The training subset contains the target questions the
model must answer, while the demonstration subset provides the in-context examples. The validation
subset is used to monitor training performance (e.g., effectiveness and stability), and the test subset is
reserved to assess final model performance. For each training iteration, we constructed a rich training
dataset from 36 questions of each math dataset, each augmented with 8 in-context learning examples.
For each question of interest, we created two distinct augmented inputs and sampled 14 responses
with temperature ranged between 0.8 and 1.9 for each, resulting in 28 responses per question. To
further improve learning, we incorporated a replay buffer by adding 4 distinct, known-correct answers
to each set of rollout. We set max response length as 4096 tokens and discarded the responses that
exceeds this limit. Therefore, the total training dataset contains 108 questions and max of 3456
responses. Two reward signals guided the training process: a formatting reward to encourage the
model to wrap the final numerical answer for straightforward extraction, and an accuracy reward
based on the correctness of the extracted answer when compared to the ground-truth solution.

LLM alignment finetuning. For parameter-efficient optimization, we employed Stable LoRA
with a rank of 32. The entire pipeline, comprising data generation (rollout) and training, was
executed for 20 iterations on 3 NVIDIA A100 GPUs, with a total training time of approximately 3
days. For each iteration, we used the AdamW optimizer with a weight decay of 0.1 and a learning
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rate of 3 × 10−7, managed by a cosine scheduler with a 20% warm-up ratio. The model was
trained for 8 epochs with an effective batch size of 96. The final objective loss hyperparameters
are λ1 = 1, λ2 = 1, λ3 = 0.01, λ4 = 5 × 10−6. The clipping epsilon for GSPO surrogate loss is
using the default from the original paper as setting the left and right clipping ranges to 3e-4 and 4e-4,
respectively.

Evaluation Protocol. For evaluation, we used a separate set of 200 questions from each math
dataset, also presented with 8 in-context learning examples. To simulate a practical use case that
balances generation speed with quality, we sampled 8 responses with temperature of 0.5 for each
augmented input during evaluation .

F RELATED WORK

LLMs often change their answers when the same set of demonstration examples is merely reordered.
This behavior indicates a dependence on superficial positional cues in the prompt rather than on the
underlying semantic content, which undermines reliability—especially in high-stakes settings where
consistent reasoning is required. A desirable property, therefore, is order invariance: predictions
should be stable when semantically equivalent demonstrations are rearranged. We adopt this reliability
lens and focus the discussion on how prior work attempts to reduce order sensitivity and where those
attempts fall short.

Prior approaches and their limitations. Existing methods fall into three broad families. First,
inference-time adjustments keep model weights fixed and manipulate the prompt or decoding.
Typical strategies include searching for a high-performing ordering of demonstrations, templating
and reformatting prompts, and ensembling multiple responses from different permutations (Lu et al.,
2022; Wang et al., 2023; He et al.; Zhao et al., 2021; Zhang et al., 2024). These techniques can lift
accuracy without retraining, but they add test-time cost and latency, and they primarily steer around
the superficial noise by finding a “good” order rather than removing the underlying sensitivity. They
also offer no guarantee that predictions will remain stable outside the searched permutations. Second,
training-time optimization finetunes models to be less order-sensitive, for example by enforcing
agreement on designated hidden states across augmented prompts, distilling from teachers that
average over permutations, or using distributionally robust and adversarial schedules that expose
difficult orderings (Chen et al., 2025; Xiang et al., 2024; Liusie et al., 2024). While effective, these
approaches often rely on specialized teachers or inner optimization loops that increase engineering
complexity and compute. Guarantees are empirical only and tied to the specific augmentations
seen during training, and many evaluations emphasize multiple-choice settings, leaving complex
generative reasoning less explored. Third, architectural modifications change how demonstrations
are processed by treating them as a set, altering attention patterns, or adding invariant aggregation
modules (Egressy & Stühmer, 2025; Fang et al., 2025). Such designs can deliver strong invariance
on paper but require non-standard implementations that complicate deployment and may interact
unpredictably with tasks where order is genuinely meaningful. Shared limitations across families
we target are: L1 increased test-time compute/latency (search or ensembling), L2 lack of formal
invariance guarantees beyond observed permutations, L3 dependence on non-standard sophisticated
implementations or training design with significant computational overhead, and L4 evaluations that
do not stress generative tasks like complex mathematical reasoning.

Our approach and how it addresses these limitations. SIO is a drop-in architecture-agnostic post-
training framework that enforces distributional self-alignment across permutations: for permutation-
equivalent prompts, we minimize a Jensen–Shannon divergence between the model’s output distribu-
tions. This directly removes nuisance positional dependence instead of searching for or ensembling
“good” orders, and integrates seamlessly with existing post-training pipelines (including RL with
a Bayesian-inspired update) without modifying the backbone or decoding stack to improve train-
ing stability and efficiency. Concretely, SIO addresses the shared limitations as follows: (L1) No
extra test-time cost: invariance is learned during training, so inference uses a single pass without
ordering search or multi-sample aggregation; (L2) Formal guarantee: we prove that minimizing
the self-inconsistency loss suffices to achieve invariance over the targeted permutation group (see
§3.5); (L3) Standard implementation: no teacher models, min–max loops, or bespoke attention are
required as only an additive JS regularizer over augmented prompts is needed, hence making the
method deployment-friendly; (L4) Stronger evaluation: we evaluate on generative mathematical
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reasoning tasks (beyond multiple-choice), demonstrating stability under complex generation. Taken
together, SIO balances practicality (drop-in, low engineering overhead) with principled robustness
(distributional alignment and a formal invariance justification), directly targeting the core failure
mode identified above.

G SELF-INCONSISTENCY LOSS ANALYSIS

Since the JSD-based Self-Inconsistency score serves as both an evaluation metric and a training
objective, its trend offers insight into the framework’s stability and effectiveness. As the tokenization
noise experiment demonstrated, greater input deviation leads to greater output inconsistency. Even
when faced with an evaluation loss three orders of magnitude larger—resulting from combined
position, typo, and case noise—than that of positional noise alone, our framework stably optimized
the LLM toward a consistent output distribution.

The loss curves in Figure 4 confirm the stability of our Bayesian update-inspired training architecture.
Both training and evaluation losses exhibit a steady downward trend, indicating that the model
effectively and smoothly aligns its output distributions across permutations. Crucially, we observed
no instances of model collapse or reward degradation during training. This stability underscores
the robustness of the Bayesian update framework, which successfully guides the model toward a
consistent and accurate state without the common pitfalls, such as training instability, associated with
preference alignment.
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H EXPERIMENTAL RESULT PLOTS

(a) Gemma-3-4b Model Reward Plot

(b) Qwen-3-4b Model Reward Plot

Figure 3: Average accuracy and format rewards across 20 rollout iterations for the (a) Gemma-3-4b-it
and (b) Qwen3-4B models. The absence of a consistent downward trend in the reward curves indicates
that the performance of neither model degraded during the rollout process.
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(a) Loss for Gemma-3-4b Model

(b) Loss for Qwen-3-4B Model

Figure 4: Self-inconsistency loss curves for training and validation of the (a) Gemma-3-4b and (b)
Qwen-3-4B models. For each model, the top panel displays the validation loss, measured sparsely,
and the bottom panel displays the training loss (log scale) over rollout iterations. The shaded regions
mark the beginning of each new rollout with augmented data. A general downward trend in the
validation loss for both models indicates successful learning and improvement.
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