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ABSTRACT

Estimating individual treatment effects from observational data is highly challeng-
ing due to the existence of treatment selection bias. Most prevalent approaches
mitigate this issue by aligning distributions of different treatment groups in the
representation space. However, there are two critical problems circumvented: (1)
mini-batch sampling effects (MSE), where the alignment easily fails due to the
outcome imbalance or outliers at a mini-batch level; (2) unobserved confounder
effects (UCE), where the unobserved confounders damage the correct alignment.
To tackle these problems, we propose a principled approach named Entire Space
CounterFactual Regression (ESCFR) based on a generalized sinkhorn discrepancy
for distribution alignment within the stochastic optimal transport framework. Based
on the framework, we propose a relaxed mass-preserving regularizer to address
the MSE issue and design a proximal factual outcome regularizer to handle the
UCE issue. Extensive experiments demonstrate that our proposed ESCFR can
successfully tackle the treatment selection bias and achieve significantly better
performance than state-of-the-art methods.

1 INTRODUCTION

Estimating individual treatment effect (ITE) with randomized controlled trials is a common practice in
causal inference, which has been widely used in e-commerce (Betlei et al., 2021), education (Cordero
et al., 2018), and health care (Schwab et al., 2020). For example, drug developers would conduct
clinical A/B tests to evaluate the drug effects. Although randomized controlled trials are the gold
standard (Pearl & Mackenzie, 2018) for causal inference, it is often prohibitively expensive to conduct
such experiments. Hence, observational data that can be acquired without intervention has been a
tempting shortcut. For example, drug developers tend to assess drug effects with post-marketing
monitoring reports instead of clinical A/B trials. With the growing access to observational data,
estimating ITE from observational data has attracted intense research interest.

Estimating ITE with observational data has two main challenges: (1) missing counterfactuals, i.e., only
one factual outcome out of all potential outcomes can be observed; (2) treatment selection bias, i.e.,
individuals have their preferences for treatment selection, making units in different treatment groups
heterogeneous. To handle missing counterfactuals, meta-learners (Künzel et al., 2019) decompose the
ITE estimation task into solvable factual outcome estimation subproblems. However, the treatment
selection bias makes it difficult to generalize the factual outcome estimators trained within respective
treatment groups to the entire population; consequently, the derived ITE estimator is biased.

Beginning with counterfactual regression (Shalit et al., 2017) and its revolutionary performance, most
prevalent methods handle the selection bias by minimizing the distribution discrepancy between
groups in the representation space (see Liuyi et al., 2018; Hassanpour & Greiner, 2020; Cheng
et al., 2022). However, two critical issues with these methods have long been neglected, which
significantly impedes them from handling the treatment selection bias. The first problem is the
mini-batch sampling effects (MSE). Specifically, current representation-based methods (Shalit et al.,
2017; Liuyi et al., 2018) compute distribution discrepancy within mini-batches instead of the entire
data space, making it vulnerable to bad sampling cases. For example, given two aligned distributions,
if a mini-batch outlier exists in the sampled distribution, the mini-batch discrepancy will be significant,
making the training process noise-filled. The second problem is the unobserved confounder effects
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(a) Handling treatment selection bias with ψ(⋅).
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(b) Architecture of ESCFR.

Figure 1: Overview of handling treatment selection bias with ESCFR. Red (blue) indicates treated
(untreated) group. (a) Treatment selection bias causes the shift between X1 and X0, impeding ϕ1 and
ϕ0 to generalize beyond the respective group’s properties. Scatters and curves indicate the units and
fitted outcome mappings, respectively. (b) ESCFR handles this issue by mapping covariates to an
overlapped representation space with R = ψ(X) where ϕ1 and ϕ0 are mutually generalizable.

(UCE). Specifically, current approaches directly assume unconfoundedness Ma et al. (2022), while
the unobserved confounders widely exist in real scenarios and make the resulting estimators biased.

Contributions and outline. In this paper, we propose an effective ITE estimator based on optimal
transport, Entire Space CounterFactual Regression (ESCFR), which tackles both the MSE and UCE
issues with a generalized sinkhorn discrepancy. Specifically, after preliminaries in Section 2, we
first reformulate the ITE estimation problem as a stochastic optimal transport problem in Section 3.1.
We next showcase the MSE issue faced by existing approaches in Section 3.2 and propose a relaxed
mass-preserving regularizer to mitigate this issue. We further investigate the UCE issue in Section 3.3
and propose a proximal factual outcome regularizer to solve it. We finally formulate the architecture
and learning objectives of ESCFR in Section 3.4, and report the experimental results in Section 4.

2 PRELIMINARIES

2.1 CAUSAL INFERENCE FROM OBSERVATIONAL DATA

This section formulates basic definitions and models in observational causal inference. We first
formalize the fundamental elements in Definition 2.1 following the general notation convention1.
Definition 2.1. Let X be the random variable of covariates, with support X and distribution P(x);
Let R be the random variable of induced representations, with supportR and distribution P(r); Let
Y be the random variable of outcomes, with support Y and distribution P(y); Let T be the random
variable of treatment indicator, with support T = {0,1} and distribution P(T ).

Following the potential outcome framework (Rubin, 1974), an individual with covariates x has two po-
tential outcomes, namely Y1(x) given it is treated and Y0(x) otherwise. The ground-truth individual
treatment effect (ITE) is always formulated as the expected difference of potential outcomes:

τ(x) ∶= E [Y1 − Y0 ∣ x] , (1)

where one of these two outcomes is always unobserved. To address such missing counterfactuals, the
ITE estimation task is commonly decomposed into potential outcome estimation subproblems that are
solvable with any supervised learning method (Künzel et al., 2019). For example, T-learner models
the factual outcomes Y for units in the treated and untreated groups separately; S-learner regards the
treatment indicator T as one of the covariates X , and models Y for all units simultaneously. The ITE
estimate is then the difference of the estimated outcomes when T is set to treated and untreated.
Definition 2.2. Let ψ ∶ X → R be a mapping from support X to R, i.e., ∀x ∈ X , ∃r = ψ(x) ∈ R.
Let ϕ ∶ R × T → Y be a mapping from support R × T to Y , i.e., it maps the representations and
treatment indicator to the corresponding factual outcome. For example, Y1 = ϕ1(R), Y0 = ϕ0(R),
where we abbreviate ϕ(R,T = 1) and ϕ(R,T = 0) to ϕ1(R) and ϕ0(R), respectively, for brevity.

1We use uppercase letters, e.g., X to denote a random variable, and lowercase letters, e.g., x to denote an
associated specific value. Letters in calligraphic font, e.g., X represent the support of the corresponding random
variable, and P() represents the probability distribution of the random variable, e.g., P(X).



TARNet (Shalit et al., 2017) obtains better performance by absorbing the advantages of both T-learner
and S-learner, consisting of a representation mapping ψ and an outcome mapping ϕ as defined in
Definition 2.2. For an individual with covariates X , TARNet estimates ITE as:

τ̂ψ,ϕ(X) = Ŷ1 − Ŷ0, where Ŷ1 = ϕ1(ψ(X)), Ŷ0 = ϕ0(ψ(X)), (2)

where ψ is trained over all individuals, ϕ1 and ϕ0 are trained over the treated and untreated group,
respectively, to minimize the factual error. Finally, the performance of ITE estimators is mainly
evaluated with the precision in estimation of heterogeneous effect (PEHE):

ϵPEHE(ψ,ϕ) ∶= ∫X (τ̂ψ,ϕ(x) − τ(x))
2 P̂(x)dx. (3)

However, according to Figure 1(a), the treatment selection bias causes a distribution shift of covariates
across groups, which misleads ϕ1 and ϕ0 to overfit their respective group’s properties and generalize
poorly to the entire population. Therefore, the ITE estimate τ̂ by these methods would be biased.

2.2 DISCRETE OPTIMAL TRANSPORT AND SINKHORN DIVERGENCE

Optimal transport (OT) instantiates distribution discrepancy as the minimum transport cost, which
provides a grip for quantifying the treatment selection bias in Figure 1(a). Monge (1781) first
formulated OT as finding an optimal mapping between two distributions. However, this formulation
cannot guarantee the existence and uniqueness of solutions. Kantorovich (2006) proposed a more
applicable formulation in Definition 2.3, which can be seen as a generalization of Monge problem.

Definition 2.3. For empirical distributions α and β with n and m units, respectively, the Kantorovich
problem aims to find a feasible plan π ∈ Rn×m+ which transports α to β at minimum cost:

W(α,β) ∶= min
πππ∈Π(α,β)

⟨D,πππ⟩ , Π(α,β) ∶= {πππ ∈ Rn×m+ ∶ πππ1m = a,πππT1n = b} , (4)

where W(α,β) ∈ R is the Wasserstein discrepancy between α and β; D ∈ Rn×m+ is the unit-wise
distance2 between α and β; a and b indicate the mass of units in α and β, and Π is the feasible
transportation plan set which ensures the mass-preserving constraint holds.

However, exact solutions (Bonneel et al., 2011) to (4) always come with high computational costs.
As such, researchers would always add an entropic regularization to the Kantorovich problem:

Wϵ(α,β) ∶= ⟨D,πππϵ⟩ , πππϵ ∶= argmin
πππ∈Π(α,β)

⟨D,πππ⟩ − ϵH(πππ), H(πππ) ∶= −∑
i,j

πππi,j (log(πππi,j) − 1) , (5)

making the problem ϵ-convex and solvable with the Sinkhorn algorithm (Cuturi, 2013). The Sinkhorn
algorithm only consists of matrix-vector products, making it suited to be accelerated with GPUs.

3 PROPOSED METHOD

In this section, we present the proposed Entire Space CounterFactual Regression (ESCFR) approach
based on optimal transport to tackle the treatment selection bias. We first illustrate the stochastic
optimal transport framework for distribution discrepancy minimization across treatment groups.
Based on the framework, we then propose a relaxed mass-preserving regularizer to address the
sampling effect, and a proximal factual outcome regularizer to handle the unobserved confounders.
We finally summarize the model architecture, learning objectives, and optimization algorithm.

3.1 STOCHASTIC OPTIMAL TRANSPORT FOR COUNTERFACTUAL REGRESSION

Representation-based approaches mitigate the treatment selection bias by calculating the distribution
discrepancy in the representation space and then minimizing it. We select optimal transport to
compute the discrepancy since it has shown compelling advantages over its competitors. Specifically,
it accounts for the distribution’s geometry and thus works in the cases where ϕ-divergence (e.g.,
Kullback-Leibler divergence) fails (Seguy et al., 2018). In addition, the calculated discrepancy can

2We calculate the unit-wise distance with the squared Euclidean metric following Courty et al. (2017b).



be optimized with the traditional supervised learning framework instead of the adversarial learning
framework, and is therefore easier to optimize than adversarial-based methods (Kallus, 2020).

Optimal transport calculates the group discrepancy as W (PT=1
ψ (r),PT=0

ψ (r)), where PT=1
ψ (r) and

PT=0
ψ (r) are the distributions of representations in treated and untreated groups, respectively, induced

by the mapping r = ψ (x). The discrepancy is differentiable with respect to ψ (Flamary et al., 2021),
thus can be minimized by updating the representation mapping ψ with gradient-based optimizers.

Definition 3.1. Let P̂T=1(x) and P̂T=0(x) be the empirical distributions of covariates at a mini-batch
level, which contain n treated units and m untreated units, respectively; P̂T=1ψ (r) and P̂T=0ψ (r) be
that of representations induced by the representation mapping r = ψ(x) defined in Definition 2.2.

However, since prevalent neural estimators mainly update parameters with stochastic gradient meth-
ods, only a fraction of the units is accessible within each iteration. A shortcut in this context is to
calculate the group discrepancy at a stochastic mini-batch level:

Ŵψ ∶=W (P̂T=1
ψ (r), P̂T=0

ψ (r)) . (6)

To further investigate the effectiveness of this shortcut, Theorem 3.1 demonstrates that PEHE can be
optimized by iteratively minimizing the factual outcome estimation error and the mini-batch group
discrepancy (6). The proof of the theorem can be found in Appendix A.3.
Theorem 3.1. Let ψ and ϕ be the representation mapping and factual outcome mapping, respectively;
Ŵψ be the group discrepancy at a mini-batch level. With the probability of at least 1 − δ, we have:

ϵPEHE(ψ,ϕ) ≤ 2 [ϵT=1F (ψ,ϕ) + ϵT=0F (ψ,ϕ) +BψŴψ − 2σ2
Y +O(

1

δN
)] , (7)

where ϵT=1F and ϵT=0F are the expected errors of factual outcome estimation, N is the batch size, σ2
Y

is the variance of outcomes, Bψ is a constant term, and O(⋅) is a sampling complexity term.

3.2 RELAXED MASS-PRESERVING REGULARIZER FOR SAMPLING EFFECT

(a) Ideal (b) Imbalance (c) Outlier

Figure 2: Optimal transport plan (upper) and its
geometric interpretation (down) in three cases,
where the connection strength depicts the trans-
ported mass. Different colors (vertical posi-
tions) indicate different treatments (outcomes).

Although Theorem 3.1 guarantees that the empirical
OT discrepancy (6) bounds the PEHE, the sampling
complexity term O(⋅) inspires us to investigate the
potential risks of bad cases caused by stochastic
sampling. Precisely, O(⋅) results from the discrep-
ancy between the entire population and the sampled
mini-batch units (see (30) and (32) in Appendix A)
which is highly dependent on the uncontrollable
sampling quality. Therefore, the discrepancy mea-
sure should be robust to bad sampling cases, other-
wise the resulting huge variance will impede it from
computing and reducing the actual discrepancy.

The OT discrepancy in (6) can be easily disturbed
by many sampling cases, except for the ideal case
in Figure 2(a) where the transport strategy is rea-
sonable and applicable. For example, according to
Figure 2(b), it falsely matches units with unrelated
factual outcomes in the mini-batch where the out-
comes between groups are imbalanced; according
to Figure 2(c), it falsely matches the mini-batch outliers to normal units, causing a substantial disrup-
tion of the transportation strategy. In short, the vanilla OT technique in (6) fails to quantify the group
discrepancy for producing erroneous transport strategies in non-ideal mini-batches, and thus misleads
the update of the representation mapping ψ. We summarize this phenomenon as the mini-batch
sampling effect (MSE) issue 3.

3Apart from OT, most prevalent methods (Ma et al., 2022; Liuyi et al., 2018) fail to handle the treatment
selection bias for neglecting the MSE issue. The ability to formalize the MSE issue through the mass-preserving
constraint is an important advantage of OT over other techniques, as it provides a grip for handling it.



This issue is attributed to the mass-preservation constraint in (5), which requires that all units in both
groups match each other, regardless of the actual situation. Mini-batch outliers, for instance, would
be compelled to be transported according to Figure 2, which impedes the transport of normal units
and the computation of the actual group discrepancy. A small batch size would exacerbate this defect.
Definition 3.2. For empirical distributions α and β with n and m units, respectively, optimal transport
with relaxed mass-preserving constraint seeks the transport strategy πππ at the minimum cost:

Wϵ,κ(α,β) ∶=min
πππ
⟨D,πππ⟩ ,πππ ∶= argmin

πππ
⟨D,πππ⟩− ϵH(πππ)+κ(DKL(πππ1m,a)+DKL(πππT1n,b)) (8)

where D ∈ Rn×m+ is the unit-wise distance, and a; b indicate the mass of units in α and β, respectively.

An intuitive approach to mitigate MSE is to relax the marginal constraint and allow for the creation
and destruction of unit’s mass. To this end, a relaxed mass-preserving regularizer (RMPR) is devised
in Definition 3.2, which replaces the hard marginal constraint in (4) with a soft penalty in (8) for
deriving transport strategy. In this context, the stochastic discrepancy is calculated as

Ŵϵ,κ
ψ ∶=W

ϵ,κ (P̂T=1
ψ (r), P̂T=0

ψ (r)) , (9)

where the hard mass-preservation constraint is removed to mitigate the MSE issue. Inspired by Fatras
et al. (2021), the robustness of RMPR to sampling effects can be further theoretically investigated in
Theorem 3.2, where the effect of mini-batch outliers is upper bounded by a constant.
Theorem 3.2. For empirical distributions α,β with n and m units, respectively, adding an outlier a′
to α and denoting the disturbed distribution as α′, we have

W0,κ (α′, β) −W0,κ (α,β) ≤ 2κ(1 − e−∑b∈β(a
′−b)2/2κ)/n, (10)

which is upper bounded by 2κ/n. W0,κ is the unbalanced discrepancy as per Definition 3.2.

In addition, compared with alternatives (Xu et al., 2020; Chapel et al., 2021) to relax the marginal
constraint, the approach in Definition 3.2 has better metric properties (Séjourné et al., 2019) and can
be accelerated via the generalized Sinkhorn algorithm (Chizat et al., 2018). It is differentiable w.r.t.
ψ and thus can be minimized via stochastic gradient methods in an end-to-end manner.

3.3 PROXIMAL FACTUAL OUTCOME REGULARIZER FOR UNOBSERVED CONFOUNDERS
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Figure 3: Causal graphs with (a) and w/o (b)
the unconfoundedness assumption. The shaded
node indicates the hidden confounder X ′.

Existing representation-based methods fail to elim-
inate the treatment selection bias due to the unob-
served confounder effects (UCE). Beginning with
CFR (Shalit et al., 2017), the unconfoundedness
assumption A.1 (see Appendix A) is often taken to
circumvent the UCE issue (Ma et al., 2022). Given
two units ri ∈ PT=1ψ (r) and rj ∈ PT=0ψ (r), for in-
stance, optimal transport in Definition 3.2 calcu-
lates the unit-wise distance as Dij ∶= ∥ri − rj∥2. If
Assumption A.1 holds, this approach mitigates the
treatment selection bias since it blocks the backdoor
path X → T in Figure 3(a) by balancing the confounders across groups in a latent space. However,
Assumption A.1 is usually violated in practice as per Figure 3(b), which hinder existing methods
including OT from handling treatment selection bias since the backdoor path X ′ → T is not blocked.

According to Figure 3(b), given balanced X and identical T , the only variable reflecting the variation
of X ′ is the outcome Y . As such, inspired by the joint distribution transport technique (Courty et al.,
2017a), we propose to calibrate the unit-wise distance D with the potential outcomes as follow:

Dγ
ij = ∥ri − rj∥

2 + γ ⋅ [∥yT=0i − yT=0j ∥2 + ∥yT=1j − yT=1i ∥2] , (11)

where γ controls the strength of regularization. The underlying regularization is: units with similar
(both observed and unobserved) confounders should have similar potential outcomes. As such, for a
pair of units with similar observed covariates, i.e., ∥ri − rj∥2 ≈ 0, if their potential outcomes given
the same treatment t = {0,1} differ greatly, i.e., ∥yti − ytj∥ >> 0, their unobserved confounders should
likewise differ significantly. The vanilla OT technique in (6) with Dij = ∥ri − rj∥2 would incorrectly



match this pair because ∥ri − rj∥2 ≈ 0, generate a false transport strategy, and consequently misguide
the update of the representation mapping ψ. In contrast, OT based on Dγ

ij would not match this pair
as the difference of unobserved confounders is compensated with that of potential outcomes.

Moreover, since yT=0i and yT=1j in (11) are unavailable due to the missing counterfactual outcomes,
the proposed proximal factual outcome regularizer (PFOR) uses their estimates instead. Specifically,
let ŷi and ŷj be the estimates of yT=0i and yT=1j , respectively, PFOR refines (11) as

Dγ
ij = ∥ri − rj∥

2 + γ ⋅ [∥ŷi − yj∥2 + ∥ŷj − yi∥2] , ŷi = ϕ0(ri), ŷj = ϕ1(rj), (12)

Additional justifications, assumptions and limitations of PFOR are discussed in Appendix D.3.

3.4 ARCHITECTURE OF ENTIRE SPACE COUNTERFACTUAL REGRESSION

The architecture of ESCFR is presented in Figure 1(b), where the covariate X is first mapped to the
representations R with ψ(⋅), and then to the potential outcomes with ϕ(⋅). The group discrepancy W
is calculated with the optimal transport equipping with the RMPR in (8) and PFOR in (12).

The learning objective is to minimize the risk of factual outcome estimation and the group discrepancy.
Given mini-batch distributions P̂T=1(x) and P̂T=0(x) in Definition 3.1, the risk of factual outcome
estimation following Shi et al. (2019) can be formulated as

LF(ψ,ϕ) ∶= Exi∈P̂T=1(x)∥ϕ1(ψ(xi)) − yi∥
2 +Exj∈P̂T=0(x)∥ϕ0(ψ(xj)) − yj∥

2, (13)

where yi and yj are the factual outcomes for the corresponding treatment groups. The discrepancy is:

Lϵ,κ,γD (ψ) ∶=Wϵ,κ (P̂T=1
ψ (r), P̂T=0

ψ (r)) , (14)

which is in general the optimal transport with RMPR in Definition 3.2, except for the unit-wise
distance Dγ calculated with the PFOR in (12). Finally, the overall learning objective of ESCFR is

Lϵ,κ,γ,λESCFR ∶= LF(ψ,ϕ) + λ ⋅Lϵ,κ,γD (ψ), (15)

where λ controls the strength of distribution alignment, ϵ controls the entropic regularization in (5),
κ controls RMPR in (8), and γ controls PFOR in (12). The learning objective (15) mitigates the
selection bias following Theorem 3.1 and handles the MSE and UCE issues.

The optimization procedure consists of three steps as summarized in Algorithm 3. First, compute πππϵ,κ
by solving the linear programming problem in Definition 3.2 with Algorithm 2, where the unit-wise
distance is calculated with Dγ . Second, compute the discrepancy in (14) as ⟨πππϵ,κ,Dγ⟩, where Dγ is
differentiable to ψ, making it feasible to minimize this discrepancy with its gradient w.r.t. ψ. Finally,
calculate the overall loss in (15) and update ψ and ϕ with stochastic gradient methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Missing counterfactuals impedes the evaluation of PEHE with observational benchmarks.
Following Liuyi et al. (2018); Shalit et al. (2017), experiments are conducted on two semi-synthetic
benchmarks. Specifically, the IHDP benchmark aims to estimate the effect of specialist home visits
on infants’ potential cognitive scores, with 747 observations and 25 covariates; the ACIC dataset
comes from the collaborative perinatal project, with 4802 observations and 58 covariates.

Baselines. We consider three groups of baselines. (1) Statistical estimators: least square regression
with the treatment as covariates (OLS), random forest with the treatment as covariates (R.Forest), a
single network with the treatment as covariates (S.learner by Künzel et al. (2019)), separate neural
regressors for each treatment group (T.learner by Künzel et al. (2019)), TARNet (Shalit et al., 2017);
(2) Matching estimators: propensity score match with logistic regression (PSM by Rosenbaum &
Rubin (1983b)), k-nearest neighbor (k-NN by Crump et al. (2008)), causal forest (C.Forest by Wager
& Athey (2018)), orthogonal forest (O.Forest by Wager & Athey (2018)); (3) Representation-based
methods: balancing neural network (BNN by Johansson et al. (2016)), counterfactual regression with
MMD (CFR-MMD) and Wasserstein metric (CFR-WASS) by Shalit et al. (2017).



Table 1: Performance (mean±std) on the PEHE and AUUC metrics. “*” marks the baseline estimators
that ESCFR outperforms significantly at p-value < 0.05 over paired samples t-test.

Dataset ACIC (PEHE) IHDP (PEHE) ACIC (AUUC) IHDP (AUUC)

Model In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample

OLS 3.749±0.080∗ 4.340±0.117∗ 3.856±6.018 5.674±9.026 0.843±0.007 0.496±0.017∗ 0.652±0.050 0.492±0.032∗
R.Forest 3.597±0.064∗ 3.399±0.165∗ 2.635±3.598 4.671±9.291 0.902±0.016 0.702±0.026∗ 0.736±0.142 0.661±0.259
S.Learner 3.572±0.269∗ 3.636±0.254∗ 1.706±1.600∗ 3.038±5.319 0.905±0.041 0.627±0.014∗ 0.633±0.183 0.702±0.330
T.Learner 3.429±0.142∗ 3.566±0.248∗ 1.567±1.136∗ 2.730±3.627 0.846±0.019 0.632±0.020∗ 0.651±0.179 0.707±0.333
TARNet 3.236±0.266∗ 3.254±0.150∗ 0.749±0.291 1.788±2.812 0.886±0.046 0.662±0.014∗ 0.654±0.184 0.711±0.329

C.Forest 3.449±0.101∗ 3.196±0.177∗ 4.018±5.602∗ 4.486±8.677 0.717±0.005∗ 0.709±0.018∗ 0.643±0.141 0.695±0.294
k-NN 5.605±0.168∗ 5.892±0.138∗ 2.208±2.233∗ 4.319±7.336 0.892±0.007∗ 0.507±0.034∗ 0.725±0.142 0.668±0.299
O.Forest 8.094±4.669∗ 4.148±2.224∗ 2.605±2.418∗ 3.136±5.642 0.744±0.013 0.699±0.022∗ 0.664±0.157 0.702±0.325
PSM 5.228±0.154∗ 5.094±0.301∗ 3.219±4.352∗ 4.634±8.574 0.884±0.010 0.745±0.021 0.740±0.149 0.681±0.253

BNN 3.345±0.233∗ 3.368±0.176∗ 0.709±0.330 1.806±2.837 0.882±0.033 0.645±0.013∗ 0.654±0.184 0.711±0.329
CFR-MMD 3.182±0.174∗ 3.357±0.321∗ 0.777±0.327 1.791±2.741 0.871±0.032 0.659±0.017∗ 0.655±0.183 0.710±0.329
CFR-WASS 3.128±0.263∗ 3.207±0.169∗ 0.657±0.673 1.704±3.115 0.873±0.029 0.669±0.018∗ 0.656±0.187 0.715±0.329

ESCFR 2.252±0.297 2.316±0.613 0.607±0.328 1.257±0.677 0.796±0.030 0.754±0.021 0.659±0.187 0.734±0.329

Training protocol. A fully connected neural network with two 60-dimensional hidden layers is
selected to instantiate the representation mapping ψ and the factual outcome mapping ϕ for ESCFR
and other neural network based baselines. To ensure a fair comparison, all neural models are trained
for 400 epochs with Adam optimizer, with the learning rate and weight decay both set to 0.001. Other
settings of optimizers follow Kingma & Ba (2015). We fine-tune hyperparameters within the range in
Figure 5, validate performance every two epochs, and save the optimal model for test.

Evaluation protocol. Following Liuyi et al. (2018), PEHE in (3) is used as the precision metric
for performance evaluation. However, it is unavailable in the model selection phase due to missing
counterfactuals. As such, we use the area under the uplift curve (AUUC) (Betlei et al., 2021) to
guide model selection, which measures the counterfactual ranking performance of the model and
can be computed without counterfactual outcomes. The within-sample and out-of-sample results are
reported on the training and test data, respectively, following Shalit et al. (2017).

4.2 PERFORMANCE COMPARISON

Table 1 reports the performance of ESCFR and its competitors over ten runs. Statistical estimators
exhibit competitive performance on the PEHE metric. Due to the superiority to depict non-linearity,
neural estimators outperform linear and random forest methods. In particular, TARNet that absorbs
the advantage of T-learner and S-learner achieves the best overall performance in statistic estimators.
However, the circumvention to treatment selection bias leads to inferior performance.

Matching methods, e.g., PSM exhibit compelling ranking performance, which explains why they are
favored in counterfactual ranking practice (Betlei et al., 2021). However, their poor performance on
PEHE hinders their application in counterfactual estimation applications such as advertising systems
that place more emphasis on the accuracy of treatment effect estimation.

Representation-based methods mitigate the treatment selection bias and enhance overall performance.
In particular, CFR-WASS reaches an out-of-sample PEHE of 3.207 on ACIC, significantly outper-
forming most statistical methods. However, the MSE and UCE issues impede these methods from
solving the treatment selection bias. The proposed ESCFR achieves significant improvement over
most metrics compared with various prevalent baselines 4. Combined with the comparisons above,
we attribute its superiority to the proposed RMPR and PFOR regularizers, which makes it robust to
MSE and UCE. See Appendix D.5 for additional comparison results.

4.3 ABLATION STUDY

To verify the effectiveness of individual components, an ablation study is conducted on the ACIC
benchmark in Table 2. Specifically, ESCFR first augments TARNet with stochastic optimal transport
in Section 3.1, which effectively reduces the out-of-sample PEHE from 3.254 to 3.207. Then, it

4An exception would be the within-sample AUUC, which is reported over training data and thus easy to be
overfitted. This metric is not critical as the factual outcomes are typically unavailable in the inference phase. We
mainly rely on out-of-sample AUUC instead to evaluate the ranking performance and perform model selection.



Table 2: Ablation study (mean±std) on the ACIC benchmark. “*” marks the variants that ESCFR
outperforms significantly at p-value < 0.01 over paired samples t-test.

In-sample Out-sample

SOT RMPR PFOR PEHE AUUC PEHE AUUC

% % % 3.2367±0.2666∗ 0.8862+0.0462 3.2542+0.1505∗ 0.6624+0.0149∗

! % % 3.1284±0.2638∗ 0.8734+0.0291 3.2073+0.1699∗ 0.6698+0.0187∗

! ! % 2.6459+0.2747∗ 0.8356+0.0286 2.7688±0.4009 0.7099+0.0157∗

! % ! 2.5705±0.3403∗ 0.8270±0.0341 2.6330±0.4672 0.7110±0.0287∗

! ! ! 2.2520±0.2975 0.7968±0.0307 2.3165+0.6136 0.7542±0.0202

mitigates the MSE issue with RMPR in Section 3.2 and the UCE issue with PFOR in Section 3.3,
reducing the out-of-sample PEHE to 2.768 and 2.633, respectively. Finally, ESCFR combines the
RMPR and PFOR in a unified framework in Section 3.4, reducing the out-of-sample PEHE to 2.316.

4.4 ANALYSIS OF RELAXED MASS-PRESERVING REGULARIZER

(a) κ = 10 (b) κ = 2

Figure 4: Geometric interpretation of
optimal transport plan with RMPR un-
der the outcome imbalance (upper) and
outlier (down) settings. The dark area
indicates the transported mass of a unit,
i.e., marginal of the transport matrix π.
The light area indicates the total mass.

Most prevalent methods fail to cope with the label imbal-
ance and mini-batch outliers in Figure 2(b-c). Figure 4
shows the transport plan generated with RMPR in the same
situations, where RMPR alleviates the MSE issue in both
bad cases. RMPR with κ = 10, for instance, avoids the in-
correct matching of units with different outcomes; RMPR
with κ = 2 gets robust to the outlier’s interference and cor-
rectly matches the remaining units. We attribute the success
to the relaxed mass-preserving constraint in Section 3.2.

Notably, RMPR does not transport all mass of a unit. The
closer the unit is to the overlapping zone in a batch, the
greater the mass is transferred. That is, RMPR adaptively
matches and pulls closer units that are close to the overlap-
ping region, ignoring outliers, which mitigates the bias of
causal inference methods in cases where the positivity as-
sumption does not strictly hold. Current approaches mainly
achieve it by manually cleaning the data or dynamically
weighting the units (Johansson et al., 2020), while RMPR
naturally implements it via the soft penalty in (8).

We further investigate the performance of RMPR under
different batch sizes and κ in Appendix D.2 to verify the
effectiveness of RMPR more thoroughly.

4.5 PARAMETER SENSITIVITY STUDY

We discuss four critical hyperparameters in ESCFR, i.e., λ, ϵ, κ, γ, which are the weights in the
learning objective and influence the final performance significantly.

We firstly vary λ to investigate the influence of stochastic optimal transport. Specifically, increasing λ
consistently improves the precision of ITE estimates. For example, the out-of-sample PEHE reduces
from 3.22 at λ = 0 to approximately 2.85 at λ = 1.5. However, assigning a higher focus on distribution
balancing in a multi-task learning framework leads to difficulties in factual outcome estimation,
leading to sub-optimal ITE estimates. Then, we vary ϵ to investigate the entropic regularizer. It does
accelerate the computation of optimal transport discrepancy with a large ϵ corresponding to a faster
computation speed (Flamary et al., 2021). However, it comes with a biased transport plan, evidenced
by the out-of-sample PEHE increasing to 2.95 with fluctuations.

We further vary γ and κ to showcase the influence of PFOR and RMPR, respectively. PFOR benefits
ITE estimation, while assigning considerable weight to the proximal outcome distance is detrimental
to ITE estimates, because the unit-wise distance calculated with representations (covariates) would
be neglected. Relaxing the mass-preserving constraint via RMPR could significantly improve the ITE
estimates; however, too-small κ is always detrimental as we cannot guarantee that the representations
across treatment groups are drawn closer together in the optimal transport approach.
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Figure 5: Parameter sensitivity study for critical hyper-parameters of ESCFR

5 RELATED WORKS

Current works mitigate the treatment selection bias by balancing the distributions of treated and
untreated groups, which can be divided into three groups according to the methods used for balancing.

Reweighting-based methods weight individuals with balanced scores to achieve globally balanced
distributions, represented by the inverse propensity score (IPS) approach (Rosenbaum & Rubin,
1983a) and its doubly robust variant (Robins et al., 1994). Imai & Ratkovic (2014) and Fong et al.
(2018) propose calculating the balancing score by solving an optimization problem. Kuang et al.
(2017b) and Kuang et al. (2017a) consider additional non-confounding factors in covariates. However,
these methods are susceptible to non-overlapping units and suffer from a high variance issue.

Matching-based methods match similar units from different groups to construct locally balanced
distributions. Representative methods (Rosenbaum & Rubin, 1983b; Chang & Dy, 2017; Li et al.,
2016) mainly differ in terms of similarity measures. Notably, Tree-based methods (Wager & Athey,
2018) can also be considered as matching methods with adaptive neighborhood metrics. However,
the computational cost hinders the application of these methods in large-scale scenarios.

Begining with BNN (Johansson et al., 2016) and CFR (Shalit et al., 2017), representation-based
methods minimize the group discrepancy in the latent space. Liuyi et al. (2018) and Hassanpour &
Greiner (2020) further augment CFR with local similarity and non-confounding factors, respectively.
Kallus (2020) and Yoon et al. (2018) propose to balance the distributions of representations with
adversarial training. Due to its scalability and avoidance of the high variance issue, representation-
based methods have been predominant for handling the treatment selection bias.

It is necessary to distinguish ourselves from emerging OT-based causal inference approaches. Duni-
pace (2021) augments the IPS method with a propensity score estimator based on OT; however, it
is limited by the aforementioned high variance issue. Torous et al. (2021) uses the push-forward
operator to improve change-in-change models; however, they are designed for multi-phase data
which is not available in our case. Li et al. (2022) has a similar setup to to us, while it focuses on
the decomposition of latent variables and is identical to Shalit et al. (2017) in terms of alignment
technology. Our work is a new take on OT under the CFR framework, alleviating the MSE and UCE
issues that have been long neglected by the causal inference community until this year.

6 CONCLUSION

Due to the effectiveness of mitigating treatment selection bias, representation learning has been the
primary approach to estimating individual treatment effect. However, existing methods neglect the
mini-match sampling effects and unobserved confounders, which hinders them from handling the
treatment selection bias. A principled approach named ESCFR is devised based on a generalized
Sinkhorn discrepancy. Extensive experiments demonstrate that ESCFR can largely mitigate MSE and
UCE issues, and achieve better performance compared with other baseline models.

There are two directions of future work that we intend to pursue. The first direction attempts to con-
struct the representation mapping with normalizing flows (Chen et al., 2018), which is invertible and
thus satisfies the assumption to the representation mapping by Shalit et al. (2017). Another direction
seeks to extend our methodology to industrial applications, e.g., debias in recommenders (Wang et al.,
2022), which has long been dominated by reweighting methods with the high variance issue.
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divergences for unbalanced optimal transport. CoRR, abs/1910.12958, 2019.
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A CAUSAL INFERENCE WITH OBSERVATIONAL STUDIES

We introduce all the necessary preliminaries about causal inference for readers and reviewers that are
unfamiliar with this area.

A.1 PROBLEM FORMULATION

This section formalizes the definitions, assumptions, and useful lemmas in causal inference from
observational data. Following the notations in Section 2.1, an individual with covariates x has
two potential outcomes, namely Y1(x) given it is treated and Y0(x) otherwise. The ground-truth
individual treatment effect (ITE) is the difference in its potential outcomes.
Definition A.1. The individual treatment effect (ITE) for a unit with covariates x is

τ(x) ∶= E [Y1 − Y0 ∣ x] , (16)

where we abbreviate Y1(x) to Y1 for brevity. The expectation is over the potential outcome space Y .

Estimating ITE with observational data is a common practice in causal inference, which has long
been confronted with two primary challenges:

• Missing counterfactuals: where only the factual outcome is observable. If a patient is treated,
for instance, we can never observe what would have happened if the patient was untreated
in the same situation.

• Treatment selection bias, where individuals have preferences for treatment selection. For
example, doctors would adapt different treatment plans for patients with different health
conditions. It would make the treated and untreated populations heterogeneous. ITE
estimators naı̈vely trained to minimize the factual outcome error would overfit the respective
group’s properties and thus cannot generalize well to the entire population.

Pearl & Mackenzie (2018) suggested a two-step methodology to overcome these two challenges. The
first step is identification, which aims to construct an unbiased statistical estimand to identify the
causal estimand (e.g., τ(x)) based on the adjustment formula. Note that not all causal estimands are
identifiable, e.g., ITE is identifiable only if Assumption A.1-A.3 hold.
Assumption A.1. (Unconfoundedness). For all covariates x in the population of interest (i.e., x
with P(X = x) > 0), we have conditional independence (Y0, Y1) ⊥⊥ T ∣ X = x. That is, potential
outcomes are conditionally independent of treatment assignment.
Assumption A.2. (Consistency). For all covariates x in the population of interest, we have Y = Yt.
That is, the observed outcome is consistent with the potential outcome w.r.t. the assigned treatment.
Assumption A.3. (Positivity). For all covariates x in the population of interest, we have 0 < P(T =
1 ∣X = x) < 1. That is, all individuals have a chance to be assigned both treatments.

The second step is estimation, which aims to estimate the derived statistical estimand with observa-
tional data. Lemma A.1 illustrates how this two-step approach can be used for ITE estimation.
Lemma A.1. The ITE estimand τ(x) can be identified as:

E [Y1 − Y0 ∣X = x] = E [Y1 ∣X = x] −E [Y0 ∣X = x]
(1)= E [Y1 ∣X = x,T = 1] −E [Y0 ∣X = x,T = 0]
(2)= E [Y ∣X = x,T = 1] −E [Y ∣X = x,T = 0] ,

(17)

where (1) stems from the unconfoundedness assumption A.1; (2) stems from the consistency assump-
tion A.2. The derived estimand is fully composed of statistical estimands, which can only be estimated
under the positivity assumption A.3. Otherwise, if the positivity assumption is violated, we have:

E [Y ∣X = x,T = 1] = ∫ y ⋅ P(Y = y ∣X = x,T = 1)dy

= ∫ y ⋅ P(Y = y,X = x,T = 1)
P(T = 1 ∣X = x)P(X = x) dy,

(18)

which is not computable as there exists x ∈ X which makes P(T = 1 ∣X = x) = 0.
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Figure 6: Architecture of Meta-learner based ITE estimators, consisting of inputs (green), outputs
(white), shared mappings (yellow), and mappings for treated and untreated units (red and blue,
respectively).

A.2 META-LEARNERS FOR ITE ESTIMATION WITH OBSERVATIONAL DATA

In an effort to solve missing counterfactuals, existing meta-learner based methods (Künzel et al.,
2019; Nie & Wager, 2020) decompose the ITE estimation problem into several subproblems that
can be solved with any supervised learning method. As depicted in Figure 6, S-learner regards the
treatment indicator T as one of the covariatesX , and utilizes the shared representation mapping ψ and
outcome mapping ϕ to estimate the factual outcomes. However, because the network structure does
not highlight the role of treatment indicator, it may be overlooked when treatment effects are minimal.
T-learner models the factual outcomes for treated units X1 and untreated units X0 separately, which
highlights the treatment indicator’s effect; however, it reduces the data efficiency and is therefore
inapplicable when the dataset is small. Künzel et al. (2019) discuss the advantages and limitations of
these two approaches in more detail.
Definition A.2. Let ψ ∶ X →R be a mapping from support X toR. That is, ∀x ∈ X , ∃r = ψ(x) ∈R.
Let ϕ ∶R × T → Y be a mapping from supportR × T to Y . That is, it maps the representations and
treatment indicator to the corresponding factual outcome. For example, Y1 = ϕ1(R), Y0 = ϕ0(R),
where we will always abbreviate ϕ(R,T = 1) and ϕ(R,T = 0) to ϕ1(R) and ϕ0(R), respectively,
for brevity.
Assumption A.4. ϕ ∶ X →R is differentiable and invertible, with its inverse ϕ−1 defined overR.

TARNet (Shalit et al., 2017) in Figure 6 (c) obtains better results by absorbing the advantages of both
T-learner and S-learner, which consists of a representation mapping ψ and an outcome mapping ϕ as
defined in Definition A.2. For a unit with covariates X , TARNet estimates ITE as the difference in
predicted outcomes when T is set to treated and untreated:

τ̂ψ,ϕ(X) ∶= Ŷ1 − Ŷ0, where Ŷ1 = ϕ1(ψ(X)), Ŷ0 = ϕ0(ψ(X)), (19)

whereψ is trained over all units, ϕ1 and ϕ0 are trained over the treated and untreated units, respectively,
to minimize the factual error ϵF(ϕ,ψ) in Definition A.3. Finally, the performance of the ITE estimator
is mainly evaluated with PEHE:

ϵPEHE(ψ,ϕ) = ∫X (τ̂ψ,ϕ(x) − τ(x))
2 P(x)dx. (20)

Definition A.3. Let L be the loss function that measures the quality of outcome estimation, e.g., the
squared loss. The expected loss for the units with covariates x and treatment indicator t is:

lψ,ϕ(x, t) ∶= ∫Y L(Yt, ϕ(ψ(x), t)) ⋅ P(Yt ∣ x)dYt. (21)

where L is realized with the squared loss: L(Yt, ψ(ϕ(x), t)) = (Yt −ψ(ϕ(x), t))2 in our scenario.
The expected factual outcome estimation error for treated, untreated and all units are:

ϵT=1F (ψ,ϕ) ∶= ∫X lψ,ϕ(x,1) ⋅ P
T=1(x)dx,

ϵT=0F (ψ,ϕ) ∶= ∫X lψ,ϕ(x,0) ⋅ P
T=0(x)dx,

ϵF(ψ,ϕ) ∶= ∫X×T lψ,ϕ(x, t) ⋅ P(x, t)dxdt.

(22)



A.3 REPRESENTATION-BASED METHODS FOR TREATMENT SELECTION BIAS

However, the treatment selection bias makes covariate distributions across groups shift. As such, ϕ1
and ϕ0 would overfit the respective group’s properties and thus cannot generalize well to the entire
population. For example, as shown in Figure 1(a) (a), the potential outcome estimator ϕ1 trained with
treated units cannot generalize to the untreated units. Therefore, the resulting τ̂ would be biased.
Definition A.4. Let PT=1(x) ∶= P(x ∣ T = 1) and PT=0(x) ∶= P(x ∣ T = 0) be the covariate
distribution for treated and untreated groups, respectively. Let PT=1

ψ (r) and PT=0
ψ (x) be that of

representations induced by the representation mapping r = ψ(x) defined in Definition 2.2.

To mitigate the effect of treatment selection bias, representation-based approaches (Johansson et al.,
2016; Shalit et al., 2017) minimize the distribution discrepancy of different groups in the representa-
tion space. In particular, the integral probability metric (IPM) in Definition A.4 is a widely used metric
that measures the discrepancy of two distributions. Shalit et al. (2017) propose to optimize the PEHE
by minimizing the estimation error of factual outcomes ϵF and the IPM of learned representations
between treated and untreated groups. They further provide theoretical results to back up their claim
as per Theorem A.1.
Definition A.5. Consider two distribution functions PT=1(x) and PT=0(x) supported over X , let F
be a sufficiently large function family, the integral probability metric induced by F is

IPMF (PT=1,PT=0) = sup
f∈F
∣∫X f(x)

(PT=1(x) − PT=0(x)) dx∣ , (23)

Theorem A.1. Let ψ and ϕ be the mappings in Definition 2.2, F be a predefined sufficiently large
function family of ϕ, IPMF be the integral probability metric induced by F . Assume there exists a
constant Bψ > 0, such that for t ∈ {0,1}, 1

Bψ
⋅ lψ,ϕ(x, t) ∈ F holds. Shalit et al. (2017) demonstrate:

ϵPEHE(ψ,ϕ) ≤ 2 (ϵT=0F (ψ,ϕ) + ϵT=1F (ψ,ϕ) +BψIPMF (PT=1
ψ ,PT=0

ψ ) − 2σ2
Y ) , (24)

where ϵT=0F and ϵT=1F follow Definition A.3, PT=1
ψ (r) and PT=0

ψ (x) follow Definition A.4.

A.4 THEORETICAL RESULTS AND EXTENSIONS

In this section, we describe the intuition of Theorem 3.1 and Theorem 3.2, and provide rigorous
proofs to support our claims. Two weaknesses hinder the existing Theorem A.1 by Shalit et al. (2017)
from supporting representation-based causal inference approaches. Firstly, the IPM is a discrepancy
metric with profound theoretical properties while being difficult to compute numerically. To counter
this, note that the IPM holds for any sufficiently large function families, e.g., the 1-Lipschitz function
family where the IPM is equivalent to the Wasserstein divergence as per Kantorovich-Rubinstein
duality (Villani, 2009). As such, a shortcut to IPM is the Wasserstein distance as per Lemma A.2.
Lemma A.2. Consider two distribution functions P1(x) and P2(x) supported over X ; let F be the
family of 1-Lipschitz functions, W be the Wasserstein distance, Villani (2009) demonstrates

IPMF (P1,P2) =W (P1,P2) (25)

Another weakness is that it neglects the Mini-batch Sampling Effects (MSE). Specifically, Theo-
rem A.1 holds only if the entire populations of treated and untreated groups are available. However,
since the representation-based approaches update parameters with stochastic gradient methods, only a
subset of the population is accessible within each iteration. As such, it remains questionable whether
Theorem A.1 holds at a mini-batch level in practice.
Lemma A.3. Let P(x) be a probability measure supported over X ∈ Rd satisfying T1(λ) inequality.
Let P̂(x) = 1

N ∑
N
i=1 δxi be the corresponding empirical measure with N units. Bolley et al. (2007)

and Redko et al. (2017) demonstrate that for any d′ > d and λ′ < λ, there exists some constant N0,
such that for any ε > 0 5 and N ≥ N0max(ε−(d+2),1), we have

P (W (P(x), P̂(x)) > ε) ≤ exp(−λ
′

2
Nε2) (26)

where d′, λ′ can be calculated explicitly.
5While there is a risk of symbol reuse, we use ε here to denote sampling error, and ϵ to control the strength

of entropic regularization in optimal transport.



Hoeffding’s inequality is a powerful statistical tool to quantify such sampling effects, which is proved
to be applicable for W by Bolley et al. (2007). Therefore, it is natural to expand W according to
Lemma A.3 to extend Theorem A.1 to mini-batch situations, in order to quantify the sampling effects.
Theorem A.2. Let ψ and ϕ be the representation mapping and factual outcome mapping, respectively;
Ŵψ be the discrepancy across groups at a mini-batch level. With the probability of at least 1 − δ, we
have:

ϵPEHE(ψ,ϕ) ≤ 2 [ϵT=1F (ψ,ϕ) + ϵT=0F (ψ,ϕ) +BψŴψ − 2σ2
Y +O(

1

δN
)] , (27)

where ϵT=1F and ϵT=0F are the expected losses of factual outcome estimation over treated and untreated
units, respectively. N is the batch size, σ2

Y is the variance of outcomes, Bψ is some constant such that
1
Bψ
⋅ lψ,ϕ(x, t) belongs to the family of 1-Lipschitz functions, O(⋅) is the sampling complexity term.

Proof. According to Theorem A.1 we have:

ϵPEHE(ψ,ϕ) ≤ 2 (ϵT=0F (ψ,ϕ) + ϵT=1F (ψ,ϕ) +BψIPMF (PT=1
ψ ,PT=0

ψ ) − 2σ2
Y ) . (28)

Assuming that there exists a constant Bψ > 0, such that for t ∈ {0,1}, 1
Bψ
⋅ lψ,ϕ(x, t) belongs to the

family of 1-Lipschitz functions. According to Lemma A.2, we have

ϵPEHE(ψ,ϕ) ≤ 2 (ϵT=0F (ψ,ϕ) + ϵT=1F (ψ,ϕ) +BψW (PT=1
ψ ,PT=0

ψ ) − 2σ2
Y ) . (29)

Following Definition 3.1, let P̂T=1
ψ (r) and P̂T=0

ψ (r) be the empirical distributions of representations
at a mini-batch level, containing N1 treated units and N0 untreated units, respectively. Then we have:

W (PT=1
ψ ,PT=0

ψ ) ≤W (PT=1
ψ , P̂T=1

ψ ) +W (PT=0
ψ , P̂T=1

ψ )
≤W (PT=1

ψ , P̂T=1
ψ ) +W (PT=0

ψ , P̂T=0
ψ ) +W (P̂T=0

ψ , P̂T=1
ψ )

∶ =W (PT=1
ψ , P̂T=1

ψ ) +W (PT=0
ψ , P̂T=0

ψ ) + Ŵψ,

(30)

because we have the triangular inequality for W. The Hoeffding inequality in Lemma A.3 further
gives the following inequality which holds with the probability at least 1 − δ:

W (PT=1
ψ , P̂T=1

ψ ) ≤
√

2 log (1
δ
) /λ′N1

W (PT=0
ψ , P̂T=0

ψ ) ≤
√

2 log (1
δ
) /λ′N0.

(31)

Denote N ∶= N0 +N1 as the batch size, θ ∶= N1/N as the ratio of treated units in the current batch.
Combining (30) and 31 we have

W (PT=1
ψ ,PT=0

ψ ) ≤ Ŵψ +
√

2 log (1
δ
) /λ′N1 +

√
2 log (1

δ
) /λ′N0

= Ŵψ +
√

2 log (1
δ
) /λ′N

⎛
⎝

√
1

θ
+
√

1

1 − θ
⎞
⎠

∶ = Ŵψ +O(
1

δN
),

(32)

where O(⋅) satisfies
√

log (1
δ
) /λ′ (1 +

√
1/(N − 1)) ≥ O( 1

δN
) ≥ 4
√

log (1
δ
) /λ′N, (33)

where O( 1
δN
) reaches its maximum when θ = 1/N or θ = 1 − 1/N , reaches its minimum when

θ = 0.5. This corollary can be derived by differentiating the function f(x) = 1/√x + 1/
√
1 − x.

Combining (29) and 32 we have

ϵPEHE(ψ,ϕ) ≤ 2 [ϵT=1F (ψ,ϕ) + ϵT=0F (ψ,ϕ) +BψŴψ − 2σ2
Y +O(

1

δN
)] , (34)

where we denote BψO( 1
δN
) as O( 1

δN
) and the proof is completed.



Theorem A.2 extends Theorem A.1 and derives the upper bound of PEHE in the stochastic batch
form, which demonstrates that the PEHE can be optimized by iteratively minimizing the factual
outcome estimation error and the optimal transport discrepancy at a mini-batch level.

Corollary A.1. The empirical variance of the PEHE estimates in (27) largely depends on the batch
size and the proportion of treated and untreated units. Large batch size and balanced proportion
produce low empirical variance, and vice versa.

Proof. It can be drawn directly from (27) (batch size) and (33) (treatment proportion).

Theorem A.3. For discrete measures α = ∑ni=1 aiδxi and β = ∑mj=1 bjδxj , adding an outlier δx′ to
α and denote the disturbed distribution as α′, we have

W0,κ (α′, β) −W0,κ (α,β) ≤ 2κ(1 − e−∑
m
j=1(x

′−xj)2/2κ)/n, (35)

which is upper bounded by 2κ/(n + 1). W0,κ is the unbalanced discrepancy as per Definition 3.2.

Proof. This is a direct corollary of the Lemma 1 by Fatras et al. (2021), under the assumption that all
the units including the outlier δx′ share the same mass.

B DISCRETE OPTIMAL TRANSPORT

This section proposes the definitions and algorithms to calculate optimal transport between discrete
measures. We have omitted the case of general measures, as it is beyond the scope of this work.
Readers interested in this topic should refer to Peyré & Cuturi (2019); Cuturi (2013) for details.

B.1 PROBLEM FORMULATION

Optimal transport derives from the formulation of Monge (1781). We provide an equivalent interpre-
tation under discrete measures. Consider n warehouses and m factories, where the i-th warehouse
contains ai units of materials; the j-th factory needs bj units of materials. Now construct a mapping
from warehouses to factories, satisfying: (1) all materials of warehouses are transported; (2) all
requirements of factories are satisfied; (3) materials from one warehouse are transported to no more
than one factory (mapping constraint). Every feasible mapping is associated with a global cost,
calculated by aggregating the local cost of moving a unit of material from the i-th warehouse to the
j-th factory. Our objective, to find a feasible mapping that minimizes the transport cost, is formulated
in Definition B.1.

Definition B.1. For discrete measures α = ∑ni=1 aiδxi and β = ∑mj=1 bjδxj , the Monge problem seeks
for a mapping T ∶ {xi}ni=1 → {xj}mj=1 that associates to each point xi a single point xj and pushes
the mass of α to β. That is, ∀j ∈ {1, . . . ,m} we have bj = ∑i∶T(xi)=xj ai. This mass-preserving
constraint is abbreviated as T♯α = β. The mapping should also minimize the transportation cost
denoted as c(x, y). To this end, Monge problem for discrete measures is formulated as:

min
T∶T♯α=β

{∑
i

c(xi,T(xi))} . (36)

This problem was further utilized to compare two probability measures where ∑i ai = ∑j bj = 1.
However, Monge’s formulation cannot guarantee the existence and uniqueness of solutions (Peyré &
Cuturi, 2019). Kantorovich (2006) relaxed the mapping constraint by allowing the transport from one
warehouse to many factories and reformulated the Monge problem as a linear programming problem
in Definition B.2.

Definition B.2. For discrete measures α = ∑ni=1 aiδxi and β = ∑mj=1 bjδxj , the Kantorovich problem
aims to find a feasible plan π ∈ Rn×m+ which transports α to β at minimum cost:

W(α,β) ∶= min
πππ∈Π(α,β)

⟨D,πππ⟩ , Π(α,β) ∶= {πππ ∈ Rn×m+ ∶ πππ1m = a,πππT1n = b} , (37)



Algorithm 1 Sinkhorn Algorithm
Input: discrete measures α = ∑ni=1 aiδxi and β = ∑mj=1 bjδxj , distance matrix Dij = ∥xi − xj∥22.
Parameter: ϵ: strength of entropic regularization; ℓmax: maximum iterations.
Output: πππϵ: the entropic regularized optimal transport matrix.

1: K← exp(−D/ϵ).
2: u← 1n. v ← 1m, ℓ← 1.
3: while ℓ < ℓmax do
4: u← a/(Kv).
5: v ← b/(KTu).
6: ℓ← ℓ + 1.
7: πππϵ ← diag(u)Kdiag(v).

where W(α,β) ∈ R is the Wasserstein discrepancy between α and β; D ∈ Rn×m+ is the unit-wise
distance6 between α and β; a and b indicate the mass of units in α and β, and Π is the feasible
transportation plan set which ensures the mass-preserving constraint holds.

B.2 SINKHORN DISCREPANCY AND ALGORITHM

Exact solutions to the Kantorovich problem suffer from great computational costs. The interior-point
and network-simplex methods, for example, have a complexity of O(n3 logn) (Pele & Werman,
2009). A shortcut is to add an entropic regularizer as

Wϵ(α,β) ∶= ⟨D,πππϵ⟩ , πππϵ ∶= argmin
πππ∈Π(α,β)

⟨D,πππ⟩ − ϵH(πππ), H(πππ) ∶= −∑
i,j

πππij (log(πππij) − 1) , (38)

which makes the problem ϵ-convex and solvable with the Sinkhorn algorithm (Cuturi, 2013), with a
lower complexity of O(n2/ϵ2). Besides, the Sinkhorn algorithm consists of matrix-vector products
only, which makes it suited to be accelerated with GPUs. Specifically, let f ∈ Rn and g ∈ Rm be the
lagrangian multipliers, the Lagrangian of (38) is:

Φ(πππ, f ,g) = ⟨D,πππ⟩ − ϵH(πππ) − ⟨f ,πππ1n − a⟩ − ⟨g,πππT1m − b⟩ (39)

According to the first-order condition of constraint optimization problem, we have:

∂Φ(πππ, f ,g)
∂πππij

=Dij + ε log (πππij) − fi − gj = 0, (40)

or equivalently, the best transport matrix πππϵ should satisfy:

πππϵij = exp(
fi
ϵ
) ∗ exp(−Dij

ϵ
) ∗ exp(gj

ϵ
). (41)

Let ui ∶= exp(fi/ϵ), vj ∶= exp(gj/ϵ), Kij ∶= exp(−Dij/ϵ), then we have πππϵ = diag(u)Kdiag(v).
The transport matrix should also satisfy the mass-preserving constraint, such that:

diag(u)Kdiag(v)1m = a, diag(v)K⊺ diag(u)1n = b, (42)

or equivalently, let ⊙ be the entry-wise multiplication of vectors, we have:

u⊙ (Kv) = a and v ⊙ (KTu) = b. (43)

(43) is known as the matrix scaling problem. An intuitive approach is to solve them iteratively:

u(ℓ+1)= a

Kv(ℓ)
and v(ℓ+1)= b

KTu(ℓ+1)
(44)

which is the critical step of Sinkhorn algorithm in Algorithm 1. The optimal transport matrix πππϵ
acting as a constant matrix further induces the Sinkhorn discrepancy Wϵ following (38). As D is
differentiable to α and β, it is feasible to minimize Wϵ by adjusting the generation process of α and
β, i.e., the representation mapping in Definition A.2 with gradient-based optimizers.



Algorithm 2 Generalized Sinkhorn Algorithm for Unbalanced Optimal Transport
Input: discrete measures α = ∑ni=1 aiδxi and β = ∑mj=1 bjδxj , distance matrix Dij = ∥xi − xj∥22.
Parameter: ϵ: strength of entropic regularizer; κ: strength of mass preserving; ℓmax: max iterations.
Output: πππϵ,κ: the entropic regularized unbalanced optimal transport matrix.

1: K← exp(−D/ϵ).
2: f ← 0n, g ← 0m, ℓ← 1.
3: while ℓ < ℓmax do
4: u← exp(fi/ϵ), v ← exp(gj/ϵ)
5: πππ ← diag(u)Kdiag(v).
6: a′ ← πππ1n, b′ ← πππT1m.
7: if ℓ//2 = 0 then
8: f ← [ f

ϵ
+ log(a) − log (a′)] ϵκ

ϵ+κ
9: else

10: g ← [g
ϵ
+ log(b) − log (b′)] ϵκ

ϵ+κ
11: ℓ← ℓ + 1.
12: πππϵ,κ ← diag(u)Kdiag(v).

B.3 UNBALANCED OPTIMAL TRANSPORT AND GENERALIZED SINKHORN

We have reported the mini-batch sampling effect (MSE) issue of Wϵ in Section 3.2, and attributed it to
the mass-preserving constraint in (38). An intuitive approach to mitigate MSE is to relax the marginal
constraint and allow for the creation and destruction of mass. To this end, RMPR is proposed in
Definition B.3, which replaces the hard marginal constraint with a soft penalty.
Definition B.3. For empirical distributions α and β with n and m units, respectively, unbalanced
optimal transport seeks a transport plan at minimum cost:

Wϵ,κ(α,β) ∶=min
πππ
⟨D,πππ⟩ ,πππ ∶= argmin

πππ
⟨D,πππ⟩+ ϵH(πππ)+κ(KL(πππ1n,a)+KL(πππT1m,b)), (45)

where D ∈ Rn×m+ is the unit-wise distance, and a and b indicate the mass of units in α and β.

The unbalanced optimal transport problem in Definition B.3 has a similar structure with (38) and thus
can be solved with a generalized Sinkhorn algorithm (Chizat et al., 2018). The derivation starts from
the Fenchel-Legendre dual form of (45):

max
f∈Rn,g∈Rm

− F ∗(−f) −G∗(−g) − ϵ∑
i,j

exp( fi + gj −Dij

ϵ
) ,

F ∗(f) =max
z∈Rn

z⊺f − κKL(z∥a) = κ ⟨ef/κ,a⟩ − a⊺1n,

G∗(g) = max
z∈Rm

z⊺g − κKL(z∥b) = κ ⟨eg/κ,b⟩ − b⊺1m,

(46)

where the functions F ∗(⋅) and G∗(⋅) are the Legendre transformation of KL divergence. Ignoring
the constant terms, we can obtain the equivalent optimization problem:

min
f∈Rn,g∈Rm

ϵ
n

∑
i,j=1

exp( fi + gj −Dij

ϵ
) + κ ⟨e−f/κ,a⟩ + κ ⟨e−g/κ,b⟩ . (47)

According to the first-order condition, the minimizer’s gradient of (47) should be zero. As such,
fixing gℓ, the updated f ℓ+1 ought to satisfy:

exp( f
ℓ+1
i

ϵ
)

n

∑
j=1

exp
⎛
⎝
gℓj −Dij

ϵ

⎞
⎠
= exp(− f

ℓ+1
i

κ
)ai, (48)

We further multiply both sides by exp(f ℓi /ϵ):

exp( f
ℓ+1
i

ϵ
)a′i = exp(

f ℓi
ϵ
) exp(− f

ℓ+1
i

κ
)ai (49)

6In this work, we calculate the unit-wise distance with the squared Euclidean metric following Courty et al.
(2017b).



Algorithm 3 ESCFR Algorithm
Input: covariates of treated units {xi}ni=1 and untreated units {xj}mj=1; factual outcomes {yi}ni=1 and
{yj}mj=1; representation mapping ψ; outcome mapping ϕ.
Parameter: λ: strength of optimal transport; ϵ: strength of entropic regularizer; κ: strength of
RMPR; γ: strength of PFOR; ℓmax: max iterations
Output: Lϵ,κ,γ,λESCFR: the learning objective of ESCFR.

1: {ri}ni=1 ← {ψ(xi)}
n
i=1 , {rj}mj=1 ← {ψ(xj)}

m
j=1.

2: {ŷi}ni=1 ← {ϕ(ri,1)}
n
i=1 , {ŷj}mj=1 ← {ϕ(rj ,0)}

m
j=1.

3: {ỹi}ni=1 ← {ϕ(ri,0)}
n
i=1 , {ỹj}mj=1 ← {ϕ(rj ,1)}

m
j=1.

4: Dγ
ij ← ∥xi − xj∥22 + γ ⋅ ∥yi − ỹj∥22 + γ ⋅ ∥yj − ỹi∥22.

5: Dγ
stop ← stopgradient(Dγ).

6: πππϵ,κ,γ ← Algorithm2 (α = {ri}ni=1 , β = {rj}
m
j=1 ,D =D

γ
stop).

7: LF(ψ,ϕ)← 1
n ∑

n
i=1 ∥ŷi − yi∥22 + 1

m ∑
m
j=1 ∥ŷj − yj∥22.

8: Lϵ,κ,γD (ψ)← ⟨Dγ ,πππϵ,κ,γ⟩.
9: Lϵ,κ,γ,λESCFR ← LF(ψ,ϕ) + λ ⋅Lϵ,κ,γD (ψ).

Table 3: Running time (mean+std) in seconds of Algorithm 1-2 with 100 runs.
Parameter n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024
Algorithm1 0.0266±0.0102 0.0241±0.0075 0.0326±0.0088 0.0499±0.0099 0.0725±0.0128 0.1430±0.0259
Algorithm2 0.0050±0.0004 0.0051±0.0001 0.0065±0.0002 0.0104±0.0005 0.0138±0.0008 0.0256±0.0007

Parameter ϵ = 0.1 ϵ = 0.5 ϵ = 1.0 ϵ = 5.0 ϵ = 10.0 ϵ = 100.0
Algorithm1 0.1683±0.0038 0.1207±0.0102 0.0699±0.0095 0.0153±0.0013 0.0097±0.0009 0.0072±0.0009
Algorithm2 0.0166±0.0019 0.0068±0.0010 0.0052±0.0011 0.0047±0.0010 0.0045±0.0011 0.0043±0.0009

Parameter κ = 0.1 κ = 0.5 κ = 1.0 κ = 5.0 κ = 10.0 κ = 100.0
Algorithm2 0.0050±0.0011 0.0059±0.0008 0.0060±0.0011 0.0112±0.0014 0.0162±0.0016 0.1039±0.0033

where a′ ∶= πππ1n with πππij ∶= exp(f ℓi + gℓj −Dij). Similarly, fixing f we have gℓ+1 as:

exp
⎛
⎝
gℓ+1j

ϵ

⎞
⎠
b′j = exp

⎛
⎝
gℓj

ϵ

⎞
⎠
exp
⎛
⎝
−
gℓ+1j

κ

⎞
⎠
bj (50)

where b′ ∶= πππT1m. (49) and (50) construct the critical iteration steps of the generalized Sinkhorn
algorithm (Chizat et al., 2018), which we formulate in Algorithm 2. The transport matrix πππϵ,κ further
induces the generalized Sinkhorn discrepancy Wϵ,κ in Definition B.3. As D is differentiable with
respect to α and β, it is feasible to minimize Wϵ,κ by adjusting the generation process of α and β,
i.e., the representation mapping in Definition A.2, with gradient-based optimizers.

B.4 OPTIMIZATION OF ENTIRE SPACE COUNTERFACTUAL REGRESSION

Algorithm 3 shows how to calculate the learning objective at a mini-batch level. Specifically, we
first calculate the factual outcome estimates (step 2), counterfactual outcome estimates (step 3),
and the unit-wise distance matrix with PFOR (step 4). Afterwards, fix the gradient of the distance
matrix (step 5) and calculate the transport matrix with Algorithm 2 (step 6). Finally, calculate the
factual outcome estimation error (step 7) and distribution discrepancy (step 8), and aggregate them to
acquire the learning objective of ESCFR (step 9). According to Section B.3, the learning objective is
differentiable to ψ and ϕ and thus can be optimized end-to-end with stochastic gradient methods.

B.5 COMPLEXITY ANALYSIS

One primary concern would be the overall complexity of solving discrete optimal transport problems.
Exact algorithms, e.g., the interior-point method and network-simplex method, suffer from a high
computational cost ofO(n3 logn) (Pele & Werman, 2009). An entropic regularizer is thus introduced
in (5), making the problem solvable by the Sinkhorn algorithm (Cuturi, 2013) in Algorithm 1. The



complexity was shown to beO(n2/ϵ3) by Altschuler et al. (2017) in terms of the absolute error of the
mass-preservation constraints. Dvurechensky et al. (2018) improved it to O(n2/ϵ2), which can be
further accelerated with greedy algorithm by Lin et al. (2019). Several recent explorations (Blanchet
et al., 2018; Jambulapati et al., 2019) have also attempted to further reduce the complexity toO(n2/ϵ).
Entropic regularization trick is still applicable to speed up the solution of the unbalanced optimal
transport problem in RMPR, represented by the Sinkhorn-like algorithm in Algorithm 2. Pham et al.
(2020) further proved that the complexity of Algorithm 2 is Õ(n2/ϵ).
Table 3 reports the practical running time at the commonly-used batch settings. In general, the
computational cost of optimal transmission is not a concern at the mini-batch level. Notice that
enlarging ϵ speeds up the computation while making the resulting transfer matrix biased, hindering
the transportation performance, as per Figure 5. In addition, a large relaxation parameter κ makes
the computed results closer to those by Sinkhorn algorithm yet significantly contributes to more
iterations, which is discussed and mitigated by Séjourné et al. (2022).

C REPRODUCTION DETAILS

C.1 DATASETS

We conduct experiments on two semi-synthetic benchmarks to validate our models. For the IHDP7

benchmark, we report the results over 10 simulation realizations following Liuyi et al. (2018).
However, the limited size (747 observations and 25 covariates) makes the results highly volatile. As
such, we mainly validate the models on the ACIC benchmark, which was released by the ACIC-2016
competition8. Since the scale of the ACIC benchmark (4802 observations and 58 covariates) is much
larger than the IHDP benchmark, we mainly perform ablation studies on it to get more reliable results.

All datasets are randomly shuffled and partitioned in a 0.7:0.15:0.15 ratio for training, validation,
and test, where we maintain the same ratio of treated units in all three splits to avoid numerical
unreliability in the validation and test phases. We find that these datasets are overly easy to fit by
the model because they are semi-synthetic. To increase the distinguishability of the results, we omit
preprocessing strategies, such as min-max scaling, to increase the difficulty of the learning task.

C.2 BASELINES

We compare the proposed method with baselines based on statistical estimators (Künzel et al., 2019;
Shalit et al., 2017), matching estimators (Rosenbaum & Rubin, 1983b; Wager & Athey, 2018; Crump
et al., 2008) and representation-based estimators (Johansson et al., 2016; Shalit et al., 2017). We
implement all these baselines by hand, largely built upon Pytorch for neural network models, Sklearn
for statistical models, and EconML for tree and forest models. These implementations will be
open-sourced.

C.3 METRICS

Following existing works (Yao et al., 2019; Liuyi et al., 2018), the Precision in Estimation of
Heterogeneous Effect (PEHE) is primarily used as the precision metric for performance evaluation.

ϵPEHE(ψ,ϕ) = ∫X (τ̂ψ,ϕ(x) − τ(x))
2 P(x)dx. (51)

However, PEHE is unavailable during the model selection phase as the counterfactual outcomes
are missing. A shortcut adapted by Liuyi et al. (2018) for model selection would be the root mean
squared error of factual outcome estimates (RMSEF), which can be evaluated in the absence of the
counterfactual outcomes. However, owing to the treatment selection bias, RMSEF is not reliable as
it does not consider the precision of counterfactual estimation, and thus cannot effectively evaluate
the quality of treatment estimation.

7It can be downloaded from https://www.fredjo.com/
8It can be downloaded from https://jenniferhill7.wixsite.com/acic-2016/competition
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Figure 7: Fidelity of model-selection criterion to out-of-sample PEHE

Area Under the Uplift Curve (AUUC) (Betlei et al., 2021) evaluates the model’s performance in
ranking units based on potential treatment benefit. It is more feasible than PEHE because it can be
calculated without counterfactual outcomes; it is more reliable than factual MSE because it partially
reflects the models’ counterfactual ranking ability. Therefore, it has been the primary selection
standard by practitioners from Criteo (Betlei et al., 2021), Alibaba (Ke et al., 2021), and Tencent (He
et al., 2022), where engineers always fine-tune their causal inference models concerning AUUC
performance and decide whether to deploy the models to online traffic. As such, we use AUUC as the
model selection criteria. Moreover, we report the within-sample results on the training dataset and the
out-of-sample results on the test dataset, where the factual outcome is available in the within-sample
case following Shalit et al. (2017).

We compare the fidelity of RMSEF and AUUC on the evaluation set to the out-of-sample PEHE
on the test set in Figure 7. The first observation is the weak correlation between RMSEF on the
validation set and the out-of-sample PEHE on the test set. In contrast, the out-of-sample AUUC
on the evaluation set could better reflect the variation of PEHE. Another observation is that the
within-sample AUUC is not a good criterion for model selection, as higher within-sample AUUC
corresponds to higher out-of-sample PEHE, which contrasts with reality. This is reasonable as better
within-sample performance does not necessarily correspond to better out-of-sample performance.

D ADDITIONAL DISCUSSIONS

D.1 ADDITIONAL DISCUSSION FOR STOCHASTIC OPTIMAL TRANSPORT

According to Theorem 3.1, one critical hyperparameter for CFR-WASS and ESCFR is the batch
size, which directly affects the variance of stochastic optimal transport in Section 3.1 and thus the
performance of both methods. As such, it is necessary to verify whether ESCFR outperforms CFR
for different batch sizes. We conduct extensive experiments and summarize the results in Table 4.
Interesting observations are noted:

• Increasing batch size in a wide range improves the performance of CFR-WASS and ESCFR.
For example, The PEHE of CFR-WASS decreases from 3.114 at b = 32 to 2.932 at b = 128,
and the PEHE of ESCFR exhibits a similar pattern. The performance gain is attributed to
the decreased variance in (6), which backs up Theorem 3.1.

• By finetuning batch size, we can easily exceed the performance we report in Table 1.
However, we did not finetune it as the PEHE is invisible during our hyper-parameter tuning
process9.

• The performance drop for the overly large batch sizes comes from the sub-optimal backbone
(TARNet) performance. Due to the limited number of training samples, e.g., 4.8k * 70%
units for ACIC and 0.7k * 70% units for IHDP, a large batch size might block the models
from escaping saddle points (Jin et al., 2017) and sharp minima (Xie et al., 2020), and thus
deteriorating the accuracy of factual outcome estimation.

9Most of the experiments in Table 1 were performed with a fixed batch size b = 32, which is selected by the
factual estimation performance of TARNet.



Table 4: Out-of-sample PEHE of ESCFR and important baselines with different batch sizes b.
Model b = 32 b = 64 b = 96 b = 128 b = 196 b = 256
TARNet 3.3293±0.1853 3.2054±0.2676 3.0869±0.2812 2.9262±0.3160 3.4619±0.6652 3.6309±0.2026
CFR-WASS 3.1143±0.4578 3.0819±0.3407 2.9998±0.1017 2.9326±0.4142 4.0740±1.4127 3.4675±0.1552
ESCFR 2.3736±0.1621 2.3082±0.4334 2.9719±0.2889 2.3125±0.1836 2.0373±0.1538 2.2777±0.4230
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Figure 8: PEHE of ESCFR and CFR-WASS (κ =∞) under different batch size.

D.2 ADDITIONAL DISCUSSION FOR RELAXED MASS-PRESERVING REGULARIZER

Existing methods (Shalit et al., 2017; Johansson et al., 2016; Liuyi et al., 2018) suffer from the
mini-batch sampling effect (MSE) issue, as indicated by the two bad cases in Figure 2. RMPR
mitigates the MSE issue by relaxing the mass-preserving constraint, the performance of which is
affected by two critical hyperparameters, i.e., the batch size b and the strength of mass-preserving
constraint κ. On top of the ablation studies, it is necessary to explore the performance of ESCFR at
different settings of b and κ, to investigate 1) how RMPR works; 2) the limitation and bottleneck of
RMPR; 3) the robustness of RMPR to hyperparameter setting. The results are presented in Figure 8,
and the observations are summarized as follows.

• The optimal value of κ increases with the increase of batch size. For example, the optimal κ
is 1.0 at b = 32, and 5.0 at b = 128. This observation partially verifies how RMPR works as
described in Section 3.2. Specifically, at small batch sizes where sampling outliers dominate
the sampled batches, a small κ effectively relaxes the mass-preserving constraint and avoids
the damage of mini-batch outliers, thus improving the performance effectively and robustly.
At large batch sizes, the noise of sampling outliers is reduced, and it is reasonable to increase
κ to match more units and obtain more accurate wasserstein distance estimates.

• Even with large batch sizes, oversized κ, e.g., κ ≥ 10 does not perform well. Although
the effect of sampling outliers is reduced, some patterns such as outcome imbalance are
present for all batch sizes, resulting in false matching given large mass-preserving constraint
strength κ, which might be a primary bottleneck of RMPR.

• Hyper-parameter tuning is not necessarily the reason why ESCFR works well, since all
ESCFR implementations outperform the strongest baseline CFR-WASS ( κ = ∞) on all
batch sizes, most of which are statistically significant. This can be further supported by our
extensive ablation study in Section 4.3 and parameter study in Section 4.5.

In summary, it is necessary to relax the mass-preserving constraint under all settings of batch size,
which strongly verifies the effectiveness of RMPR in Section 3.2.

D.3 ADDITIONAL DISCUSSION FOR PROXIMAL FACTUAL OUTCOME REGULARIZER

Existing representation-based methods block the backdoor path X → T by balancing the distribution
of the observed covariates in a latent space. Given the unconfoundedness assumption A.1, this
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Figure 9: A diagram showing how PFOR works and its limitations. (a) A toy example of PFOR,
where R and X ′ indicate the balanced representations and an unobserved confounder, respectively;
scatters indicate the empirical distribution of units in the treated and control groups; for solid scatters
with balanced R, the colored dashed line indicates the ground truth outcome Y =

√
R2

1 +R2
2 +X ′2

in each group, the black dashed line measures the difference of unobserved X ′. (b) Cases that
satisfy Assumption D.1, where the the outcome Y is monotone with unobserved X ′ given observed
confounders in R. (c) Cases that violate Assumption D.1, where the Y is non-monotone with X ′.

approach effectively handles the treatment selection bias. However, Assumption A.1 is usually
violated in practice, which invalidates this approach as the backdoor path from the unobserved
confounder X ′ to T is not blocked.

According to the designed causal graph in Figure 3(b), all factors associated with outcome Y
include the observed confounders X , treatment T , and unobserved confounders X ′. Therefore, it is
reasonable to derive that given balanced X and identical T , the only variable reflecting the variation
of X ′ is the outcome Y . As such, inspired by the joint distribution transport technique (see Courty
et al., 2017a), PFOR calibrates the unit-wise distance D with the potential outcomes in (12). The
underlying regularization is: units with similar (observed and unobserved) confounders should have
similar potential outcomes. Equivalently, for a pair of units with similar observed covariates, i.e.,
∥ri − rj∥2 ≈ 0, if their potential outcomes under the same treatment t = {0,1} differ significantly, i.e.,
∥yti −ytj∥ >> 0, their unobserved confounders should also differ significantly. As such, it is reasonable
to utilize the difference of outcomes to calibrate the unobserved confounding effect.
Assumption D.1. (Monotonicity). For all observed covariates X = x in the population of interest,
let T = t and X ′ = x′ be the treatment assignment and unobserved confounders, respectively, we
have E[Y ∣X = x,X ′ = x′, T = t] is monotonically increasing or decreasing with respect to x′.

Advantages. The advantages of PFOR can be further interpreted as follows.

• From a statistical perspective, PFOR encourages units with similar outcomes to share
similar representations. It is a valid prior that inspires many learning algorithms, e.g., K-
nearest neighbors and gaussian process (see Williams & Rasmussen, 2006). As an effective
statistical regularizer, PFOR also works in the absence of unobserved confounders, especially
on small data sets.

• From a domain adaptation perspective, vanilla Sinkhorn aligns the distributions PT=1
ψ (r)

and PT=0
ψ (r), where r is the learned representations in Definition A.4. PFOR further aligns

the transition probabilities PT=1(Y (T = t) ∣ r) and PT=0(Y (T = t) ∣ r) for t = 0,1. The
discrepancy between transition probabilities can be attributed to unobserved confounders that
can be viewed as parameters of the transition probabilities (Courty et al., 2017a). As such, it
is feasible to align the unobserved confounders by aligning the transition probabilities.

Toy example. Let the ground truth Y ∶=
√
R2

1 +R2
2 +X ′2 where T is omitted as we only consider

one group, R1 and R2 are the representations of observed confounders that have been aligned with
Sinkhorn algorithm. Let the unobserved X ′ = 0 for controlled units and X ′ = 1 for treated units,



Table 5: RMSE of ESCFR and its competitors for factual and counterfactual outcome estimation.
Dataset Outcome TARNet CFR-WASS ESCFR

Train Factual 2.2066±0.1340 2.1744±0.2179 2.1608±0.2114
Train Counterfactual 3.4731±0.1493 3.4306±0.0904 2.7025±0.1109
Test Factual 3.1924±0.0357 3.1887±0.1493 2.6334±0.2253
Test Counterfactual 3.5577±0.0957 3.4163±0.0496 2.7976±0.1378

which makes X ′ an unobserved confounder as it is related to Y and different between groups. As
shown in Figure 9(a), given balanced R1 and R2, the variation of Y reveals that of X ′. As such, it is
reasonable to employ Y to calibrate the unit-wise distance D that ignores X ′.

Synthetic labels. PFOR remains effective for semi-synthetic data, where outcomes are synthetic
from the covariates and treatment assignments. One source of hidden confounders in such data is
the information loss from the raw data space to the representation space, where not all valuable
information (e.g., confounders) is extracted and preserved. Besides, this improvement could also
come from the statistical regularization, encouraging units with similar outcomes to share similar
representations, which is an effective prior according to the K-nearest neighboring methods.

Limitations. PFOR fails for confounders adding constant effects to all units. Specifically, for
unobserved confounder X ′ and treatment assignment t = 0,1, if E[Y ∣ X,X ′ = x1, T = t] = E[Y ∣
X,X ′ = x2, T = t], PFOR fails to eliminate the confounding effect of X ′. Examples can be found in
Figure 9 (c). Nevertheless, in real scenarios, it is rare that different values of X ′ only add a constant
effect to the outcome (see Sofer et al., 2016; Zheng et al., 2021; Ogburn & VanderWeele, 2012),
making PFOR still effective in a wide range of application scenarios.

This limitation is formalized as Assumption D.1, where the outcome should be monotonically
increasing or decreasing with unobserved confounders given observed confounders and treatment
assignment, as shown in Figure 9 (b). Notably, it is a commonly used assumption in confounder
analysis (Sofer et al., 2016; Zheng et al., 2021). Besides, this assumption is often plausible, at least
approximately, conditional on T = t (Zheng et al., 2021) . For example, it naturally holds for binary
confounders; and generally holds in applications such as epidemiology (Ogburn & VanderWeele,
2012). Finally, this assumption is only imposed on the hidden confounder X ′ following Zheng et al.
(2021), which further weakens Assumption D.1 significantly.

D.4 ADDITIONAL DISCUSSION FOR PERFORMANCE IMPROVEMENT

In practice, ESCFR serves as an efficient regularizer on TARNet. To further investigate its regulariza-
tion effects, the RMSE for estimating factual and counterfactual outcomes on the training and test
sets is reported in Table 5. We find the effectiveness of ESCFR comes from the three sources:

• Better fitting the training set, where ESCFR achieves the minimum RMSE for factual
outcomes on the training set. This improvement is attributed to RMPR, which mitigates the
mini-batch sampling effect, thus reducing mismatching.

• Effective statistical regularization, where ESCFR reduces the gap between the RMSE for
factual outcomes on the training set and that on the test set by 52.1% compared with TARNet.
It is mainly attributed to PFOR, which encourages samples with similar outcomes to share
similar representations.

• Effective counterfactual regularization, where ESCFR reduces the gap between the RMSE
on the test set for factual outcomes and that for counterfactual outcomes by 55.1% based on
TARNet; the gap between the RMSE on the training set for factual outcomes and that for
counterfactual outcomes by 57.3%. It makes ESCFR robust to the treatment selection bias.

D.5 ADDITIONAL COMPARISON RESULTS

In addition to the competitors in Table 1, we add two cutting-edge representation-based ITE esti-
mators to bring our scope of baselines up to date. Instead of designing better alignment methods,
the additional baselines introduce variable decomposition and employ the distribution alignment



Table 6: Additional comparison (mean±std) on the ACIC benchmark.
Dataset Out-sample In-sample

Model PEHE AUUC PEHE AUUC

TARNet 3.2054±0.2676 0.6683±0.0139 3.2933±0.4076 0.8597±0.0350
CFR-WASS 3.0819±0.3407 0.6693±0.0250 3.4280±0.2857 0.8439±0.0349
DRCFR 3.0199±0.0658 0.6360±0.0080 3.4957±0.0895 0.8456±0.0073
DRCFR-MIM 2.9593±0.1532 0.6456±0.0189 3.3875±0.2208 0.8434±0.0093
ESCFR 2.3082±0.4334 0.7311±0.0123 2.5385±0.5020 0.8416±0.0367

technology (CFR) as a component. Therefore, it would be unfair for ESCFR to compare with them,
as ESCFR is not equipped with the variable decomposition technology. As a result, these results are
not included in Table 1.

Baselines. The first additional baseline is DRCFR (Hassanpour & Greiner, 2020) . It first decom-
poses the latent space into instrument variables, confounding variables, and adjustment variables, and
then uses MMD distance to align the distribution of the adjustment variables. The second additional
baseline is the MIM-DRCFR (Cheng et al., 2022). As the SOTA approach as recent as 2022, it
augments DRCFR with three orthogonal constraints and uses the Wasserstein distance to align the
distribution of adjustment variables. We highlight that neither of the two methods considers how to
mitigate the mini-batch sampling effect and unobserved confounder effect, the two key problems
in representation-based causal inference. Therefore, their contributions are quite different from our
study.

Settings. Since the full implementations of both baselines are not released, we reproduce them
largely from scratch. Nevertheless, DRCFR released its model structure based on tensorflow 1.x,
which gives us an important guideline. Experiments are conducted on the ACIC benchmark. In
terms of parameters shared with CFR, we set them to the values of CFR and ESCFR for fairness.
These shared parameters mainly include the learning rate, weight decay, batch size, strength of
distribution alignment, etc. Notably, we set the batch size to 64 instead of 32 in Table 1, to highlight
the advantages of these representation-based baselines. In terms of model structure, the Shared-
bottom and Factor-specific Disentangled representation module consists of a shared fully connected
layer (60 units) cascaded by three parallel fully connected layers (30 units per layer). The outcome
prediction modules consist of two fully connected layesr (60 units per layer) following TARNet, CFR,
and ESCFR. Empirically, it is a good setup with competitive performance and a similar number of
learnable parameters as ESCFR, ensuring a fair comparison.

Results. As shown in Table 6, the additional baselines show a more stable performance (less vari-
ance) and do outperform CFR-WASS in terms of out-of-sample PEHE. However, ESCFR outperforms
the additional baselines significantly in terms of most metrics. The only exception, in-sample AUUC,
has been analyzed in Section 4.

D.6 ADDITIONAL RESULTS FOR ABLATION STUDY

In this section, we provide additional results on hyperparameter study 10 as it reflects how different
components of ESCFR affect the performance. Specifically, we report the ranking performance
under different settings in Figure 10 and Table 7. The out-of-sample AUUC exhibits converse
variation patterns with PEHE, which is consistent with our expectations. We add the estimation
error of average treatment effect estimation for the entire population (εATE) and treated population
(εATT) in Figure 11, Figure 12 and Table 8, where the PFOR significantly reduces both average
estimation errors. Finally, we report the root mean squared error of factual outcomes (RMSEF)
and counterfactual outcomes (RMSEF). Overall, all components of ESCFR could reduce RMSECF

significantly. One interesting observation is that the dropping of RMSECF always comes with the
dropping of RMSEF. It shows that distribution adjustment does not sacrifice the performance of
the factual outcome estimators, but provides prompting information that improves both factual and
counterfactual outcome estimators.

10We take a 40% confidence interval to plot error bars to highlight trends. Exact values are given in tables.



Table 7: Individual treatment effect estimation performance (mean±std) of ESCFR under different
settings.

Metric PEHE AUUC

Model In-sample Out-sample In-sample Out-sample

λ = 0.0 3.2367±0.2666 3.2542±0.1505 0.8862±0.0462 0.6624±0.0149
λ = 0.5 2.8069±0.3913 2.9891±0.4981 0.8309±0.0298 0.6965±0.0166
λ = 1.0 2.7324±0.2716 2.9053±0.3744 0.8312±0.0262 0.7022±0.0223
λ = 1.5 2.6522±0.2605 2.8434±0.5605 0.8222±0.0385 0.7114±0.0187
λ = 2.0 2.7580±0.3065 2.8741±0.4639 0.8427±0.0412 0.6978±0.0181
λ = 3.0 2.6771±0.2088 2.8807±0.4148 0.8305±0.0317 0.7088±0.0201

ϵ = 0.5 2.6855±0.2579 2.8640±0.4057 0.8285±0.0291 0.7039±0.0199
ϵ = 1.0 2.6842±0.3529 2.9532±0.5444 0.8383±0.0223 0.7042±0.0248
ϵ = 1.5 2.7913±0.2336 3.0501±0.4512 0.8543±0.0358 0.7042±0.0192
ϵ = 2.0 2.7324±0.2716 2.9053±0.3744 0.8312±0.0262 0.7022±0.0223
ϵ = 2.5 2.8486±0.2229 3.1263±0.3486 0.8521±0.0263 0.6945±0.0172
ϵ = 3.0 2.7025±0.3612 2.9353±0.4180 0.8417±0.0470 0.6946±0.0162

κ = 5 2.6695±0.2931 2.8612±0.5707 0.8395±0.0315 0.7096±0.0193
κ = 10 2.6598±0.2627 2.7782±0.3791 0.8396±0.0299 0.7085±0.0155
κ = 15 2.6024±0.2526 2.7582±0.5217 0.8276±0.0219 0.7065±0.0196
κ = 20 2.6140±0.2392 2.7201±0.4249 0.8362±0.0279 0.7059±0.0191
κ = 25 2.8598±0.3253 2.9556±0.3420 0.8451±0.0318 0.6990±0.0167

γ = 0.0 2.7324±0.2716 2.9053±0.3744 0.8312±0.0262 0.7022±0.0223
γ = 0.1 2.6120±0.3542 2.8305±0.5846 0.8272±0.0392 0.7064±0.0223
γ = 0.5 2.6084±0.3425 2.6779±0.4628 0.8267±0.0320 0.7095±0.0275
γ = 1.0 2.6067±0.3012 2.7940±0.4347 0.8317±0.0501 0.7107±0.0204
γ = 5.0 2.6920±0.3115 2.7865±0.4249 0.8334±0.0276 0.7081±0.0234
γ = 10.0 2.7643±0.3658 2.9006±0.5537 0.8494±0.0556 0.7037±0.0269

Table 8: Average treatment estimation error (mean±std) of ESCFR under different settings.
Metric εATE εATT

Model In-sample Out-sample In-sample Out-sample

λ = 0.0 0.2930±0.3176 0.8431±0.3681 0.6688±0.6645 0.6880±0.3808
λ = 0.5 0.3108±0.2974 0.8235±0.7135 0.4830±0.4356 0.7677±0.6753
λ = 1.0 0.3779±0.2954 0.8992±0.6360 0.5760±0.4385 0.7802±0.6336
λ = 1.5 0.5184±0.2416 1.0470±0.7141 0.7806±0.4253 0.9899±0.6105
λ = 2.0 0.2898±0.2162 0.9060±0.6212 0.4325±0.2883 0.7868±0.5812
λ = 3.0 0.4088±0.3408 1.1433±0.6801 0.5424±0.5269 1.0604±0.6303

ϵ = 0.5 0.2561±0.2307 0.8395±0.5324 0.3989±0.3687 0.7391±0.4853
ϵ = 1.0 0.2617±0.1962 1.0247±0.4543 0.3512±0.2772 0.9203±0.4515
ϵ = 1.5 0.3353±0.2556 1.2782±0.5472 0.4339±0.3214 1.1656±0.5019
ϵ = 2.0 0.3779±0.2954 0.8992±0.6360 0.5760±0.4385 0.7802±0.6336
ϵ = 2.5 0.4934±0.2857 1.3844±0.5709 0.4625±0.4451 1.2784±0.5561
ϵ = 3.0 0.2889±0.1677 1.0642±0.5469 0.3765±0.2717 0.9154±0.5379

κ = 5 0.3598±0.3597 1.0892±0.7782 0.3969±0.3444 1.0047±0.7279
κ = 10 0.2964±0.2380 0.8721±0.6014 0.4106±0.2212 0.7972±0.5751
κ = 15 0.3797±0.2402 0.9187±0.6839 0.5244±0.3445 0.8463±0.6493
κ = 20 0.2799±0.2918 0.8306±0.5746 0.3740±0.4330 0.7502±0.5503
κ = 25 0.2469±0.1943 0.6571±0.5349 0.5481±0.4195 0.6031±0.4486

γ = 0.0 0.3779±0.2954 0.8992±0.6360 0.5760±0.4385 0.7802±0.6336
γ = 0.1 0.3176±0.3216 0.7459±0.7342 0.5524±0.3777 0.6759±0.6982
γ = 0.5 0.2170±0.1470 0.6312±0.4785 0.3740±0.3230 0.5505±0.4044
γ = 1.0 0.2371±0.1785 0.8427±0.6201 0.3036±0.2446 0.7764±0.5583
γ = 5.0 0.3903±0.3032 0.8365±0.6857 0.6347±0.5429 0.7601±0.6364
γ = 10.0 0.2977±0.1908 0.8416±0.4937 0.5226±0.4002 0.7335±0.4856



Table 9: Outcome estimation percision (mean±std) of ESCFR under different settings.
Metric RMSEF RMSECF

Model In-sample Out-sample In-sample Out-sample

λ = 0.0 2.7785±0.3642 3.2952±0.2815 3.2367±0.2666 3.4277±0.3103
λ = 0.5 2.2107±0.4151 2.6970±0.3937 2.8069±0.3913 2.9530±0.4813
λ = 1.0 2.1674±0.3397 2.6953±0.3274 2.7324±0.2716 2.8730±0.2980
λ = 1.5 2.1288±0.3921 2.6346±0.3601 2.6522±0.2605 2.8538±0.3549
λ = 2.0 2.3265±0.4361 2.7961±0.4254 2.7580±0.3065 2.9292±0.3954
λ = 3.0 2.2182±0.3445 2.6948±0.2941 2.6771±0.2088 2.8553±0.2897

ϵ = 0.5 2.1481±0.3961 2.6331±0.3469 2.6855±0.2579 2.8517±0.3782
ϵ = 1.0 2.1540±0.3650 2.6842±0.3800 2.6842±0.3529 2.8743±0.4060
ϵ = 1.5 2.3866±0.4056 2.8419±0.3468 2.7913±0.2336 2.9439±0.3116
ϵ = 2.0 2.1674±0.3397 2.6953±0.3274 2.7324±0.2716 2.8730±0.2980
ϵ = 2.5 2.4194±0.3648 2.8643±0.2888 2.8486±0.2229 2.9970±0.2555
ϵ = 3.0 2.2324±0.5539 2.7804±0.4149 2.7025±0.3612 2.8609±0.3312

κ = 5 2.2200±0.5065 2.6801±0.4200 2.6695±0.2931 2.8626±0.3787
κ = 10 2.1754±0.3667 2.6486±0.2866 2.6598±0.2627 2.8025±0.3281
κ = 15 2.0850±0.3475 2.5694±0.3441 2.6024±0.2526 2.7893±0.2970
κ = 20 2.0867±0.3410 2.5790±0.2977 2.6140±0.2392 2.7546±0.3400
κ = 25 2.3251±0.3592 2.7818±0.3168 2.8598±0.3253 3.0228±0.2797

γ = 0.0 2.1674±0.3397 2.6953±0.3274 2.7324±0.2716 2.8730±0.2980
γ = 0.1 2.0466±0.5003 2.5924±0.4407 2.6120±0.3542 2.8192±0.4226
γ = 0.5 2.0507±0.4153 2.5509±0.4264 2.6084±0.3425 2.7283±0.4048
γ = 1.0 2.0888±0.5184 2.5788±0.4708 2.6067±0.3012 2.7722±0.3143
γ = 5.0 2.1111±0.3639 2.6112±0.3557 2.6920±0.3115 2.7858±0.3228
γ = 10.0 2.1696±0.4620 2.6797±0.4161 2.7643±0.3658 2.8965±0.5432
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Figure 10: Parameter sensitivity study for critical hyper-parameters of ESCFR (AUUC).
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Figure 11: Parameter sensitivity study for critical hyper-parameters of ESCFR (εATE).
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Figure 12: Parameter sensitivity study for critical hyper-parameters of ESCFR (εATT).

D.7 ADDITIONAL DISCUSSION FOR THE BASIC ASSUMPTIONS IN CAUSALITY

This section reviews the fundamental assumptions in causality and illustrates their relationship to
ESCFR.

• The positivity assumption A.3 implies that the treated and untreated groups should contain
overlapping units. The stochastic optimal transport in Section 3.1 seeks to achieve it in the
latent representation space; however, the MSE issue leads to outcome imbalance and sampled
outliers at a mini-batch level. In this case, pulling all samples into a common overlapping
region leads to incorrect matches and thus misleads the update of the representation mapping
ψ. The RMPR adaptively matches and aligns the units that are close to the overlapping
region by ignoring outliers, which reduces incorrect matches and prevents biased update of
ψ.

• The PFOR is closely related to the unconfoundedness assumption A.1. On the basis of the
vanilla Sinkhorn in Section 3.1, it further aligns the transition probabilities PT=1(Y (T = t) ∣
r) and PT=0(Y (T = t) ∣ r). That is, for a pair of units from different treatment groups, if they
share similar confounders r, their potential outcomes, i.e., Y 0, Y 1, should also be similar.
In other words, the potential outcomes are independent of the specific treatment assignment
given confounders r obtained with the assistance of PFOR, i.e., (Y 0, Y 1) ⊥⊥ T ∣ r, which is
exactly the unconfoundedness assumption A.1.
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