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Abstract

Partial identification (PI) presents a significant
challenge in causal inference due to the incom-
plete measurement of confounders. Given that ob-
taining auxiliary variables of confounders is not
always feasible and relies on untestable assump-
tions, researchers are encouraged to explore the
internal information of latent confounders without
external assistance. However, these prevailing PI
results often lack precise mathematical measure-
ment from observational data or assume that the
information pertaining to confounders falls within
extreme scenarios. In our paper, we reassess the
significance of the marginal confounder distribu-
tion in PI. We refrain from imposing additional re-
strictions on the marginal confounder distribution,
such as entropy or mutual information. Instead,
we establish the closed-form tight PI for any pos-
sible P(U) in the discrete case. Furthermore, we
establish the if and only if criteria for discern-
ing whether the marginal confounder information
leads to non-vanilla PI regions. This reveals a
fundamental negative result wherein the marginal
confounder information minimally contributes to
PI as the confounder’s cardinality increases. Our
theoretical findings are supported by experiments.

1. Introduction
Estimating causal effect is important in a wide range
of fields, including medicine (Castro et al., 2020), eco-
nomics (Hicks et al., 1980), education (Peng & Knowles,
2003), and climate (Zhang et al., 2020). Due to the existence
of latent confounders, the causal effect is usually not iden-
tifiable just from observational distribution. For example,
when there exists a latent confounder that affects observed
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Figure 1. We consider the fundamental causal graph involving
treatment X , outcome Y , and confounders U . Our focus lies
in achieving the tight PI of causal queries using only the informa-
tion from the marginal distribution P (U) in conjunction with the
observed P (X,Y ).

random variables X and Y via the causal diagram as de-
scribed in Figure 1, the existence of two paths U → X and
U → Y may affect the judgment of the direct causal effect
from X to Y . This is also related to the famous “Simpson’s
paradox” (Pearl, 2014).

In the absence of unobserved confounders, it is well known
that causal effect is “identifiable” (Robins, 1987). Taking
Figure 1 again for instance, when the joint distribution of
random variables {X,Y, U} can be observed, the causal
effect from X to Y could be fully recovered according to
the famous “back-door criteria” (Pearl et al., 2000). When
unmeasured confounders exist, Tian & Pearl (2002) es-
tablished the if and only if criteria for the identification of
causal queries. When it is not satisfied, one can at most
identify a region where the true causal effect belongs, which
is commonly known as the Partial identification (PI).

When only the marginal distribution P(X,Y ) is accessible,
and the causal diagram follows Figure 1, the tight PI re-
gion of causal estimand is provided by Tian & Pearl (2000),
which is also known as the so-called “vanilla bound”. To
achieve an identification region tighter than just vanilla
bound, existing methods can be split into two categories.
The first category resorts to external auxiliary variables. For
example, Balke & Pearl (1997) proposed the famous “Balke-
Pearl” bound via auxiliary instrument variables, which is
further extended by Kitagawa (2009) to the continuous case.
Ghassami et al. (2023) generalized the traditional double-
negative control method, which took advantage of the treat-
ment and outcome confounding proxy variables to construct
valid PI bounds. Besides, Gabriel et al. (2022) selected the
outcome-dependent samples for assistance.
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Since the auxiliary variable is not always obtainable, the
second category instead focuses on only using additional
side information of latent confounders to improve identifi-
cation. The most fundamental strategy is to directly exploit
the marginal probability distribution of latent confounders
P(U) (Li & Pearl, 2022; Li et al., 2023; Jiang et al., 2023).
It corresponds to many common practical scenarios, such
as privacy concerns. During experimentation, constraints
such as privacy, sensitive information, ethics, and medical
expenses commonly limit access to patients’ or volunteers’
physical constitution and genetic characteristics. However,
leveraging the known prior distribution of main genetic fac-
tors in the population, collected and de-identified by higher-
level institutions on a broader scale (e.g., Genome-Wide
Association Study (Uffelmann et al., 2021)), can provide an
estimate of P(U) in the patient population. Unfortunately,
these methods can only handle specific extreme cases of
confounders (i.e., cases where the information entropy of
P(U) is rather small) and do not have any tightness guar-
antee. Other series of work shifts to characterize the as-
sociation between confounder U and {X,Y } relying on
additional hyper-parameters and customized measures, e.g.
sensitivity analysis (Dorn et al., 2021), information-theoretic
method (Janzing et al., 2013; Geiger et al., 2014).

Hence, we consider the problem of finding the tight PI re-
gion of causal effects with the assistance of general marginal
distribution information of latent confounders. Moreover,
we do not impose any restriction on P(U). Throughout
this paper, we focus on the simplest structure in Figure 1,
which is the same as the settings considered by the closely
related literature (Li & Pearl, 2022; Li et al., 2023; Jiang
et al., 2023). We explore the closed-form solution of the
tight PI region using P(X,Y ) and P(U) and discuss further
the intuitions from it. On this basis, we derive theoretical
negative results that enhance the scientific paradigm for PI
through the constrained optimization approach. In sum, our
contributions are as follows:

• We develop the tight PI region of casual queries with
the marginal distribution of unmeasured confounders
without additional restrictions.

• We establish the if and only if criteria for P(U) so
that the tight PI is stricter than the vanilla bound1. We
fundamentally indicate that as the confounder’s car-
dinality increases, it is less likely that the additional
information of P(U) can provide an identification re-
gion tighter than just vanilla bound.

• We conduct synthetic and real-world experiments to
quantify the information loss of the traditional entropy-

1Here “vanilla bound” refers to the identification region when
the confounder information is completely unknown (Tian & Pearl,
2000).

based optimization for PI in various settings, compared
with our proposed PI region.

The rest of the paper is organized as follows. In Section 2,
we review the basic framework and corresponding litera-
ture on PI. In Section 3, we establish the closed-form tight
identification region for different causal quantities with bi-
nary confounders. In Section 4, we extend our result to the
categorical case and establish the above-mentioned if and
only if condition. We generalize such conditions to new
measurements to quantify identification improvement by
using P(U). In Section 5, we illustrate our simulation and
real-world experiment results. We conclude this paper with
a discussion in Section 7.

2. Framework, notation and literature review
Framework and notations In this paper, we assume
that there exists a latent variable U such that the causal
relation between X,Y, U follows the causal diagram in
Figure 1. We assume that both X,Y are binary vari-
ables taking values in {0, 1}; and that U is a discrete
random variables taking values from {0, . . . , du − 1} for
some positive integer du ≥ 2. To describe causality, we
adopt the do-calculus framework (Pearl, 1995), i.e., that
P(Y = 1 | do(X = 0)) denotes the probability that Y is
equal to 1 had we assigned X to be equal to 0. For simplic-
ity we write P(y | do(x)) as P(Y = y | do(X = x)) and
write P(x, y),P(u) as P(Y = y,X = x) and P(U = u),
respectively. Our goal in this paper is to calculate the iden-
tification region of the P(y | do(x)) and average treatment
effect E(Y | do(X = 1))− E(Y | do(X = 0)) ≡ P(Y =
1 | do(X = 1)) − P(Y = 1 | do(X = 0)) with the assis-
tance of background information of the marginal distribution
of latent confounders, i.e., P(U).

When the information P(U) is not accessible, Tian & Pearl
(2000) shows that

P(y | do(x)) = P(x, y) +
∑
u

P(y, u, x)
P(u, x)

P(u,¬x) (1)

belongs to [P(x, y),P(x, y) + P(¬x)], where since x ∈
{0, 1}, we write ¬x ≡ 1−x, i.e., that P(¬x) ≡ P(X = 1−
x). We denote P(x, y) and P(x, y) + P(¬x) as the “vanilla
lower bound” and “vanilla upper bound” of P(y | do(x)).
Stepping forward, we follow Robins (1989) to denote
−P(X = 1, Y = 0) − P(X = 0, Y = 1) and P(X =
1, Y = 1) + P(X = 0, Y = 0) as the ‘vanilla lower bound
of ATE’ and ‘vanilla upper bound of ATE’.

Literature review In observational studies, partial identi-
fication (PI) indeed originates from point-wise identification,
for which additional auxiliary variables and assumptions are
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required. Wright (1928) proposed instrument variable (IV)
to estimate causal effect via regression with linear model
assumption. Kuroki & Pearl (2014) established sufficient
conditions under which the proxy variables could help point-
wisely restore the causal effect. It was subsequently devel-
oped into double negative control (Nagasawa, 2018; Shi
et al., 2020; Singh, 2020; Cui et al., 2023; Tchetgen et al.,
2020; Deaner, 2018; Kallus et al., 2021; Miao et al., 2018;
Qi et al., 2023), and currently further simplified to be sin-
gle proxy control (Tchetgen et al., 2023; Park & Tchetgen,
2023; Xu & Gretton, 2023; Zhang, 2022). Informally speak-
ing, these two methodologies both require the confounder
proxies to be informative enough, namely, the transition
matrix from the confounders to proxies is left-reversible in
the discrete case.

To avoid being constrained to particular contexts as above,
researchers are encouraged to weaken these assumptions
to further explore PI (Manski, 1990; Tamer, 2010; Kline &
Tamer, 2023). Geiger & Meek (2013) theoretically illus-
trated the feasibility of transforming PI into an optimisation
problem. Following our introduction, two categories are
divided. Correspondingly, the first auxiliary-based cate-
gory inherits and generalizes the above point-wise iden-
tification as IV-based PI (Balke & Pearl, 1997; Swanson
et al., 2018; Kitagawa, 2009; Zhang & Bareinboim, 2021a),
negative control-based PI (Ghassami et al., 2023), outcome-
dependent sampling PI (Gabriel et al., 2022) .

The second category is the most relevant to ours and, there-
fore, warrants further in-depth discussion. Removing unten-
able auxiliary variables and untestable assumptions brings
out a greater challenge for PI optimization. Pioneering
works started with rough qualitative analyses. Geiger et al.
(2014) proved that P(y | do(x)) in Eqn 1 is bounded by
so-called “back-door dependence”, which is measured by
mutual information between U and X . Such information-
theoretic concepts could help bound various causal quan-
tities (Janzing et al., 2013) whereas are practically con-
strained by external hyper-parameters, e.g., sensitivity anal-
ysis (Kallus et al., 2019; Marmarelis et al., 2023; Dorn et al.,
2021; Christopher Frey & Patil, 2002), or parametric ma-
chine learning models (Hu et al., 2021; Balazadeh Meresht
et al., 2022; Zhang et al., 2023; Wang et al., 2024). For
simplicity and generalization, people currently revisit Fig-
ure 1 and directly utilize the marginal confounder infor-
mation (Schuster et al., 2015; Dawid et al., 2017; Mueller
et al., 2021). Taking advantage of Single world intervention
graphs (Richardson & Robins, 2013), Jiang et al. (2023)
surrogated P(U) information into entropy 2 H(U) and pro-
vided a state-of-the-art entropy-based valid PI region of

2Entropy H(U) := −
∑

u∈U P(u)log(P(u)).

Eqn 1:{ ∑
x′=0,1

byx′P (x′) : b ∈ B ∩ BU

}
(Jiang et al., 2023).

Here b := {bij}i,j∈{0,1}, and B,BU represent the linear
constraint and the entropy constraint, respectively.3 In view
of the non-convex feasible set, Li et al. (2023) further sim-
plified it to a closed-form valid PI bound in the binary case,
which degenerates linearly with sufficiently small H(U):[
P(y | x)−clH(U),P(y | x)+cuH(U)

]
(Li et al., 2023).

cl, cu are positive constants. A comprehensive analysis
of its optimal form will be discussed in Section 3. Both
of these results argued that confounders with sufficiently
small entropy could help construct non-vanilla PI but not
guarantee tightness.

By this motivation, a research gap arises: what is the general
tight PI region, and when would it be non-vanilla condition-
ing on any possible P(U), instead of other surrogates like
entropy?4 Although it could be approximated via advanced
optimisation programming (Duarte et al., 2023), the testing
on each specific P(U) is completely empirical. Even worse,
the computational complexity grows exponentially with the
cardinality of U due to the exhaustive branch-and-bound
searching (Duarte et al., 2023). We address this research gap
by exploring the closed-form tight PI and its mathematical
insight without any additional imposed restrictions.

3. Tight partial identification with binary
confounder

For simplicity of illustration, in this section, we first consider
the tight PI region for du = 2. In Theorem 3.3, we showcase
the tight bound of P(y | do(x)) with prior knowledge of
P(U), and then Theorem 3.5 generalizes Theorem 3.3 to
the ATE case. Furthermore, Corollary 3.4 provides a further
investigation of Theorem 3.3 when P(U = 1) or P(U = 0)
is close to zero, i.e., H(U) is small.

Throughout this article, we invoke the following assumption
on the marginal distribution P(X,Y ) and P(U).
Assumption 3.1 (Positivity). ∀x, y ∈ {0, 1}, P(x, y) > 0.
Assumption 3.2. U is a discrete random variable taking
values in {0, . . . , du − 1}. Moreover, there does not exist a
u′ such that P(U = u′) = 1.

3B := {b : ∀i, j, bij ∈ [0, 1],
∑

y′,x′ by′x′P (x′) =

1;∀y′, by′x = P (y′ | x)}. Moreover, they set BU := {b :∑
y′,x′ by′x′P (x′) log

(
by′x′/

∑
x′ by′x′P (x′)

)
≤ H(U)}.

4Jiang et al. (2023) first established a sufficiency criteria upon
what is the greatest entropy H(U) (so-called “entropy threshold”)
to cause non-vanilla PI. Stepping forward, we formalize an if and
only if criteria upon each possible P(U) in Section 4.
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The reason why we impose the additional constraint P(U =
u′) ̸= 1 is that once it is violated, U will become determin-
istic so that there is no latent confounding anymore, and the
causal conclusion becomes trivial.

3.1. Identification of interventional probability

In this section, we discuss the tight PI region of interven-
tional probability P(y | do(x)) when U is a binary random
variable. Our goal is to derive a closed-form solution for
the tight identification region. Taking the lower bound for
example, it can be obtained by seeking a joint distribu-
tion P(X,Y, U) that minimizes (1) while still compatible
with the marginal probabilities P(X,Y ) and P(U). In other
words, we can obtain the lower bound by solving the follow-
ing optimization program:

min
P(x, y, U = 0)

P(x, U = 0)
P(U = 0) +

P(x, y, U = 1)

P(x, U = 1)
P(U = 1),

such that P(X,Y, U) is compatible with the observed
marginal distributions P(U),P(X,Y ).

(2)
Apparently, this is a non-trivial non-convex fractional opti-
mization problem where one has to minimize the objective
function by varying the denominators P(x, U = 0) and
P(x, U = 1). Nevertheless, when we assume that beyond
P(U), P(X,U) is also known a priori, then we just need to
optimize the numerators, which breaks down to a linear op-
timization problem. Consequently, we can derive that with
P(X,U) known, (2) is equivalent to mint∈{0,1}{max(St)}
where

St :=

{
P(x, y)

P(x, U = t)
P(U = t),

P(x, y)− P(x, U = t)

P(x)− P(x, U = t)
(1− P(U = t)) + P(U = t)

}
.

(3)
Due to the min-max operation, (3) is not straightforward
to be optimized directly. Fortunately, we have found that
this function is piece-wise monotone. This allows us to
derive a closed-form identification region by exhaustively
examining the boundary points of each piece. Our closed-
form identification strategy is presented in Theorem 3.3,
which is also a tight identification strategy (Appendix B).

Theorem 3.3 (Identification of interventional probability).
Suppose we are under Assumptions 3.1 and 3.2 with du = 2
and the distribution P(U) observable. The tight identifica-
tion region of the interventional probability P(y | do(x)) is
given by[

min
t∈{0,1}

LB (P(U = t)) , max
t∈{0,1}

UB (P(U = t))

]
.

Here LB(·),UB(·) are two piece-wise linear functions de-

fined as
P(x,y)−t
P(x)−t (1− t) + t t ∈ (0,P(x, y)]
P(x, y) t ∈ (P(x, y),P(x)]
P(y | x)t t ∈ (P(x), 1)

and


P(y | x)(1− t) + t t ∈ (0,P(¬x)]
P(x, y) + P(¬x) t ∈ (P(¬x), 1− P(x,¬y)]

P(x,y)t
P(x)−(1−t) t ∈ (1− P(x,¬y), 1)

,

(4)
respectively.

Informally, then, Theorem 3.3 means that when

{P(U = 0),P(U = 1)} ∩ [P(x, y),P(x)] ̸= ∅ and
{P(U = 0),P(U = 1)} ∩ [P(¬x), 1− P(x,¬y)] ̸= ∅,

(5)
the tight identification region of the interventional proba-
bility is no different from the “vanilla bound”. When both
P(U = 0) and P(U = 1) are outside of this region, one
can expect a more nontrivial identification bound. Figure 2
provides a visualization of the lower bound in Theorem 3.3.
Apparently, as P(U = 1) varies from 0 to 1, the lower bound
will change in different trends, depending on the marginal
distribution of the observed variables (X,Y ).

In the scenario where a practitioner does not know the exact
value of P(U), but just that it belongs to a class of distribu-
tion P , it’s straightforward that the tight identification region
of the interventional probability P(y | do(x)) is given by

⋃
P(U)∈P

[
min

t∈{0,1}
LB (P(U = t)) , max

t∈{0,1}
UB (P(U = t))

]
.

We now consider a special scenario where P(ε) := {P(U) :
P(U = 0) ≤ ε or P(U = 1) ≤ ε}(ε ≤ 1/2), or equiv-
alently, H(U) ≤ −εlog(ε) − (1 − ε)log(1 − ε), which
has been considered before by Li et al. (2023); Jiang et al.
(2023). We strengthen the previous result via extreme anal-
ysis to a tight PI region:

Corollary 3.4. Suppose we are under Assumption 3.1.
Suppose du = 2 and we are given a P(ε) with ε ≤
min{P(x),P(¬x)}, then the tight identification region of
P(y | do(x)) is given by[

min{LB(ε),LB(1−ε)},max{UB(ε),UB(1−ε)}
]
. (6)

If additionally ε ≤ min{P(x, y),P(x,¬y),P(¬x)}, it can
be simplified as

[P(y | x)− εEy(ε),P(y | x) + εE¬y(ε)] , where

Ey′(ε) = max

{
P(x,¬y′)P(¬x)
(P(x)− ε)P(x)

,P(y′ | x)
}
, y′ ∈ {0, 1}.

(7)
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Figure 2. The visualization of Theorem 3.3. We take the lower bound for instance and the upper bound is in the same vein. It could be
categorized into six types in total according to the order of {P(¬x),P(x),P(x)P(¬x),P(x, y)}. As illustrated, the tight lower bound is
vanilla if and only if {P(U = 0),P(U = 1)} ∩ [P(x, y),P(x)] ̸= ∅.

In Li et al. (2023), the authors shows that when ε ∈
[0,P(x)), a valid identification region is [LBli,UBli], where

LBli := P(y | x)− P(x) + 1

P(x)
ε,

UBli = P(y | x) + P(x) + 1

P(x)
ε+

ε2

P(x)[P(x)− ε]
.

(8)

When P(x) ≤ P(¬x), the range of ε considered by Li et al.
(2023) is exactly the same as the one considered in the
corollary above, and our results show that Li’s identification
region is strictly looser than the tight identification region for
any ε ∈ (0,P(x)). When P(x) > P(¬x), compared to our
work, Li et al. (2023) additionally considered the region ε ∈
(P(¬x),P(x)). However, under this regime, one can im-
mediately have [P(x, y),P(x, y) + P(¬x)] ⊆ [LBli,UBli],
i.e., Li’s bound is looser than the vanilla bound without
any information about P(U). Proof and more quantitative
analysis are shown in Appendix C.

3.2. Identification of average treatment effect

In this section, we further provide the tight identification
region of the average treatment effect (ATE) given prior
information of P(U). We also discuss the constraints on
the observed marginal distributions so that the resulting
identification bound does not degenerate into vanilla.

Theorem 3.5 (Identification of average treatment effect).
Consider the same setup as Theorem 3.3, then the tight
identification region of ATE is given by[

min
t∈{0,1}

{−B(P(U = t); 0, 1)}, max
t∈{0,1}

B(P(U = t); 1, 1)

]
,

where B(t;x, y) :=

(
− P(y | ¬x) + P(x,y)

P(x)−t

)
(1− t) t ∈ (0, p0]

−P(y | ¬x)(1− t)− P(x,¬y) + 1 t ∈ (p0, p1]
−P(¬x, y) + P(y | x)t+ (1− t) t ∈ (p1, p2](
− P(¬x,y)−(1−t)

P(¬x)−(1−t) + P(y | x)
)
t t ∈ (p2, 1)

.

Here p0 = P(x,¬y), p1 = P(x), p2 = 1− P(¬x, y).

The proof is deferred to Appendix D. When

{P(U = 0),P(U = 1)} ∩ {P(X = 1)} ≠ ∅, (9)

the tight bound will degenerate into the vanilla bound
[−P(X = 0, Y = 1) + P(X = 1, Y = 0),P(X = 0, Y =
0) + P(X = 1, Y = 1)], i.e., the tight identification region
of ATE provided no prior knowledge about P(U); otherwise,
it is always tighter, which is quite inconsistent with the de-
generation requirement for interventional probability in (5)5.
It should be noticed that Theorem 3.5 is not a simple com-
position of the results of Theorem 3.3; in other words, the
lower (upper) tight bound of ATE cannot simply be equated
to the difference between the lower (upper) tight bound of
P(Y = 1 | do(x′)), x′ = 0, 1. In fact, the tightness of the
two may not be simultaneously reached.

So far, we have provided the tight identification bound for
the interventional probability and average treatment effect
when du = 2; we also provide the if and only if conditions
so that the tight identification bound does not degenerate
into a vanilla bound. This raises an interesting question: is
it possible to extend these results into the multivariate case
with du ≥ 3? We answer this question in the next section.

4. Tight partial identification with
multi-valued confounder

In this section, we consider the identification of casual
queries with multi-valued confounders, namely, du ≥ 3.

4.1. The if and only if condition of degeneration to the
vanilla identification region

In Section 3, we have shown that under the setting du = 2,
when the prior distribution of U lies in the region charac-
terized by (5), the tight identification region given the prior
information in fact has no improvement compared to the
vanilla bound. Moreover, such characterization in (5) is “if
and only if”, in the sense that when (5) is violated, then
the tight identification region is definitely tighter than the
vanilla bound. In Theorem 4.1 (Appendix E) we further

5Counter-intuitively, (9) and (5) will exhibit consistency under
multi-value settings, which will be illustrated in Section 4.
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extend such “if and only if” characterization to the multi-
valued U .

Theorem 4.1. Suppose Assumptions 3.1-3.2 hold. The tight
lower bound of the interventional probability P(y | do(x))
given prior knowledge of P(U) is equal to the vanilla lower
bound if and only if P(U) belongs to PL :={

P(U) : ∃ U ⊆ R s.t. P(U ∈ U) ∈ [P(x, y),P(x)]
}
.

Analogously, the if and only if condition for the degeneration
of the upper bound is when P(U) belongs to PU :={
P(U) : ∃ U ⊆ R s.t. P(U ∈ U) ∈ [P(¬x), 1−P(x,¬y)]

}
.

Thus the tight identification region of P(y | do(x)) given
prior knowledge of P(U) is equal to the vanilla bound if
and only if P(U) ∈ P := PL ∩ PU .

Compared with Jiang et al. (2023), Theorem 4.1 constructed
an if and only if criterion upon the non-vanilla region with
each possible P(U), instead of seeking other conservative
sufficiency conditions based on the information entropy
constraint of U . In other words, the oracle non-vanilla
region derived from Theorem 4.1 reveals the ground truth
and surrogates the previous result as the special case. More
importantly, to demonstrate its simplicity and essence, as a
corroboration, we further show that ATE also possesses a
consistent form of the decision criterion:

Theorem 4.2. Suppose Assumptions 3.1-3.2 hold. The if
and only if conditions for the tight upper and lower bounds
of the average treatment effect to degenerate into vanilla
bounds are when P(U) belongs to

PL
ATE := {P(U) : ∃ U0,U1 ⊆ R with U0 ∩ U1 = ∅, s.t.

∀z ∈ {0, 1},P(U ∈ Uz) ∈ Iz,z} ,

where Ix′,y′ := [P(X = x′, Y = y′),P(X = x′)] for
x′, y′ ∈ {0, 1} and

PU
ATE := {P(U) : ∃ U0,U1 ⊆ R with U0 ∩ U1 = ∅, s.t.

∀z ∈ {0, 1},P(U ∈ Uz) ∈ I¬z,z} ,

respectively. Thus, the identification region of the average
treatment effect is vanilla if and only if P(U) ∈ PATE :=
PL
ATE ∩ PU

ATE.

Theorems 4.1 and 4.2 (Appendix E and Appendix F) pro-
vide the if and only if conditions for the tight identification
regions of interventional probabilities and average treatment
effects to degenerate into vanilla bounds. It shows that
whether the tight identification region is vanilla depends on
the existence of a subspace of confounder U ⊆ R (or two
disjoint subspaces U0,U1 ⊆ R) whose probability measure
P(U ∈ U) (or P(U ∈ U0), P(U ∈ U1)) locates in the de-
sired interval. Moreover, such interval is constructed by the

observational probability P(X,Y ). When du = 2, one can
easily prove that the conditions displayed in Theorems 4.1
and 4.2 break down to the intervals in (5) and (9).

According to Theorems 4.1 and 4.2, the identification re-
gions {PL,PU ,P,PATE,PL

ATE,PU
ATE} have properties in

the following corollary (Appendix G):

Corollary 4.3. Suppose Assumptions 3.1-3.2 hold and du ≥
3. We have

(i) P = PL ∩ PU ̸= ∅ and PATE = PL
ATE ∩ PU

ATE ̸= ∅;

(ii) PL
ATE ⫋ PL,PU

ATE ⫋ PU , and therefore PATE ⫋ P .

We provide instances in Appendix N. Informally then, it
means that i) for any choice of observational distribution
P(X,Y ), there always exists some specifications of P(U)
so that its induced identification regions of interventional
probability and average treatment effect are no different
from vanilla bound, and ii) the identification of average
treatment effect is strictly less likely to degenerate into the
vanilla case than the interventional probability. To better
understand the relationships among these sets, in Figure 3
we provide some visualizations of their relationships via
Venn diagrams.

Corollary 4.3 naturally leads to following the question: how
large the “volume” of P and PATE is relative to the en-
tire probability space Ω := {P(U) :

∑
t P(U = t) =

1,P(U = t) ≥ 0}? To understand this we now consider a
Bayesian flavoured setup where the du-dimensional param-
eters (P(U = 0),P(U = 1), ...P(U = du − 1)) is sampled
uniformly at random from the du − 1 probability simplex,
and the problem then is transformed to analyzing the prob-
ability that the induced P(U) falls into the “non-vanilla”
region (P)c and (PATE)

c. First, we have the following
theoretical result (Appendix H):

Proposition 4.4. Assuming that the parameters (P(U =
0),P(U = 1), . . . ,P(U = du − 1)) is sampled
uniformly at random from the (du − 1)-simplex, the
probability that P(U) falls into (P)c, (PATE)

c are all
monotonically non-increasing with the increasing du;
and are at most du

(
1−miny′∈{0,1} P(x, y′)

)du−1
and

du
(
1−minx′,y′∈{0,1} P(x′, y′)

)du−1
, respectively.

Informally then, it means that the probability that P(U) falls
into the region with a non-trivial bound decreases expo-
nentially with the increment of du. Since it just represents
some upper bound which is not necessarily tight, we fur-
ther visualize in Figure 4 how the probability P(U) ∈ P
and P(U) ∈ PATE vary the increment of du under differ-
ent choices of P(X,Y ). Consistent with the upper bound
described in Proposition 4.4, the probability of having a
non-trivial P(U) will tend to zero as du goes to infinity;
moreover, the probability of having a non-trivial P(U) are
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Figure 3. The affiliation relationship of the sets PL,PU ,P,PATE,PL
ATE and PU

ATE under different constraints of P(X,Y ); the constraint
is displayed at the top of each figure, where for example P(X = 0, Y = 1) is denoted as p01. With a slight abuse of notation, PL,PU

and P correspond to the identification region of the interventional probability P(Y = 1 | do(X = 1)). The whole space of P(U) is
denotes as Ω := {P(U) :

∑
t P(U = t) = 1,P(U = t) ≥ 0}. Corollary 4.3 guarantees that the gray region is non-empty (contains at

least one legitimate P(U) in Ω).
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Figure 4. The probability that P(U) satisfies the if and only if condition given by Theorem 4.1 with varying du. Here P(U) is uniformly
sampled on the (du − 1)− probability simplex via 106 Monte Carlo simulations. There are four types of observed data which are recorded
as P(X,Y ) = [(P(X = 1, Y = 1),P(X = 1, Y = 0))T , (P(X = 0, Y = 1),P(X = 0, Y = 0))T ], x = y = 1. The probability of
P(U) ∈ (P)c and P(U) ∈ (PATE)

c both monotonically decreases to zero with increasing du, and the degeneration rate of P(U) ∈ (P)c

is lower than that of P(U) ∈ (PATE)
c.

all consistently below 0.1 for du no smaller than 10, re-
gardless of the choice of P(X,Y ). This indicates that the
marginal information P(U) is usually more useful with a
relatively small du. When du is, say greater than 10, a prac-
titioner usually cannot expect an informative distribution of
the latent confounder with non-vanilla PI regions.

4.2. Closed-form identification region

As indicated in Proposition 4.4 and Figure 4, the provided
marginal information P(U) becomes more likely to lie in
the trivial region with increasing du. Hence, at a global
level, the confounder marginal information shows limited
assistance to PI, especially when du is relatively large. In
this section, we discuss the PI of the causal estimands when
P(U) does not belong to P . First, in Theorem 4.5 (Ap-
pendix I) we provide a closed-form formulation of the tight
identification bound of the interventional probability for any
du ≥ 2.

To formally describe the new theorem, We first write
{pmin(I, I ′), pmax(I, I ′)} as the minimum and the max-
imum of the set {P(U ∈ U ) : U ⊆ I,P(U ∈ U ) ∈
I ′}. If this set is empty, we let pmin(I, I ′) = −∞ and

pmax(I, I ′) = +∞. Armed with this notation, in Theo-
rem 4.5, we provide the closed-form solution of the tight
identification region of the interventional probability.

The computation of pmin(I, I ′), pmax(I, I ′) refer to the
famous Subset-Sum Problem (SSP) (J Kleinberg, 2006) in
theoretical computer science. Widely-existed SSP algo-
rithms (J Kleinberg, 2006) could approximately extract the
extreme subset-sum larger (smaller) than a given threshold
(Appendix L). In this sense, {pmin(I, I ′), pmax(I, I ′)} can
be viewed as constants that can be adequately approximated.

Theorem 4.5. Suppose Assumptions 3.1-3.2 hold, and P(U)
with du ≥ 2 is observable. The tight identification region
of the interventional probability P(y | do(x)) is given by[
LBmul

x,y (P(U)),UBmul
x,y (P(U))

]
, where

LBmul
x,y (P(U)) :=

{
B′(P(U);x, y) P(U) ∈ (PL)c

P(x, y) P(U) ∈ PL ,

(10)

UBmul
x,y (P(U)) :=

{
1− B′(P(U);x,¬y) P(U) ∈ (PU )c

P(x, y) + P(¬x) P(U) ∈ PU ,

(11)
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and B′(P(U);x′, y′), {x′, y′} ∈ {0, 1} is defined as:

B′(P(U);x′, y′) = min
⋃
t∈A

{
s+

P(x′, y′)− s

P(x′)− s
P(U = t) :

s ∈ {pmin(It, I
′

t), pmax(It, I
′

t)} ≠ ∅
}
.

Here A := {u : P(U = u) ≥ P(x′,¬y′)} ≠ ∅, It :=
R/{t} and I ′

t :=
[
0 ∨

(
P(x′)− P(U = t)

)
,P(x′, y′)

]
.

To better understand how P(U) helps improve identifica-
tion, we introduce a new measure indicating the “distance”
between the set {P(U ∈ U) : U ∈ R} and the interval I:

D
(
P(U), I

)
:= min |P(U ∈ U)− t|, s.t. U ⊆ R, t ∈ I.

The following theorem shows that the identification im-
provement with prior knowledge of P(U) can be bounded
by quantities depending on this new measure:

Proposition 4.6. Consider a P(X,Y ) and P(U); write

αx′ = 1/P(x′), βx′,y′ = (P(¬x′) ∨ P(x′, y′))/P(x′,¬y′),

∆x′,y′ = D(P(U), [P(x′, y′),P(x′)]),

where x′, y′ ∈ {0, 1}, then we have that

LBmul
x,y (P(U))− P(x, y) ∈ [αx∆

2
x,y, βx,y∆x,y];

P(x, y)+P(¬x)−UBmul
x,y (P(U)) ∈ [αx∆

2
x,¬y, βx,¬y∆x,¬y],

Details show in Appendix J. Remark that when P(U) is in
the set PL, then D(P(U), [P(x, y),P(x)]) is always equal
to zero. Informally then, it means that the theoretical im-
provement taking into account prior knowledge of P(U)
depends on the distance between {P(U ∈ U) : U ∈ R} and
the intervals [P(x, y),P(x)] or [P(x,¬y),P(x)].
Moving forward, we now consider the identification region
of ATE. Inheriting the definition of D

(
P(U), I

)
, we use

DATE

(
P(U), {I, I ′}

)
to represent

min
(
|P(U ∈ U0)− t0|+ |P(U ∈ U1)− t1|

)
,

s.t. U0,U1 ⊆ R,U0 ∩ U1 = ∅, t0 ∈ I, t1 ∈ I ′.

Recalling the definitions of Ix′,y′ in Theorem 4.2 and
αx′ , βx′,y′ in Proposition 4.6, we now have the following
result, which can be used for the construction of a valid
bound of ATE:

Proposition 4.7. The lower tight identification bound of
average treatment effect ATE is controlled by ATE −
ATEL

vanilla ∈

[(α1∆
2
1,1 + α0∆

2
0,0) ∨ (∆2

ATE/du), (β1,1 + β0,0)∆ATE],

where ∆ATE = DATE(P(U), {I0,0, I1,1}). Analogously,
the upper tight identification bound of average treatment
effect ATE is controlled by ATEU

vanilla −ATE ∈

[(α0∆
2
0,1 + α1∆

2
1,0) ∨ (∆2

ATE/du), (β0,1 + β1,0)∆ATE],

where ∆ATE = DATE(P(U), {I0,1, I1,0}).

∆x′,y′ , x′, y′ ∈ {0, 1} is identified as above. Proposition 4.7
(Appendix K) indicates that for ATE, the difference between
the tight PI bound and the vanilla bound is controlled by
DATE(P(U), {I0,0, I1,0}) and DATE(P(U), {I0,1, I1,1})
between the linear and squared convergence rate.

It contributes a powerful theoretical bound rather than a
natural composite of Proposition 4.6 upon both the upper
and lower bounds of P(Y = 1 | do(x′)), x′ = 0, 1. Such
enhancement is due to our new measure being stricter: for
any given {I, I ′}, DATE

(
P(U), {I, I ′}

)
≥ D

(
P(U), I

)
∨

D
(
P(U), I ′) always holds through their definitions.

5. Auxiliary experiments
After theoretically proving the optimality, we focus on high-
lighting two additional key observations inspired by our PI,
which have not been empirically validated in the previous
literature: i) traditional information-theoretic PI bounds in-
deed lose information; ii) for the only bound mentioned
in the main text that guarantees validity but not tightness
(valid ATE bound in Proposition 4.7), we verify that its effi-
ciency still significantly surpasses the competitive baseline
and guides decision making.

For our first goal, it is visualized that given confounder in-
formation, our tight PI could grasp more non-vanilla cases
than entropy-based methods, especially when entropy is not
sufficiently small as the previous (Li et al., 2023; Jiang et al.,
2023); for our second goal, we conduct experiments on IN-
SURANCE dataset (Binder et al., 1997) and the ADULT
dataset (Dua & Graff, 2017). Our result shows that even
without a tightness guarantee, our PI bounds of ATE (Propo-
sition 4.7) still provide more reliable information than the
previous methods of separately estimating the upper and
lower bounds of P(Y = 1|do(x′)), x′ = 0, 1 (Jiang et al.,
2023) and could guide decision making. We refer readers
for detailed design in Appendix N due to space limitations.

6. Justification of assumptions
In our paper, we focus on the case where X,Y is binary,
and the single confounder U is discrete. This case is con-
cise but not limited. It can be easily generalized to the case
where (i) treatment/outcome is multi-valued, (ii) unobserved
confounders exist, (iii) feasible region of the marginal distri-
bution P(U) is vague, (iv) the confounders U is continuous,
discrete-continuous, high-dimensional, etc. We leave it for
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future work. For a brief illustration, we showcase (i) in
Appendix N.4.

7. Discussion
In this paper, we focus on the PI of causal estimands with
marginal confounder information; in particular, we have
developed a closed-from tight identification region with
causal structure following Figure 1, allowing the latent con-
founders to follow arbitrary distribution; we also establish
the if and only if conditions for the identification region to
be tighter than the vanilla bound. Such if and only if criteria
establish the intrinsic equivalence between classical causal
queries and subset-sum algorithms in theoretical computer
science. We indicate that latent confounder information
may not be very helpful in aiding PI when the cardinal-
ity of confounders is relatively large. We also develop in
our manuscript several metrics to evaluate the improvement
brought out by P(U) compared to without such information.

We believe this is not only of theoretical interest but also
provides important guidance for practitioners on whether
to collect information of P(U) when such information is
not directly accessible in the first place. Our theory shows
that practitioners are not recommended to spend much en-
ergy on collecting distributional information of P(U) when
the cardinality of U is relatively large (e.g., larger than 10
according to our simulations).

Our paper has opened up several research directions; one
is to extend the current result to the more complex causal
graph; another is to consider PI of more complex counter-
factual queries (e.g., Pearl (2022)) based on the subset-sum
setting. Moreover, it would be of interest to combine our
tight PI framework to facilitate other auxiliary-based PI
methods. We will leave these possibilities for future work.
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bounds for outcome-dependent sampling in observational
studies. Journal of the American Statistical Association,
117(538):939–950, 2022.

Geiger, D. and Meek, C. Quantifier elimination for statistical
problems. arXiv preprint arXiv:1301.6698, 2013.

Geiger, P., Janzing, D., and Schölkopf, B. Estimating causal
effects by bounding confounding. In UAI, pp. 240–249,
2014.

Ghassami, A., Shpitser, I., and Tchetgen, E. T. Partial iden-
tification of causal effects using proxy variables. arXiv
preprint arXiv:2304.04374, 2023.

Guo, W., Yin, M., Wang, Y., and Jordan, M. Partial iden-
tification with noisy covariates: A robust optimization
approach. In Conference on Causal Learning and Rea-
soning, pp. 318–335. PMLR, 2022.

Hicks, J. et al. Causality in economics. Australian National
University Press, 1980.

Hu, Y., Wu, Y., Zhang, L., and Wu, X. A generative adver-
sarial framework for bounding confounded causal effects.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pp. 12104–12112, 2021.

J Kleinberg, E. T. Algorithm Design. 2006.

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., and
Schölkopf, B. Quantifying causal influences. The annals
of statistics, 2013.

Jiang, Z., Wei, L., and Kocaoglu, M. Approximate causal
effect identification under weak confounding. In Proceed-
ings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Kallus, N., Mao, X., and Zhou, A. Interval estimation
of individual-level causal effects under unobserved con-
founding. In The 22nd international conference on arti-
ficial intelligence and statistics, pp. 2281–2290. PMLR,
2019.

Kallus, N., Mao, X., and Uehara, M. Causal inference under
unmeasured confounding with negative controls: A mini-
max learning approach. arXiv preprint arXiv:2103.14029,
2021.

Kilbertus, N., Kusner, M. J., and Silva, R. A class of al-
gorithms for general instrumental variable models. Ad-
vances in Neural Information Processing Systems, 33:
20108–20119, 2020.

Kitagawa, T. Identification region of the potential outcome
distributions under instrument independence. Journal of
Econometrics, 2009.

Kline, B. and Tamer, E. Recent developments in partial
identification. Annual Review of Economics, 15:125–150,
2023.

Kuroki, M. and Pearl, J. Measurement bias and effect
restoration in causal inference. Biometrika, 101(2):423–
437, 2014.

Li, A. and Pearl, J. Bounds on causal effects and appli-
cation to high dimensional data. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 5773–5780, 2022.

Li, A., Mueller, S., and Pearl, J. Epsilon-identifiability
of causal quantities. arXiv preprint arXiv:2301.12022,
2023.

Manski, C. F. Nonparametric bounds on treatment effects.
The American Economic Review, 80(2):319–323, 1990.

Marmarelis, M. G., Haddad, E., Jesson, A., Jahanshad, N.,
Galstyan, A., and Ver Steeg, G. Partial identification of
dose responses with hidden confounders. In Uncertainty
in Artificial Intelligence, pp. 1368–1379. PMLR, 2023.

Masten, M. A. and Poirier, A. Identification of treatment
effects under conditional partial independence. Economet-
rica, 86(1):317–351, 2018. doi: https://doi.org/10.3982/
ECTA14481. URL https://onlinelibrary.
wiley.com/doi/abs/10.3982/ECTA14481.

Miao, W., Geng, Z., and Tchetgen Tchetgen, E. J. Identify-
ing causal effects with proxy variables of an unmeasured
confounder. Biometrika, 105(4):987–993, 2018.

Mueller, S., Li, A., and Pearl, J. Causes of effects: Learning
individual responses from population data. arXiv preprint
arXiv:2104.13730, 2021.

Nagasawa, K. Treatment effect estimation with noisy con-
ditioning variables. arXiv preprint arXiv:1811.00667,
2018.

Padh, K., Zeitler, J., Watson, D., Kusner, M., Silva, R.,
and Kilbertus, N. Stochastic causal programming for
bounding treatment effects. In Conference on Causal
Learning and Reasoning, pp. 142–176. PMLR, 2023.

Park, C. and Tchetgen, E. T. Single proxy synthetic control.
arXiv preprint arXiv:2307.16353, 2023.

Pearl, J. Causal diagrams for empirical research. Biometrika,
82(4):669–688, 1995.

10

https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA14481
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA14481


Tight Partial Identification of Causal Effects with Marginal Distribution of Unmeasured Confounders

Pearl, J. Comment: understanding simpson’s paradox. The
American Statistician, pp. 68(1), 8–13, 2014.

Pearl, J. Probabilities of causation: three counterfactual
interpretations and their identification. In Probabilistic
and Causal Inference: The Works of Judea Pearl, pp.
317–372. 2022.

Pearl, J. et al. Models, reasoning and inference. Cambridge,
UK: CambridgeUniversityPress, 19(2):3, 2000.

Peng, K. and Knowles, E. D. Culture, education, and the
attribution of physical causality. Personality and Social
Psychology Bulletin, 29(10):1272–1284, 2003.

Qi, Z., Miao, R., and Zhang, X. Proximal learning for
individualized treatment regimes under unmeasured con-
founding. Journal of the American Statistical Association,
pp. 1–14, 2023.

Richardson, T. S. and Robins, J. M. Single world interven-
tion graphs (swigs): A unification of the counterfactual
and graphical approaches to causality. Center for the
Statistics and the Social Sciences, University of Washing-
ton Series. Working Paper, 128(30):2013, 2013.

Robins, J. A graphical approach to the identification and
estimation of causal parameters in mortality studies with
sustained exposure periods. Journal of chronic diseases,
40:139S–161S, 1987.

Robins, J. M. The analysis of randomized and non-
randomized aids treatment trials using a new approach to
causal inference in longitudinal studies. Health service
research methodology: a focus on AIDS, pp. 113–159,
1989.

Rothman, K. J., Greenland, S., and Lash, T. L. Mod-
ern epidemiology, pages 345–380. Lippincott Williams
& Wilkins, Philadelphia, PA, 3rd edition. Lippincott
Williams & Wilkins, 2008.

Rubin, D. B. The bayesian bootstrap. The annals of statis-
tics, pp. 130–134, 1981.

Schuster, T., Pang, M., and Platt, R. W. On the role
of marginal confounder prevalence–implications for the
high-dimensional propensity score algorithm. Pharma-
coepidemiology and drug safety, 24(9):1004–1007, 2015.

Shi, X., Miao, W., Nelson, J. C., and Tchetgen Tchet-
gen, E. J. Multiply robust causal inference with double-
negative control adjustment for categorical unmeasured
confounding. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 82(2):521–540, 2020.

Singh, R. Kernel methods for unobserved confounding:
Negative controls, proxies, and instruments. arXiv
preprint arXiv:2012.10315, 2020.

Swanson, S. A., Hernán, M. A., Miller, M., Robins, J. M.,
and Richardson, T. S. Partial identification of the aver-
age treatment effect using instrumental variables: review
of methods for binary instruments, treatments, and out-
comes. Journal of the American Statistical Association,
113(522):933–947, 2018.

Tamer, E. Partial identification in econometrics. Annu. Rev.
Econ., 2(1):167–195, 2010.

Tchetgen, E. J. T., Ying, A., Cui, Y., Shi, X., and Miao,
W. An introduction to proximal causal learning. arXiv
preprint arXiv:2009.10982, 2020.

Tchetgen, E. T., Park, C., and Richardson, D. Single proxy
control. arXiv preprint arXiv:2302.06054, 2023.

Tian, J. and Pearl, J. Probabilities of causation: Bounds
and identification. Annals of Mathematics and Artificial
Intelligence, 28(1-4):287–313, 2000.

Tian, J. and Pearl, J. A general identification condition for
causal effects. In Aaai/iaai, pp. 567–573, 2002.

Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries,
J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen,
T., and Posthuma, D. Genome-wide association studies.
Nature Reviews Methods Primers, 1(1):59, 2021.

Wang, H., Fan, J., Chen, Z., Li, H., Liu, W., Liu, T., Dai,
Q., Wang, Y., Dong, Z., and Tang, R. Optimal trans-
port for treatment effect estimation. Advances in Neural
Information Processing Systems, 36, 2024.

Wright, P. G. The tariff on animal and vegetable oils. Num-
ber 26. Macmillan, 1928.

Xu, L. and Gretton, A. Kernel single proxy control for deter-
ministic confounding. arXiv preprint arXiv:2308.04585,
2023.

Zhang, J. and Bareinboim, E. Bounding causal effects on
continuous outcome. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 12207–
12215, 2021a.

Zhang, J. and Bareinboim, E. Non-parametric methods
for partial identification of causal effects. Columbia
CausalAI Laboratory Technical Report, 2021b.

Zhang, Z. Partial identification with proxy of latent
confoundings via sum-of-ratios fractional programming.
arXiv preprint arXiv:2210.09885, 2022.

Zhang, Z., Hu, W., Tian, T., and Zhu, J. Dynamic window-
level granger causality of multi-channel time series. arXiv
preprint arXiv:2006.07788, 2020.

11



Tight Partial Identification of Causal Effects with Marginal Distribution of Unmeasured Confounders

Zhang, Z., Dai, Q., Chen, X., Dong, Z., and Tang, R. Ro-
bust causal inference for recommender system to over-
come noisy confounders. In Proceedings of the 46th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2349–2353,
2023.

12



Tight Partial Identification of Causal Effects with Marginal Distribution of Unmeasured Confounders

Supplement to “Tight Partial Identification of Causal Effects with Marginal Distribution of
Unmeasured Confounders”

Appendix A supplements a review of previous literature on PI. It confirms the originality of our tight PI region.

Appendix B contains the complete proof of Theorem 3.3, including the validity and sufficiency parts.

Appendix C proves Corollary 3.4, where we establish the tight PI region for the small entropy confounders.

Appendix D is for Theorem 3.5, which extends Theorem 3.3 from interventional probability to the ATE case.

Appendix E-F prove the IFF condition of falling into the vanilla case for interventional probability and ATE in multi-valued
confounders, respectively.

Appendix G includes the the proof of Corollary 4.3.

Appendix H further analyzes the degeneration property after proposing the IFF condition as above, which is summarized as
Corollary 4.4.

Appendix I-J justify Theorem 4.5 and Proposition 4.6 in the main text. Then Appendix K illustrates the valid identification
region of ATE and its changing trend under the given marginal distribution of confounders.

In addition, Appendix L and Appendix M showcase the auxiliary lemma and algorithms that are presented in the above
analysis and the main text, and Appendix N provide auxiliary experiment results. Moreover, Appendix N.4 provides an
extension of ATE bound when treatment/outcome is multi-valued.

A. Review of partial identification

Table 1. The summary of previous causal effect identification. In our paper, we are the first to construct the closed-form tight PI of causal
effects solely via marginal confounder information without additional hyper-parameters or auxiliary variables. Here the hyperparameter
denotes external parameters controlling the model structure instead of inherent P(U) information. Noteworthy, Duarte et al. (2023)
claimed a tight bound without closed-form, and they usually achieve it via time-consuming approximation techniques in practice.

Literature Model Result External variables/assumptionsHyperparametric Non-hyperparametric Point identification Partial identification
(Balke & Pearl, 1994)
(Kitagawa, 2009) $ " $ "(tight)

Instrument variables
(Frauen & Feuerriegel, 2022) " $ " $

(Kilbertus et al., 2020) " $ $ "
(Kuroki & Pearl, 2014)
(Rothman et al., 2008)
(Miao et al., 2018)

$ " " $

Negative control

(Ghassami et al., 2023) " $ $ "(valid)
(Nagasawa, 2018)
(Shi et al., 2020)
(Singh, 2020)
(Cui et al., 2023)
(Tchetgen et al., 2020)
(Deaner, 2018)
(Kallus et al., 2021)
(Qi et al., 2023)

" $ " $

(Gabriel et al., 2022) $ " $ "(tight) Outcome-dependent Sampling
(Li et al., 2023)
(Geiger et al., 2014)
(Zhang & Bareinboim, 2021b)
(Duarte et al., 2023)

$ " $ "(valid)

Confounder information(Jiang et al., 2023) " $ $ "(valid)
(Guo et al., 2022)
(Masten & Poirier, 2018)
(Frauen et al., 2024)
(Padh et al., 2023)

" $ $ "(tight)

Ours $ " $ "(tight)
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B. The proof of Theorem 3.3
Since we consider the binary scenario of confounders U , for ease of presentation we simply write P(U = t) as P(ut) and
P(U = t, x, y) as P(ut, x, y) for t ∈ {0, 1}. Moreover, RHS (LHS) denotes the ‘right (left) hand side’.

Lemma B.1. We have
P(y | do(x)) ∈ [ min

t={0,1}
{max(St)}, max

t={0,1}
{min(St)}],

where

St =

{
P(x, y)

P(U = t, x)
P(U = t),

P(x, y)− P(U = t, x)

P(x)− P(U = t, x)
P(U = 1− t) + P(U = t)

}
. (12)

For brevity, we add the notation for the elements of St before the proof:

S0 =


P(x, y)
P(u0, x)

P(u0)︸ ︷︷ ︸
T00

,
P(x, y)− P(u0, x)

P(x)− P(u0, x)
P(u1) + P(u0)︸ ︷︷ ︸

T01

 .

S1 =


P(x, y)
P(u1, x)

P(u1)︸ ︷︷ ︸
T10

,
P(x, y)− P(u1, x)

P(x)− P(u1, x)
P(u0) + P(u1)︸ ︷︷ ︸

T11

 ,

(13)

Proof of Lemma B.1 We first consider the lower bound, it is equal to prove P(y | do(x)) ≥ min{max(S0),max(S1)} It
suffices if we can prove that P(y | do(x)) is no smaller than min{T00, T10}, min{T00, T11}, min{T01, T10} and
min{T01, T11}, respectively. Below, we prove them one by one. Specifically, we prove them by contradiction.

• P(y | do(x)) ≥ min{T00, T10}: Suppose in contradiction P(y | do(x)) < min{T00, T10}, then

P(y | do(x)) < P(u0 | x, y)T00 + P(u1 | x, y)T10.

Now expanding T00, T10, we have

P(y | do(x)) < P(x, y, u0)

P(u0, x)
P(u0) +

P(x, y, u1)

P(u1, x)
P(u1) = P(y | do(x)),

which raises a contradiction.

• P(y | do(x)) ≥ min{T00, T11}: Suppose in contradiction P(y | do(x)) < min{T00, T11}, then

P(y | do(x)) < P(¬y | x, u1)T00 + P(y | x, u1)T11.

Expanding T00 and T11, we have

P(y | do(x)) < P(¬y | x, u1)
P(x, y)
P(u0, x)

P(u0) + P(y | x, u1)
P(x, y)− P(u1, x)

P(u0, x)
P(u0) + P(y | x, u1)P(u1)

=
P(x, y)− P(x, y, u1)

P(u0, x)
P(u0) + P(y | x, u1)P(u1)

=
P(x, y, u0)

P(u0, x)
P(u0) + P(y | x, u1)P(u1) = P(y | do(x)),

which raises a contradiction.

• P(y | do(x)) ≥ min{T01, T10}: This can be directly obtained based on the duality of u0, u1 and
P(y | do(x)) ≥ min{T00, T11}.
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• P(y | do(x)) ≥ min{T01, T11}: Suppose in contradiction P(y | do(x)) < min{T01, T11}, then

P(y | do(x)) <P(u1 | x,¬y)T01 + P(u0 | x,¬y)T11

=P(u1)

[
P(x, y)− P(u0, x)

P(u1, x)
P(u1 | x,¬y) + P(u0 | x,¬y)

]
+ P(u0)

[
P(x, y)− P(u1, x)

P(u0, x)
P(u0 | x,¬y) + P(u1 | x,¬y)

]
=P(u1)

[
P(x, y)− P(x)

P(u1, x)
P(u1 | x,¬y) + 1

]
+ P(u0)

[
P(x, y)− P(x)

P(u0, x)
P(u0 | x,¬y) + 1

]
=
P(x, y, u0)

P(u0, x)
P(u0) +

P(x, y, u1)

P(u1, x)
P(u1) = P(y | do(x)).

Using an analogous analysis, we can prove the upper bound as well. It suffices if we can prove that P(y | do(x)) is no larger
than max{T00, T10}, max{T00, T11}, max{T01, T10} and max{T01, T11}, respectively. Below we prove them one by one.
Specifically, we prove them by contradiction.

• P(y | do(x)) ≤ max{T00, T10}: Suppose in contradiction P(y | do(x)) > max{T00, T10}, then

P(y | do(x)) > P(u0 | x, y)T00 + P(u1 | x, y)T10.

Now expanding T00, T10, we have

P(y | do(x)) > P(x, y, u0)

P(u0, x)
P(u0) +

P(x, y, u1)

P(u1, x)
P(u1) = P(y | do(x)),

which raises a contradiction.

• P(y | do(x)) ≤ max{T00, T11}: Suppose in contradiction P(y | do(x)) > max{T00, T11}, then

P(y | do(x)) > P(¬y | x, u1)T00 + P(y | x, u1)T11.

Expanding T00 and T11, we have

P(y | do(x)) > P(¬y | x, u1)
P(x, y)
P(u0, x)

P(u0) + P(y | x, u1)
P(x, y)− P(u1, x)

P(u0, x)
P(u0) + P(y | x, u1)P(u1)

=
P(x, y)− P(x, y, u1)

P(u0, x)
P(u0) + P(y | x, u1)P(u1)

=
P(x, y, u0)

P(u0, x)
P(u0) + P(y | x, u1)P(u1) = P(y | do(x)),

which raises a contradiction.

• P(y | do(x)) ≤ max{T01, T10}: This can be directly obtained based on the duality of u0, u1 and
P(y | do(x)) ≤ max{T00, T11}.

• P(y | do(x)) ≤ max{T01, T11}: Suppose in contradiction P(y | do(x)) > max{T01, T11}, then

P(y | do(x)) >P(u1 | x,¬y)T01 + P(u0 | x,¬y)T11

=P(u1)

[
P(x, y)− P(u0, x)

P(u1, x)
P(u1 | x,¬y) + P(u0 | x,¬y)

]
+ P(u0)

[
P(x, y)− P(u1, x)

P(u0, x)
P(u0 | x,¬y) + P(u1 | x,¬y)

]
=P(u1)

[
P(x, y)− P(x)

P(u1, x)
P(u1 | x,¬y) + 1

]
+ P(u0)

[
P(x, y)− P(x)

P(u0, x)
P(u0 | x,¬y) + 1

]
=
P(x, y, u0)

P(u0, x)
P(u0) +

P(x, y, u1)

P(u1, x)
P(u1) = P(y | do(x)).
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Putting together, we obtain the desired result P(y | do(x)) ≤ max{min{T00, T01},min{T10, T11}}. Combined with the
lower bound and the upper bound, Lemma. B.1 has been proved.

■

After preparation, here we start the main proof of Theorem 3.3. Briefly, we do transformation on the above bound
[ min
t={0,1}

{max(St)}, max
t={0,1}

{min(St)}] via observational data, and then demonstrate the tightness via construction.

Proof of Theorem 3.3 (VALIDITY) We first prove the lower bound. Exploiting Lemma B.1, it suffices to provide a lower
bound of min{max{T00, T01},max{T10, T11}} using the marginal probabilities P(x, y) and P(u).

We first consider max{T10, T11}. For T10, using P(u1) ≥ P(u1, x) and P(x) ≥ P(u1, x), we have

P(u1)

P(u1, x)
≥ max

{
1,

P(u1)

P(x)

}
,

which leads to

T10 =
P(x, y)
P(u1, x)

P(u1) ≥ max {P(x, y),P(y | x)P(u1)} =

{
P(x, y) P(u1) ∈ (0,P(x)]
P(y | x)P(u1) P(u1) ∈ (P(x), 1] . (14)

For T11, we hope to use T11’s information to construct max{T10, T11}, and hence enhance the above piecewise lower
estimate (14). Notice that when P(u1) ≤ P(x, y), we have

P(x, y)− P(u1, x)

P(x)− P(u1, x)
= 1− P(x,¬y)

P(x)− P(u1, x)
≥ 1− P(x,¬y)

P(x)− P(u1)
=

P(x, y)− P(u1)

P(x)− P(u1)
,

which leads to

T11 =
P(x, y)− P(u1, x)

P(x)− P(u1, x)
P(u0) + P(u1) ≥

{
P(x,y)−P(u1)
P(x)−P(u1)

(1− P(u1)) + P(u1) P(u1) ∈ (0,P(x, y)]
−∞ P(u1) ∈ (P(x, y), 1)

(15)

The combination of (14)-(15) leads to a valid lower bound of max{T10, T11} as below:

max{T10, T11} ≥


P(x,y)−P(u1)
P(x)−P(u1)

(1− P(u1)) + P(u1) P(u1) ∈ (0,P(x, y)]
P(x, y) P(u1) ∈ (P(x, y),P(x)]
P(y | x)P(u1) P(u1) ∈ (P(x), 1)

(16)

Compared with the lower estimate of T10 (14), (16) further divided the case of P(u1) ∈ [0,P(x)] into the cases of
P(u1) ∈ [0,P(x, y)] and P(u1) ∈ [P(x, y),P(x)] in a more detailed manner.

Thanks to the duality between P(u0) and P(u1), we also have

max{T00, T01} ≥


P(x,y)−P(u0)
P(x)−P(u0)

(1− P(u0)) + P(u0) P(u0) ∈ (0,P(x, y)]
P(x, y) P(u0) ∈ (P(x, y),P(x)]
P(y | x)P(u0) P(u0) ∈ (P(x), 1)

(17)

In light of (16) and (17) together, we prove the validity of the lower bound of Theorem 3.3.

We now consider the upper bound max{min{T00, T01},min{T10, T11}}. Analogously, we first consider min{T10, T11}.
For T11, we present two different upper bounds for all P(u1) ∈ [0, 1]. Firstly,

T11 =
P(x, y)− P(u1, x)

P(x)− P(u1, x)
P(u0) + P(u1) =

−P(x,¬y)
P(u0, x)

P(u0) + 1 ≤ 1− P(x,¬y) = P(x, y) + P(¬x), (18)

and secondly, due to [P(x, y)− P(u1, x)]P(x) ≤ P(x, y)[P(x)− P(u1, x)], we have

T11 =
P(x, y)− P(u1, x)

P(x)− P(u1, x)
P(u0) + P(u1) ≤

P(x, y)
P(x)

P(u0) + P(u1). (19)
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Combining (18)-(19) together, we can obtain a piecewise function of the form:

T11 ≤
{

P(x,y)
P(x) (1− P(u1)) + P(u1) P(u1) ∈ (0,P(¬x)]
P(x, y) + P(¬x) P(u1) ∈ (P(¬x), 1] . (20)

For T10, when P(u1) ∈ [1− P(x,¬y), 1], namely when P(u0) ∈ [0,P(x,¬y)], we have

P(x, y)
P(x)− P(x, u0)

≤ P(x, y)
P(x)− P(u0)

.

Hence the lower estimate of T10 can be constructed as

T10 = P(x, y) +
P(x, y)

P(x)− P(x, u0)
P(u1,¬x) ≤

{
P(x, y) + P(x,y)

P(x)−P(u0)
P(¬x) P(u1) ∈ (1− P(x,¬y), 1]

+∞ P(u1) ∈ (0, 1− P(x,¬y)] (21)

Combined with (21) and (20), we have

min{T10, T11} ≤


P(x,y)
P(x) (1− P(u1)) + P(u1) P(u1) ∈ (0,P(¬x)]
P(x, y) + P(¬x) P(u1) ∈ (P(¬x), 1− P(x,¬y)]
P(x, y) + P(x,y)

P(x)−P(u0)
P(¬x) P(u1) ∈ (1− P(x,¬y), 1).

(22)

With again the duality between P(u0) and P(u1), we get

min{T00, T01} ≤


P(x,y)
P(x) (1− P(u0)) + P(u0) P(u0) ∈ (0,P(¬x)]
P(x, y) + P(¬x) P(u0) ∈ (P(¬x), 1− P(x,¬y)]
P(x, y) + P(x,y)

P(x)−P(u1)
P(¬x) P(u0) ∈ (1− P(x,¬y), 1).

(23)

In light of both (22) and (23), we prove the validity of the upper bound.

(TIGHTNESS) We now prove that our identification strategy is tight; we first consider the tightness of the lower bound. We
would like to prove that given any marginal distributions P(X,Y ) and P(U), there exist two joint distributions of the three
random variables so that their corresponding P(y | do(x))’s are equal to UB(P(u0)) and UB(P(u1)), respectively.
Furthermore, we will prove each point between the lower and upper bound of Theorem 3.3 is compatible with a joint
distribution P(X,Y, U).

Recall that given any P(X,Y ) and P(U), its corresponding P(y | do(x)) is defined as

P(y | do(x)) := P(x, y, u0)

P(x, y, u0) + P(x,¬y, u0)
P(u0) +

P(x, y, u1)

P(x, y, u1) + P(x,¬y, u1)
P(u1). (24)

We consider three categories: P(U = 0) ∈ (0,P(x, y)], P(U = 0) ∈ (P(x, y),P(x)] and P(U = 0) ∈ (P(x), 1).

Case I:
(
P(U = 0) ∈ (0,P(x, y)]

)
We simply set

P(x, y, u0) = P(u0), P(x,¬y, u0) = P(¬x, y, u0) = P(¬x,¬y, u0) = 0;

and set P(x′, y′, u1) = P(x′, y′)− P(x′, y′, u0) for x′, y′ ∈ {0, 1}. Apparently, through such construction all the joint
probabilities are non-negative; moreover, they are compatible with the marginal distributions of (X,Y ) and U , respectively.
Moreover, with such construction, we have P(y | do(x)) in (24) is equivalent to

P(y | do(x)) = P(u0)

P(u0) + 0
P(u0) +

P(x, y)− P(u0)

P(x, y) + P(x,¬y)− P(u0)
P(u1) =

P(x, y)− P(u0)

P(x)− P(u0)
P(u1) + P(u0),

which is equivalent to LB(P(u0)).
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Case II:
(
P(U = 0) ∈ (P(x, y),P(x))

)
We set

P(x, y, u0) = P(x, y),P(x,¬y, u0) = P(u0)− P(x, y),P(¬x, y, u0) = P(¬x,¬y, u0) = 0,

and set P(x′, y′, u1) = P(x′, y′)− P(x′, y′, u0) for x′, y′ ∈ {0, 1}. Apparently, such construction is still non-negative and
compatible with the observed marginal probabilities. With such construction, P(y | do(x)) in (24) is equivalent to

P(y | do(x)) = P(x, y)
P(x, y) + P(u0)− P(x, y)

P(u0) +
0

0 + P(x)− P(u0)
P(u1) = P(x, y).

This matches LB(P(u0)).

Case III:
(
P(U = 0) ∈ [P(x), 1)

)
We set

P(u0, x) = P(x),P(u1, x) = 0,P(u0,¬x) = P(u0)− P(x),P(u1,¬x) = P(u1).

In this case, we instead construct directly the conditional probability as follows:

P(y | u0, x) = P(y | x),P(y | u1, x) = 0,P(y | u0,¬x) = P(y | ¬x),P(y | u1,¬x) = P(y | ¬x),

and set P(¬y | u′
, x

′
) = 1− P(y | u′

, x
′
), u

′
, x

′ ∈ {0, 1}. Apparently, with such construction, all the joint probabilities are
nonnegative and compatible with the observed P(X,Y ) and P(U). With such construction, the P(y | do(x)) is equivalent to

P(y | do(x)) = P(y | u0, x)P(u0) + P(y | u1, x)P(u1) = P(y | x)P(u0),

which matches LB(P(u0)).

According to the duality between P(u0) and P(u1), we can establish compatible joint probabilities to achieve the bounds
given by LB(P(u1)), thereby proving that the lower bound min{LB(P(u0)),LB(P(u1))} is matched with compatible
P(X,Y, U).

We now turn to the upper bound. Again, we consider three cases, which are P(U = 0) ∈ (0,P(¬x)],
P(U = 0) ∈ (P(¬x), 1− P(x,¬y)] and P(U = 0) ∈ (1− P(x,¬y), 1).
Case I:

(
P(U = 0) ∈ (0,P(¬x)]

)
Mimicking the construction of Case III of the lower bound, we set

P(u0, x) = 0,P(u1, x) = P(x),P(u0,¬x) = P(u0),P(u1,¬x) = P(u1)− P(x).

On this basis, analogous to Case III of the lower bound, the conditional probability is constructed as follows:

P(y | u0, x) = 1,P(y | u1, x) = P(y | x),P(y | u0,¬x) = P(y | ¬x),P(y | u1,¬x) = P(y | ¬x),

and set P(¬y | u′
, x

′
) = 1− P(y | u′

, x
′
), u

′
, x

′ ∈ {0, 1}. It can be verified that the non-negativity and compatibility of the
joint probabilities under such construction also hold. Hence P(y | do(x)) can be computed as

P(y | do(x)) = P(y | u0, x)P(u0) + P(y | u1, x)P(u1) = P(u0) + P(y | ¬x)P(u1),

which matches UB(P(U = 0)).

Case II & III: For the tightness of the upper bound in these two cases, we instead set

P(x, y, u0) = P(u0)− P(¬x), P(¬x, y, u0) = P(¬x, y), P(x,¬y, u0) = 0, P(¬x,¬y, u0) = P(¬x,¬y)

and

P(x, y, u0) = P(x, y), P(¬x, y, u0) = P(¬x, y), P(x,¬y, u0) = P(x,¬y)− P(u1), P(¬x,¬y, u0) = P(¬x,¬y),

respectively. Then we can use an analogous argument to prove that their induced P(y | do(x)) matches the one given by
UB(P(u0)). Using again the duality between P(u0) and P(u1), we can use an analogous argument to prove the upper
bound max{UB (P(u0)) ,UB (P(u1))} can be achieved with matched P(X,Y, U).
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Now we have proved that for each specification of P(X,Y ) and P(U), there exists a compatible joint distribution so that its
induced P(y | do(x)) is equal to the lower and upper bound. Below we further prove that for each o between the two
bounds, there exists a legitimate joint distribution with its corresponding P(y | do(x)) = o. We first consider the case where
P(u0) or P(u1) is equal to P(x). Without loss of generality, we just consider P(u0) = P(x). Then our proposed
identification region is equal to [P(x, y),P(x, y) + P(¬x)]. Then we construct

P(u0, x) = P(u0),P(u1, x) = 0,P(u0,¬x) = 0,P(u1,¬x) = P(¬x).

Moreover, we set P(y | u0, x) =
P(x,y)
P(u0)

,P(y | u1, x) = ε,P(y | u0,¬x) = 0,P(y | u1,¬x) = P(y | ¬x), ε ∈ [0, 1], and
P(¬y | u′, x′) = 1− P(y | u′, x′),∀u′, x′ ∈ {0, 1}. Apparently, one can verify that this construction is compatible with the
observed marginal distributions. On this basis, we have

P(y | do(x)) = P(y | u0, x)P(u0) + P(y | u1, x)P(u1) = P(x, y) + εP(¬x).

By varying ε ∈ [0, 1], all values in [P(x, y),P(x, y) + P(¬x)] is achievable, which proves the desired result.

Now we further consider the more general case where P(u0),P(u1) ̸= P(x). Given any fixed ε > 0, let

LBε(t) :=


P(x,y)−t
P(x)−t (1− t) + t t ∈ (0,P(x, y)]
P(x,y)−ε

t−ε t+ ε
ε+P(x)−t (1− t) t ∈ (P(x, y),P(x)]

P(x,y)
P(x)−ε t t ∈ (P(x), 1)

and

UBε(t) :=


P(x,y)−ε
P(x)−ε (1− t) + t t ∈ (0,P(¬x)]
t−P(¬x)

t−P(¬x)+ε t+
P(x,y)+P(¬x)−t

1−t−ε (1− t) t ∈ (P(¬x), 1− P(x,¬y)]
P(x,y)t

P(x)−(1−t) t ∈ (1− P(x,¬y), 1).

Apparently as ε → 0, LBε(t) and UBε(t) converges to LB(t) and UB(t) when t ∈ {P(u0),P(u1)}, respectively. To prove
that for each point o ∈ (mint∈{0,1} LB(P(U = t)),maxt∈{0,1} UB(P(U = t))), there exists a legitimate joint probability
so that P(y | do(x)) = o, we just need to prove that there exists a constant ε0 > 0 sufficiently small such that for all
ε ∈ (0, ε0], [

min
t∈{0,1}

LBε(P(U = t)), max
t∈{0,1}

UBε(P(U = t))
]

(25)

is a subset of the identification region, i.e., that for all the points o′ in the interval given by (25), there exists a legitimate
joint distribution with its corresponding P(y | do(x)) ≡ o′. To achieve this goal, we now consider a region

Oε :=
{
P(y | do(x)) : ∀u ∈ U,P(u, x) ≥ ε,P(Y,U,X) is compatible with P(X,Y ),P(U)

}
. (26)

Now if we treat P(x′, y′, u′) (x′, y′, u′ ∈ {0, 1}) as parameters and P(y | do(x)) as a function of these parameters, one can
easily verify that the parameter space restricted by Oε is a convex and compact set; moreover, P(y | do(x)) is a continuous
and well-defined function w.r.t. all parameters in the restricted parameter space (since in the parameter space given by Oε,
the denominators in (24) is always nonzero). In light of these, it is straightforward that Oε is a closed interval on R. Letting
omin, omax be the left and right side of the interval Oε; then one can easily verify that with ε0 sufficiently small, for all
ε ∈ (0, ε0],

omin ≤ min
t∈{0,1}

LBε(P(U = t)) ≤ max
t∈{0,1}

UBε(P(U = t)) ≤ omax,

which means that the region given by (25) is a subset of Oε. Since Oε is a subset of the identification region, it’s
straightforward that the interval (25) is a subset of the identification region as well, which proves the desired result.

■

B.1. Further discussion: The identification of the vanilla bound

Recall our objective function is stated below:

P(y | do(x)) = P(x, y) + P(y | u0, x)P(u0,¬x) + P(y | u1, x)P(u1,¬x).
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The lower vanilla bound. When P(y | do(x)) = P(x, y), we have ∀t = 0, 1,P(y, ut, x)P(ut,¬x) = 0. According to
Assumption 3.1, notice the fact that P(y, u0, x) + P(y, u1, x) = P(y, x) > 0 and P(u0,¬x) + P(u1,¬x) = P(¬x) > 0, it
leads to ∃t ∈ {0, 1},P(y, u¬t, x) = P(ut,¬x) = 0. Then

P(ut) = P(ut, x) ∈ [P(y, ut, x),P(x)] = [P(x, y),P(x)].

Hence the necessity result is
{P(U = 0),P(U = 1)} ∩ [P(x, y),P(x)] ̸= ∅.

For the sufficiency part, we refer to CASE II for the tight lower-bound construction.

The upper vanilla bound. When P(y | do(x)) = P(x, y) + P(¬x), it is equivalent to

P(¬y | u0, x)P(u0,¬x) + P(¬y | u1, x)P(u1,¬x) = 0.

Hence ∀t = 0, 1,P(¬y, ut, x)P(ut,¬x) = 0. According to Assumption 3.1, noticing the fact that
P(¬y, u0, x) + P(¬y, u1, x) = P(¬y, x) > 0 and P(u0,¬x) + P(u1,¬x) = P(¬x) > 0,it leads to
∃t ∈ {0, 1},P(¬y, u¬t, x) = P(ut,¬x) = 0. Hence,

P(ut) = P(ut, x) ∈ [P(¬y, ut, x),P(x)] = [P(x,¬y),P(x)].

Hence the necessity result is {P(U = 0),P(U = 1)} ∩ [P(x,¬y),P(x)] ̸= ∅, namely

{P(U = 0),P(U = 1)} ∩ [P(¬x),P(¬x) + P(x, y)] ̸= ∅.

For the sufficiency part, we refer to the constructions in CASE II (upper bound).

The above analysis produces the same result as in Theorem 3.3.

C. Proof of Corollary 3.4
Apparently, given the prior knowledge that P(U) ∈ Pε, the tight identification region of the interventional probability
should be given by ∪P(U)∈Pε

OP(U), where

OP(U) =

[
min

t∈{0,1}
LB (P(U = t)) , max

t∈{0,1}
UB (P(U = t))

]
.

We now prove that the identification region in (6) is equivalent to the region stated above. To prove this, first, apparently,

Identification region in (6) ⊆ ∪P(U)∈Pε
OP(U).

We now prove that the converse is also true. Without loss of generality, we force P(u0) ∈ (0, ε] and P(u1) ∈ [1− ε, 1).
Then using the monotonicity of LB(t) and UB(t) within the range t ∈ [0,min{P(x),P(¬x)}], we have

LB(P(u0)) ≥ LB(ε),LB(P(u1)) ≥ LB(1− ε); UB(P(u0)) ≤ UB(ε),UB(P(u1)) ≤ UB(1− ε),

which leads to
∪P(U)∈Pε

OP(U) ⊆ Identification region in (6).

We now turn to (7). Using again the monotonicity of LB(t) and UB(t) and the symmetry between u0 and u1, we just need
to prove that the bound given by (7) is equivalent to OP(U) when P(u0) = ε ≤ min{P(x, y),P(x,¬y),P(¬x)}. In this
case, the LHS of OP(U) contains a simple form

LB
(
P(u0)

)
=

P(x, y)− P(u0)

P(x)− P(u0)

(
1− P(u0)

)
+ P(u0),LB

(
P(u1)

)
= P(y | x)

(
1− P(u0)

)
. Then

min
{
LB

(
P(u0)

)
,LB

(
P(u1)

)}
= P(y | x)− εmax

{
P(y | x), P(x,¬y)P(¬x)

P(x)
(
P(x)− ε

)}. (27)
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Secondly, we consider the tight upper bound. Due to ε ∈ [0,min{P(¬x),P(x,¬y)}], we have
P(u0) ∈ [0,P(¬x)],P(u1) ∈ [1− P(x,¬y), 1], t ∈ {0, 1}. Then RHS of OP(U) contains a simple form:

UB
(
P(u0)

)
= P(y | x)

(
1− P(u0)

)
+ P(u0),UB

(
P(u1)

)
=

P(x, y)
(
1− P(u0)

)
P(x)− P(u0)

. Then

max
{
UB

(
P(u0)

)
,UB

(
P(u1)

)}
= P(y | x) + εmax

{
P(¬y | x), P(x, y)P(¬x)

P(x)
(
P(x)− ε

)}. (28)

Hence the tight region OP(U) under {P(u0),P(u1)} where P(u0) ≤ ε can be transformed to (notice that ¬¬y = y):[
P(y | x)− P(u0)Ey

(
P(u0)

)
,P(y | x) + P(u0)E¬y

(
P(u0)

)]
, where Ey′(t) := max

{
P(y′ | x), P(x,¬y

′)P(¬x)
P(x)(P(x)− t)

}
.

(29)

Putting together, we obtain the desired result. ■

Comparison to Li’s result (Li et al., 2023). It would be convenient to introduce the original theorem of (Li et al., 2023) as
follows.

Theorem C.1 ((Li et al., 2023)). If P(u0) ≤ P(x)− c, 0 < c ⩽ P(x), and we have P(u0) ≤ ηcε0, then∣∣∣P (y | do(x))−
(
P (y | x) + λcε0

)∣∣∣ ≤ ε0, (30)

where ε0 > 0, ηc = 2cP(x)/(2cP(x) + P(x) + c), λc = (P(x)− c)/(2cP(x) + P(x) + c).

The equivalent form in our main text. We first prove that the form provided in our main text is equivalent to the above form.
Considering Pε where ε > 0, according to the duality of {P(u0),P(u1)}, it is equal to P(u0) ≤ ε. To make use of the
above theorem, we must force

P(u0) ∈ (0, ε], where min
{
P(x)− c, ηcε0

}
= ε.

On this basis, the lower bound of Li’s result (Li et al., 2023) is controlled by

P(y | x) + λcε0 − ε0 ≤ P(y | x) + (λc − 1)
ε

ηc
= P(y | x)− P(x) + 1

P(x)
ε, (31)

and the upper bound is controlled by

P(y | x) + λcε0 + ε0 ≥ P(y | x) + (λc + 1)
ε

ηc
= P(y | x) + c+ 1

c
ε ≥ P(y | x) + P(x)− ε+ 1

P(x)− ε
ε. (32)

Hence, the best identification region Li et al. (2023) could achieve is

P(y | do(x)) ∈ [LBli,UBli] :=
[
P(y | x)− P(x) + 1

P(x)
ε,P(y | x) + P(x)− ε+ 1

P(x)− ε
ε
]

when P(U) ∈ Pε, (33)

where ε ∈ (0,P(x)]. Actually, this bound can be achieved via choosing P(x)− c = ηcε0 = ε. This assignment process is
legitimate. In sum, (33), which is presented in our main text, is the equivalent result of Li et al. (2023).

The justification of ε region. We argue that the region (Li et al., 2023) only works for ε ∈ [0,min{P(x),P(¬x)], instead of
their claim ε ∈ [0,P(x)]. In other words, when P(¬x) ≤ P(x), their result will significantly fail when ε ∈ [P(¬x),P(x)],
both for the lower and upper bounds. In this case, the identification region of (33) is transformed to

LBli ≤ P(y | x)− P(x) + 1

P(x)
P(¬x) < P(x, y)− P(x, y)P(¬x)

P(x)
= P(x, y).(vanilla lower bound)

UBli ≥ P(x, y) +
P(x) + 1

P(x)
P(¬x) > P(x, y) + P(¬x).(vanilla upper bound)

(34)
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Seriously, their identification region [LBli,UBli] is non-informative.

The dominance of our bound over Li et al. (2023). We have already argued that Li et al. (2023) does not work when
ε > P(¬x), both on the lower and upper bounds. Therefore, it only requires comparison within ε ∈ (0,min{P(x),P(¬x)}].
Notice that

LB(ε) =
{

P(x,y)−ε
P(x)−ε (1− ε) + ε if ε ≤ P(x, y)
P(x, y) if ε > P(x, y)

,LB(1− ε) = P(y | x)(1− ε).

Hence

min{LB(ε),LB(1− ε)} =

{
P(y | x)− εEy(ε) If ε ≤ P(x, y)
P(x, y) If ε > P(x, y) . (35)

Here Ey(ε) is identified in (29). Thus the enhancement from Li et al. (2023) to our optimal result is

min{LB(ε),LB(1− ε)} − LBli =

{ P(x)+1
P(x) ε− εEy(ε) If ε ≤ P(x, y)

P(x, y)− P(y | x) + P(x)+1
P(x) ε If ε > P(x, y)

(36)

which can be measured by

min{LB(ε),LB(1− ε)} − LBli ≥ ε+∆y, where ∆y′ = min
{
ε,

1− P(x, y′
)

P(x)
ε,P(x, y

′
)
}
. (37)

Analogously, we shift our attention to the upper bound comparison. Notice that (ε ∈ (0,min{P(x),P(¬x)})

UB(ε) = P(y | x)(1− ε) + ε,UB(1− ε) =

{
P(x, y) + P(¬x) if ε ≥ P(x,¬y)
P(x,y)(1−ε)

P(x)−ε if ε < P(x,¬y) .

Hence

max{UB(ε),UB(1− ε)} =

{
P(y | x) + εE¬y(ε) If ε ≤ P(x,¬y)
P(x, y) + P(¬x) If ε > P(x,¬y) . (38)

Thus, the enhancement from Li et al. (2023) to our optimal result is

UBli −max{UB(ε),UB(1− ε)} =

{ P(x)−ε+1
P(x)−ε ε− εE¬y(ε) If ε ≤ P(x,¬y)

P(y | x) + P(x)−ε+1
P(x)−ε ε− P(x, y)− P(¬x) If ε > P(x,¬y) , (39)

which can be measured by
UBli −max{UB(ε),UB(1− ε)} ≥ ε+∆¬y . (40)

In sum, we have proved our bound is strictly stronger than Li et al. (2023) within ε ∈ [0,min{P(x),P(¬x)}], with at least
ε+∆y and ε+∆¬y improvements, for the lower and upper bound respectively.

D. Proof of Theorem 3.5
Supplementary notations. For the simplicity of presentation, given i, j, t ∈ {0, 1}, we write P(X = i, Y = j, U = t) as
P(xi, yj , ut). Analogously, the expression of interventional probability can be simplified as

P(yj | do(xi)) := P(Y = j | do(X = i)), where i, j ∈ {0, 1}.
Hence, the value of average treatment effect (ATE) can be written as

ATE := P(Y = 1 | do(X = 1))− P(Y = 1 | do(X = 0)) = P(y1 | do(x1))− P(y1 | do(x0)).

After preparation, we begin our proof with the following lemma about the valid identification region. We will further relax
this region to be expressed solely in terms of observed data and demonstrate the tightness of the final bound through direct
construction.
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Lemma D.1 (Valid identification region of ATE). A valid identification region of average treatment effect (ATE) is given by[
min

t={0,1}
{max(St,1)−min(St,0)} , max

t={0,1}
{min(St,1)−max(St,0)}

]
.

Here

St,i =

{
P(xi, y1)

P(ut, xi)
P(ut),

P(xi, y1)− P(ut, xi)

P(xi)− P(ut, xi)
P(u¬t) + P(ut)

}
, where t, i ∈ {0, 1}. (41)

Proof of Lemma D.1 We first consider the lower bound. If we apply Lemma B.1 on both P(y1 | do(x1)) and
P(y1 | do(x0)), respectively, then it directly leads

P(y1 | do(xi)) ∈
[

min
t={0,1}

{
max(St,i)

}
, max
t={0,1}

{
min(St,i)

}]
, i ∈ [0, 1].

ATE ∈
[

min
t={0,1}

{
max(St,1)

}
− max

t={0,1}

{
min(St,0)

}
, max
t={0,1}

{
min(St,1)

}
− min

t={0,1}

{
max(St,0)

}]
.

(42)

We now prove the following property:

max{S0,i} ≤ max{S1,i} IFF min{S0,¬i} ≥ min{S1,¬i}, i ∈ {0, 1}. (43)

To prove this, we first apply the following transformation of St,i (see Lemma M.1 for its justification):

St,i =
{
P(y1 | do(xi)) +

[ 1

P(xi | ut)
− 1

P(xi | u¬t)

]
p : p ∈ {P(xi, y1, u¬t),P(xi, y0, ut)}

}
. (44)

Since the elements p within the set are all non-negative, we have that

max{S0,i} ≤ max{S1,i} IFF
1

P(xi | u1)
− 1

P(xi | u0)
≥ 0 IFF

1

P(x¬i | u1)
− 1

P(x¬i | u0)
≤ 0,

IFF min{S0,¬i} ≥ min{S1,¬i}, which proves (43).

In light of (43) and (42), we can control the lower and upper bound via

ATE ≥min
{
max{S0,1},max{S1,1}

}
−max

{
min{S0,0},min{S1,0}

}
∗
= min

t=0,1

{
max(St,1)−min(St,0)

}
. (45)

ATE ≤ max
{
min{S0,1},min{S1,1}

}
−min

{
max{S0,0},max{S1,0}

}
∗
= max

t={0,1}
{min(St,1)−max(St,0)} . (46)

Here ∗ is according to (43). From above, we finish the proof of Lemma D.1.

■

The proof of Theorem 3.5 (VALIDITY) We denote St,i = {st(xi), s
′
t(xi)}, i, t ∈ {0, 1}. We start our proof with the

validity part. Firstly, we consider the lower bound. We take advantage of Lemma D.1, whose result is re-stated as follows:

ATE ≥ min
t=0,1

{
max(St,1)−min(St,0)

}
= min

t=0,1

{
max

{
st(x1), s

′

t(x1)
}
−min

{
st(x0), s

′

t(x0)
}}

≥ min
t=0,1

{
max

{
st(x1)− st(x0)︸ ︷︷ ︸

Ω1(t)

, st(x1)− s′t(x0)︸ ︷︷ ︸
Ω2(t)

, s′t(x1)− s′t(x0)︸ ︷︷ ︸
Ω3(t)

}}
.

(47)
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From above, in order to prove the validity of the lower bound, we just need to prove that for each fixed t ∈ {0, 1},

max
i∈{1,2,3}

Ωi(t) ≥ −B(P(u¬t); 0, 1) (48)

for any choice of P(u¬t) ∈ (0, 1). Again we prove that the above inequality hold when P(u¬t) belongs to the intervals
I1 :=

(
0,P(x0, y0)

]
, I2 :=

(
P(x0, y0),P(x0, y1) + P(y0)

]
, and I3 := (P(x0, y1) + P(y0), 1) respectively.

CASE I: P(u¬t) ∈ I1. We just need to prove that Ω1(t) ≥ −B(P(u¬t); 0, 1). notice that

P(u¬t, x1) ≤ P(u¬t) ≤ P(x0, y0),

then

st(x1) =
P(x1, y1)

P(ut, x1)
P(ut) ≥ max{P(y1 | x1)P(ut),P(x1, y1)} ≥ P(y1 | x1)P(ut),

st(x0) =
P(x0, y1)

P(ut, x0)
P(ut) =

P(x0, y1)

P(x0)− P(u¬t, x0)
P(ut) ≤

P(x0, y1)

P(x0)− P(u¬t)
P(ut),

(49)

which proves the desired result.

CASE II: P(u¬t) ∈ I2. We just need to prove that Ω2(t) ≥ −B(P(u¬t); 0, 1). Notice that

s′t(x0) =
P(x0, y1)− P(ut, x0)

P(x0)− P(ut, x0)
P(u¬t) + P(ut) =

−P(x0, y0)

P(u¬t, x0)
P(u¬t) + 1 ≤ 1− P(x0, y0), (50)

Moreover, due to [P(x0, y1)− P(ut, x0)]P(x0) ≤ P(x0, y1)[P(x0)− P(ut, x0)], we have

s′t(x0) =
P(x0, y1)− P(ut, x0)

P(x0)− P(ut, x0)
P(u¬t) + P(ut) ≤

P(x0, y1)

P(x0)
P(u¬t) + P(ut). (51)

Combining with (49), (50) and (51) yields

st(x1)− s′t(x0) ≥max
{
P(y1 | x1)P(ut),P(x1, y1)

}
−min

{
1− P(x0, y0),P(y1 | x0)P(u¬t) + P(ut)

}
.

∗
=

{
P(y1 | x1)P(ut) + P(x0, y0)− 1 P(u¬t) ∈ [P(x0, y0),P(x0)]

P(x1, y1)− P(y1 | x0)P(u¬t)− P(ut) P(u¬t) ∈ [P(x0),P(x0, y1) + P(y0)].

(52)

Here ∗ is due to

P(y1 | x1)P(ut) ≥ P(x1, y1) and 1− P(x0, y0) ≤ P(y1 | x0)P(u¬t) + P(ut) when P(ut) ≥ P(x1).

CASE III: P(u¬t) ∈ I3, we prove (48) by showing that Ω3(t) ≥ −B(P(u¬t); 0, 1). Notice that

s′t(x1) =
P(x1, y1)− P(ut, x1)

P(x1)− P(ut, x1)
P(u¬t) + P(ut) ≥

P(x1, y1)− P(ut)

P(x1)− P(ut)
P(u¬t) + P(ut).

s′t(x0) =
P(x0, y1)− P(ut, x0)

P(x0)− P(ut, x0)
P(u¬t) + P(ut) ≤ P(y1 | x0)P(u¬t) + P(ut).

(53)

Combining with CASEs I-III, the lower bound (LHS) of the validity part has been proved.

Secondly, we consider the upper bound of ATE. According to Lemma D.1, we already have

ATE ≤ max
t={0,1}

{min(St,1)−max(St,0)}

=max
t=0,1

{
min

{
st(x1), s

′

t(x1)
}
−max

{
st(x0), s

′

t(x0)
}}

≤max
t=0,1

{
min

{
st(x1)− st(x0)︸ ︷︷ ︸

Φ1(t)

, s
′

t(x1)− st(x0)︸ ︷︷ ︸
Φ2(t)

, s
′

t(x1)− s
′

t(x0)︸ ︷︷ ︸
Φ3(t)

}}
.

(54)
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In order to prove (54), it is sufficient to prove that for any t ∈ {0, 1},

min
i∈{1,2,3}

Φi(t) ≤ B(P(u¬t); 1, 1) (55)

for any choice of P(u¬t) ∈ (0, 1). Again we consider the scenarios when P(u¬t) belongs to I ′
1 = (0,P(x1, y0)],

I ′

2 = (P(x1, y0), 1− P(x0, y1)] and I ′
3 = (1− P(x0, y1), 1).

CASE I: P(u¬t) ∈ I ′
1. We prove (55) via showing that Φ1(t) ≤ B(P(u¬t); 1, 1). We have

st(x1) =
P(x1, y1)

P(u1, x1)
P(ut) =

P(x1, y1)

P(x1)− P(u¬t, x1)
P(ut) ≤

P(x1, y1)

P(x1)− P(u¬t)
P(ut).

st(x0) =
P(x0, y1)

P(ut, x0)
P(ut) ≥ max{P(y1 | x0)P(ut),P(x0, y1)}.

(56)

CASE II: P(u¬t) ∈ I ′
2. We prove that Φ2(t) ≤ B(P(u¬t); 1, 1). Notice that

s′t(x1) =
P(x1, y1)− P(ut, x1)

P(x1)− P(ut, x1)
P(u¬t) + P(ut) =

−P(x1, y0)

P(u¬t, x1)
P(u¬t) + 1 ≤ 1− P(x1, y0). (57)

Moreover, due to [P(x1, y1)− P(ut, x1)]P(x1) ≤ P(x1, y1)[P(x1)− P(ui, x1)], we have

s′t(x1) =
P(x1, y1)− P(ut, x1)

P(x1)− P(ut, x1)
P(u¬t) + P(ut) ≤

P(x1, y1)

P(x1)
P(u¬t) + P(ut). (58)

Combined with (56), (57) and (58), we have that

s′t(x1)− st(x0) ≤min
{
1− P(x1, y0),P(y1 | x1)P(u¬t) + P(ut)

}
−max

{
P(y1 | x0)P(ut),P(x0, y1)

}
.

∗
=

{
−P(y1 | x0)P(ut)− P(x1, y0) + 1 P(u¬t) ∈ [P(x1, y0),P(x1)]

−P(x0, y1) + P(y1 | x1)P(u¬t) + P(ut) P(u¬t) ∈ [P(x1), 1− P(x0, y1)].

(59)

Here ∗ is due to

1− P(x1, y0) ≤ P(y1 | x1)P(u¬t) + P(ut) and P(y1 | x0)P(ut) ≥ P(x0, y1) iff P(u¬t) ≤ P(x1).

CASE III: P(u¬t) ∈ I ′
3, we prove that Φ3(t) ≤ B(P(u¬t); 1, 1). This is due to

s′t(x1) =
P(x1, y1)− P(ut, x1)

P(x1)− P(ut, x1)
P(u¬t) + P(ut) ≤

P(x, y)
P(x)

P(u¬t) + P(ut).

s′t(x0) =
P(x0, y1)− P(ut, x0)

P(x0)− P(ut, x0)
P(u¬t) + P(ut) ≥

P(x0, y1)− P(ut)

P(x0)− P(ut)
P(u¬t) + P(ut).

(60)

CASE I-III simultaneously lead to (55). Hence the upper bound (RHS) of the validity part has been proved.

Combining both our control of lower and upper bounds, we obtain the validity of the bound described in Theorem 3.5.

(TIGHTNESS) Our tightness proof contains two steps: First, we prove that given any P(X,Y ),P(U), there exist two joint
distributions P(Y,X,U) such that their corresponding ATE’s equal to the lower bound mint∈{0,1}{−B(P(U = t); 0, 1)}
and the upper bound maxt∈{0,1} B(P(U = t); 1, 1). Secondly, we further demonstrate that for all o′ between these two
bounds, there exists at least one compatible P(X,Y, U) with corresponding ATE equal to o′.

To prove the first step, we start by proving the tightness of the lower bound mint∈{0,1}{−B(P(U = t); 0, 1)}. Due to the
symmetry between P(u0) and P(u1), we only need consider the case P(u0) ∈ Ii, i = 1, 2, 3.

CASE I : P(u0) ∈ I1 = (0,P(x0, y0)], the following construction is compatible:

P(u0, x1) = 0,P(u1, x1) = P(x1),P(u0, x0) = P(u0),P(u1, x0) = P(x0)− P(u0).
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On this basis, the conditional probabilities can be constructed as

P(y1 | u0, x1) = 0,P(y1 | u1, x1) = P(y1 | x1),P(y1 | u0, x0) = 0,P(y1 | u1, x0) =
P(x0, y1)

P(x0)− P(u0)
.

Then ATE can be computed as

ATE = 0 ∗ P(u0) + P(y1 | x1)P(u1)− 0 ∗ P(u0)−
P(x0, y1)

P(x0)− P(u0)
P(u1) =

[
P(y1 | x1)−

P(x0, y1)

P(x0)− P(u0)

]
P(u1).

CASE II: P(u0) ∈ I2 = (P(x0, y0),P(x0, y1) + P(y0)], we separate the construction on I2 into two parts according to
(52). ∀P(u0) ∈ (P(x0, y0),P(x0)], the following construction is compatible:

P(u0, x1) = 0,P(u1, x1) = P(x1),P(u0, x0) = P(u0),P(u1, x0) = P(x0)− P(u0).

On this basis, the conditional probability is constructed as

P(y1 | u0, x1) = 0,P(y1 | u1, x1) = P(y1 | x1),P(y1 | u0, x0) =
P(u0)− P(x0, y0)

P(u0)
,P(y1 | u1, x0) = 1.

Then ATE can be computed as

ATE = 0 ∗ P(u0) + P(y1 | x1)P(u1)−
P(u0)− P(x0, y0)

P(u0)
∗ P(u0)− 1 ∗ P(u1) = P(y1 | x1)P(u1) + P(x0, y0)− 1.

Moreover, ∀P(u0) ∈ (P(x0),P(x0, y1) + P(y0)], the following construction is compatible:

P(u0, x1) = P(x1)− P(u1),P(u1, x1) = P(u1),P(u0, x0) = P(x0),P(u1, x0) = 0.

On this basis, the conditional probability is constructed as

P(y1 | u0, x1) = 0,P(y1 | u1, x1) =
P(x1, y1)

P(u1)
,P(y1 | u0, x0) = P(y1 | x0),P(y1 | u1, x0) = 1.

Then ATE can be computed as

ATE = 0 ∗ P(u0) +
P(x1, y1)

P(u1)
P(u1)− P(y1 | x0)P(u0)− 1 ∗ P(u1) = P(x1, y1)− P(y1 | x0)P(u0)− P(u1).

CASE III: P(u0) ∈ I3 = (P(x0, y1) + P(y0), 1), we have P(u1) < P(x1, y1). The following construction is compatible:

P(u0, x1) = P(x1)− P(u1),P(u1, x1) = P(u1),P(u0, x0) = P(x0),P(u1, x0) = 0.

On this basis, the conditional probability is constructed as

P(y1 | u0, x1) =
P(x1, y1)− P(u1)

P(x1)− P(u1)
,P(y1 | u1, x1) = 1,P(y1 | u0, x0) = P(y1 | x0),P(y1 | u1, x0) = 1.

Then ATE can be computed as

ATE =
P(x1, y1)− P(u1)

P(x1)− P(u1)
∗ P(u0) + 1 ∗ P(u1)− P(y1 | x0) ∗ P(u0)− 1 ∗ P(u1)

=

[
P(x1, y1)− P(u1)

P(x1)− P(u1)
− P(y1 | x0)

]
P(u0).

In sum, via direct construction, we have proved mint∈{0,1}{−B(P(U = t); 0, 1)} can be achieved given any
P(X,Y ),P(U). We now consider how to achieve maxt∈{0,1} B(P(U = t); 1, 1). Again, we only need to consider
P(u0) ∈ I ′

i, i = 1, 2, 3.
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CASE I: P(u0) ∈ I ′
1 = (0,P(x1, y0)], the following construction is compatible:

P(u0, x1) = P(u0),P(u1, x1) = P(x1)− P(u0),P(u0, x0) = 0,P(u1, x0) = P(x0).

On this basis, the conditional probability is constructed as

P(y1 | u0, x1) = 0,P(y1 | u1, x1) =
P(x1, y1)

P(x1)− P(u0)
,P(y1 | u0, x0) = 0,P(y1 | u1, x0) = P(y1 | x0).

Then ATE can be computed as

ATE = 0 ∗ P(u0) +
P(x1, y1)

P(x1)− P(u0)
∗ P(u1)− 0 ∗ P(u0)− P(y1 | x0) ∗ P(u1) =

[
P(x1, y1)

P(x1)− P(u0)
− P(y1 | x0)

]
P(u1).

CASE II: P(u0) ∈ I ′
2 = (P(x1, y0), 1− P(x0, y1)]. We partition I ′

2 into two parts according to (59). For the first part,
∀P(u0) ∈ (P(x1, y0),P(x1)], the following construction is compatible:

P(u0, x1) = P(u0),P(u1, x1) = P(x1)− P(u0),P(u0, x0) = 0,P(u1, x0) = P(x0).

On this basis, the conditional probability is constructed as

P(y1 | u0, x1) =
P(u0)− P(x1, y0)

P(u0)
,P(y1 | u1, x1) = 1,P(y1 | u0, x0) = 0,P(y1 | u1, x0) = P(y1 | x0).

Then ATE can be computed as

ATE =
P(u0)− P(x1, y0)

P(u0)
∗ P(u0) + 1 ∗ P(u1)− 0 ∗ P(u0)− P(y1 | x0) ∗ P(u1) = 1− P(x1, y0)− P(y1 | x0)P(u1).

Moreover, for the second part, ∀P(u0) ∈ (P(x1), 1− P(x0, y1)], the following construction is compatible:

P(u0, x1) = P(x1),P(u1, x1) = 0,P(u0, x0) = P(x0)− P(u1),P(u1, x0) = P(u1).

On this basis, the conditional probability is constructed as

P(y1 | u0, x1) = P(y1 | x1),P(y1 | u1, x1) = 1,P(y1 | u0, x0) = 0,P(y1 | u1, x0) =
P(x0, y1)

P(u1)
.

Then ATE can be computed as

ATE = P(y1 | x1) ∗ P(u0) + 1 ∗ P(u1)− 0 ∗ P(u0)−
P(x0, y1)

P(u1)
∗ P(u1) = P(y1 | x1)P(u0) + P(u1)− P(x0, y1).

CASE III: P(u0) ∈ I ′
3 = (1− P(x0, y1), 1), we have P(u1) < P(x0, y1). The following construction is compatible:

P(u0, x1) = P(x1),P(u1, x1) = 0,P(u0, x0) = P(x0)− P(u1),P(u1, x0) = P(u1).

On this basis, the conditional probability is constructed as

P(y1 | u0, x1) = P(y1 | x1),P(y1 | u1, x1) = 1,P(y1 | u0, x0) =
P(x0, y1)− P(u1)

P(x0)− P(u1)
,P(y1 | u1, x0) = 1.

Then ATE can be computed as

ATE = P(y1 | x1) ∗ P(u0) + 1 ∗ P(u1)−
P(x0, y1)− P(u1)

P(x0)− P(u1)
∗ P(u0)− 1 ∗ P(u1)

=

[
P(y1 | x1)−

P(x0, y1)− P(u1)

P(x0)− P(u1)

]
P(u0).
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In sum, we have proved maxt∈{0,1} B(P(U = t); 1, 1) can be achieved given any P(X,Y ) and P(U).

Now we have demonstrated that for every given specification of P(X,Y ) and P(U), there exists a compatible joint
distribution P(X,Y, U), whose induced ATE could be equivalent to the lower bound −mint∈{0,1} B(P(U = t); 0, 1) and
upper bound maxt∈{0,1} B(P(U = t); 1, 1). We are now left with illustrating that for each o′ between these two bounds,
there exists a compatible P(X,Y, U) whose corresponding ATE is equal to o′.

We first consider the case P(u0) or P(u1) is equal to P(x1). Without loss of generality, we just consider the case
P(u0) = P(x1). In this case, our proposed identification region is [−P(x1, y0)− P(x0, y1),P(x0, y0) + P(x1, y1)].

Then we construct

P(u0, x1) = P(x1),P(u1, x1) = P(u0, x0) = 0,P(u1, x0) = P(x0).

Moreover, we set the conditional probability P(y1 | u0, x1) = P(y1 | x1), P(y1 | u1, x1) = ε1, P(y1 | u0, x0) = ε2,
P(y1 | u1, x0) = P(y1 | x0) and P(y0 | u′, x′) = 1− P(y1 | u′, x′), u′, x′ ∈ {0, 1}. Here all ε1, ε2 ∈ [0, 1]. Apparently,
this construction is non-negative and compatible with the observed marginal distributions P(X,Y ) and P(U). Under this
construction, we get

ATE = P(y1 | x1)P(x1) + ε1P(x0)− ε2P(x1)− P(y1 | x0)P(x0). (61)

One can arbitrarily select points (ε1, ε2) on the plane R2 : [0, 1]× [0, 1]. By varying (ε1, ε2) along ε1 + ε2 = 1 from (1, 0)
to (0, 1), all values within our proposed identification region [−P(x1, y0)− P(x0, y1),P(x0, y0) + P(x1, y1)] is achievable,
which proves our desired result.

Below we consider the more general case where P(u0),P(u1) ̸= P(x1). Given any fixed ε > 0, let

Bε(t;x, y) :=



(
− P(¬x,y)

P(¬x)−ε + P(x,y)
P(x)−t+ε

)
(1− t) t ∈ (0,P(x,¬y)]

t−P(x,¬y)
t−ε t+

( P(x)−t
P(x)−t+ε − P(¬x,y)

P(¬x)−ε

)
(1− t) t ∈ (P(x,¬y),P(x)](P(x,y)−ε

P(x)−ε − ε
ε−P(x)+t

)
t+ 1−t−P(¬x,y)

1−t−ε (1− t) t ∈ (P(x), 1− P(¬x, y)](P(x,y)−ε
P(x)−ε − P(¬x,y)−(1−t)+ε

P(¬x)−(1−t)+ε

)
t t ∈ (1− P(¬x, y), 1)

(62)

It is easy to verify that ∀x′, y′ ∈ {0, 1}, t ∈ {P(u0),P(u1)},Bε(t;x
′, y′) converges to B(t;x′, y′), as ε → 0. Notice that

since t /∈ {P(x0),P(x1)}, the denominators in Bε(t;x
′, y′) would not approach to zero as ε → 0.

From this, in order to make sure that for each o′ ∈
(
mint∈{0,1} −B(P(U = t); 0, 1),maxt∈{0,1} B(P(U = t); 1, 1)

)
, there

is a legitimate P(X,Y, U) whose induced value of ATE is equal to o′, it is sufficient to demonstrate there exists a
sufficiently small ε0 > 0 such that ∀ε ∈ (0, ε0],[

min
t∈{0,1}

−Bε(P(U = t); 0, 1), max
t∈{0,1}

Bε(P(U = t); 1, 1)
]

(63)

is a subset of the identification region. This is because once this is proved, we can further conclude that for any
o′ ∈

(
mint∈{0,1} −B(P(U = t); 0, 1),maxt∈{0,1} B(P(U = t); 1, 1)

)
, there exists a ε so that o′ lies in the region defined

by (63).

Now to prove (63) is a subset of the identification region, we now consider an auxiliary region

O′
ε = {P(y1 | do(x1))−P(y1 | do(x0)) : P(u′, x′) ≥ ε, u′, x′ ∈ {0, 1} & P(Y,U,X) is compatible with P(X,Y ),P(U)},

which is apparently a subset of the identification region.

Analogous to the above analysis in the proof of Theorem 3.3, if we treat P(x′, y′, u′), (x′, y′, u′ ∈ {0, 1}) as parameters and
ATE as a function of these parameters, it can be verified that the parameter space restricted by O′

ε is a convex and compact
set; moreover, since the denominator P(u′, x′), u′, x′ ∈ {0, 1} is larger than ε in the restricted parameter space O′

ε, ATE is a
well-defined and bounded continuous function w.r.t all parameters. In light of these, O′

ε is a closed interval on R. Letting
o′min, o

′
max be the left and right side of interval O′

ε; then one can easily verify that with ε0 sufficiently small, for all
ε ∈ (0, ε0],

o′min ≤ min
t∈{0,1}

−Bε(P(U = t); 0, 1) ≤ max
t∈{0,1}

Bε(P(U = t); 1, 1) ≤ o′max,
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which means the region given by (63) serves as a sub-region of O′
ε. Since O′

ε is a subset of the identification region; it
concludes that the interval (63) is a subset of the identification region as well. It completes the proof. ■

D.1. Further discussion: The identification of the vanilla bound of ATE

We first consider the vanilla lower bound. For the necessity part, under Assumption 3.1, we have

ATE =P(y1 | do(x1))− P(y1 | do(x0))

=P(y1 | u0, x1)P(u0) + P(y1 | u1, x1)P(u1)− P(y1 | u0, x0)P(u0)− P(y1 | u1, x0)P(u1)

=P(x1, y1) +
∑
i=0,1

P(y1 | ui, x1)P(ui, x0)− P(x0, y1)−
∑
i=0,1

P(y1 | ui, x0)P(ui, x1).
(64)

When (64) = −P(¬x, y)− P(x,¬y), it is equivalent to

P(x1) +
∑
i=0,1

P(y1 | ui, x1)P(ui, x0)−
∑
i=0,1

P(y1 | ui, x0)P(ui, x1) = 0. (65)

(65) is equal to ∑
i=0,1

P(y1 | ui, x1)P(ui, x0) +
∑
i=0,1

P(y0 | ui, x0)P(ui, x1) = 0. (66)

Notice that

LHS of (66) ≥ max
{ ∑

i=0,1

P(y1, ui, x1)P(ui, x0),
∑
i=0,1

P(y0, ui, x0)P(ui, x1)
}

≥ max
{
min

{
P(u0, x0),P(u1, x0)

}
P(x1, y1),min

{
P(u0, x1),P(u1, x1)

}
P(x0, y0)

}
≥ 0.

(67)

Under the Assumption 3.1, combined with (66) and (67), when LHS of (66) achieves 0, then it must be
P(ut, x0) = P(u¬t, x1) = 0, ∃t ∈ {0, 1}. Therefore, the necessary condition of the vanilla lower bound of ATE can be
derived:

P(ut) = P(ut, x1) + P(ut, x0) = P(ut, x1) + P(u¬t, x1) = P(x1),∃t ∈ {0, 1}. (68)

On the other hand, we consider when ATE achieves the vanilla upper bound, namely (64) = P(x1, y1) + P(x0, y0). It is
equivalent to

∑
i=0,1

P(y0 | ui, x1)P(ui, x0) +
∑
i=0,1

P(y1 | ui, x0)P(ui, x1) = 0. (69)

Analogously, it leads to

LHS of (69) ≥ max
{ ∑

i=0,1

P(y0, ui, x1)P(ui, x0),
∑
i=0,1

P(y1, ui, x0)P(ui, x1)
}

≥ max
{
min

{
P(u0, x0),P(u1, x0)

}
P(x1, y0),min

{
P(u0, x1),P(u1, x1)

}
P(x0, y1)

}
≥ 0.

(70)

Under Assumption 3.1, when LHS of (70) achieves 0, then it also must be P(ut, x0) = P(u¬t, x1) = 0,∃t ∈ {0, 1}. Hence
we repeat (68) and also have {P(u0),P(u1)} ∩ {P(x)} ≠ 0. In sum, the necessity part has been proved.

For the sufficiency part, we resort to the construction in (61). Hence the IFF condition has been demonstrated.

■
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E. The proof of Theorem 4.1
Notice that

P(y | do(x))− P(x, y) =
du−1∑
u=0

P(y | u, x)P(u,¬x) (71)

and

P(x, y) + P(¬x)− P(y | do(x)) =
du−1∑
u=0

P(¬y | u, x)P(u,¬x). (72)

(NECESSITY) We first consider the vanilla lower bound. If P(y | do(x)) = P(x, y), it induces that (71) = 0. Hence,
∃U ⊆ R such that ∀u ∈ U , P(u,¬x) = 0, and ∀u ∈ Uc, P(y, u, x) = 0. According to this partition, the subset sum
P(U ∈ U) could be bounded:

P(U ∈ U) = P(U ∈ U , x) + P(U ∈ U ,¬x) = P(U ∈ U , x) + 0 ≤ P(x).
P(U ∈ U) ≥ P(U ∈ U , x, y) + 0 = P(U ∈ U , x, y) + P(U ∈ Uc, x, y) = P(x, y).

(73)

Analogously, for the upper bound, if P(y | do(x)) = P(x, y) + P(¬x), then ∃U ∈ R such that ∀U ∈ U , P(u,¬x) = 0, and
∀U ∈ Uc, P(¬y, u, x) = 0. Hence

P(U ∈ U) = P(U ∈ U , x) + P(U ∈ U ,¬x) = P(U ∈ U , x) + 0 ≤ P(x).
P(U ∈ U) ≥ P(U ∈ U , x,¬y) + 0 = P(U ∈ U , x,¬y) + P(U ∈ Uc, x,¬y) = P(x,¬y). (74)

This proves the necessity part.

(SUFFICIENCY) For the vanilla lower bound, we take the following construction of the joint distribution P(U,X):

[
P(U ∈ U , x) P(U ∈ Uc, x)
P(U ∈ U ,¬x) P(U ∈ Uc,¬x)

]
=

[
P(U ∈ U) P(x)− P(U ∈ Uc)

0 P(¬x)

]
. (75)

Notice that RHS of (75) is constructed by observed data. Moreover, the conditional probability P(Y | U,X) is constructed
as

∀u ∈ U ,P(y | u, x) = P(x, y)/P(U ∈ U),P(y | u,¬x) = 0;

∀u ∈ Uc,P(y | u, x) = 0,P(y | u,¬x) = P(y | ¬x). (76)

We choose P(¬y | u, x′) = 1− P(y | u, x′), ∀u ∈ {0, 1, ...du − 1}, x′ ∈ {0, 1}. For a complete visualization, the total
construction is summarized as the following Table 2. Noteworthy, each term among each summation in Table 2 could be
chosen as arbitrary non-negative numbers. The non-negativity and compatibility of the construction (75) and (76) are easily
verified.

A P(y, u ∈ A, x) P(¬y, u ∈ A, x) P(y, u ∈ A,¬x) P(¬y, u ∈ A,¬x)
U P(x, y) P(U ∈ U)− P(x, y) 0 0
Uc 0 P(x)− P(U ∈ U) P(¬x, y) P(¬x,¬y)

Table 2. The construction of the vanilla lower bound of P(y | do(x)).

According to the fact that ∀u ∈ U ,P(u,¬x) = 0. ∀u ∈ Uc,P(y | u, x) = 0, (71) can be transformed as

P(y | do(x)) = P(x, y) +
∑
U∈U

P(y | u, x)P(u,¬x) +
∑
U∈Uc

P(y | u, x)P(u,¬x) = P(x, y).

For the vanilla upper bound, we inherit the construction of P(U,X) in (75), and then establish the new conditional
probability:

∀u ∈ U ,P(y | u, x) = 1− P(x,¬y)/P(u ∈ U),P(y | u,¬x) = 0;

∀u ∈ Uc,P(y | u, x) = 1,P(y | u,¬x) = P(y | ¬x). (77)
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A P(y, u ∈ A, x) P(¬y, u ∈ A, x) P(y, u ∈ A,¬x) P(¬y, u ∈ A,¬x)
U P(U ∈ U)− P(x,¬y) P(x,¬y) 0 0
Uc P(x)− P(U ∈ U) 0 P(¬x, y) P(¬x,¬y)

Table 3. The construction of the vanilla upper bound of P(y | do(x)).

Analogously, the total construction is summarized as the following Table (3).

According to the fact that ∀u ∈ U ,P(u,¬x) = 0. ∀U ∈ Uc,P(¬y | u, x) = 0. According to (72), we have

P(y | do(x) = P(x, y) + P(¬x)−
∑
U∈U

P(¬y | u, x)P(u,¬x)−
∑
U∈Uc

P(¬y | u, x)P(u,¬x) = P(x, y) + P(¬x).

Until here the sufficiency part has also been proved. Combining with the necessity part and the sufficiency part, the desired
result follows.

■
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F. The proof of Theorem 4.2
For brevity, we still follow the supplementary notations in Appendix D and adopt ATEL

vanilla and ATEU
vanilla to denote the

vanilla lower and upper bound of ATE, i.e., ATEL
vanilla = −P(x1, y0)− P(x0, y1), ATEU

vanilla = P(x1, y1) + P(x0, y0).
According to (71) and (72), we have

ATE−ATEL
vanilla =

du−1∑
u=0

[
P(y1 | u, x1)P(u, x0) + P(y0 | u, x0)P(u, x1)

]
. (78)

ATEU
vanilla −ATE =

du−1∑
u=0

[
P(y1 | u, x0)P(u, x1) + P(y0 | u, x1)P(u, x0)

]
. (79)

(NECESSITY) We first consider the vanilla lower bound. If we have (78) = 0, then ∃R0 ⊆ R, such that ∀U ∈ R0, we
have P(u, x1) = 0, ∀u ∈ Rc

0, we have P(y0, u, x0) = 0. For the same reason, ∃R1 ⊆ R, such that ∀U ∈ R1, we have
P(u, x0) = 0, ∀u ∈ Rc

1, we have P(y1, u, x1) = 0. These properties are summarized as

P(U ∈ R1, x0) = P(U ∈ R0, x1) = P(y1, U ∈ Rc
1, x1) = P(y0, U ∈ Rc

0, x0) = 0. (80)

Apparently, we have R0 ∩R1 ⊆ {u : P(U = u) = 0}. On this basis, we construct the desired pair {U0,U1} via truncating
joint parts of {R0,R1}:

U0 := R0/(R0 ∩R1),U1 := R1/(R0 ∩R1),U0 ∩ U1 = ∅. (81)

Recalling the strategy in (73) and (74), we take advantage of (80) and achieve the following bounds:

P(U ∈ U1) = P(U ∈ R1) = P(U ∈ R1, x1) ≤ P(x1),

P(U ∈ U0) = P(U ∈ R0) = P(U ∈ R0, x0) ≤ P(x0).

P(U ∈ U1) = P(U ∈ R1) ≥ P(U ∈ R1, x1, y1) = P(U ∈ R1, x1, y1) + P(U ∈ Rc
1, x1, y1) = P(x1, y1).

P(U ∈ U0) = P(U ∈ R0) ≥ P(U ∈ R0, x0, y0) = P(U ∈ R0, x0, y0) + P(U ∈ Rc
0, x0, y0) = P(x0, y0).

(82)

Hence it holds that P(U ∈ U1) ∈ [P(x1, y1),P(x1)] = I1,1 and P(U ∈ U0) ∈ [P(x0, y0),P(x0)] = I0,0. The necessity
part of the vanilla lower bound has been implied.

On the other hand, we consider the vanilla upper bound. Compared (79) with (78), it just need to exchange the symbols
{x0, x1} with each other. On this basis, it implies that ∃Q0,Q1 ⊆ R such that

P(U ∈ Q1, x1) = P(U ∈ Q0, x0) = P(y1, U ∈ Qc
1, x0) = P(y0, U ∈ Qc

0, x1) = 0. (83)

Then we choose
U0 := Q0/(Q0 ∩Q1),U1 := Q1/(Q0 ∩Q1),U0 ∩ U1 ̸= ∅. (84)

With the same strategy, we aim to bound the summation P(U ∈ Ui), i = 0, 1. We get

P(U ∈ U1) = P(U ∈ Q1) = P(U ∈ Q1, x0) ≤ P(x0),

P(U ∈ U0) = P(U ∈ Q0) = P(U ∈ Q0, x1) ≤ P(x1).

P(U ∈ U1) = P(U ∈ Q1) ≥ P(U ∈ Q1, x0, y1) = P(U ∈ Q1, x0, y1) + P(U ∈ Qc
1, x0, y1) = P(x0, y1).

P(U ∈ U0) = P(U ∈ Q0) ≥ P(U ∈ Q0, x1, y0) = P(U ∈ Q0, x1, y0) + P(U ∈ Qc
0, x1, y0) = P(x1, y0).

(85)

Hence we get P(U ∈ U1) ∈ [P(x0, y1),P(x0)] = I0,1 and P(U ∈ U0) ∈ [P(x1, y0),P(x1)] = I1,0.

In conclusion, the necessity part has been demonstrated.

(SUFFICIENCY) We first consider the vanilla lower bound with the following construction:
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[
P(U ∈ U0, x1) P(U ∈ U1, x1) P(U ∈ (U0 ∪ U1)

c, x1)
P(U ∈ U0, x0) P(U ∈ U1, x0) P(U ∈ (U0 ∪ U1)

c, x0)

]
=

[
0 P(U ∈ U1) P(x)− P(U ∈ U1)

P(U ∈ U0) 0 P(¬x)− P(U ∈ U0)

]
.

(86)

Moreover, the conditional probability P(Y | U,X) is constructed by

∀u ∈ U0,P(y1 | u, x1) = 0,P(y1 | u, x0) = 1− P(x0, y0)/P(U ∈ U0);

∀u ∈ U1,P(y1 | u, x1) = P(x1, y1)/P(U ∈ U1),P(y1 | u, x0) = 1;

∀u ∈ (U0 ∪ U1)
c,P(y1 | u, x1) = 0,P(y1 | u, x0) = 1.

(87)

we also choose P(y0 | ui, x
′) = 1− P(y1 | ui, x

′). Here u ∈ {0, 1, ...du − 1}, x′ ∈ {0, 1}. For better visualization, the
whole construction can be expanded in the following Table (4) (with P(Y, U,X) as the parameter).

A P(y1, u ∈ A, x1) P(y0, u ∈ A, x1) P(y1, u ∈ A, x0) P(y0, u ∈ A.x0)
U0 0 0 P(U ∈ U0)− P(x0, y0) P(x0, y0)
U1 P(x1, y1) P(U ∈ U1)− P(x1, y1) 0 0

(U0 ∪ U1)
c 0 P(x1)− P(U ∈ U1) P(x0)− P(U ∈ U0) 0

Table 4. The construction of the vanilla lower bound of ATE.

According to the fact P(U ∈ U1) ∈ [P(x1, y1),P(x1)] = I1,1 and P(U ∈ U0) ∈ [P(x0, y0),P(x0)] = I0,0, all the elements
in Table 4 is non-negative. We compute P(y1 | do(x1)) via dividing the summation into three groups U0,U1, (U0 ∪ U1)

c as
follows:

P(y1 | do(x1)) = P(x1, y1) +
∑

A=U1,Uc
1

∑
u∈A

P(y1 | u, x1)P(u, x0)
(a)
= P(x1, y1). (88)

The last operation (a) is due to ∀U ∈ U1, P(u, x0) = 0, ∀u ∈ (U1)
c , P(y1 | u, x1) = 0. On the other hand,

P(y1 | do(x0)) = P(x0, y1) + P(x1)−
∑

A=U0,Uc
0

∑
u∈A

P(y0 | u, x0)P(u, x1)
(b)
= P(x0, y1) + P(x1). (89)

Analogously, the last operation (b) is due to ∀u ∈ U0, P(u, x1) = 0, ∀u ∈ (U0)
c , P(y0 | u, x0) = 0. Hence,

ATE = P(y1 | do(x1))− P(y1 | do(x0)) = P(x1, y1)− P(x0, y1)− P(x1) = −P(x1, y0)− P(x0, y1). (90)

On the other hand, we consider the vanilla upper bound. Analogously, considering the structure of (78)-(79), it only requires
that {x0, x1} exchanges with each other. Inspired by this, we set[

P(U ∈ U0, x1) P(U ∈ U1, x1) P(U ∈ (U0 ∪ U1)
c, x1)

P(U ∈ U0, x0) P(U ∈ U1, x0) P(U ∈ (U0 ∪ U1)
c, x0)

]
=

[
P(U ∈ U0) 0 P(¬x)− P(U ∈ U0)

0 P(U ∈ U1) P(x)− P(U ∈ U1)

]
.

(91)
Moreover, we construct the conditional probability:

∀u ∈ U0,P(y1 | u, x0) = 0,P(y1 | u, x1) = 1− P(x1, y0)/P(U ∈ U0);

∀u ∈ U1,P(y1 | u, x0) = P(x0, y1)/P(u ∈ U1),P(y1 | u, x1) = 1;

∀u ∈ (U0 ∪ U1)
c,P(y1 | u, x0) = 0,P(y1 | u, x1) = 1.

(92)

Here P(y0 | u, x′) = 1− P(y1 | u, x′). Here u ∈ {0, 1, ...du − 1}, x′ ∈ {0, 1}. The whole construction can be expanded as
the following Table (5) to justify the non-negativity and compatibility:

Under the construction in Table 5, we re-compute the P(y1 | do(x1)) and P(y1 | do(x0)):

P(y1 | do(x1)) = P(x1, y1) + P(x0)−
∑

A=U0,(U0)c

∑
u∈A

P(y0 | u, x1)P(u, x0)
(c)
= P(x1, y1) + P(x0).

P(y1 | do(x0)) = P(x0, y1) +
∑

A=U1,(U1)c

∑
u∈A

P(y1 | u, x0)P(u, x1)
(d)
= P(x0, y1).

(93)

33



Tight Partial Identification of Causal Effects with Marginal Distribution of Unmeasured Confounders

A P(y1, u ∈ A, x1) P(y0, u ∈ A, x1) P(y1, u ∈ A, x0) P(y0, u ∈ A, x0)
U0 P(U ∈ U0)− P(x1, y0) P(x1, y0) 0 0
U1 0 0 P(x0, y1) P(U ∈ U1)− P(x0, y1)

(U0 ∪ U1)
c P(x1)− P(U ∈ U0) 0 0 P(x0)− P(U ∈ U1)

Table 5. The construction of the vanilla upper bound of ATE.

The operation (c), (d) is according to the following fact, respectively:

∀u ∈ U0,P(u, x0) = 0,∀u ∈ (U0)
c,P(y0 | u, x1) = 0.

∀u ∈ U1,P(u, x1) = 0,∀u ∈ (U0)
c,P(y1 | u, x0) = 0.

(94)

Hence we achieve

ATE = P(y1 | do(x1))− P(y1 | do(x0)) = P(x1, y1) + P(x0)− P(x0, y1) = P(x1, y1) + P(x0, y0). (95)

■

G. The proof of Corollary 4.3
Proof. Without loss of generalization, we let x = y = 1 in this proof.

Property (i) Considering P , it is easy to verify

P :=
{
P(U) : ∃ U ⊆ R s.t. P(U ∈ U) ∈ [P(x, y0) ∨ P(x, y1),P(x)]

}
.

then for PATE, it could be verified that

P ′
ATE := {P(U) : ∃ U0,U1 ⊆ R with U0 ∩ U1 = ∅, s.t. ∀z ∈ {0, 1},P(U ∈ Uz) ∈ Iz,¬z ∩ Iz,z} ⊆ PATE.

For both these two cases, for any given P(X,Y ) under Assumption 3.1 and Assumption 3.2, we could choose

P⋆(U) =


P(x) U = t0

P(¬x) U = t1

0 U ̸= t0, t1

where t0, t1 ∈ {0, 1, ...du − 1}, t0 ̸= t1.

It is easy to verify P⋆(U) ∈ P ∩ PATE. Hence for any given P(X,Y ), legitimate P(U) exists such that P ≠ ∅ and
PATE ̸= ∅ hold.

Property (ii) We consider the specific construction which is modified from the above:

P⋆⋆(U) =


P(x)− ε U = t0

P(¬x) + ε U = t1

0 U ̸= t0, t1

where t0, t1 ∈ {0, 1, ...du − 1}, t0 ̸= t1.

Here 0 < ε < min
{
P(x, y0),P(x, y1), |P(x)− P(¬x)|

}
. We take the lower bound for instance. Since

P⋆⋆(U = t0) ∈ [P(x, y0) ∨ P(x, y1),P(x)], we get P⋆⋆(U) ∈ P ⊆ PL. Furthermore, it is sufficient to prove
P⋆⋆(U) /∈ PL

ATE. We make it via contradiction: Recalling the definition, if ∃U0,U1 such that ∃U0 ∩ U1 = ∅ and
P(U ∈ U0) ∈ I0,0, P(U ∈ U1) ∈ I1,1. According to the fact that P(U ∈ Uz) > 0, z = 0, 1, we get {t0, t1} ⊆ U0 ∪U1, and
hence

1 = P(U = t0) + P(U = t1) ≤ P(U ∈ U0) + P(U ∈ U1) ≤ 1.

Definitely, it leads to P(U ∈ U0) = P(¬x) and P(U ∈ U1) = P(x). Thus we have Uz = {tz}, z = 0, 1. Namely, we have
P(x)− ε = P(¬x), which is equal to P(¬x) + ϵ = P(x). According to the constraint ε < |P(x)− P(¬x)| as above, we get
the contradiction.
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In conclusion, due to P⋆⋆(U) ∈ PL ∩ (PL
ATE)

c, we have PL
ATE ⫋ PL. Totally with the same strategy, we achieve

PU
ATE ⫋ PU . It leads to PATE = PL

ATE ∩ PU
ATE ⫋ PL ∩ PU = P . The desired result follows.

■

H. The proof of Proposition 4.4
Lemma H.1. Suppose Assumption 3.1-3.2 hold. Given prior knowledge of P(U), for the interventional probability and
ATE, the sufficient conditions for the tight identification regions degenerate to be vanilla are P(U) belongs to

P∀( min
y′∈{0,1}

P(x, y′)) & P∀( min
x′,y′∈{0,1}

P(x′, y′)),

respectively. Here P∀(t) := {P(U) : ∀i ∈ {0, 1, ...du − 1},P(U = i) ≤ t}.

The proof of Lemma H.1 is presented as follows.

(INTERVENTIONAL PROBABILITY) We first consider the interventional probability. It is sufficient to prove
P∀(miny′∈{0,1} P(x, y′)) ⊆ P . ∀P(U) ∈ P∀(miny′∈{0,1} P(x, y′)), we consider the following item:

U∗ := argmax
U

{
P(U ∈ U) : P(U ∈ U) ≤ max

y′∈{0,1}
P(x, y′)

}
. (96)

Apparently, U∗ ⫋ {0, 1, ...du − 1}. We consider P(U∗ ∪ u∗
c) with u∗

c ∈ (U∗)c.

On the one hand, by definition of U∗, we have P(U∗ ∪ u∗
c) > maxy′∈{0,1} P(x, y′); on the other hand, since

P(U = u∗
c) ≤ miny′∈{0,1} P(x, y′) due to P(U) ∈ P∀(miny′∈{0,1} P(x, y′)), we also get

P(U∗ ∪ u∗
c) = P(U∗) + P(U = u∗

c) ≤ max
y′∈{0,1}

P(x, y′) + min
y′∈{0,1}

P(x, y′) = P(x).

Hence P(U∗ ∪ u∗
c) ∈ [maxy′∈{0,1} P(x, y′),P(x)]. Due to the arbitrary of the selection of P(U) within

P∀(miny′∈{0,1} P(x, y′)), it is proved that P∀(miny′∈{0,1} P(x, y′)) ⊆ P .

(ATE) Stepping forwards, we consider the case of ATE. We aim to prove P∀(minx′,y′∈{0,1} P(x′, y′)) ⊆ PATE. Recall that

PATE ⊇ {P(U) : ∃ U0,U1 ⊆ R with U0 ∩ U1 = ∅, s.t. ∀z ∈ {0, 1},P(U ∈ Uz) ∈ Iz,0 ∩ Iz,1} . (97)

is a subset of PATE. Hence it is sufficient to prove P∀(minx′,y′∈{0,1} P(x′, y′)) ⊆ RHS of (97).

Inspired by the proof of the interventional probability as above, for each legitimate P(U) in P∀(minx′,y′∈{0,1} P(x′, y′)),
we consider

U∗
0 := argmax

U

{
P(U ∈ U) : P(U ∈ U) ≤ min(I0,0 ∩ I0,1) = max

y′∈{0,1}
P(x0, y

′)
}
. (98)

With the same strategy as above, we could bound P(U ∈ U∗
0 ∪ u∗

0,c) with u∗
0,c ∈ (U∗

0 )
c:

P(U ∈ U∗
0 ∪ u∗

0,c) ∈ [ max
y′∈{0,1}

P(x0, y
′), max

y′∈{0,1}
P(x0, y

′) + min
x′,y′∈{0,1}

P(x′, y′)] ⊆ I0,0 ∩ I0,1. (99)

Naturally, we can choose U0 := U∗
0 ∪ u∗

0,c in Theorem 4.2. Apparently, (U0)
c ̸= ∅. Hence we could consider

U∗
1 := argmax

U

{
P(U ∈ U) : P(U ∈ U) ≤ min(I1,0 ∩ I1,1) = max

y′∈{0,1}
P(x1, y

′),U ⊆ (U0)
c)
}
. (100)

Noteworthy, here U∗
1 ⫋ (U0)

c because

P(U ∈ (U0)
c) ≥ 1−max(I0,0 ∩ I0,1) = P(x1) > max

y′∈{0,1}
P(x1, y

′) ≥ P(U∗
1 ).
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Then we could bound P(U ∈ U∗
1 ∪ u∗

1,c) with u∗
1,c ∈ (U∗

1 )
c ∩ (U0)

c:

P(U ∈ U∗
1 ∪ u∗

1,c) ∈ [ max
y′∈{0,1}

P(x1, y
′), max

y′∈{0,1}
P(x1, y

′) + min
x′,y′∈{0,1}

P(x′, y′)] ⊆ I1,0 ∩ I1,1. (101)

Naturally we choose U1 := U∗
1 ∪ u∗

1,c in Theorem 4.2. Notice that

U∗
1 ⫋ (U0)

c in (100) and u∗
1,c ∈ (U0)

c by definition,

it leads to U0 ∩ U1 = ∅. In sum, for each P(U) arbitrarily selected from P∀(minx′,y′∈{0,1} P(x′, y′)), there exists disjoint
subsets U0,U1 which locate in I0,0 ∩ I0,1 and I1,0 ∩ I1,1, respectively. Hence such P(U) belongs to PATE. The desired
result follows.

■

Equipped with Lemma H.1, we start the proof of Proposition 4.4.

Proof. (CONVERGENCE RATE) We first consider the interventional probability. It is sufficient to prove that the
probability of P(U) falling into P∀(t) is bounded by du(1− t)du−1. Namely,

P
(
P(U) /∈ P

) (1)

≤ P
(
P(U) /∈ P∀(t)

) (2)

≤ du(1− t)du−1 < 1, where t = min
y′∈{0,1}

P(x, y′).

Here P(U) is induced by the parameters {P(U = 0),P(U = 1), ...P(U = du − 1)} under a uniform prior. The first
inequality (1) has already been proved via Lemma H.1. For the second inequality (2), we take advantage of the union
bound. We get

P
(
P(U) /∈ P∀(t)

)
= P

(
∃i,P(U = i) > t

)
≤

du−1∑
i=0

(
P(U = i) > t

)
= du(1− t)du−1. (102)

The last inequality is according to under a uniform prior, for all u = 0, 1, ...du − 1, the marginal cumulative distribution
function of P(U = u) is FP(U=u)(x) = (1− x)du−1, x ∈ [0, 1).

For the ATE case, we only need take t = minx′,y′∈{0,1} P(x′, y′) and then the whole process holds totally the same. Hence
we get

P
(
P(U) /∈ PATE

)
≤ P

(
P(U) /∈ P∀(t)

)
≤ du(1− t)du−1 < 1, where t = min

x′,y′∈{0,1}
P(x′, y′).

(MONOTONICITY) Finally, we consider the monotonicity. We first consider the interventional probability case.
According to the auxiliary Lemma M.4 in Appendix M, under a uniform prior, the probability of falling into the “vanilla”
P(P(U) ∈ P) is equal to

P(Sdu), where event Sn := ∃A ∈ {0, 1, ...n− 1}, s.t.
∑
j∈A

(
pi(j+1) − pi(j)

)
∈
[

max
y′∈{0,1}

{P(x, y′),P(x)}
]
. (103)

Here {pi(j)}du
j=0 are re-ordered {pi}du

i=0 satisfying pi(du) ≥ pi(du−1) ≥ ... ≥ Pi(0), and each original pi is independently
uniformly sampled within the interval [0, 1]. In order to prove the probability of falling into the “non-vanilla” region Pc is
non-increasing, it is sufficient to demonstrate

P(Sn) ≤ P(Sn+1), ∀n ∈ N+.

Notice that

P(Sn+1) =

∫
α∈[0,1]

P(Sn+1 | pn+1 = α)fpn+1(α)dα =

∫
α∈[0,1]

P(Sn+1 | pn+1 = α)dα. (104)
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Here fpn+1
(α) = 1, α ∈ [0, 1] denotes the uniform distribution of pn+1. Consider each set {pi}ni=0 ∈ [0, 1]n+1 as above. If

Sn happens, then apparently, Sn+1 must happen with fixed pn+1 = α. Hence,

P(Sn+1 | pn+1 = α) ≥ P(Sn), thus P(Sn+1) ≥
∫
α∈[0,1]

P(Sn)dα = P(Sn),∀n ∈ N+.

It completes the proof on the interventional probability. Furthermore, for the ATE case, it only needs to change the event Sn

to Sn,ATE:

SL
n,ATE := ∃A0,A1 ∈ {0, 1, ...n− 1},A0 ∩ A1 = ∅, s.t.

∑
j∈A0

(
pi(j+1) − pi(j)

)
∈ I0,0,

∑
j∈A1

(
pi(j+1) − pi(j)

)
∈ I1,1,

SU
n,ATE := ∃A0,A1 ∈ {0, 1, ...n− 1},A0 ∩ A1 = ∅, s.t.

∑
j∈A0

(
pi(j+1) − pi(j)

)
∈ I0,1,

∑
j∈A1

(
pi(j+1) − pi(j)

)
∈ I1,0,

Sn,ATE := SL
n,ATE ∩ SU

n,ATE.

The rest analysis holds the same. Namely, with the same strategy, we get

P(Sn+1,ATE) =

∫
α∈[0,1]

P(Sn+1,ATE | pn+1 = α)dα ≥
∫
α∈[0,1]

P(Sn,ATE)dα = P(Sn,ATE).

The monotonicity has been proved. ■

I. The proof of Theorem 4.5
Supplementary notation We follow the supplementary notations in Appendix D. Moreover, we use PXY U to denote the
set of all possible P(X,Y, U) which is compatible with observed data P(X,Y ),P(U). Naturally, our original optimization
problem (1) could be transformed to explore the minimum and maximum of

{P(y | do(x)) : P(X,Y, U) ∈ PXY U}. (105)

Furthermore, we consider the set

P(k)
XY U :=

{
P(X,Y, U) : ∃Ω ∈ R, |Ω| = k, s.t. ∀u ∈ Ω,P(y, u, x) ∧ P(¬y, u, x) = 0

}⋂
PXY U .

Naturally, it holds that P(du)
XY U ⊆ P(du−1)

XY U ⊆ ... ⊆ P(1)
XY U ⊆ PXY U := P(0)

XY U . Furthermore, for brevity, we denote the sub
identification region of interventional probability:

P(k)
y|do(x) := {P(y | do(x)) : P(X,Y, U) ∈ P(k)

XY U}, k = 0, 1, ...du.

We now prove our identification bound in Theorem 4.5, namely [minP(0)
y|do(x),maxP(0)

y|do(x)] is valid and tight.

(VALIDITY) In order to prove the validity of bounds given by Theorem 4.5, it is sufficient to prove

minP(0)
y|do(x) ≥ LBmul

x,y (P(U)) and maxP(0)
y|do(x) ≤ UBmul

x,y (P(U)). (106)

To achieve this goal, the following two claims should be brought forward:

Claim I: Pdu−1
XY U ̸= ∅.

We prove it via direct construction. For any given P(U), a legitimate joint distribution P(X,Y, U) could be constructed
which belongs to P(du−1)

XY U . Details are deferred into Lemma M.2 in Appendix M. Consequently, we get Pk
XY U ̸= ∅, where

k = 0, 1, ...du − 1.

Claim II: minP(du−1)
y|do(x) = minP(0)

y|do(x), maxP(du−1)
y|do(x) = maxP(0)

y|do(x).
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It means the lower and upper tight identification bounds are equal to the minimum and maximum of
{P(y | do(x)) : P(X,Y, U) ∈ P(du−1)

XY U }, respectively.

To prove Claim II, on the one hand, due to P(du−1)
XY U ⊆ PXY U and Claim I, it definitely holds that

[minP(du−1)
y|do(x) ,maxP(du−1)

y|do(x) ] ⊆ [minP(0)
y|do(x),minP(0)

y|do(x)]. (107)

On the other hand, we consider the series of sub-regions {P(k)
XY U}du

k=1 iteratively. For two adjacent sets P(j)
XY U ,P

(j+1)
XY U ,

j = 0, 1, ...du − 2. If P(j)
XY U/P

(j+1)
XY U = ∅, then P(j)

XY U = P(j+1)
XY U naturally holds; otherwise, it can be inferred that

∀P(j)(X,Y, U) ∈ P(j)
XY U/P

(j+1)
XY U :

∃u+
1 , u

+
2 ∈ U, s.t. P(j)(y′, u, x) > 0, where y′ ∈ {0, 1}, u = u+

1 , u
+
2 . (108)

We construct two legitimate P(j+1)
ω (X,Y, U) within P(j+1)

XY U , ω ∈ {1,−1} by perturbing P(j)(X,Y, U). Here
P(j+1)
ω (X,Y, U) is established by

P(j+1)
ω (y | u, x′) =


(P(j)(y, u, x′) + ωη)/P(j)(u, x′) u = u+

1 , x
′ = x

(P(j)(y, u, x′)− ωη)/P(j)(u, x′) u = u+
2 , x

′ = x
P(j)(y | u, x′) otherwise

, and P(j+1)
ω (u, x′) = P(j)(u, x′), i = 1, 2.

for all u ∈ U and x ∈ {0, 1}. Here η = min
{
P(y′, u, x) : y′ ∈ {0, 1}, u ∈ {u+

1 , u
+
2 }

}
> 0.

It is easy to verify {P(j+1)
ω (X,Y, U)}ω=1,−1 ⊆ P(j+1)

XY U . Noteworthy, if we abbreviate the interventional probability
induced by P(j+1)

ω (X,Y, U),P(j)(X,Y, U) as P(j+1)
ω (y | do(x)),P(j)(y | do(x)), respectively. It holds that

P(j+1)
ω (y | do(x)) = P(j)(y | do(x)) +

[
1/P(j)

ω (u+
1 , x)− 1/P(j)

ω (u+
2 , x)

]
ωη. (109)

Hence
P(j)(y | do(x)) ∈ [min{P(j+1)

ω (y | do(x))}ω=1,−1,max{P(j+1)
ω (y | do(x))}ω=1,−1]

∈ [minP(j+1)
y|do(x),maxP(j+1)

y|do(x)].
(110)

Due to the arbitrary selection of P(j)(X,Y, U), it concludes that

[minP(j+1)
y|do(x),maxP(j+1)

y|do(x)] ⊇ [minP(j)
y|do(x),minP(j)

y|do(x)], j = 0, 1, ...du − 2. (111)

The combination of (107) and (111) indicates Claim II.

According to Claim I-II, in order to prove the validity of bounds given by Theorem 4.5, it is sufficient to prove

minP(du−1)
y|do(x) ≥ LBmul

x,y (P(U)),maxP(du−1)
y|do(x) ≤ UBmul

x,y (P(U)).

We first consider the lower bound. Apparently, when P(U) ∈ PL, it leads to minP(du−1)
y|do(x) ≥ P(x, y) = LBmul

x,y (P(U)).

Hence, in the following part, we focus on the non-vanilla case P(U) ∈ (PL)c. Notice that Pdu−1
y|do(x) could be transformed to

the following structure:

Pdu−1
y|do(x) =

{
P(U ∈ U) + P(y | ut, x)P(ut) : U ⊆ R/{t},∀u ∈ (U ∪ {t})c,P(y, u, x) = 0,∀u ∈ U ,P(¬y, u, x) = 0}.

(112)

It could be verified that for each compatible U within Pdu−1
y|do(x) under P(U) ∈ (PL)c, we get

P(U ∈ U) ∈
[
max

{
0,P(x)− P(ut)

}
,P(x, y) + P(¬x)

]
. (113)
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We refer readers to Lemma M.5 in Appendix M for the constraints in (113). To prove the validity, it is sufficient to prove
each value among (112) locates in [LBmul

x,y (P(U)),UBmul
x,y (P(U))]. First, for the valid low bound, we consider the minimum

of RHS via separating (112) into Cases I-II:

CASE I: under P(U) ∈ (PL)c, when P(U ∈ U) ∈
[
max

{
0,P(x)− P(ut)

}
,P(x, y)

]
̸= ∅, it holds

P(y, ut, x)
∗
= P(x, y)− P(y, u ∈ U , x) ≥ P(x, y)− P(u ∈ U).

Here ∗ is due to the fact ∀(U ∪ {t})c, P(y, u, x) = 0. Then

minPdu−1
y|do(x) ≥ P(U ∈ U) + P(x, y)− P(U ∈ U)

P(x, y)− P(U ∈ U) + P(x,¬y, ut)
P(ut) ≥ P(U ∈ U) + P(x, y)− P(U ∈ U)

P(x)− P(U ∈ U) P(ut).

(114)

CASE II: under P(U) ∈ (PL)c, when P(U ∈ U) ∈
[
P(x, y),P(x, y) + P(¬x)

]
, it holds

minPdu−1
y|do(x) ≥ P(U ∈ U) ≥ min

{
P(U ∈ U) : P(U ∈ U) > P(x)

}
. (115)

The last inequality is due to P(U ∈ U) would not fall into [P(x, y),P(x)].

Noteworthy, P(U ∈ U) in CASE I is non-empty, since we can choose t ∈ U∗ := argminU ′{U ′ : P(U ∈ U ′) > P(x)} and
set U := U∗/{t}. Then according to P(U) ∈ (PL)c, P(U ∈ U) falls into the above interval of CASE I. Moreover, due to

P(U ∈ U) + P(x, y)− P(U ∈ U)
P(x)− P(U ∈ U) P(ut) < P(U ∈ U ∪ {t}) = P(U∗) = min

{
P(U ∈ U) : P(U ∈ U) > P(x)

}
, (116)

combining with (113), (114), (115) and (116), finally, we get

minPdu−1
y|do(x) ≥min

{
s+

P(x, y)− s

P(x)− s
P(ut) : U ⊆ R/{t}, s = P(U ∈ U) ∈

[
max

{
0,P(x)− P(ut)

}
,P(x, y)

]}
=

{
s+

P(x, y)− s

P(x)− s
P(ut) : U ⊆ R/{t}, s ∈ {pmin(It, I ′

t), pmax(It, I ′
t)} ≠ ∅

}
.

(117)

Here It = R/{t} and I ′
t =

[
max

{
0,P(x)− P(ut)

}
,P(x, y)

]
. pmin and pmax are identified in our main text. The last

inequality is blessed with the monotonicity. In sum, we get

minP(y | do(x)) = minPdu−1
y|do(x) ≥

{
B′(P(U);x, y) P(U) ∈ (PL)c

P(x, y) P(U) ∈ PL =: LBmul
x,y (P(U)). (118)

Here B′(P(U);x, y) is identified in the main text. We conclude that (118) is the valid lower identification bound of
P(y | do(x)) in the multi-valued confounder case.

Furthermore, we consider the valid upper identification bound. Following the same strategy as above, the valid lower
identification bound of P(¬y | do(x)) can be constructed as{

B′(P(U);x,¬y) P(U) ∈ (PU )c

P(x,¬y) P(U) ∈ PU . (119)

Due to the fact P(y | do(x)) = 1− P(¬y | x), the valid upper identification bound of P(y | do(x)) is formalized as{
1− B′(P(U);x,¬y) P(U) ∈ (PU )c

P(x, y) + P(¬x) P(U) ∈ PU =: UBmul
x,y (P(U)). (120)

In sum, the validity part is completed.

(TIGHTNESS) We first take the lower bound for instance. Notice that the legitimate P(X,Y, U) under P(U) ∈ PL has
already been established in Theorem 4.1, we only need to consider the non-vanilla case P(U) ∈ (PL)c . According to (117),
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it is sufficient to prove that for each legitimate pair {t,U} that satisfies P(U ∈ U) ∈
[
0 ∨

(
P(x)− P(ut)

)
,P(x, y)

]
and

t ∈ (U)c, we could construct legitimate P(X,Y, U) which induces P(y | do(x)) = P(U ∈ U) + P(x,y)−P(U∈U)
P(x)−P(U∈U) P(ut).

Notice that it must holds P(ut) ≥ P(x,¬y). The construction is as follows:

P(U ∈ U , x) = P(U ∈ U),P(U ∈ (U ∪ {ut})c, x) = 0, and P(ut, x) = P(x)− P(U ∈ U). (121)

Moreover, the conditional probability P(Y | U,X) is set as

∀u ∈ U ,P(y | u, x) = 1,∀u ∈ (U ∪ {t})c,P(y | u, x) = 0, and P(y | ut, x) =
P(x, y)− P(U ∈ U)
P(x)− P(U ∈ U) .

∀u ∈ U,P(u,¬x) is supplemented by P(u)− P(u, x) based on (121). Additionally, ∀u ∈ U , we set
P(y | u,¬x) = P(y | ¬x) and P(¬y | u, x′) = 1− P(y | u, x′), x′ ∈ {0, 1}. It is easy to verify construction (121) is
non-negative and compatible with the observed P(X,Y ),P(U).

We further consider the tightness of upper bound with the same strategy. Compared with (121), we re-construct the
conditional probability P(Y | U,X) as

∀u ∈ U ,P(y | u, x) = 0,∀u ∈ (U ∪ {t})c,P(y | u, x) = 1, and P(y | ut, x) =
P(x, y)

P(x)− P(U ∈ U) .

The other part holds the same as that of the lower bound. In sum, the tightness of the identification bound has been
demonstrated.

As illustrated as above, we have proved for each specification of P(X,Y ) and P(U), there exists a compatible joint
distribution so that its induced P(y | do(x)) is equal to the lower bound LBmul

x,y (P(U)) and upper bound UBmul
x,y (P(U)).

Now we are left with illustrating that for each o between these two bounds, there exists a legitimate corresponding
P(X,Y, U) whose induced interventional probability is o.

To achieve this goal, the strategy is inherited from the proof of Theorem 3.3. The difference is that when dealing with the
multi-valued confounders, our new construction would be more general and it is legitimate for any given P(U). Given any
ε > 0 and a legitimate joint distribution P(X,Y, U), we construct a new legitimate joint distribution P∗(X,Y, U) satisfying

P∗(x, y′, u) =


εP(y′ | u, x) u ∈ Uε

P(y′, x, u)−∑
u′∈Uε

P(y′ | u′, x)(ε− P(u′, x)) u = argmaxu′{P(u′, x, y′) : u′ ∈ R}
P(y′, x, u) Otherwise.

,

P∗(¬x, y′, u) = P(y′ | ¬x)(P(u)− P∗(u, x)), where y′ ∈ {0, 1}, Uε := {u : P(u, x) ≤ ε}.

(122)

It is easy to verify that (122) is a legitimate joint distribution generated from arbitrary given legitimate joint distribution
P(X,Y, U). Then in the following part, we consider the sub region

Pε
y|do(x) =

{
P(y | do(x)) : {X,Y, U} obeys P∗(X,Y, U) in (122) with some P(X,Y, U) ∈ PXY U

}
. (123)

As ε → 0, we show that minPε
y|do(x) approaches the lower bound LBmul

x,y (P(U)) and maxPε
y|do(x) approaches the upper

bound UBmul
x,y (P(U)). We defer the detailed proof of legitimacy and convergence to Lemma M.3 in Appendix M.

In this sense, in order to prove ∀o ∈ [LBmul
x,y (P(U)),UBmul

x,y (P(U))], there exists a legitimate joint probability so that
P(y | do(x)) = o, it is sufficient to prove that ∃ε0 > 0 sufficiently small, such that ∀ε ∈ (0, ε0],

[minPε
y|do(x),maxPε

y|do(x)] (124)

derived by (123) is a subset of the true identification region. Namely, for each point o′ in the interval given by (123), there
exists a legitimate joint distribution with its corresponding P(y | do(x)) ≡ o′. To achieve this goal, we now recall the region
given by (26):

Oε :=
{
P(y | do(x)) : ∀u ∈ U,P(u, x) ≥ ε,P(Y,U,X) is compatible with P(X,Y ),P(U)

}
. (125)
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As we have already demonstrated in the proof of Theorem 3.3, Oε in (125) is a closed interval on R. Following the previous
notations, we take omin and omax as the left and right side of the interval Oε, it is easily verified that ∃ε0 sufficiently small,
such that ∀ε ∈ (0, ε0],

omin ≤ minPε
y|do(x) ≤ maxPε

y|do(x) ≤ omax.

It indicates that the interval given by (124) is a subset of Oε. Furthermore, since Oε is also a subset of the identification
region by definition, it is straightforward that the interval (124) is the subset of the identification region. It completes the
proof.

■

J. The proof of Proposition 4.6
Proof. (Lower bound) We first consider the lower bound and choose I = [P(x, y),P(x)]. When D

(
P(U), I

)
= 0, it

immediately leads to ∃U ∈ R, such that P(U ∈ U) ∈ [P(x, y),P(x)] holds. Hence the if and only if condition in
Theorem 3.3 holds and LBmul

x,y (P(U)) equals to the vanilla lower bound P(x, y). In this sense, we only need to consider the
case D

(
P(U), I

)
> 0:

LBmul
x,y (P(U)) = min

t,s

{
s+

P(x, y)− s

P(x)− s
P(ut)

}
= min

t,s

{
P(x, y) + (P(x, y)− s)

P(ut)− P(x) + s

P(x)− s

}
. (126)

Here t spans {0, 1, ...du − 1} and then s spans every legitimate P(U ∈ U) for each t. Namely,

s = P(U ∈ U) ∈
[
max

{
0,P(x)− P(ut)

}
,P(x, y)

]
, t /∈ U . (127)

Hence

LBmul
x,y (P(U)) ≥ P(x, y) +

D
(
P(U), I

)2
P(x)− s

≥ P(x, y) +
D
(
P(U), I

)2
P(x)

, I = [P(x, y),P(x)], (128)

On the other hand, we denote {Uopt, topt} = argminU⊆R,t∈I |P(U ∈ U)− t|. There are two possibilities:

(i) P(U ∈ Uopt) ∈ [0,P(x, y)], topt = P(x, y), then in (127) we choose s = P(U ∈ Uopt), t ∈ (Uopt)c. We have that

(126) ≤ P(x, y) +
(
P(x, y)− P(U ∈ Uopt)

) P(¬x)
P(x)− s

≤ P(x, y) +D
(
P(U), I

) P(¬x)
P(x,¬y) . (129)

(ii) P(U ∈ Uopt) ∈ [P(x), 1], topt = P(x), then in (127) we choose s = P(U ∈ Uopt/ut) < P(x, y), where ut ∈ Uopt. We
have that

(126) ≤ P(x, y) + P(x, y)
P(U ∈ Uopt)− P(x)

P(x)− s
≤ P(x, y) + P(x, y)

D
(
P(U), I

)
P(x,¬y) . (130)

The combination of (129) and (130) leads to

LBmul
x,y (P(U)) ≤ P(x, y) +

(P(¬x) ∨ P(x, y))
P(x,¬y) D

(
P(U), I

)
, I = [P(x, y),P(x)]. (131)

The combination of (128) and (131) leads to the first result.

(Upper bound) Second, we consider the upper bound and choose I = [P(¬x), 1− P(x,¬y)]. Following the same strategy,
when D

(
P(U), I

)
= 0, then due to the if and only if condition in Theorem 3.3, we have that UBmul

x,y (P(U)) equals to the
vanilla upper bound P(x, y) + P(¬x). Hence we also only need to consider D

(
P(U), I

)
> 0:

UBmul
x,y (P(U)) = 1−min

t,s

{
s+

P(x,¬y)− s

P(x)− s
P(ut)

}
= 1− P(x,¬y)−min

t,s

{
(P(x,¬y)− s)

P(ut)− P(x) + s

P(x)− s

}
.

(132)
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Here {s, t} follow the same setting as in the lower bound case. Then (132) leads to

UBmul
x,y (P(U)) ≤ 1− P(x,¬y)− D

(
P(U), I

)2
P(x)

= P(x, y) + P(¬x)− αx∆
2
x,¬y, (133)

On the other hand, we follow the notations {Uopt, topt} as above with I = [P(¬x), 1− P(x,¬y)]. There are also two
possibilities:

(i) P(U ∈ Uopt) ∈ [0,P(¬x)], topt = P(¬x), then in (127) we choose s = P(U ∈ (Uopt)c/ut) < P(x,¬y), where
ut ∈ (Uopt)c. We have that

(132) ≥ 1− P(x,¬y)− P(x,¬y)P(¬x)− P(U ∈ Uopt)

P(x)− s
≥ P(x, y) + P(¬x)− P(x,¬y)D

(
P(U), I

)
P(x, y)

. (134)

(ii) P(U ∈ Uopt) ∈ [1− P(x,¬y), 1], topt = 1− P(x,¬y), then in (127) we choose s = P(U ∈ (Uopt)c) and t ∈ Uopt.
We have that

(132) ≥ 1− P(x,¬y)−
(
P(U ∈ (Uopt))−

(
1− P(x,¬y)

)) P(¬x)
P(x, y)

≥ P(x, y) + P(¬x)−D
(
P(U), I

) P(¬x)
P(x, y)

.

(135)

The combination of (134) and (135) leads to

UBmul
x,y (P(U)) ≤ P(x, y) + P(¬x)− (P(¬x) ∨ P(x,¬y))

P(x, y)
D
(
P(U), I

)
= P(x, y) + P(¬x)− βx,¬yD

(
P(U), I

)
.

Here I = [P(¬x), 1− P(x,¬y)], and it completes the proof.

■

K. The proof of Proposition 4.7
Proof. According to the natural composition of Proposition 4.6, it directly leads to ATE−ATEL

vanilla ≥ α1∆
2
1,1 + α0∆

2
0,0

and ATEU
vanilla −ATE ≥ α0∆

2
0,1 + α1∆

2
1,0. Hence we only need consider the rest part.

(Lower bound) We only need analyze the non-vanilla case. Under P(U) /∈ PL
ATE, We aim to prove

ATEL
vanilla +DATE

(
P(U), {I0,0, I1,1}

)2
/du serves as the valid lower bound. Recalling that in (78), we have that

ATE−ATEL
vanilla =

∑
u

[
P(y1 | u, x1)P(u, x0) + P(y0 | u, x0)P(u, x1)

]
≥ 1

P(x1)

∑
u

(
P(y1, u, x1) ∧ P(u, x0)

)2

+
1

P(x0)

∑
u

(
P(y0, u, x0) ∧ P(u, x1)

)2

.

(136)

We denote that
U∗
t := {u : P(yt, u, xt) > P(u, x¬t)}, t ∈ {0, 1}. (137)

According to the Cauchy–Schwartz inequality, we have that∑
u

(
P(yt, u, xt) ∧ P(u, x¬t)

)2 ≥ 1

du

(
P(yt, xt, U ∈ (U∗

t )
c) + P(U ∈ U∗

t , x¬t)
)2

(138)

Combined with (136) and (138), we have

ATE−ATEL
vanilla ≥

∑
t=0,1

1

P(xt)

∑
u

(
P(yt, u, xt) ∧ P(u, x¬t)

)2

≥ 1

du

∑
t=0,1

1

P(xt)

(
P(yt, xt, U ∈ (U∗

t )
c) + P(U ∈ U∗

t , x¬t)
)2 ∑

t=0,1

P(xt)

≥ 1

du

( ∑
t=0,1

P(yt, xt, U ∈ (U∗
t )

c) + P(U ∈ U∗
t , x¬t)

)2

(139)
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The last inequality in (139) is also due to the Cauchy–Schwarz inequality. Moreover, P(U ∈ U∗
t ), t = 0, 1 can be bounded

as
P(U ∈ U∗

t ) = P(U ∈ U∗
t , xt) + P(U ∈ U∗

t , x¬t) ≤ P(xt) + P(U ∈ U∗
t , x¬t),

P(U ∈ U∗
t ) ≥ P(U ∈ U∗

t , xt, yt) = P(xt, yt)− P(U ∈ (U∗
t )

c, xt, yt),
(140)

Importantly, according to the definition of U∗
t , t = 0, 1, we have U∗

0 ∩ U∗
1 ̸= ∅. Otherwise ∃u ∈ R, such that∑

t=0,1 P(yt, u, xt) >
∑

t=0,1 P(u, x¬t), which is a contradiction. It indicates that P(U ∈ U∗
t ) locates in

DATE

(
P(U), {I0,0, I1,1}

)
≤

∑
t=0,1

P(U ∈ (U∗
t )

c, xt, yt) ∨ P(U ∈ U∗
t , x¬t). (141)

Combined with (139) and (141), we have

ATE−ATEL
vanilla ≥ 1

du
DATE

(
P(U), {I0,0, I1,1}

)2
. (142)

According to the above analysis, we get ATE−ATEL
vanilla ≥ ∆2

ATE/du, where ∆ATE = DATE(P(U), {I0,0, I1,1}). On
this basis, we are only left with the demonstration of proving ATE−ATEL

vanilla ≤ (β1,1 + β0,1)∆ATE. We prove it via
direct construction. We denote

{Uopt
0 ,Uopt

1 } = arg min
U0,U1

(
|P(U ∈ U0)− t0|+ |P(U ∈ U1)− t1|

)
, (143)

where U0,U1 ⊆ R,U0 ∩ U1 = ∅, t0 ∈ [P(x1, y1),P(x1)], t1 ∈ [P(x0, y0),P(x0)]. It could be separated into two cases:

(i) P(U ∈ Uopt
0 ) ≤ P(x0) and P(U ∈ Uopt

1 ) ≤ P(x1). We follow the construction of P(U,X) in (144):[
P(U ∈ Uopt

0 , x1) P(U ∈ Uopt
1 , x1) P(U ∈ (Uopt

0 ∪ Uopt
1 )c, x1)

P(U ∈ Uopt
0 , x0) P(U ∈ Uopt

1 , x0) P(U ∈ (Uopt
0 ∪ Uopt

1 )c, x0)

]
=

[
0 P(U ∈ Uopt

1 ) P(x1)− P(U ∈ Uopt
1 )

P(U ∈ Uopt
0 ) 0 P(x0)− P(U ∈ Uopt

0 )

]
.

(144)

Moreover, the conditional probability P(Y | U,X) is constructed by

∀u ∈ Uopt
0 ,P(y1 | u, x1) = 0,P(y1 | u, x0) = δ0/P(U ∈ Uopt

0 );

∀u ∈ Uopt
1 ,P(y1 | u, x1) = 1− δ1/P(U ∈ Uopt

1 ),P(y1 | u, x0) = 1;

∀u ∈ (Uopt
0 ∪ Uopt

1 )c,P(y1 | u, x1) =
P(x1, y1)− P(U ∈ Uopt

1 ) + δ1

P(x1)− P(U ∈ Uopt
1 )

,P(y1 | u, x0) =
P(x0, y1)− δ0

P(x0)− P(U ∈ Uopt
0 )

.

(145)

Here
δt = (P(U ∈ Uopt

t )− P(xt, yt))I(P(U ∈ Uopt
t ) > P(xt, yt)), t = 0, 1.

Moreover, we also choose P(y0 | ui, x
′) = 1− P(y1 | ui, x

′). Here u ∈ {0, 1, ...du − 1}, x′ ∈ {0, 1}. It is easy to verify
the construction (144)-(145) is non-negative and compatible with the observed P(X,Y ),P(U). We can verify that

P(yt | do(xt)) =P(U ∈ Uopt
t )− δt +

P(xt, yt)− P(U ∈ Uopt
t ) + δt

P(xt)− P(U ∈ Uopt
t )

P(U ∈ (Uopt
t ∪ Uopt

¬t )c)

=P(xt, yt) + [P(xt, yt)− P(U ∈ Uopt
t ) + δt]

P(U ∈ (Uopt
t ∪ Uopt

¬t )c)− P(xt) + P(U ∈ Uopt
t )

P(xt)− P(U ∈ Uopt
t )

≤P(xt, yt) + ∆ATE
1− P(xt)

P(xt)− P(xt, yt)
= P(xt, yt) + ∆ATE

P(x¬t)

P(xt, y¬t)
, t = 0, 1.

(146)

Therefore, according to ATE = P(y1 | do(x1))− P(y1 | do(x0)) = −1 +
∑

t=0,1 P(yt | do(xt)), ATE under the
construction in (144)-(145) can be upper-bounded by

−P(x1, y0)− P(x0, y1) + (
P(x0)

P(x1, y0)
+

P(x1)

P(x0, y1)
)∆ATE.
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Hence it can be concluded as ATE ≤ ATEL
vanilla + (β1,1 + β0,0))∆ATE.

(ii) ∃t ∈ {0, 1}, s.t.P(U ∈ Uopt
t ) > P(xt). In this case, according to the definition (143), it immediately leads to

P(U ∈ Uopt
¬t ) = 1− P(U ∈ Uopt

t ) ≤ P(x¬t). Moreover, We select uopt
t ∈ Uopt

t , it must hold
P(U ∈ Uopt

t /uopt
t ) ≤ P(xt, yt). We take construction on different groups:[

P(U ∈ Uopt
¬t , xt) P(U ∈ Uopt

t /{uopt
t }, xt) P(U = uopt

t , xt)

P(U ∈ Uopt
¬t , x¬t) P(U ∈ Uopt

t /{uopt
t }, x¬t) P(U = uopt

t , x¬t)

]
=

[
0 P(U ∈ Uopt

t /{uopt
t }) P(x)− P(U ∈ Uopt

t /{uopt
t })

P(U ∈ Uopt
¬t ) 0 P(x0)− P(U ∈ Uopt

¬t )

]
.

(147)

Moreover, the conditional probability P(Y | U,X) is constructed by

∀u ∈ Uopt
¬t ,P(yt | u, xt) = 0,P(yt | u, x¬t) = δ¬t/P(U ∈ Uopt

¬t );

∀u ∈ Uopt
t /{uopt

t },P(yt | u, xt) = 1,P(yt | u, x¬t) = 1;

∀u = uopt
t ,P(yt | u, xt) =

P(xt, yt)− P(U ∈ Uopt
t /{uopt

t })
P(xt)− P(U ∈ Uopt

t /{uopt
t })

,P(yt | u, x¬t) =
P(x¬t, yt)− δ¬t

P(x¬t)− P(U ∈ U0)
.

(148)

Here δt′ , t
′ = 0, 1 has been identified in the case (i). We can verify that

P(yt | do(xt)) = P(U ∈ Uopt
t /{uopt

t }) + P(xt, yt)− P(U ∈ Uopt
t /{uopt

t })
P(xt)− P(U ∈ Uopt

t /{uopt
t })

P(uopt
t )

= P(xt, yt) +
(
P(xt, yt)− P(U ∈ Uopt

t /{uopt
t })

)P(uopt
t )− P(xt) + P(U ∈ Uopt

t /{uopt
t })

P(xt)− P(U ∈ Uopt
t /{uopt

t })

≤ P(xt, yt) + P(xt, yt)
∆ATE

P(xt)− P(xt, yt)
= P(xt, yt) +

P(xt, yt)

P(xt, y¬t)
∆ATE.

(149)

On the other hand,

P(y¬t | do(x¬t)) ≤ P(x¬t, y¬t) + ∆ATE
P(xt)

P(x¬t, yt)
. (150)

Hence under the construction (147) and (148), the ATE can be upper bounded by

ATE = −1 +
∑
t=0,1

P(yt | do(xt)) ≤ −P(x1, y0)− P(x0, y1) +
∑
t=0,1

P(xt, yt) ∨ P(x¬t)

P(xt, y¬t)
∆ATE. (151)

it can also be concluded as ATE ≤ ATEL
vanilla + (β1,1 + β0,0)∆ATE. Combining case (i)-(ii), the desired result follows.

(Upper bound) We adopt the same strategy. Considering the non-vanilla case P(U) ∈ (PU
ATE)

c, we only need to further
demonstrate that ATEU

vanilla −DATE

(
P(U), {I0,1, I1,0}

)2
/du serves as a valid upper bound. Compared with (137), we

re-denote
U∗
t := {u : P(yt, u, x¬t) ≥ P(u, xt)}, t ∈ {0, 1}.

Recalling that in (79), it holds that

ATEU
vanilla −ATE =

∑
u

[
P(y1 | u, x0)P(u, x1) + P(y0 | u, x1)P(u, x0)

]
≥

∑
t=0,1

1

P(x¬t)

∑
u

(
P(yt, u, x¬t) ∧ P(u, xt)

)2

≥ 1

du

∑
t=0,1

1

P(x¬t)

(
P(yt, x¬t, U ∈ (U∗

t )
c) + P(U ∈ U∗

t , xt)
)2 ∑

t=0,1

P(x¬t)

≥ 1

du

( ∑
t=0,1

P(yt, x¬t, U ∈ (U∗
t )

c) + P(U ∈ U∗
t , xt)

)2

.

(152)
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Here the last two inequalities are both due to the Cauchy–Schwartz inequality. We get

P(U ∈ U∗
t ) = P(U ∈ U∗

t , x¬t) + P(U ∈ U∗
t , xt) ≤ P(x¬t) + P(U ∈ U∗

t , xt),

P(U ∈ U∗
t ) ≥ P(U ∈ U∗

t , x¬t, yt) = P(x¬t, yt)− P(U ∈ (U∗
t )

c, x¬t, yt).
(153)

According to U∗
0 ∩ U∗

1 ̸= ∅ with the same reason as above, we claim that P(U ∈ U∗
t ) locates in

DATE

(
P(U), {I0,1, I1,0}

)
≤

∑
t=0,1

P(U ∈ (U∗
t )

c, x¬t, yt) ∨ P(U ∈ U∗
t , xt). (154)

Combined with (152) and (154), we have

ATEU
vanilla −ATE ≥ 1

du
DATE

(
P(U), {I0,0, I1,1}

)2
.. (155)

The desired result follows.

Moreover, notice that the analysis on the upper bound P(y1 | do(x1))− P(y1 | do(x0)) is equivalent to the analysis on the
lower bound of P(y1 | do(x0))− P(y1 | do(x1)). Based on the above analysis on the lower bound and exchange {x0, x1}
with each other, we directly get that there exists legitimate P(X,Y, U) such that

P(y1 | do(x0))− P(y1 | do(x1)) ≤ −P(x0, y0)− P(x1, y1) +
∑
t=0,1

P(x¬t, yt) ∨ P(xt)

P(x¬t, y¬t)
∆ATE.

It is concluded that the tight upper bound of ATE is lower-bounded by

P(x0, y0) + P(x1, y1)−
∑
t=0,1

P(x¬t, yt) ∨ P(xt)

P(x¬t, y¬t)
∆ATE = ATEU

vanilla − (β1,0 + β0,1)∆ATE.

Here ∆ATE = DATE(P(U), {I0,1, I1,0}). Hence we get ATEU
vanilla −ATE ≤ (β1,0 + β0,1)∆ATE. It completes the proof.

■
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L. Auxiliary algorithms

Algorithm 1 Approximation TPI algorithm.
Require: Observed data P(x′, y′),P(ui), i = 0, 1, ...du − 1; Null set Sy′ = ∅, x′, y′ ∈ {0, 1}; approximation error η.

Ensure: The approximated tight identification region [L̂Bmul

x,y (P(U)), ÛBmul

x,y (P(U))] := [minSy, 1−minS¬y] .
output The tight identification region of P(y | do(x)) with approximation error βx,y′η, where constant βx,y′ has been

identified in Proposition 4.6. Namely, we produce

|L̂Bmul

x,y (P(U))− LBmul
x,y (P(U))| ≤ βx,yη, |ÛB

mul

x,y (P(U))− UBmul
x,y (P(U))| ≤ βx,¬yη.

for y′ = y,¬y do
if SSP-min

(
{P(ut)}du−1

t=0 ,P(x, y′)
)
≤ P(x) then

return Sy′ = P(x, y′).
else

for each t satisfying P(ut) ≥ P(x,¬y′) do

smin = minSSP
(
{P(ui)}du−1

i=0 /{P(ut)}, Il, η
)
, smax = maxSSP

(
{P(ut)}du−1

t=0 /{P(ut)}, Iu, η
)
,

where [Il, Iu] := [0 ∨
(
P(x′)− P(ut)

)
,P(x′, y′)].

Moreover, Sy′ = Sy′∪{smin+
P(x,y)−smin

P(x)−smin
P(ut)} when smin ≤ Iu;, and Sy′ = Sy′∪{smax+

P(x,y)−smax

P(x)−smax
P(ut)}

when smax ≥ Il; .
end for

end if
end for

The traditional subset-sum problem (SSP) problem is to explore the sub-optimal subset, such that its sum is larger (smaller)
than a certain threshold. The algorithm for SSP is illustrated as follows. For brevity, we denote
min(∅) = −∞,max(∅) = +∞,

Algorithm 2 SSP(I, I ′, η) algorithm.
Require: Region I, I ′ and approximation error η.
Ensure: sub-optimal subsets Ûmin, Ûmax ⊆ R such that P(U ∈ ÛT

min)/pmin(I, I ′) ∈ [1 − η, 1 + η] and P(U ∈
ÛT
max)/pmax(I, I ′) ∈ [1− η, 1 + η].

Initialize Smin = {P(U ∈ I)},Smax = {0}.
for u ∈ I do
Smin = Smin ∪ {Smin − P(u)}, Smax = Smax ∪ {Smax + P(u)}.
Update Smin by removing each element that is lower than min I ′; Update Smax by removing each element that is
upper than max I ′.
For each element q ∈ SA, if ∃q′ ∈ SA, such that q

′
/q ∈ [1− η/du, 1 + η/du], then remove q

′
. A ∈ {min,max}.

end for
Set Ûmin = minSmin, Ûmax = maxSmax.
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M. Auxiliary lemmas
Lemma M.1 (Justification of (44)).

St,i =
{
P(y1 | do(xi)) +

[ 1

P(xi | ut)
− 1

P(xi | u¬t)

]
s : s ∈ {P(xi, y1, u¬t),P(xi, y0, ut)}

}
. (156)

Proof. We have

St,i = P(y1 | do(xi)) +
[ 1

P(xi | ut)
− 1

P(xi | u¬t)

]
p =

P(y1, ut, xi) + p

P(ut, xi)
P(ut) +

P(y1, u¬t, xi)− p

P(u¬t, xi)
P(u¬t). (157)

When we choose p = P(xi, y1, u¬t), we have

St,i =
P(xi, y1)

P(ut, xi)
P(ut). (158)

When we choose p = P(xi, y0, ut), we have

St,i =
P(ut, xi)

P(ut, xi)
P(ut) +

P(y1, u¬t, xi)− P(xi, y0, ut)

P(u¬t, xi)
P(u¬t) =

P(xi, y1)− P(ut, xi)

P(xi)− P(ut, xi)
P(u¬t) + P(ut). (159)

(158) and (159) are consistent with the definition of St,i in (41). ■

Lemma M.2 (Justification of Claim I in Appendix I). Pdu−1
XY U ̸= ∅.

Proof. We aim to construct a legitimate P(X,Y, U) within Pdu−1
XY U . For given P(U), we choose

U ′ := argmax
U

{P(U ∈ U) | P(U ∈ U) < P(x, y)}.

Apparently, P(U ∈ U ′) ≤ P(x, y). We then choose uc ∈ (U ′)c, and thus legitimate constructions could be constructed.
There are at most two possibilities:

CASE I: P(U ∈ U ′ ∪ uc) ≥ P(x):

We choose

P(U ∈ U ′, x) = P(U ∈ U ′),P(U ∈ (U ′ ∪ {uc})c, x) = 0, and P(uc, x) = P(x)− P(U ∈ U ′). (160)

Moreover, the conditional probability P(Y | U,X) is set as

∀U ∈ U ′,P(y | u, x) = 1,∀U ∈ (U ′ ∪ {uc})c,P(y | u, x) = 0, and P(y | uc, x) =
P(x, y)− P(U ∈ U ′)

P(x)− P(U ∈ U ′)
.

CASE II: P(U ∈ U ′ ∪ uc) ∈ [P(x, y),P(x)]:

We choose

P(U ∈ U ′, x) = P(U ∈ U ′),P(U ∈ (U ′ ∪ {uc})c, x) = P(x)− P(U ∈ U ′ ∪ {uc}), and P(uc, x) = P(uc). (161)

The conditional probability P(Y | U,X) is constructed as P(Y | U,X) is set as

∀U ∈ U ′,P(y | u, x) = 1,∀U ∈ (U ′ ∪ {uc})c,P(y | u, x) = 0, and P(y | uc, x) =
P(x, y)− P(U ∈ U ′)

P(uc)
.

In both two cases, ∀u ∈ U,P(u,¬x) is supplemented by P(u)− P(u, x) based on (160) and (161). Additionally, ∀u ∈ U ,
we set P(y | u,¬x) = P(y | ¬x) and P(¬y | u, x′) = 1− P(y | u, x′), x′ ∈ {0, 1}.

It is easy to verify these three cases of constructions are non-negative and compatible with P(X,Y ) and P(U). Moreover, it
always holds ∀u ∈ R/{uc}, P(y, u, x) ∧ P(¬y, u, x) = 0. According to this direct construction, we say Pdu−1

XY U ̸= ∅.

■
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Lemma M.3 (Justification of (122)-(123)). The construction given by (122) is legitimate and satisfies

minPε
y|do(x) ∈

[
LBmul

x,y (P(U)),LBmul
x,y (P(U)) +

2

c
ε
]
, maxPε

y|do(x) ∈
[
UBmul

x,y (P(U))− 2

c
ε,UBmul

x,y (P(U))
]
,

where ε ∈ [0, c], where c = (P(x, y0) ∧ P(x, y1))/2d2u is a constant.

Proof.

Apparently, construction given by (122) is consistent with confounder distribution P(U). To demonstrate the legitimacy, we
are only left with proving that the constructed P∗(Y,X,U) is always non-negative and compatible with observed P(X,Y ).
In order to achieve this goal, it is sufficient to verify

∑
u P∗(y′, x, u) = P(y′, x) and P∗(x, u) ∈ [0,P(u)] in (122).

The first part is easy to verify by summation. For brevity, we denote u∗
y′ := argmaxy′{P∗(u′, x, y′)}, y′ ∈ {0, 1}:∑

u∈R
P∗(y′, x, u)

=
∑
u∈Uε

P∗(y′, x, u) + P∗(y′, x, u = u∗
y′) +

∑
u∈(Uε∪u∗

y′ )
c

P∗(y′, x, u)

(122)
=

∑
u∈Uε

P(y′ | x, u)ε+ P(y′, x, u = u∗
y′)−

∑
u∈Uε

P(y′ | u, x)(ε− P(u, x)) +
∑

u∈(Uε∪u∗
y′ )

c

P(y′, x, u)

=
∑
u∈R

P(y′, x, u) = P(y′, x).

(162)

For the second part, ∀u /∈ {u∗
0, u

∗
1}, we have that P∗(x, u) ∈ {ε,P(x, u)} ⊆ [0,P(u)]. Otherwise, ∀u ∈ {u∗

0, u
∗
1}, it could

be verified that
P∗(x, u) ∈

[
P(x, u)−

∑
u′∈Uε

(ε− P(u′, x)),P(x, u)
]
⊆ [0,P(u)]. (163)

(163) is according to

P(x, u)−
∑

u′∈Uε

(
ε− P(u′, x)

)
≥

(
P(x, y0) ∧ P(x, y1)

)
/du − duε ≥ duε > 0. (164)

In combination with the above analysis, the construction PLB
ε (Y,X,U) is legitimate.

Stepping forwards, we aim to bound minPε
y|do(x) and maxPε

y|do(x). According to the definition in (123), it directly holds

that minPε
y|do(x) ≥ LBmul

x,y (P(U)) and maxPε
y|do(x) ≤ UBmul

x,y (P(U)). On the other hand, under (122) we have that

P∗(y | x, u)P(u)− P(y | x, u)P(u) = 0, ∀u /∈ {u∗
0, u

∗
1}.

| P∗(y | x, u)P(u)− P(y | x, u)P(u) | ≤ duε

(P(x, y0) ∧ P(x, y1))/du − duε
=

ε

2c− ε
≤ ε

c
, ∀u ∈ {u∗

0, u
∗
1}.

(165)

Hence under the construction (122), we have

|P∗(y | do(x))− P(y | do(x))| ≤ 2ε

c
. (166)

It indicates that
minPε

y|do(x) ≤ LBmul
x,y (P(U)) +

2

c
ε, maxPε

y|do(x) ≥ UBmul
x,y (P(U))− 2

c
ε. (167)

■

Lemma M.4 ((Rubin, 1981), Section 2). If we uniformly sample du − 1 points {p0, p1, ...pdu−1} on the interval [0, 1] and
then re-order the du + 1 points {0, p0, p1, ...pdu−1, 1} as

pi(0), pi(1), ....pi(du).
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Then the du-dimensional vector
(pi(1) − pi(0), pi(2) − pi(1), ...pi(du) − pi(du−1))

shares the same distribution with P(U), where P(U) is a uniformly sampled du-dimensional vector which is induced by
{P(U = 0),P(U = 1), ...P(U = du − 1)}. Here

∑du−1
i=0 P(U = i) = 1.

Lemma M.5 (Proof of (112)). Consider the case P(U) ∈ (PL)c. If U ⊆ R, t ∈ Uc satisfies ∀U ∈ U , P(¬y, u, x) = 0,
∀(U ∪ {t})c, P(y, u, x) = 0, then we have

P(U ∈ U) ∈
[
max

{
0,P(x)− P(ut)

}
,P(x, y) + P(¬x)

]
, where t ∈ Uc ⊆ R.

Proof.

It holds that

P(U ∈ U ∪ {t}) ≥ P(y, U ∈ U ∪ {t}, x) (1)
= P(y, U ∈ U ∪ {t}, x) + P(y, U ∈ (U ∪ {t})c, x) = P(x, y).

P(U ∈ U) (2)
= P

(
{X,Y } ≠ {x,¬y}, U ∈ U

)
≤ 1− P(x,¬y) = P(x, y) + P(¬x).

(168)

Here (1)-(2) correspond to the properties ∀u ∈ (U ∪ {t})c, P(y, u, x) = 0 and ∀u ∈ U , P(¬y, u, x) = 0, respectively. In
combination with (168) and the fact P(U) ∈ (PL)c, the first conclusion could be strengthened as P(U ∈ U ∪ {t}) > P(x).
In sum, we derive that

P(U ∈ U) ∈
[
max

{
0,P(x)− P(ut)

}
,P(x, y) + P(¬x)

]
, where t ∈ Uc ⊆ R.

■

N. Auxiliary Experimental details
Due to the theoretical optimality of our tight identification region, additional experiments are, in general, not extremely
necessary to provide further valuable information. This is the reason why we just focus on these two goals in our main text.
We first show that the traditional entropy-based methods lose information compared with our oracle tight
bound (Experiment N.1, N.2), then we additionally show that Proposition 4.7 is efficient (Experiment N.2); namely, it
reveals more reliable information compared with traditional competitive bounds and additionally guide decision making.

N.1. Simulations

Experiment setting We follow the basic sampling method (Chickering & Meek, 2012) and replicate the setting in Jiang
et al. (2023) to conduct Dirichlet sampling upon Figure 1. We assume that each generated data sample has only two parts of
data information: P (X,Y ) and confounder information P(U). Specifically, we generate U with the same analogue as the
previous: U ∼ Dir([0.1, 0.1, 0.1, 0.1, 0.1]), du = 5. Moreover, following the famous sampling procedure (Chickering &
Meek, 2012), X,Y is generated by P(X | ui) ∼ Dir(v′),∀i = 0, ...du − 1,
P(Y | uj , xk) ∼ Dir(s′),∀j ∈ [0, 1, ...du − 1], k ∈ [0, 1, ...|X| − 1], where v′ and s′ are permutations of the vector
v := 1∑|X|

1 1/i
[1, 1/2, 1/3, ...1/|X|] and s := 1∑|Y |

1 1/i
[1, 1/2, 1/3, ...1/|Y |] following Chickering & Meek (2012).

Without loss of generalization, we consider the binary case; namely, |X| = |Y | = 2, and it is natural to extend to the
multi-valued cases. For each sampling (106 in total), we select P(X,Y ) and P(U) as our accessible data. We consider
whether P(y′ | do(x′)), x′, y′ = 0, 1 to be vanilla.

Experiment result We justify whether the PI region is vanilla according to the if and only if criteria (Theorem 4.1). We
consider the case H(U) ≤ 1 and separate it into ten groups corresponding to the confounder entropy
H(U) ∈ [i/10, i/10 + 0.1], i = 0, 1, ...0.9. As illustrated in Table 5, our proposed PI bound is consistent with the ground
truth blessed with its tightness guarantee. For comparison, the traditional entropy-based method (Jiang et al., 2023) exhibits
an information loss. Such loss is significant when confounder entropy is relatively large. This is because for traditional
entropy-based methods, P(y′ | do(x′)) degenerate to near P(y′ | x′) when the entropy is sufficiently small (smaller than the
so-called “entropy threshold”) although it is a relaxed optimization programming, which causes non-vanilla bound. In

49



Tight Partial Identification of Causal Effects with Marginal Distribution of Unmeasured Confounders

contrast, entropy-based methods lose this guarantee when the entropy is relatively large (which corresponds to many
real-world scenarios). Our method, on the other hand, can accurately extract tight PI for any U -information and determine
whether it is vanilla6.

N.2. Real-world experiments

Experiment setting We also follow the setting of Jiang et al. (2023) for better comparison, where we reasonably simplify
the graph within these two datasets into the paradigm of Figure 1, and we choose the same separating strategy of variables
X,Y, U (Jiang et al., 2023). In the INSURANCE dataset, we treat car cost, property cost, and accident cost (other cars) as
X,Y, U . Furthermore, in the ADULT dataset, we treat this triple as relationship (unmarried, in-family, etc), income and age.
We follow the division method as before in Table 6. For instance, for “AGE” in the ADULT dataset, we choose 65 as the
cutting point to separate it into two categories: “young” and “old”. We treat other information as the protected feature but
only the observations P(X,Y ) and marginal information on the confounders are accessible. As we have comprehensively
analyzed the quantitative performance of Li’s bound (Li et al., 2023) in our main text (Theorem 3.4) and Appendix C, here
we mainly focus on the comparison with Jiang et al. (2023) as our baseline.

Experiment result The results are shown in Table 6. Being blessed by our theoretical optimality, our PI bounds upon
interventional probabilities are usually stricter than Jiang et al. (2023). Again, it validates our first goal. Noteworthy, there is
no absolute guarantee under limited computational costs, as theoretical errors also exist when we compute approximate
values based on the SSP problem, as mentioned in Theorem 4.5.

More importantly, for our second goal, apart from Table 6, we aim to argue the efficiency of our proposed valid ATE bound
(Proposition 4.7). According to this proposition, we directly compute the valid ATE bound for the ADULT dataset across
line {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}. We denote it as ’ATEi−(i+1), i = 1, 3, 5, 7, 9, 11. For instance,’ATE1−2 := P(INCOME ≤ 50K | RELATIONSHIP = Y ES)− P(INCOME ≤ 50K |
RELATIONSHIP = NO). As illustrated in Table 7, our result via Proposition 4.7 is better than directly computing the
upper and lower bounds of interventional probability and is also better (narrower) than Jiang’s baseline; namely, our bound
is more reliable. Noteworthy, compared with the baseline method (Tian & Pearl, 2000), Jiang et al. (2023) showed that’ATE11−12 is definitely greater than zero under this setting. It indicates the significant causal effect of the “relationship” to
the high “income” among well-educated and “full-time” individuals. Stepping forward, our PI bound extends this
observation to the “part-time” individuals. Namely, our bound via Proposition 4.7 additionally claims that ’ATE7−8 is
almost positive. It indicates the above-high-school and part-time individuals also exhibit a positive causal effect between
“relationship” and “income”. This phenomenon is in line with practical experience but has not been extracted in previous
literature to our knowledge. This discovery will help guide relevant political and economic decision-making practices: we
should advocate that the higher education population actively maintains their personal relationships and family situations in
the pursuit of income, regardless of whether full-time or part-time, as “relationship” and “income” will have a positive
causal relationship.

Similarly, for the INSURANCE dataset, we construct ’ATE(2+i)−(1+i),’ATE(3+i)−(2+i),’ATE(3+i)−(1+i), i = 0, 3. For

instance, ’ATE2−1 := P(PROP COST = 100, 000 | CAR COST = 100, 000)− P(PROP COST = 10, 000 |
CAR COST = 100, 000). Our valid ATE bound (from Table 6 and Proposition 4.7) are also both stricter than the baseline.

N.3. Experiment 3

Finally, we also provide a visualization of the affiliation relationship in Corollary 4.3 (take du = 3 for brevity), which is a
vivid supplement of Figure 3 in our manuscript.

N.4. The extension of ATE bound when treatment/outcome is multi-valued

we provide proof of the natural extension to the general ATE with non-binary treatment/outcomes.
ATE =

∑
x π(x)E(Y | do(X = x)) =

∑
x

∑
y π(x)yP (Y = y | do(X = x)).

6It is necessary to point out that when we only have estimations for confounder entropy but do not have knowledge of other side
information, Jiang’s method is effective. Our method sacrifices efficiency (by directly using confunder entropy) in exchange for accuracy
(accurate vanilla-judgement for each possible U ).
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Figure 5. Simulations (Experiment N.1). Tradition entropy-based optimization loss information of PI without taking full advantage of
P(U), especially when H(U) is relatively large, which is common in the real-world.

dataset SUBGROUP X Y H(Z) Baseline (Jiang et al., 2023) Baseline (Tian & Pearl, 2000) OUR BOUNDS

INSUR UNDER 5000 MILES, NORMAL CAR COST PROP COST ACCI

100,000 10,000 0.092 [0.000, 0.246] [0.000, 0.800] [0.000, 0.214]

100,000 100,000 0.092 [0.699, 0.996] [0.196, 0.996] [0.703, 0.995]

100,000 1,000,000 0.092 [0.004, 0.301] [0.004, 0.804] [0.004, 0.285]

1,000,000 10,000 0.092 [0.000, 0.044] [0.000, 0.249] [0.000, 0.037]

1,000,000 100,000 0.092 [0.000, 0.044] [0.000, 0.249] [0.000, 0.040]

1,000,000 1,000,000 0.092 [0.956, 0.999] [0.751, 0.999] [0.964, 0.999]

ADULT RELATIONSHIP INCOME AGE

BELOW HIGH SCHOOL, FULL-TIME YES ≤ 50K 0.21 [0.605, 0.934] [0.423, 0.934] [0.743, 0.924]

BELOW HIGH SCHOOL, FULL-TIME NO ≤ 50K 0.21 [0.762, 0.985] [0.496, 0.985] [0.798, 0.982]

BELOW HIGH SCHOOL, FULL-TIME YES >50K 0.21 [0.066, 0.395] [0.066, 0.577] [0.066, 0.388]

BELOW HIGH SCHOOL, FULL-TIME NO >50K 0.21 [0.015, 0.238] [0.015, 0.504] [0.015,0.216]

ABOVE HIGH SCHOOL, PART-TIME YES ≤ 50K 0.41 [0.186, 0.903] [0.183, 0.903] [0.192, 0.903]

ABOVE HIGH SCHOOL, PART-TIME NO ≤ 50K 0.41 [0.779, 0.982] [0.703, 0.983] [0.832, 0.970]

ABOVE HIGH SCHOOL, PART-TIME YES >50K 0.41 [0.017, 0.814] [0.096, 0.817] [0.097, 0.814]

ABOVE HIGH SCHOOL, PART-TIME NO >50K 0.41 [0.017, 0.220] [0.017, 0.297] [0.017, 0.220]

ABOVE HIGH SCHOOL, FULL-TIME YES ≤ 50K 0.12 [0.310, 0.664] [0.250, 0.734] [0.310, 0.664]

ABOVE HIGH SCHOOL, FULL-TIME NO ≤ 50K 0.12 [0.725, 0.953] [0.438, 0.953] [0.752, 0.952]

ABOVE HIGH SCHOOL, FULL-TIME YES >50K 0.12 [0.336, 0.690] [0.266, 0.750] [0.332, 0.677]

ABOVE HIGH SCHOOL, FULL-TIME NO >50K 0.12 [0.046, 0.275] [0.046, 0.562] [0.048, 0.204]

Table 6. Real-world experiment (Experiment N.2). Our proposed PI bounds are stricter than the competitive baselines.
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Dataset ATE estimation Baseline (Jiang et al., 2023) Baseline (Tian & Pearl, 2000) Our bounds via Table 6 Our bounds via Proposition 4.7

INSUR

’ATE2−1 [0.453,0.996] [-0.604,0.996] [0.489, 0.995] [0.560, 0.995]’ATE3−1 [-0.242, 0.301] [-0.796, 0.804] [-0.210, 0.285] [-0.210, 0.277]’ATE3−2 [-0.992, -0.398] [-0.992, 0.608] [-0.991, -0.418] [0.991, 0.401]’ATE5−4 [-0.044, 0.044] [-0.249, 0.249] [-0.037, 0.040] [-0.037, 0.038]’ATE6−4 [0.912, 0.999] [0.502, 0.999] [0.927, 0.999] [0.920, 0.999]’ATE6−5 [0.912, 0.999] [0.502, 0.999] [0.924, 0.999] [0.930, 0.999]

ADULT

’ATE1−2 [-0.380, 0.172] [-0.562, 0.438] [-0.239, 0.126] [-0.218, 0.107]’ATE3−4 [-0.172, 0.38] [-0.438, 0.562] [-0.150,0.373] [-0.102, 0.278]’ATE5−6 [-0.796, 0.124] [-0.800,0.200] [-0.778, 0.071] [-0.770, 0.069]’ATE7−8 [-0.203, 0.797] [-0.201,0.800] [-0.123, 0.797] [-0.003, 0.790]’ATE9−10 [-0.643, -0.061] [-0.703, 0.296] [-0.642, -0.088] [-0.610, -0.102]’ATE11−12 [0.061, 0.644] [-0.296, 0.704] [0.128, 0.629] [0.146, 0.602]

Table 7. ATE estimation for the real-world dataset between the rows (Experiment N.2). The bounds from Table 6 means directly computing
the difference between the lower (upper) bound of P(Y = 1 | do(x′)), x′ = 0, 1. Compared with Jiang’s bounds informatively indicating
that ’ATE11−12 > 0, our proposed bounds additionally supplements that ’ATE7−8 is almost positive. It indicates that the relationship
significantly affects income among well-educated and high-income individuals, regardless of “full-time” or “part-time”, which serves as
our new observation..

P(Y = y | do(X = x)) = P(x, y) +
∑

u P(y | u, x)P(u,¬x) = P(x, y) + P(¬x)−∑
u P(¬y | u, x)P(u,¬x).

The vanilla lower bound is

ATEL
vanilla =

∑
x

∑
y

π(x)y[I(π(x)y ≥ 0)(P(x, y)) + I(π(x)y < 0)(P(x, y) + P(¬x))]

.

Hence ATE−ATEL
vanilla equals to∑

x

∑
y

π(x)y[I(π(x)y ≥ 0)
∑
u

P(y | u, x)P(u,¬x)− I(π(x)y < 0)
∑
u

P(¬y | u, x)P(u,¬x)].

Adopt Chauchy inequality:
ATE−ATEL

vanilla ≥ ∑
x

π(x)
P(x)

∑
y y[I(π(x)y ≥ 0)

∑
u P(y,u, x)P(u,¬x)− I(π(x)y < 0)

∑
u P(¬y,u, x)P(u,¬x)]

It is larger than∑
x

π(x)

P(x)
∑
y

y[I(π(x)y ≥ 0)
∑
u

(P(y, u, x) ∧ P(u,¬x))2 − I(π(x)y < 0)
∑
u

(P(¬y, u, x) ∧ P(u,¬x))2].

It is larger than

1

du

∑
x

π(x)

P(x)
∑
y

y[I(π(x)y ≥ 0)(P(y, (U1
x,y)

c, x) +P(U1
x,y,¬x))2 −I(π(x)y < 0)(P(¬y, (U2

x,y)
c, x) +P(U2

x,y,¬x))2].

It is larger than

1

du

∑
y

y
∑
x

√
|π(x)|[(I(π(x)y ≥ 0)[P(y, (U1

x,y)
c, x)+P(U1

x,y,¬x)]+I(π(x)y < 0)[P(¬y, (U2
x,y)

c, x)+P(U2
x,y,¬x)])2].

Here U1
x,y denotes the set of u such that P(y, u, x) ≥ P(u,¬x), while U2

x,y denotes the set of u satisfying
P(¬y, u, x) ≥ P(u,¬x).
Here it is easy to verify that for x, x′ ∈ X,x ̸= x′, we get U1

x,y ∩ U2
x′,y = ∅. In conclusion, the above bound could be

further simplified as

ATE−ATEL
vanilla ≥ 1

du

∑
y y

∑
x

√
|π(x)Dy(Ux,y,Ax,y)

2, s.t.,
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Figure 6. Illustration on whether TPI would be vanilla (Theorem 4.1 under du = 3). Confounder information P(U) is shown as
a 2-simplex, and each coordinate axis represents a P(ui), where i = 0, 1, 2. Notice that (·)c represents the complement of set
(·), and P(X,Y ) = [(P(x, y),P(x,¬y))T , (P(¬x, y),P(¬x,¬y))T ], x = y = 1. According to Theorem 4.1, we always have
PL

ATE ⊆ PL, PU
ATE ⊆ PU , hence the total region of P(U) is separated into three disjoint partitions: {(PL)c, PL/PL

ATE,PL
ATE} or {(PU )c,

PU/PU
ATE,PU

ATE}. These practical examples clearly show that ATE is less prone to vanilla than P(y | do(x)).

• ∀y ∈ Y, ∀x, x′ ∈ X,Ux,y ∩ Ux′,y = ∅. Here Ux,y ⊆ {u0, u1, ...udu−1}, x ∈ X .

• Ax,y = [P(x, y),P(x)] when π(x)y ≥ 0, [P(x,¬y),P(x)] when π(x)y < 0.

• Dy(Ux,y,Ax,y) = mint∈Ax,y
|P(U ∈ Ux,y)− t|.
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