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Abstract

Camera traps offer an effective, non-invasive approach to wildlife monitoring.1

However, substantial variations in image style across camera setups, combined2

with temporal shifts in image content, pose significant challenges to developing3

accurate and robust image recognition models. We present a novel benchmark4

for these challenges, leveraging data from 546 camera traps across 17 LILA BC5

datasets. We introduce a systematic data preparation pipeline inspired by the FAIR6

principles and formulate the task as an instance of online continual learning to7

better reflect the practical usage of camera traps. This approach sharply contrasts8

with prior studies that typically disregard the chronological structure of the data.9

Our study reveals several critical insights. First, using the latest vision foundation10

model for biological domains, BioCLIP 2, we observe a long-tailed accuracy11

distribution across the 546 camera traps, highlighting the persistent need for model12

adaptation. Second, continual adaptation is generally necessary to address temporal13

shifts, but the required adaptation frequency may decrease over time. Third, we14

identify several unresolved machine learning challenges from a practical standpoint15

and suggest directions for future research.16

1 Introduction17

Camera traps are a critical tool in ecological and wildlife research for non-invasively capturing large18

volumes of time-stamped images in natural habitats (Pollock et al., 2025; Tuia et al., 2022). These19

images support biodiversity monitoring, behavior analysis, and conservation planning but also vary20

greatly across space, time, hardware, and deployment strategies (Koh et al., 2021; Beery et al., 2021),21

creating major challenges for automated analysis.22

Prior work typically frames this as domain adaptation or generalization—transferring models from23

certain source domains to unseen targets (Sagawa et al., 2021; Zhou et al., 2022)—yet this overlooks24

the practical needs of ecological practitioners. In the field, the central questions are: Will the model25

work at a new location? How much data is needed to adapt it? Must it be continually updated?26

These challenges are intensified by passive, slow data collection and incomplete species coverage (Tu27

et al., 2023).28

To address these needs, we introduce the Continually Adapt or Not (CAN) benchmark for camera-29

trap species classification over time. We split each camera’s image stream into sequential time30

intervals and pose the task as online continual learning (Mai et al., 2022): at interval j, a model31

may be updated on training data and then evaluated on test data from interval j+1, mimicking real32

deployments.33
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(a) (b)

Figure 1: (a) Illustration of the variability of camera trap images across space (rows) and time (columns), with
pie charts representing the image distributions across species. (b) Illustration of the three baselines: zero-shot,
oracle, and accumulated. The accumulated model is trained on data from all intervals before the j-th interval
and evaluated on the j-th interval.

We provide a reproducible, FAIR-compliant pipeline to prepare the benchmark and derive metrics34

such as temporal shift and class imbalance. We then evaluate three baselines—zero-shot BioCLIP 2,35

an upper-bound oracle, and an accumulated continual model—yielding insights into temporal drift,36

imbalance, and the limits of naïve fine-tuning.37

2 “Continually Adapt or Not” Benchmark38

2.1 Motivation39

As shown in Figure 1a and Figure 4, camera trap images show substantial variability. Image style and40

quality vary widely across locations—some are blurry, others capture animals at close range, and41

lighting or resolution may differ. Even within one location, seasonal and temporal shifts can change42

both background appearance and species distribution. These variations make it challenging to develop43

accurate, robust classifiers and raise practical concerns for end-users: Will the model generalize to my44

setting, or require further adaptation? To address this, we introduce the Continually Adapt or Not45

(CAN) benchmark—a curated testbed for evaluating pre-trained models and fostering adaptation46

algorithms in the camera trap domain. For overall details, refer Appendix B.47
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Figure 2: (a) Data processing pipeline (details in Appendix B). (b) Online continual learning setup.

2.2 Data Source and Processing Pipeline48

CAN is built on the LILA BC repository (LILA BC), which aggregates dozens of camera-trap datasets49

(e.g., Ohio Small Animals, Snapshot Karoo) collected by hundreds of stationary cameras deployed50

worldwide. For our benchmark we select 17 datasets that meet minimum size and duration criteria51

and then process them using a standardized pipeline designed to support FAIR principles—Findable,52

Accessible, Interoperable, and Reusable. This high-level process is summarized in Figure 2a, and the53

resulting camera-trap coverage and dataset characteristics are illustrated in Figure 3a and Figure 3b.54
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Figure 3: (a) Camera trap data statistics (histograms). (b) Histograms characterizing temporal shift and class
imbalance. (c) Oracle vs. ZS performance gap across datasets.

2.3 Online Continual Learning Task55

Unlike conventional domain adaptation, where data from the new, target domain is available all at56

once Gong et al. (2012); Singhal et al. (2023), CAN adopts an online continual learning setting Mai57

et al. (2022) to better reflect the practical deployment of camera traps, where new data arrives58

sequentially over time. This setup—illustrated in Figure 2b—evaluates models sequentially on each59

new time interval and then updates them before the next interval, mimicking real-world use.60

2.4 Baseline Methods61

Setting We adopt a closed-set setting in which the species expected at each camera trap are assumed62

known from local or historical data. Model performance is measured as balanced accuracy—per-class63

accuracy within each interval, averaged across all intervals.64

Baseline methods. We evaluate three baselines: the Zero-shot Model, which uses BioCLIP 265

directly without additional training to match images to species text embeddings; the Oracle Model,66

which combines the BioCLIP 2 vision encoder with a linear classifier trained on data from all67

intervals simultaneously; and the Accumulated Model, which follows the oracle setup but is trained68

incrementally using only past intervals at each step (see Appendix C for details).69

2.5 Results and Analysis70

We begin by comparing the zero-shot and oracle performance across all 546 camera traps. Figure 3c71

summarizes the results, revealing three key observations.72

First, with BioCLIP 2, over 170 camera traps (31%) achieve accuracy above 90%, underscoring the73

strong potential of foundation models in wildlife monitoring. Second, 169 camera traps (31%) still74

fall below 80% accuracy, highlighting the need for adaptation to improve model performance in75

more challenging scenarios. Third, the oracle model does not consistently outperform the zero-shot76

model—even when the latter underperforms—suggesting that effective adaptation hinges on a deeper77

understanding of the intrinsic properties of each camera trap dataset.78

Figure 4: Very challenging cases for the
zero-shot model.

Why does BioCLIP2 underperform on some datasets?79

To understand the failure cases, we examine camera traps80

where BioCLIP 2 performs poorly (see Figure 4). While81

some performance gaps may stem from the model’s diffi-82

culty in recognizing certain species, many of these traps83

also suffer from poor image quality—low resolution, poor84

lighting, heavy occlusion, or motion blur. In some cases,85

animals appear too close to the camera, resulting in crops86

that capture only partial views of the subject. These factors87

likely hinder recognition. Analyzing such low-performing88

cases can offer practical insights into how practitioners89

might better deploy camera traps in the field.90
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Oracle < Zero Shot Oracle > Zero Shot

Figure 5: Oracle model improvement by the BSM loss and LoRA. As shown, BSM loss and LoRA consistently
improve the oracle when it is outperformed by zero-shot.

Why does the oracle model underperform on some datasets? Although the oracle model is trained91

on all available data, it sometimes fails to outperform the zero-shot BioCLIP 2 baseline. This may be92

due to a combination of factors, including severe class imbalance and limited training samples for93

certain categories. In such cases, fine-tuning with standard cross-entropy loss can lead the model to94

drift away from the generalizable representations learned by BioCLIP 2. These observations suggest95

that full fine-tuning alone may not be sufficient for effective adaptation and highlight the need for96

more robust strategies tailored to low-data or imbalanced regimes.97

3 Going Deep into the CAN Benchmark98

We now take a closer look at model adaptation within CAN from two complementary viewpoints.99

First, we adopt an algorithm developer’s perspective, highlighting approaches for improving and100

adapting models across camera traps. Second, we take an end-user’s perspective, focusing on practical101

questions about when zero-shot predictions suffice and when continued adaptation may be needed.102

(a) (b) (c)
Figure 6: (a) Weight interpolation between the zero-shot and oracle models shows consistent improvement. (b)
Accumulated model accuracy. BSM loss with LoRA outperforms CE loss with full fine-tuning. (c) Calibration
consistently improves accumulated models.

3.1 An Algorithm Developer’s Perspective103

From an algorithm developer’s point of view, we summarize general strategies for adapting models104

within CAN. This includes high-level ideas for improving oracle and accumulated models, with full105

methodology and empirical details referred to Appendix D.106

Oracle Model Improvements. We explore three main approaches to strengthen the oracle model:107

(i) Balanced Softmax (BSM) loss (Ren et al., 2020); (ii) parameter-efficient fine-tuning (LoRA) (Mai108

et al., 2025; Hu et al., 2022); and (iii) weight interpolation (WiSE) (Wortsman et al., 2022). As shown109

in Figure 5, both BSM and LoRA generally improve oracle models, especially when naïve fine-tuning110

underperforms the zero-shot baseline. However, when the oracle already surpasses zero-shot, BSM111

can occasionally degrade performance, underscoring that class-balancing strategies are not universally112

beneficial and require dataset-specific tuning. In Figure 6a, WiSE consistently improves results, often113

outperforming both the fine-tuned oracle and the zero-shot baseline. Since it is a post-hoc method114

requiring no extra training, WiSE provides a simple and practical way to boost performance.115
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(a) (b)
Figure 7: (a) Non-OOD scores correlate with ZS accuracy.). (b) Non-OOD scores (MSP or SG) correlate with
accumulated model accuracy (across intervals of a single camera trap)

Accumulated Model Improvements. Apply the same techniques (BSM loss, LoRA) during continual116

adaptation to mitigate imbalance and data scarcity; add post-hoc calibration to restore recognition of117

absent classes; and use WiSE interpolation to further boost performance. We evaluate this approach118

using the optimal γ (Mai et al., 2024). As illustrated in Figure 6b and Figure 6c, applying BSM loss119

and LoRA consistently improves the performance of accumulated models, while calibration further120

boosts their accuracy in the early intervals.121

3.2 An End-User’s Perspective122

From an end-user’s point of view, the key question is when a zero-shot model is “good enough” and123

when continual adaptation is worthwhile. Below we highlight the main considerations, while all124

numerical analyses and implementation details appear in Appendix E.125

When is the zero-shot model sufficient? Pre-trained models generally perform well when the126

test data resembles their training data, but their predictions degrade under unseen or highly shifted127

conditions. In Figure 7a we show that simple confidence or non-OOD scores correlate with zero-shot128

accuracy across camera traps, suggesting a practical way to anticipate whether zero-shot predictions129

will be reliable before deployment.130

Do we need to continually adapt? We examine whether adaptation must occur after every interval131

or if it can be paused. Table 1 shows that accumulated models often retain strong performance after a132

few updates but eventually lag behind continually adaptive models, highlighting the long-term benefit133

of ongoing updates.134

Accummulated Accuracy

up to 33% 0.582
up to 67% 0.686
up to 100% 0.761

Table 1: Accuracy of models continually
trained up to certain intervals (average over
15 camera traps).

When should we adapt? We further test whether easily135

computed confidence scores can signal when adaptation136

will pay off. As illustrated in Figure 7b, both the Maxi-137

mum Softmax Probability (MSP) and the Softmax Gap138

(SG) scores tend to rise and fall with accumulated-model139

accuracy, with SG showing stronger correlations. These140

results point to a promising direction for using lightweight141

indicators to guide fine-tuning decisions in practice.142

4 Conclusion and Discussion143

We introduce a novel continual learning benchmark that reflects the real-world challenges of adapting144

visual recognition models to camera trap deployments. Our empirical studies demonstrate that145

successful adaptation relies on the thoughtful application of targeted machine learning techniques,146

yielding valuable insights for system-level adaptation in dynamic environments.147

Looking ahead, we hope this benchmark will serve as a catalyst for advancing adaptive machine148

learning at the system level. Rather than assuming full access to labeled data at each interval for149

fine-tuning, future approaches should incorporate mechanisms to actively select both intervals and150

instances for human annotation and storage—enabling scalable and sustainable continual learning.151

We also encourage the evaluation of future vision foundation models on this benchmark to assess152

their robustness and applicability in real-world, evolving settings.153
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The supplementary is organized as follows.272

• Appendix A: Related Work273

• Appendix B: Benchmark Details274

• Appendix C: Baseline Methods275

• Appendix D: An Algorithm Developer’s Perspective276

• Appendix E: An End User’s Perspective277

• Appendix F: Additional Analysis278

• Appendix G: Statistical Measure Definition279

A Related Work280

Camera trap data in computer vision. Camera traps have become essential tools for biodiversity281

monitoring, capturing vast volumes of wildlife images that provide insights into species richness282

and behavior (Trolliet et al., 2014; Boitani, 2016). To automate analysis, deep learning methods283

have been widely adopted for species detection and classification (Norouzzadeh et al., 2018; Yu284

et al., 2013). A major challenge is generalization: models trained on one location often perform285

poorly when deployed elsewhere. The iWildCam challenges (Beery et al., 2019, 2021) address this286

by splitting data by camera location to assess out-of-distribution generalization (Koh et al., 2021; Mai287

et al., 2024). Test-time training has recently been reproduced on iWildCam for lightweight adaptation288

without retraining. More recently, multimodal foundation models have been applied to camera289

trap data for richer contextual understanding (Gabeff et al., 2024; Fabian et al., 2023; Santamaria290

et al., 2025). However, the temporal dynamics—e.g., seasonal shifts and animal migration—remain291

underexplored (Tu et al., 2023). Our benchmark incorporates temporal variability to better reflect292

real-world deployments.293

Online continual learning. In contrast to conventional domain adaptation and continual learn-294

ing (Farahani et al., 2021; De Lange et al., 2021), online continual learning assumes new data arrive295

sequentially in small batches (Mai et al., 2022). Models must adapt to evolving streams exhibiting296

non-stationarity—new classes or background changes (Aljundi et al., 2019; Mai et al., 2021; Shim297

et al., 2021). Existing benchmarks often lack timestamps and realistic shifts, leading to overly298

simple or overly complex scenarios (Mai et al., 2022). Zhu et al. studied class-incremental learning299

for wildlife monitoring but did not account for the real temporal order in camera-trap data (Zhu300

et al., 2022). Velasco-Montero et al. demonstrated how continual learning could be embedded into301

smart camera traps for efficient deployment, but their focus was primarily on hardware and system302

design (Velasco-Montero et al., 2024). In contrast, our benchmark aims to transform the valuable but303

less accessible and underexplored camera-trap data into a practical and standardized benchmark. By304

incorporating real temporal order and distribution shifts, we enable more realistic and meaningful305

evaluation in the camera-trap domain.306

Class-imbalanced learning. Camera trap datasets often follow a long-tailed distribution, where307

models perform well on majority species but poorly on rare ones (Bevan et al., 2024; Malik et al.,308

2021). Since rare species are often of greatest ecological interest, addressing this imbalance is critical.309

Solutions fall into data-level and algorithm-level methods (Zhang et al., 2023; Rezvani and Wang,310

2023). We focus on simple but effective approaches, such as the Balanced Softmax loss (Ren et al.,311

2020) in our study.312

B Benchmark Details313

Selection Criteria and Data Sources. The LILA BC repository currently hosts more than fifty314

datasets and continues to grow over time. For our benchmark we limit the selection to camera trap315

datasets, excluding other sources such as sea-animal imagery, drone imagery, and geological or316

earth-observation images. We select 17 datasets containing at least 5 species per camera and spanning317

at least 6 months. Detailed selection criteria are implemented as a separate preprocessing step due to318

the large volume of images and long processing time.319
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Figure 8: Detailed benchmark’s data-processing pipeline.

Metadata Preprocessing. All LILA BC camera trap datasets use the COCO–camera trap format1320

which includes two optional fields—datetime and sequence—essential for our benchmark to group321

images into temporal intervals and to identify and handle burst images. When datetime is missing, we322

extract it from each image’s EXIF header2 and insert it into the metadata if available; when sequence323

is missing, we generate pseudo-sequences by grouping neighboring images within 3 seconds of one324

another; and when both fields are absent, we first recover datetime from EXIF and then apply the325

sequence-grouping step. After applying these criteria we retain 19 datasets, and a final filter requiring326

at least 5 species per camera removes 2 more, resulting in the 17 datasets used in our analyses. With327

the prepared metadata from all datasets, they are then passed into our benchmark data-processing328

pipeline to produce the final benchmark output.329

Detailed Data Processing Pipeline. We assume each camera trap dataset consists of a collection of330

images along with associated metadata, including timestamps, image-level species labels, and bound-331

ing boxes for animal instances.3 The finalized metadata is then fed into our data-processing pipeline,332

whose detailed flow is illustrated in Figure 8. Users can flexibly control the pipeline—selecting333

specific datasets or cameras, setting minimum image counts, bounding-box confidence thresholds,334

and excluding certain classes to focus on targeted taxa. Hard-case images (e.g., very low quality) may335

be filtered based on the pipeline configuration. In interval preparation, the default temporal interval is336

30 days, but this can be adjusted (e.g., 15, 60, or custom days). Although the current benchmark does337

not use a fixed seed, users may specify one to ensure consistent splits. Rare-species interval data are338

stored alongside the training and test sets to enable separate evaluation of rare species.339

Given such a dataset, we apply three filtering steps:340

1. retain only images with a single species label4 and without any humans or vehicles;341

2. retain images with at least one detected animal bounding box (confidence > 0.8) and no humans342

or vehicles;343

3. retain images that contain valid timestamps.344

1A metadata standard maintained within the LILA BC repository, derived from the original COCO format.
2EXIF stands for Exchangeable Image File Format, a standard for storing metadata such as date and time

inside image files.
3MegaDetector (Beery, 2023) detects animals without species classification.
4This ensures species labels can be correctly assigned to bounding boxes and removes < 2% of the images.
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After filtering, we retain camera traps that still contain more than 1, 000 images and span a range345

of at least six months. For each retained camera trap, we divide the images into temporal chunks346

following the criteria above. Within each chunk, for every species category with more than 10 images,347

we randomly sample 10 images to form the test set and assign the remainder to the training set. To348

represent each image, we crop a single animal instance using the bounding box with the highest349

confidence score from MegaDetector. Before cropping, we enlarge the selected bounding box by 50%350

on each side to preserve context. A detailed illustration of the full pipeline is provided in Figure 8.351

Statistical Measures. Our data processing pipeline yields 546 valid camera traps. Figure 3a presents352

summary statistics—each camera trap contains between 5 and 20 species, 1, 000 to 80, 000 images,353

and spans 6 to 70 months. We further derive metrics to quantify changes in species distribution354

between intervals and class imbalance both within and across intervals. (Please see the supplementary355

for definitions.) Figure 3b presents these statistics, revealing that many datasets exhibit substantial356

temporal shifts and class imbalance.357

Handling Burst Images. Camera trap devices typically take bursts of images whenever motion is358

detected by their onboard sensors, with the number of frames per burst ranging from 3 to over 10.359

With preprocessed metadata, each dataset provides sequence IDs, total frame counts, and frame order.360

Using this information, we group all frames from the same burst into a single split (train or test) and361

never divide a burst across splits, preventing temporal leakage and ensuring that highly correlated362

frames do not appear simultaneously in training and testing. While we use this grouping for split363

assignment, we simplify the setting by treating each image within a burst as an independent sample364

for model training and evaluation. Downsampling bursts to a single frame or aggregating predictions365

across entire bursts are natural extensions we plan to explore to better align the benchmark with366

real-world deployment.367

MegaDetector Bounding Box. Labeling bounding boxes requires substantial human effort and368

time, and not all datasets contain human-labeled bounding box data. We evaluate MegaDetector on369

4 LILA BC datasets with human-labeled boxes and obtain 94.3% detection accuracy at IoU ≥ 0.5.370

Because we enlarge and crop each detected region by 50% of the bounding box size and apply a high-371

confidence threshold, we find MegaDetector to be robust for our purposes. Among the 17 datasets372

used in this study, 5 lack human-labeled boxes; the remaining 12 now include human-labeled boxes373

(this annotation is released after our benchmark preparation). For consistency, we use MegaDetector374

on all datasets: for the 5 without human boxes we rely entirely on MegaDetector detections, and for375

the 12 with human boxes we still apply MegaDetector with a high-confidence threshold to maintain376

uniform preprocessing. For each frame, MegaDetector provides bounding boxes for animals, humans,377

and vehicles, which we use to filter non-animal instances and, using metadata, to further link each378

captured bounding box with its species. In this work, we do not attempt to solve detection itself;379

instead, we use MegaDetector to build a consistent and reliable benchmark for studying classification.380

While detection combined with classification and even applying a classifier directly to the full image381

to capture broader context are directions for future research, our benchmark is designed to keep the382

task general and focus specifically on classification.383

Online Continual Learning Task. Given time-stamped images from a camera trap, {(xi, yi, ti)}—384

where xi denotes the i-th image, yi its label, and ti its timestamp—CAN partitions the data into a385

sequence of chunks, with each chunk Dj containing images captured within the j-th chronological386

time interval. During evaluation, we assess model performance sequentially, following the chronolog-387

ical order of time intervals. At each interval j, the model is evaluated on Dj . Once the evaluation388

is complete, Dj becomes available as training data and can be used to update the model before389

evaluating on the next interval, Dj+1.390

C Baseline Methods391

Zero-shot model. We use the BioCLIP 2 (Gu et al., 2025), a vision foundation model trained392

on biological data and capable of classifying over 800K species. For each species, we use its393

common name as the textual representation and apply OpenAI’s prompt templates to generate the394

corresponding text embeddings.395

Let fθ denote the pre-trained vision encoder and wc the L2-normalized text embedding of class c.396

Given an image patch x, the predicted class is ŷ = argmaxc w
⊤
c fθ(x).397
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Oracle model. We construct a reference classifier with access to training data from all time intervals398

simultaneously. That is, the model can preview the entire camera trap time span before training. This399

model serves as an upper-bound benchmark for adaptive methods over time.400

We initialize the model with BioCLIP 2’s vision encoder, followed by a linear classifier initialized401

using BioCLIP’s text embeddings. We aggregate all training splits across intervals and perform full402

fine-tuning using standard cross-entropy loss, a cosine learning rate scheduler, and a fixed initial403

learning rate of 0.000025. A small validation set is held out for early stopping by sampling two404

frames from each class in the training data.405

Accumulated model. We consider an adaptive model with access to labeled training data from406

all past intervals—i.e., a continual learning setup with unlimited memory. This setting enables us407

to evaluate the difficulty of adaptation caused by temporal drift, without the added complexity of408

implementing specific continual learning strategies. Note that test data always comes from future409

intervals.410

We follow the oracle model’s setup for implementation, but use the test set from the immediately411

preceding interval for early stopping instead of a separate validation set.412

D An Algorithm Developer’s Perspective413

Building on the previous analysis, we take a deeper look at how to apply machine learning algorithms414

for model adaptation. Specifically, we select 15 representative camera traps from the 546 in CAN.415

Among them, 5 exhibit cases where the oracle model performs significantly worse than the zero-shot416

BioCLIP 2 baseline, while the other 10 show strong gains from oracle fine-tuning. We begin with the417

first group to explore techniques that can improve performance when naive fine-tuning fails. We then418

examine both groups under the accumulated setting to assess the practical challenges of continual419

model adaptation over time.420

D.1 Improving the Oracle Model421

Class-imbalanced learning. We begin by investigating loss functions tailored for class-imbalanced422

scenarios, since standard cross-entropy tends to bias toward majority classes (Cui et al., 2019; Ye423

et al., 2020, 2021). Among the alternatives we experimented with, we found Balanced Softmax424

(BSM) loss (Ren et al., 2020) to be a simple yet effective choice.:425

− log

(
nye

ηy(x)∑
c nceηc(x)

)
, (1)

where ηc(x) = w⊤
c fθ(x) denotes the logit for class c, and nc is the number of training instances for426

class c.427

Parameter-efficient fine-tuning (PEFT). We explore parameter-efficient fine-tuning (PEFT) methods428

for model adaptation. Unlike full fine-tuning, which updates all parameters, PEFT modifies only a429

small subset of weights to mitigate overfitting and better preserve pre-trained knowledge (Mai et al.,430

2025). Among several methods we explored, we selected LoRA (Hu et al., 2022), which introduces431

trainable low-rank matrices into the attention projection layers, allowing efficient adaptation with432

minimal parameter updates.433

Weight interpolation. We explore weight-space ensembles (WiSE) (Wortsman et al., 2022), a434

technique for enhanced model robustness. WiSE linearly interpolates the weights of the FT model435

with those of the pre-trained backbone. Formally, let θ denote the pre-trained weights and θ′ the436

FT weights; the interpolated model weights are given by θ(α) = αθ + (1− α)θ′ where α ∈ [0, 1]437

controls the interpolation ratio. This approach helps retain generalizable pre-trained features while438

benefiting from task-specific adaptation.439

D.2 Transitioning to Accumulated Models440

We now turn to our third baseline: accumulated models, which represent continually adaptive systems441

with access to unlimited memory. We begin by applying the techniques from subsection D.1. These442

adaptations show consistent improvements across different camera traps. Gains are seen not only in443
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cases where the oracle underperforms the zero-shot baseline, but also where it already performs well.444

We hypothesize that during continual adaptation, class imbalance and data scarcity are especially445

pronounced in early intervals, making these techniques particularly effective.446

Despite these improvements, accumulated models often struggle in early intervals (Figure 1b). We447

suspect this is due to severe class imbalance, limited data availability, and the absence of certain448

categories during the early stages of adaptation. Addressing performance degradation in these449

intervals remains an important direction for future work.450

Post-hoc calibration. When certain classes are absent during fine-tuning, the resulting model often451

assigns very low logits to those classes—even if the pre-trained model was originally capable of452

recognizing them (Tu et al., 2023; Mai et al., 2024). To address this issue, we adopt a post-hoc453

calibration strategy that adds a calibration factor γ to the logits of absent classes (Mai et al., 2024).454

The updated prediction rule becomes455

ŷ = argmax
c

w⊤
c fθ(x) + γ · 1[c ∈ absent classes]. (2)

E An End-User’s Perspective456

With the proper use of machine learning techniques, we have seen that accumulated models can457

outperform zero-shot models after just a few intervals. In this section, we shift our perspective to458

address questions that a camera trap end-user might naturally ask. Specifically: When is the zero-shot459

model sufficient? And when is it necessary to further adapt the model?460

E.1 When is the zero-shot model sufficient?461

As with any machine learning model, a pre-trained model is expected to perform well when the test462

distribution closely aligns with its training data. However, when test data significantly deviates—463

becoming out-of-distribution (OOD)—the model’s predictions can become unreliable. In such cases,464

relying on zero-shot predictions may be insufficient.465

To investigate this, we explore the use of an OOD detection mechanism to estimate whether the zero-466

shot model is likely to be effective (Yang et al., 2024). Specifically, we adopt the Maximum Softmax467

Probability (MSP) (Hendrycks and Gimpel, 2016),5 which assigns each test sample a non-OOD score468

defined as469

sMSP(x) = max
c

eηc(x)/τ∑
c′ e

ηc′ (x)/τ
, (3)

where ηc(x) = w⊤
c fθ(x) denotes the logit for class c, and τ is a temperature parameter.470

We compute the average non-OOD score for each camera trap and plot it against the corresponding471

zero-shot accuracy in Figure 7a. As shown, there is a clear positive correlation between the non-OOD472

score and zero-shot accuracy (with the red line indicating the regression fit). While some exceptions473

exist—where high MSP scores do not translate to high accuracy and vice versa—the overall trend474

highlights a promising research direction: developing reliable pre-deployment indicators of zero-shot475

performance.476

E.2 Do We Need to Continually Adapt?477

For accumulated models, a natural question is whether adaptation is needed after every interval, or if478

it can stop after a certain point. That is, once the model has been updated for a few intervals, might it479

generalize well enough to handle future data without further tuning?480

To explore this, we consider a simple strategy where adaptation is halted after a fixed number481

of intervals—i.e., the accumulated model is frozen for the remaining rounds. Table 1 shows the482

results. We observe that after several intervals of adaptation, the model has acquired domain-specific483

knowledge and can outperform the zero-shot baseline even when frozen. However, its performance484

gradually lags behind the continually adaptive model, highlighting the continued benefits of ongoing485

adaptation.486

5Despite its simplicity, MSP has proven effective various settings(Averly and Chao, 2023), including
applications with pre-trained CLIP-style models (Ming et al., 2022).
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(a) (b)
Figure 9: Non-OOD scores (MSP or SG) correlate with accumulated model accuracy. (a) We compute the
Pearson correlation within each camera trap and show the statistics across 16 traps. (b) The average Pearson
correlation score over 16 traps. In either plot, the softmax gap (SG) score shows better correlations.

E.3 When Should We Adapt?487

Given the results above, a key practical question arises: can we estimate when model adaptation is488

necessary? In other words, is there an effective way to decide—based on data or model signals—489

whether adapting at a given interval will yield meaningful performance gains?490

To investigate this, we again apply OOD detection methods, this time using the accumulated models.491

In addition to the MSP score, we introduce a new metric called the Softmax Gap (SG), which492

measures the probability gap between the most likely (c⋆) and second most likely (c†) classes:493

sSG(x) =
eηc⋆ (x)/τ − eηc† (x)/τ∑

c′ e
ηc′ (x)/τ

. (4)

This score captures how confidently the model prefers its top prediction over the next best. Since FT494

models tend to produce high MSP scores, we hypothesize that the SG score may more sensitively495

reflect whether adaptation is needed.496

As shown in Figure 7b (New Zealand EFD DCAME01 camera trap), both MSP and SG scores497

generally track with the accumulated model’s accuracy, with SG often showing a better alignment.498

In Figure 9, we further report the Pearson correlation between accuracy and each score across datasets499

(one point per dataset). Results show generally positive correlations—especially for LoRA-adapted500

models—suggesting that non-OOD scores could serve as a useful signal for deciding when to update.501

Of course, further improvement and calibration of such indicators remain an important direction.502

F Additional Analysis503

Dataset Camera Model ZS Accum Oracle

MAD A05 BioCLIP 2 0.78 0.89 0.91
SigLIP 2 0.66 0.72 0.72

KGA KHOLA03 BioCLIP 2 0.63 0.75 0.90
SigLIP 2 0.40 0.46 0.51

Table 2: BioCLIP 2 and SigLIP 2 comparison with BSM lss and LoRA

Foundation Model Selection. BioCLIP 2 is a recently proposed state-of-the-art model that classifies504

animal species with high accuracy. To further address model selection and demonstrate generality505

beyond BioCLIP 2, we run the same training process with SigLIP 2 (Tschannen et al., 2025)506

and observe that both classifiers combined with MegaDetector exhibit similar trends of temporal507

adaptation improvements Table 2. For comparison, we run BioCLIP 2 and SigLIP 2 using LoRA508

with the BSM loss.509

Rare species classification. We further evaluated our trained model by performing inference on this510

rare-species data. To do so, we expanded our linear classifier head to include rare species not used511

during training, and the results are reported in Table 3. In our analysis, both the accumulated and512

oracle settings perform comparably well. One plausible explanation is that our benchmark processes513

rare species on a per-interval basis; thus, a species may be rare in an early interval but become514
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common in a later interval. Under this scenario, the model may learn the species during a dominant515

interval and subsequently infer it when it appears as rare.

Dataset Camera Classes ZS Accum Oracle

MAD A05 12 0.78 0.89 0.91
10 (+ 22) 0.57 0.48 0.54

KGA KHOLA03 7 0.63 0.75 0.90
7 (+ 10) 0.67 0.79 0.78

Table 3: Rare classification with BSM loss and LoRA ( + values denote newly added from rare).

516

Dataset Camera Classes ZS Accum Oracle

MAD A05 12 0.78 0.89 0.91
1096 0.38 0.78 0.90

KGA KHOLA03 7 0.63 0.75 0.90
1096 0.46 0.65 0.92

Table 4: Open-set classification with BSM loss and LoRA.

Open-set classification. Our benchmark can easily extend to the open-set scheme—BioCLIP 2’s517

zero-shot ability allows recognition beyond predefined labels. Specifically, rather than assuming a518

fixed, closed set of species per camera trap, we include all species’ common names, total 1096 classes,519

in our benchmark and initialize our linear classifier with the models’ text embeddings, enabling520

zero-shot classification of previously unseen taxa. The results in Table 4 show that this approach521

allows open-set classification, with the oracle remaining comparable and the accumulated results522

approaching the original performance.523

`

Figure 10: Overall oracle model improvement by the BSM loss and LoRA.

Improving oracle. For the 227 cameras where the base oracle (full fine-tuning with cross-entropy524

loss) performed worse than zero-shot in Figure 3c, we retrained the same camera traps under a525

setting using LoRA and the BSM loss. As shown in Figure 10, the majority of oracles that previously526

underperformed zero-shot now surpass the zero-shot baseline.527

G Statistical Measure Definition528

To quantify the diverse characteristics of each camera trap data, we provide basic statistics and529

measures that can quantify changes in species distribution between intervals and the degree of class530

imbalance.531
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We provide the following basic statistics for each valid camera trap in our benchmark, including:532

number of species (class), number of images, number of months. We further derive measures to533

quantify unique characteristics in each camera trap.534

Degree of class imbalance. The Gini Index (G), used to quantify the degree of class imbalance in a535

camera trap dataset, is defined as:536

G = 1−
C∑
i=1

p2i , where pi =
ni

N
.

Here, C denotes the number of classes, ni represents the number of samples in class i, and N is the537

total number of samples in the dataset. A higher value of G approaching 1 indicates a more balanced538

class distribution, whereas a lower value approaching 0 signifies increased class imbalance.539

Degree of temporal shift. To measure the degree of class distribution shift between consecutive540

intervals, we define the Temporal Shift (TS) metric as follows:541

1. Given a set of n intervals, for each pair of consecutive intervals (i, i + 1), compute the542

normalized class distributions:543

p
(i)
j =

n
(i)
j∑

k n
(i)
k

, q
(i+1)
j =

n
(i+1)
j∑

k n
(i+1)
k

.

2. Compute the pairwise L1 shift over all classes:544

TSi,i+1 =
∑
j

∣∣∣p(i)j − q
(i+1)
j

∣∣∣ .
3. Finally, average across all consecutive interval pairs:545

TS =
1

n− 1

n−1∑
i=1

TSi,i+1.

This metric quantifies the overall change in class distribution between consecutive intervals.546
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