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Abstract

We consider a reinforcement learning (RL) set-
ting where there is a cost associated with making
accurate observations. We propose a reward shap-
ing framework and present a self-tuning RL agent
that learns to adjust the accuracy of the samples.
We consider two different scenarios: In the first
scenario, the agent directly varies the accuracy
level of each sample. In the second scenario, the
agent decides to perfectly observe some samples
and miss others. In contrast to the existing work
that focuses on sample efficiency during training,
our focus is on the behavior of the agent when the
observation cost is an intrinsic part of the environ-
ment. Our results illustrate that the RL agent can
successfully learn that not all samples are equally
informative and choose to observe the ones that
are most critical for the task at hand with high
accuracy.

1. Introduction
Doing experiments and collecting samples are expensive
in various application scenarios, for instance in the case of
medical applications with expensive tests or experiments
with chemical processes, where the high cost can be due to
limited human expert labor or materials. In such scenarios,
the decision-maker has to decide whether an experiment
which may reveal potentially important information but has
a high cost should be conducted. This decision is challeng-
ing since the usefulness of the information is not certain and
depends on the environment as well as the current knowl-
edge state of the decision-maker. Hence, it is desirable
to have an autonomous decision-making procedure which
learns to find the optimum trade-off between the informative-
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ness of the samples and their cost. In this article, we address
this problem using a policy-gradient based reinforcement
learning (RL) with reward shaping and provide a self-tuning
RL agent that can learn to adjust the accuracy level of its
samples, hence deciding effectively which samples to miss
and which samples to collect.

This setting is closely related to the missing values problem
(Little & Rubin, 1986) where some samples in a series of
data are not available; hence, decision making have to be
performed with an incomplete set of data. In particular, we
consider the following question: ”Which data samples are
not informative and hence probably not harmful to miss or
collect with high noise?”. Not all values are equally infor-
mative, and there is a hierarchy of sample values in terms
of their potential significance. The answer to this question
reveals this hierarchy, which in turn will have prominent
consequences for the processing of missing values.

The values that are missing but were expected to be uninfor-
mative can be processed in a manner that is different from
the missing values that were expected to be informative. In
particular, the values in the latter class need to be processed
with more care since these values are expected to provide
novel, distinguishing information. For instance, the practice
of imputing with the mean of the variable (Little & Rubin,
1986) which induces a bias in the estimation procedure may
be appropriate for the former case but not the latter.

Contributions: We propose a framework where a decision-
maker can adjust the accuracy of its observations. We aim
to decrease the accuracy of the observations as much as pos-
sible, and in the limiting case, only collect a small number
of informative samples. In contrast to the existing work that
focuses on sample efficiency during training, we consider
the scenario where the observation cost is intrinsic to the en-
vironment. Using reward shaping, we provide a self-tuning
RL agent that learns to successfully adjust the accuracy of
the samples.

2. Related Work
A similar setting is active learning (Settles, 2010; Donmez
et al., 2010) where an agent decides which queries to per-
form, i.e., which samples to take, during training. For in-
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stance, an agent that learns to classify images can decide
which images from a large dataset it would like to have
labels for in order to have improved accuracy (Settles, 2010;
Donmez et al., 2010). In a standard active learning approach
(Settles, 2010) as well as its extensions in RL (Lopes et al.,
2009), the main aim is to reduce the size of the training
set, hence the agent tries to determine informative queries
during training so that the performance during the test phase
is optimal. In the test phase, the agent cannot ask any ques-
tions; instead, it will answer questions, for instance, it will
be given images to label. In contrast, in our setting the agent
continues to perform queries during the test phase, such
as in the case of collecting camera images for autonomous
driving. Our aim is to reduce the number of queries the
agent performs during this actual operation.

Another related line of work consists of the RL approaches
that facilitate efficient exploration of state space, such as
curiosity-driven RL (Pathak et al., 2017) or active-inference
based methods utilizing free-energy (Ueltzhöffer, 2018;
Schwöbel et al., 2018) and the works that focus on operation
with limited data using a model (Chua et al., 2018; Deisen-
roth & Rasmussen, 2011). In these works, the focus is either
finding informative samples (Pathak et al., 2017) or using
a limited number of samples/trials as possible (Chua et al.,
2018; Deisenroth & Rasmussen, 2011) during the agent’s
training. In contrast to these approaches, we would like to
decrease the number of samples taken during the test phase,
i.e. actual operation of the agent.

3. Problem Setting
3.1. Preliminaries

Consider a Markov decision process (MDP) given by
〈S,A,P, R, Ps0 , γ〉 where S is the state space, A is the
set of actions, P : S × A × S → R denotes the transition
probabilities, R : S ×A → R denotes the reward function,
Ps0 : S → R denotes the probability distribution over the
initial state and γ ∈ (0, 1] is the discount factor.

The agent, i.e. the decision maker, observes the state of the
system st at time t and decides on its action at based on
its policy π(s, a). Here, the policy mapping of the agent
π(s, a) : S × A → [0, 1] is stochastic and gives the prob-
ability of taking the action a at a state s. After the agent
implements the action at, it receives a reward r(st, at) and
the environment moves to the next state st+1 which depends
on the action at and the previous state st. The aim of the
agent is to learn an optimal policy mapping π(s, a) so that
the expected return J(π) = Eat∼π,st∼P [

∑
t γ

tr(st, at)] is
maximized.

We adopt a deep RL approach, combining reinforcement
learning with deep learning (François-Lavet et al., 2018).
In particular, we consider a policy-based approach, Trust
Region Policy Optimization (TRPO) (Schulman et al., 2015;

Hill et al., 2018). Here, the policy π is directly characterized
using a set of parameters η, i.e., π(s, a) = π(s, a; η) and
TRPO uses Kullbeck-Leiber divergence between the new
policy and the old policy to create a trust region to improve
convergence behaviour to the optimal policy. In our deep
RL framework, η represent the parameters of the multi-layer
neural network that characterizes π.

3.2. Partial Observability

Although most RL algorithms are typically expressed in
terms of MDPs, in most real-life applications the states are
not directly observable. Hence, the data used by the agent
to make decisions is not a direct representation of the state
of the world, such as noisy images obtained from cameras
or inaccurate test results in medical applications. Hence,
we consider a partially observable Markov decision process
(POMDP) where the above MDP is augmented byO and Po
whereO represents the set of observations and Po : S → O
represents the observation probabilities. Accordingly, the
policy mapping is now expressed as π(o, a) : O × A →
[0, 1]. In particular, the observations are governed by

ot ∼ po(ot|st;β) (1)

where po(ot|st;β) denotes the conditional probability dis-
tribution function (pdf) of ot under st and is parametrized
by β. Here, β represents the accuracy of the observations.
As β increases, the accuracy of the observations decreases.
For instance, consider the Gaussian additive noise model
with ot = st + vt where ot, st, vt ∈ R with vt Gaussian
with N (0, σ2

v). Then, one may choose β = σv and hence
parametrize po as po(ot|st;β) = N (st, β

2 = σ2
v). Note

that there is not a single choice for this parametrization, for
instance, one may also adopt β = σ2

v .

3.3. Proposed Approach

Reward shaping is a popular approach to direct RL agents
towards a desired goal. Here, we would like the agent not
only move towards to the original goal (which is encouraged
by the original reward r), we also want it to learn to control
β so that not all samples are taken with the same accuracy.
Hence, we propose reward shaping in the following form:

r̄ = f(r, β) (2)

where r is the old reward, r̄ is the new reward and f(r, β)
is a monotonically increasing function of r and β. Hence,
the agent not only tries to maximize average of the original
reward but it also tries to maximize the “inaccuracy” of
the measurements. This can be equivalently interpreted as
minimizing the cost due to accurate measurements.

In general, the form of the original reward r depends on the
particular application. Similarly, the form of the function
f(.) will be application specific. Nevertheless, a simple but
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Table 1. Hyperparameters of the TRPO algorithm.

PARAMETER VALUE

COMPUTE GRADIENT DAMPENING FACTOR 2.35E-05
WEIGHT FOR THE ENTROPY LOSS 0.01118
GAMMA 0.98
GAE FACTOR 0.9
KULLBACK-LEIBLER LOSS THRESHOLD 0.000193
NO. OF TIMESTEPS TO RUN PER BATCH 1024
VALUE FUNC.’S NO. ITERS. FOR LEARNING 10
VALUE FUNC. STEPSIZE 0.00428
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Figure 1. The noise level selected by the RL agent with respect to
angle of the pendulum.

attractive option is the additive model

f(r, β) = r + g(β) (3)

where g(β) is an increasing function of β. Now, the design
variable is the functional form of g(.). In this article, we pro-
vide a proof of concept using (3). The details are provided
in Section 4.

4. Experiments
4.1. Proposed Approach and Pendulum Environment

In our experiments, we consider Pendulum-v0 environment
of the OpenAI Gym framework (Brockman et al., 2016). In
the original pendulum environment, the state is defined by
the tuple (θ, θ̇) where θ ∈ (−π, π) is the angle of pendulum
and θ̇ ∈ (−8, 8) is the angular speed of the pendulum. The
observation is defined as (cos(θ), sin(θ), θ̇). The action of
the agent is the effort exerted on the pendulum which is
denoted as α ∈ (−2, 2). The pendulum starts at a random
position. The aim is to bring the pendulum on the vertical
position (i.e. θ = 0 ) and keep it there.

In our modified environment, the noisy observations from
the environment are given as follows:

θ̃ = θ + Cθ × U(−β, β), (4)
˜̇
θ = θ̇ + Cθ̇ × U(−β, β), (5)
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Figure 2. The noise level selected by the RL agent as a function of
speed and angle of the pendulum.

Figure 3. The noise levels selected by the RL agent as a function
of the position of the pendulum.

where U(−β, β) is the uniform distribution over [−β, β]
with β ∈ [0, 1]. Here, Cθ and Ċθ̇ indicate the scaling of the
noise level. In addition to the standard action of choosing α,
our agent also chooses β. The original reward function of
the environment is given by (Brockman et al., 2016)

r = −(θ2 + 0.1θ̇2 + 0.001α2). (6)

We shape the reward according to the additive model

r̄ = r + g(β), (7)

where g(β) = k × β and k > 0. As we reward the agent
for acquiring noisy samples in proportion to k, the agent is
expected to request more noisy samples as k increases.

We consider the following scenarios:
Scenario A: The agent can vary the noise level continuously.
We consider this scenario with β ∈ [0, 1] andCθ = 0.2×2π,
Cθ̇ = 0.2 × 8 and k = 1. Hence, the maximum noise is
20% of the range of the respective noiseless observations.
Scenario B: The agent has to choose between i) collecting
the observation with zero noise or ii) not getting it at all.



How to miss data? Reinforcement learning for environments with high observation cost

0 25 50 75 100 125 150 175 200
Steps

miss

sample

Figure 4. Sampling decisions made at each step of a sample run of the trained policy. In this run, the agent took 101 samples out of 200.

This setting corresponds to the case with β ∈ {0,∞}. Here,
missing values are imputed using the most recent sample.

For both scenarios, we inherited the hyperparameters of
TRPO from (Raffin, 2018). The hyperparameters are pre-
sented in Table 1.

4.2. Experiments - Scenario A

Fig. 1 shows how the noise level selected by the RL agent
changes with the angle of the pendulum. The agent reduces
the noise level significantly when the observed position of
the pendulum is close to the upright position since, in this
vulnerable position, a badly chosen action based on a noisy
measurement may cause the pendulum to drop.

In Fig. 2, we present the noise levels selected by the agent
as a function of both speed and angle. These results reveal
that the speed of the pendulum rather than its angle is the
deciding factor for the sampling noise. If the speed of the
pendulum is low, the agent gets a low-noise sample so that it
can keep or move the pendulum around its upright position.
Dependency of the noise on the angle in Fig. 1 is due to the
fact that the speed of the pendulum is usually lowest in the
upright position.

The noise levels of the samples for different positions of the
pendulum are provided in Fig. 3. Each point corresponds
to a sample, where the angular position of the point is the
position of the pendulum and the distance of the point from
the origin indicates the noise level. When the pendulum is in
upright position, the agent gets samples without noise. We
observe that the policy has an asymmetry in choosing the
noisy samples in the angular domain. Instead of distributing
the noiseless samples uniformly over the whole range of θ
values, the agent preferred to always sample with the highest
noise level when the pendulum is on the right side, between
180 and 310 degrees. This behaviour can be considered a
consequence of the agent’s behaviour for climbing up the
pendulum in one side and letting it to fall on the other side.

4.3. Experiments - Scenario B

In Fig. 4, we provide the sampling decisions made by the
agent when it is forced to decide between only sample and
miss. Here, the agent only took half of the samples (101 out
of 200) but was still able to exert correct actions and hold
the pendulum in the upright position.

As a result of sparse sampling, it takes 47 steps to get to the
upright position whereas it takes 43 steps when the agent
has access to all noiseless samples. Hence, the number of
samples required in order to reach the upright position is
only slightly affected by the fact that the agent is penalized
for taking samples. Note that the above 200 step window
of Fig. 4, also shows what happens after reaching the goal
position. As seen in the figure, the agent chooses to miss
samples both before and after reaching the goal.

5. Discussions
These types of design problems are encountered in various
applications, such as the case of expensive but high-accuracy
medical tests, physics experiments as well as in wireless
communications. For instance, consider the task of con-
trol over a wireless communication channel. Increasing the
broadcast power, hence decreasing the effective noise of
the communication channel, increases the information rate
(Cover & Thomas, 1991). On the other hand, in practice,
it is not possible to constantly use high amounts of broad-
cast power due to high energy footprint, health concerns,
and also challenges due to high-power electronics. Hence,
minimizing the communication power cost (i.e. control-
ling the inaccuracy of the measurements) while being able
to perform the original task, such as the control of a pen-
dulum, is highly desirable. These types of problems are
typically approached by handling the communication and
control tasks separately whereas, here, we provide a joint
framework using an RL agent.

6. Conclusions and Future Work
Motivated by the varying cost of real-life experiments and
their capacity to provide new information, we have proposed
a framework where a decision maker can adjust the accu-
racy of its observations. We have considered an autonomous
decision making setting where a RL agent learns to vary
the accuracy of its samples using past experience. Gener-
alizations to other observation accuracy models together
with further investigations into optimal handling of missing
and inaccurate samples are considered as interesting future
research directions.
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