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Abstract

Camera traps enable scalable wildlife monitoring but large variations across sites,
seasons, and sensors undermine long-term reliability. We introduce Continually
Adapt or Not (CAN), a benchmark that evaluates models under real temporal
evolution across 546 cameras from 17 LILA BC datasets by framing recognition
as online continual learning: models update in chronological order. We build a
FAIR-compliant pipeline and study three settings: (1) zero-shot BioCLIP 2, (2)
an oracle trained on all data, and (3) an accumulated model trained sequentially.
Continual adaptation generally helps, with diminishing returns as systems stabilize.
Techniques such as Balanced Softmax, LoRA, and WiSE interpolation further
improve robustness in long-tailed, low-data regimes. CAN offers concrete guid-
ance on when and how to adapt ecological vision systems and provides a unified,
reproducible testbed for sustainable real-world continual learning.

1 Introduction

Camera traps enable large-scale, non-invasive wildlife monitoring (Pollock et al., 2025} |Tuia et al.|
2022) but vary greatly across space, time, and hardware (Koh et al.| 2021} |Beery et al., [2021)),
challenging reliable automation.

Prior works frame this as domain adaptation or generalization (Sagawa et al.|[2021;Zhou et al.| 2022)),
yet practitioners ask: Will it work at my site? How much data is needed? Must it keep updating?
These issues are compounded by slow data collection and limited species coverage (Tu et al., 2023]).

We present Continually Adapt or Not (CAN)—a benchmark for camera-trap classification over
time. Each camera’s stream is split into sequential temporal intervals, forming an online continual
learning setup (Mai et al.| 2022)): at interval j, the model trains on current data and is evaluated on
j~+1, mirroring real deployments.

Our FAIR-compliant pipeline quantifies temporal shift and class imbalance. Three baselines—zero-
shot BioCLIP 2, an all-data oracle, and an accumulated continual model—expose when fine-tuning
helps or hurts. [Figure T|illustrates data variability and evaluation design.

2 “Continually Adapt or Not”’ Benchmark

2.1 Motivation

As shown in[Figure Ta] and [Figure 4] camera-trap images vary widely in style and quality—some
blurry, others close-up or poorly lit. Even within a single site, seasonal and temporal shifts alter both
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Figure 1: (a) Variability of camera-trap images across space (rows) and time (columns), with pie charts showing
species distributions. (b) Three baselines: zero-shot, oracle, and accumulated. The accumulated model is trained
on all intervals before j and evaluated on j.

background and species distribution, making it difficult to build robust classifiers. These variations
raise practical questions for end-users: Will the model generalize to my setting, or need further
adaptation? To investigate this, we introduce the Continually Adapt or Not (CAN) benchmark—a
curated testbed to evaluate pre-trained models and foster adaptive algorithms for camera-trap analysis.
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Figure 2: (a) Data processing pipeline. (b) Online continual learning setup.

2.2 Data Source and Processing Pipeline

CAN builds on the LILA BC repository (LILA BC), which aggregates many global camera-trap
datasets (e.g., Ohio Small Animals, Snapshot Karoo) captured by hundreds of stationary cameras.
We select 17 datasets meeting minimum duration and size requirements and process them using a
standardized FAIR-compliant pipeline—Findable, Accessible, Interoperable, and Reusable. [Fig]
ure 2a summarizes this process, while [Figure 3aHFigure 3b|show data coverage, temporal span, and
imbalance statistics.

2.3 Online Continual Learning Task

Unlike conventional domain adaptation, where target data is seen all at once (2012);
Singhal et al.|(2023)), CAN follows an online continual learning setup [Mai et al.|(2022) matching

real deployments: data arrives sequentially, models are updated after each interval, and evaluated
on the next (Figure 2b). This formulation captures temporal evolution and directly tests adaptation
stability.

2.4 Baseline Methods

Setting. We assume a closed-set scenario where species per camera are known from historical data.
Performance is measured as balanced accuracy—per-class accuracy averaged across all intervals.

Baselines. We compare three representative strategies: (1) Zero-shot Model—BioCLIP 2 without
training, using text-image matching. (2) Oracle Model—BioCLIP 2 with a linear head trained jointly
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Figure 3: (a) Camera-trap statistics. (b) Temporal shift and class imbalance. (c) Oracle vs. ZS performance gap
across datasets.

on all intervals. (3) Accumulated Model—same as the oracle but trained incrementally on past
intervals. These configurations expose trade-offs between stability, adaptation, and overfitting.

2.5 Results and Analysis

Comparing zero-shot and oracle performance across 546 camera traps yields three insights.
First, BioCLIP 2 already generalizes well—over 30% of cameras exceed 90% accuracy—showing
strong zero-shot transfer. Second, another 30% remain below 80%, emphasizing persistent site-
specific difficulty. Third, the oracle does not always outperform zero-shot, revealing that naive
fine-tuning can degrade generalizable features and highlighting the need for robust adaptation.

Zero-shot failure cases. Poor performance often coin- s
cides with low-quality images—blur, occlusion, poor light- “ e
ing, or extreme close-ups (Figure 4). These artifacts ob- : |
scure species features, suggesting that improved capture IR | oy

quality and pre-filtering could aid deployment.

Oracle underperformance. Despite full-data training,
the oracle occasionally falls below zero-shot accuracy due
to severe class imbalance and limited samples. Standard
fine-tuning with cross-entropy can distort general repre-
sentations, causing overfitting. This motivates stronger Figure 4: Very challenging cases for the
strategies such as the BSM loss and LoRA, which improve  zero-shot model.

robustness under scarce or imbalanced data, as shown in
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Figure 5: Oracle model improvement by the BSM loss and LoRA. BSM and LoRA consistently boost oracle
performance when zero-shot outperforms fine-tuned models.

3 Going Deep into the CAN Benchmark

We analyze model adaptation in CAN from two perspectives: (1) the algorithm developer, focusing
on improving oracle and accumulated models; and (2) the end-user, deciding when zero-shot suffices
or continual updates are worthwhile.
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Figure 6: (a) WiSE interpolation consistently improves over zero-shot and oracle. (b) BSM loss with LoRA
surpasses CE fine-tuning for accumulated models. (¢) Calibration yields further gains.

3.1 Algorithm Developer’s Perspective

Oracle improvements. We study three techniques: (i) Balanced Softmax (BSM) (Ren et al., 2020),
(i) LoRA (Hu et al., 2022} [Mai et al., [2025)), and (iii) WiSE interpolation (Wortsman et al.} [2022]).
BSM and LoRA help when naive fine-tuning fails, though BSM may harm strong models. WiSE
interpolation (Figure 6a)) reliably improves accuracy without retraining, offering a simple post-hoc
boost.

Accumulated model improvements. Using BSM, LoRA, and WiSE mitigates imbalance and
limited data. Post-hoc calibration further stabilizes rare-class accuracy, especially early on.

show consistent benefits during continual updates.
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Table 1: Accuracy over accumulated training frac-
tions (mean of 15 traps).

Figure 7: Non-OOD scores correlate with zero-shot
accuracy.

3.2 End-User’s Perspective

When is zero-shot enough? Zero-shot performs well when test data matches pretraining domains but
drops under shifts. shows non-OOD confidence metrics predict reliability before deployment.

Is continual adaptation needed? [Table 1|shows accumulated models remain competitive for several
intervals but later trail continuously adapted ones, confirming long-term benefits of regular updates.

4 Conclusion and Discussion

We introduce a novel continual learning benchmark that reflects the real-world challenges of adapting
visual recognition models to camera trap deployments. Our empirical studies demonstrate that
successful adaptation relies on the thoughtful application of targeted machine learning techniques,
yielding valuable insights for system-level adaptation in dynamic environments.

Looking ahead, we hope this benchmark will serve as a catalyst for advancing adaptive machine
learning at the system level. Rather than assuming full access to labeled data at each interval for
fine-tuning, future approaches should incorporate mechanisms to actively select both intervals and
instances for human annotation and storage—enabling scalable and sustainable continual learning.
We also encourage the evaluation of future vision foundation models on this benchmark to assess
their robustness and applicability in real-world, evolving settings.
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