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Abstract: Future versatile, generalist robots need the ability to learn new tasks1

and behaviors from demonstrations. Technologies such as Virtual and Augmented2

Reality (VR/AR) allow for immersive, visualized environments and settings that3

accelerate and facilitate the collection of high-quality demonstrations. However,4

it is so far unclear which interface is the most intuitive and effective for humans5

to create demonstrations in a virtualized environment. The intuitiveness and effi-6

ciency of these interface becomes particularly important when working with non-7

expert users and complex manipulation tasks. To this end, this work investigates8

five different interfaces in a comprehensive user study across various virtualized9

tasks. In addition, this work proposes a so far unexplored interaction interface, the10

combination of a physical robot for kinesthetic teaching with a virtual environment11

visualized through augmented reality. The environment, including all objects and12

a robot manipulator, is virtualized using an AR system. The virtual robot is con-13

trolled via various interfaces, i.e., Hand-Tracking, Virtual Kinesthetic Teaching,14

Gamepad, Motion Controller, Physical Kinesthetic Teaching. This study reveals15

valuable insights into the usability and effectiveness of these interaction interfaces.16

It shows that our newly proposed intuitive interface for AR control, i.e., using a17

physical robot as controller, significantly outperforms other interfaces in terms of18

success-rates and task completeness. Moreover, the results show that the motion19

controller and hand-tracking are also promising interfaces, in particular for cases20

where a physical robot is not available.21

Keywords: Robot data collection, Human robot interaction22

1 Introduction23

Teaching robots new skills and tasks through demonstrations is an essential goal of the fields of robot24

learning and human robot interaction. The question how to learn tasks from demonstrations has25

received much attention through paradigms such as Imitation learning [1], Learning from Demon-26

strations [2] and Inverse Reinforcement Learning [3].27

An important prerequisite for such approaches is the quality of the data and, hence, the data col-28

lection process itself. This requirement becomes even more important given the high data demand29

of recent learning methods. Prominent approaches focus on collecting demonstrations from vari-30

ous sources such as online videos [4] or dedicated first person videos [5]. However, demonstrating31

specific tasks to a particular platform harbours several challenges for real world experiments, e.g.,32

reproducibility issues due to changing objects and object poses, cumbersome and slow resetting33

of experimental setups and inaccurate measurements due to sensor noise. Virtualisation alleviates34

many of these challenges as it allows for highly reproducible and controllable experiments that can35

be quickly reset and repeated. While some approaches utilize screens to virtualize experiments [6],36

leveraging augmented or virtual reality (AR/VR) offers significant advantages [7] , by providing an37

immersive experience that allows intuitive control over the perspective onto the virtual environment.38
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While research has highlighted the advantages of AR/VR headsets over screens for visualization39

purposes[7], there has not yet been a study investigating the comparative performance of different40

interaction methods within AR/VR environments for collecting task demonstrations for robots. This41

paper closes this gap by presenting a comprehensive study on different ways to interact with virtual42

experiments for the sake of collecting demonstrations in an AR/VR setting. This study compares five43

different options to interact with the virtual environment, i.e., inside-out Hand Tracking, Kinesthetic44

Teaching of a virtual robot, end-effector control via gamepad, end-effector control via VR Motion45

Controller and Kinesthetic Teaching via a physical robot. A total of 35 participants took part in the46

study, whereas each participant utilized every interface to collect up to 3 demonstrations across 347

tasks with varying difficulty levels. The performance of the interfaces were evaluated across several48

dimensions including objective measures, such as success rate and completion time of the demon-49

strated tasks as well as subjective measures surveyed via the well established modular extension of50

the User Experience Questionnaire (UEQ+) [8].51

Our study shows that combining physical Kinesthetic Teaching with AR provides a powerful and52

intuitive system to efficiently collect demonstrations in virtual environments. The study further re-53

veals that this system significantly outperforms any other interface with respect to both the objective54

and subjective measures resulting in an effective and intuitive system that allows for efficient and55

reliable data collection in virtual environments. Such an interface could also be easily implemented56

for controlling a real physical robot via tele-operation, yet, this is part of future work.57

In summary, the contributions of this paper are twofold. First, a comprehensive study of different58

interaction interfaces for the purpose of collecting virtual demonstrations in an AR/VR setting. Sec-59

ond, introducing a new interaction interfaces that utilizes a physical robot platform for controlling a60

(virtual) robot in a virtual experimentation setting.61

2 Background62

Robot Interface Demonstrations can be broadly categorized into three categories, Kinesthetic63

Teaching, teleoperation and pure observation. Given, the goal of efficiently collecting demonstra-64

tions in a virtual environment, we identified five promising interaction interface in the literature.65

Hand Tracking uses sensors, usually cameras, to track the hand of the user and maps the robot state66

to the hand used in teleoperation [9, 10] and shared-control telemanipulation [11, 12] scenarios.67

Virtual Kinesthetic Teaching interfaces allow the manipulation of a virtual robot directly using68

the participants hands, for example to teleoperate physical robots in bi-manual [13] and digital twin69

[14] settings. Gamepads have been widely used to control physical robots while adding very little70

system complexity, specifically in the area of teleoperation [15, 16]. Recently Motion Controllers71

have become increasingly popular in both robot learning and teleoperation[17], especially because72

of haptic and AR visual cues [18]. Kinesthetic Teaching commonly refers to the manipulation of73

a physical robot for the purpose of collecting demonstrations directly on that platform[19]. How-74

ever, it also provides a very intuitive and straight forward demonstration interface for teleoperation75

systems[2]. While there has been some preliminary work investigating physical Kinesthetic Teach-76

ing controlling a virtual twin [20], it does not leverage the advantages of combining this interface77

with a AR/VR system.78

AR & VR for Robotics The ability to directly render and immerse users in a 3D virtual environ-79

ment makes AR/VR technologies a promising tool for collecting task demonstrations. In combina-80

tion with haptic feedback, these technologies have been shown to provide higher teaching efficiency81

than common GUIs [7]. It can reduce workload [21], enhance the accuracy and speed of collaborat-82

ing users [22] and improve overall task performance, compared to non-AR baselines [23].83

Other approaches use virtual reality to realize teleoperation. including robot arm [24, 25], mobile84

robot [25], bimanual robot arm [26, 27, 14], humanoid robots [28, 29], and surgery robots [30].85

Apart from VR-based method,86
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(a) Hand Tracking (b) Virtual K. T. (c) Gamepad (d) Motion C. (e) Kinesthetic T.

Figure 1: The top row shows a participant collecting demonstrations using the different interfaces
from an outside viewpoint. The bottom row shows the virtualized environment as it is presented to
the participant via the HoloLens 2.

3 Technical Details87

This study explores diverse interaction interfaces in the context of their effectiveness and intuitive-88

ness for gathering demonstrations within AR environments. To achieve this, a novel framework has89

been developed, that seamlessly integrates a game engine responsible for rendering the virtual envi-90

ronment on AR headsets with a physics simulator, enabling the simulation of both the virtual robot91

and manipulated objects.92

Physics Simulator The framework deploys the widely applied and utilized MuJoCo physics93

simulator[31]. The virtual environments, including various manipulatable objects and a Franka94

Emika Panda Robot were implemented within the simulator and combined into several meticulously95

designed scenarios. Additional data loggers were implemented that record state information of the96

virtual robot as well as the virtual objects, including position, velocity, acceleration and orientation.97

Augmented Reality Platform The virtual scene is presented to the user via the Microsoft98

HoloLens 2 [32], notable for its diagonal field of view (FOV) measuring 96.1 degrees. Leverag-99

ing the Unity Engine, a custom AR application specifically tailored for use with the HoloLens 2100

was developed. The HoloLens 2 renders all virtual elements, including the robot and the objects, in101

real-time, providing users with an immersive and interactive experience.102

Interaction Interfaces This study investigates five different interaction interfaces that have in-103

creasing hardware demands beyond an AR/VR Headset. For every interface but Kinesthetic Teach-104

ing a IK solver was used to determine the robot configuration, given the end effector pose. The105

Inside-out Hand Tracking (shown in Figure 1(a)) interface uses two scene cameras of the AR106

Headset to track the hand and recognize different gestures. To increase the level of intuitiveness107

and immersion, the gripper of the virtual robot is aligned with the index finger and thumb of the108

tracked hand. The participants can intuitively control the robot’s movements by moving their hand109

around while closing and opening the gripper by executing a pinch or release motion with their110

index finger and thumb. Similar to the Hand Tracking interface the Virtual Kinesthetic Teaching111

(shown in Figure 1(b)) also allows for the direct control of the virtual robot without additional hard-112

ware. The participants can move the robot by grabbing the virtual end effector. Releasing the end113

effector stops the tracking. Stretching and squeezing gestures trigger the virtual robot to close and114

open its gripper respectively. The Gamepad interface (shown in Figure 1(c)) uses a Microsoft Xbox115

controller to manipulate the virtual robot. The Motion Controller interface (shown in Figure 1(d))116

uses a Vive Pro Motion Controller 2.0, which precisely measure the Motion Controller’s position117

and orientation in real-time. The end effector pose of the virtual robot is mapped to the pose of the118

Motion Controller and the virtual gripper is opened and closed by holding and releasing the triggers119

of the controller. The Kinesthetic Teaching interface (shown in Figure 1(e)) allows participants to120

directly control a physical version of the virtual robot. The physical robot transmits joint positions121

and velocities to the virtualization framework in real-time, mapping the configuration of the virtual122
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(a) Box Stacking (b) Cup Inserting (c) Practical Manipulation

Figure 2: Tasks used in the user study. (a) Box Stacking task: Stack three boxes within the purple
area. (b) Cub Inserting task: Insert three cups with varying diameters into larger cups. (c) Practical
Manipulation task: Move fruits onto the plate, move the plate into the purple area and flip the mug
and position it on the orange area.

robot to the physical one. While this interface provides the most detailed control of the virtual robot123

it also has the limitation that access to the actual physical robot is required.124

4 User Study125

In order to assess the efficiency and intuitiveness of various interfaces for collecting demonstrations,126

we designed a comprehensive user study. This study aims to evaluate each interface thoroughly and127

establish meaningful comparisons among them.128

Questionnaire The user study consisted of two questionnaires (background and interface assess-129

ment) for each participant. The first questionnaire (background) includes seven questions and aims130

at the theoretical and practical knowledge of the participant in terms of using physical robots,131

AR/VR/MR devices, and the Gamepad. The answers were given as multiple choice in an explicit132

way, to avoid subjective scale measuring [33] and misunderstandings.133

The second questionnaire (interface assessment) measures the subjective assessment from partici-134

pants with regard to the usage of the five different interfaces. The questionnaire itself consists of135

five scales taken from UEQ+ [8], including attractiveness, efficiency, perspicuity, dependability136

and novelty. Each scale presents four pairs of contrastive adjectives along with a scale ranging from137

one to seven, where four is neutral.138

Study Procedure The user study starts with participants filling out the background questionnaire.139

Afterwards, each participant was randomly assigned to one task and provided with a corresponding140

video to understand the task objectives. The order in which participants use the five interfaces was141

randomized, to prevent potential biases. Before each interface usage, the participants had one minute142

to get familiar with the corresponding interface. Subsequently, participants used each interface three143

times, resulting in a potential learning curve over the three demonstrations. Each demonstration must144

be completed within a specific time frame, otherwise the current demonstration was stopped and the145

next one started. After the completion of three demonstrations with one interface, participants were146

asked to fill out the interface assessment questionnaire, to indicate their impressions and experiences147

in regards to the corresponding interface.148

Metrics The study contains objective and subjective metrics. For objective metrics, we look at149

task success (did the participant finish the whole task?), task completeness (how many sub-goals did150

the participant fulfill?), and required task completion time (how much time did the participant need151

to finish the task?). The subjective metrics are based on the interface assessment questionnaire.152

Study Tasks Design The user study included three different tasks, box stacking, cup stacking and153

practical manipulation. The box stacking task serves to assess the basic pick and place skills of the154

interface. Participants were asked to place and stack three boxes in 60 seconds into a target area,155

as you can see in Figure 2(a). For each box stacked successfully, this demonstration will give 0.3156
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Table 1: The number of demonstrations per task and interface

Task 1 Task 2 Task 3
Gamepad 30 36 29
Hand Tracking 31 40 27
Kinesthetic Teaching 35 37 32
Motion Controller 31 32 30
Virtual Kinesthetic Teaching 30 35 28
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Figure 3: This graph shows the success rates of each interface across the different tasks averaged
over all task executions. A task execution is considered successful if all sub-tasks were fulfilled.
Kinesthetic Teaching consistently maintains the highest success rate of over 0.90 in all three tasks.
The poor performance of the Gamepad interface in task 2 indicates that this interface is a poor fit
for tasks that require precise control of the orientation of the end-effector. Hand tracking reaches
the second-highest success rate in tasks 2 and 3, but it exhibits the lowest success rate in task 1.
The Motion Controller has a success rate ranging from 0.47 to 0.68 across all three tasks. Virtual
Kinesthetic Teaching performs a success rate of approximately 0.2 in tasks 1 and 2, while it achieves
a higher success rate of over 0.5 in task 3. In tasks 1 and 3, the Gamepad interface yields success
rates of 0.47 and 0.38, respectively. However, it only attains a success rate of 0.14 in task 2.

completeness score and a final 0.4 for the last box. The cup stacking task is designed to evaluate the157

flexibility and precision of the interfaces to do dexterous motion. Participants were asked to insert158

three different sized cups in 60 seconds into three corresponding tilted cups, as seen in Figure 2(b).159

The completeness gain per cup is 0.25, 0.35, and 0.4. The practical manipulation task is designed160

to evaluate the comprehensive manipulation ability of each interface in a longer sub-task sequence161

and is limited to 90 seconds. It involves five steps (shown in Figure 2(c)), including placing a banana162

on a plate, placing a strawberry next to the banana, pushing the plate into a target area, flipping a163

mug, and placing it on a specific location. Each successful step will gain a completeness of 0.2.164

Participants The user study included 35 participants from the local and other universities, con-165

taining six females and 29 males, aged between 15 and 30. Each participant used all five interfaces166

three times for the random assigned task. Some demonstrations had to be discarded due to system167

instability, failed records or hardware issues. Finally, we collected 483 valid human demonstrations168

which were executed on the different interfaces.169

5 Result170

Success Rate As depicted in Figure 3, Kinesthetic Teaching has the highest success rate with a171

large margin over the other methods, with a success rate of above 90% across all tasks. Given that172

the success rate follows a binomial distribution with ties between the interfaces for each participant,173

we use a Mann-Whitney U test [34] to analyze the significance of the differences in the success174

rates. To avoid dependencies across demonstrations of the same participant, we only used the last175

of the three demonstrations created by each participant. All following Mann-Whitney U tests are176
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Figure 4: This graph shows the task completeness for each interface across the different tasks
averaged over all task executions. The completeness of an execution is based on how many sub-
tasks were achieved.
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Figure 5: This graph shows the time spent on each demonstration by participants with each interface
in each task. The dots and triangles represent successful and unsuccessful demonstrations. The
yellow line in each box shows the mean time of every demonstration, and the time of each failed
demonstration is counted as the maximum time limitation.

computed analogously. In all 3 tasks, the Mann-Whitney U test revealed that Kinesthetic Teaching177

significantly outperformed the other four interfaces (excluding Motion Controller from task 1 and178

Hand Tracking from task 2). Regarding the other interfaces, one key finding is that the Motion179

Controller interface performed reasonable on all tasks, outperforming Virtual Kinesthetic Teaching180

and Gamepad on most tasks. Hand Tracking performed well on task 2 and 3, even with a margin181

over the Motion Controller, but under performed on the first task that required picking the blue box182

and reorienting it, which caused problems with the internal Hand Tracking of the Holo-lens 2. The183

Gamepad and Virtual Kinesthetic Teaching showed the worst performance, in particular for tasks184

that require a precise control of the orientation of the end-effector (cup inserting).185

Task Completeness For task completeness, the results are shown in Figure 4. They again confirm186

our finding that Kinesthetic Teaching outperforms all other interfaces. The Kinesthetic Teaching187

consistently provides a very high completeness of 98%. A Mann-Whitney U test shows the same188

significant difference, as in the success metric, to all other interfaces (again excluding the Motion189

Controller from task 1 and the Hand Tracking from task 2).190

Task Completion Time The mean completion time for the different interfaces is shown in Fig-191

ure 5. The Kinesthetic Teaching interface allowed for the fasted task completion times as most192

trials could be completed with this interface while other interfaces had a worse success rate. We193

again performed a Mann-Whitney U test to confirm the significance of the results. The test con-194

firmed that the Kinesthetic Teaching allows for faster task execution than the Gamepad (p < 0.01)195

and Hand Tracking (p < 0.001) in task 1 and task 2, Virtual Kinesthetic Teaching (p < 0.005) in all196

3 tasks. Moreover, the Motion Controller has a significant difference with Gamepad (0.05) in task197

1 and task 2, Hand Tracking (p < 0.001) in task 1.198
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Figure 6: This graph shows the subjective metrics taken from the assessment questionnaire for every
interface. including attractiveness, efficiency, perspicuity, dependability, and novelty. Kinesthetic
Teaching emerged as a standout performer, boasting a significant score with a relatively lower vari-
ance over the other four interfaces, except for Novelty. It means that most of the participants are
really satisfied with this interface.

Subjective Metrics The subjective metrics are shown in Figure 6. Our study revealed the follow-199

ing insights: (i) Kinesthetic Teaching emerged as a standout performer, with a higher score with200

relatively small variance over the other four interfaces, except for Novelty, where it was on par with201

the other methods. This pattern was consistent in the categories attractiveness and dependability,202

with Kinesthetic Teaching exhibiting a noteworthy difference when compared to any of the other203

four interfaces, while no significant differences were observed among the latter. The efficiency204

scale unveiled a similar trend, however, here also the Motion Controller interface showed a sig-205

nificant performance difference from the Gamepad, indicating its superior efficiency in comparison206

to this particular interface. In terms of Perspicuity, we identified significant differences between207

Motion Controller and Hand Tracking when contrasted with Virtual Kinesthetic Teaching and208

Gamepad, highlighting variations in their ease of understanding and clarity. Lastly, for Novelty,209

Hand Tracking stood out as the most appealing interface, underlined by its significant difference210

from Motion Controller and Gamepad. Conversely, Gamepad, emerged as the least novel interface,211

significantly differing from all other interfaces in this regard. These subjective metrics offer valuable212

insights into the user perception and preferences associated with each interface, providing a holistic213

understanding of their strengths and weaknesses.214

Background Analysis We further analyzed the impact of user experience with the Gamepad, and215

its high-frequency use, on the performance of the participants. Interestingly, experience with the216

Gamepad positively influenced performance across all interfaces, not limited to the Gamepad in-217

terface alone. This suggests that the skills and familiarity gained from using a Gamepad (typically218

connected with playing computer games) can be transferable and advantageous when navigating219

various interfaces. Furthermore, we explored whether there were differences in the success rate220

collected through Kinesthetic Teaching based on participants regular physical activity. Here, our221

analysis showed no significant difference in the success rates. This result implies that the effective-222

ness of Kinesthetic Teaching remains consistent regardless of participants physical activity levels,223

highlighting the accessibility and inclusivity of this teaching approach.224
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Further Discussion Hand Tracking exhibits substantial potential as an interface for robot inter-225

action. It stands out by delivering performance that competes favorably with the Gamepad interface.226

Moreover, it offers the promise of generating high-quality demonstrations and presents a relatively227

gentle learning curve for users. In our user study, we observed a notable phenomenon: users were228

more likely to encounter robot singularity when employing Hand Tracking. This observation might229

be attributed to differences in the robot’s configuration and arm design compared to other interfaces.230

Further exploration of these factors is warranted to better understand the specific challenges and231

advantages associated with Hand Tracking in robot interaction contexts.232

Virtual Kinesthetic Teaching represents an innovative approach to robot interaction; however, its233

performance lags behind that of the Gamepad interface. The participants highlighted a significant234

limitation: they were unable to perceive the presence of the robot during Virtual Kinesthetic Teach-235

ing sessions, which contributed to its underwhelming performance. Additionally, the stability of236

Hand Tracking and gesture recognition emerged as a critical factor influencing the overall user ex-237

perience with Virtual Kinesthetic Teaching. These technical aspects greatly impacted the interfaces238

effectiveness and user satisfaction.239

The Gamepad interface presents an economical option for generating human demonstrations. Nev-240

ertheless, it does come with certain drawbacks, including inefficiency, a steep learning curve, and241

extensive user experience. Dexterous manipulation, e.g., the positioning of one cup inside another242

with a particular orientation, as well as complex 3D trajectories requried of objects as well as a lim-243

itation of this interface. Despite these challenges, the Gamepad interface does exhibit a respectable244

success rate in both Task 1 and Task 3, exceeding 68%. This suggests its capability to handle funda-245

mental tasks such as object manipulation—particularly picking and placing. Those with more exten-246

sive experience are more likely to produce high-quality human demonstrations using this interface.247

Furthermore, it is worth noting that the Gamepad interface is sensitive to users prior experience.248

Motion Controller interface has proven to be both efficient and user-friendly. Participants partic-249

ularly appreciated the simplicity of gripping objects by merely holding the trigger of the Motion250

Controller. This feature was deemed more convenient in comparison to Kinesthetic Teaching. The251

Motion Controller interface also exhibited commendable completeness across all three tasks, with a252

success rate exceeding 74%. Users also noted that they could provide demonstrations in a shorter253

amount of time using this interface.254

Kinesthetic Teaching emerged as the most potent interface in our user study. It outperformed other255

interfaces with its high-precision motion control and a consistently high success rate. However, the256

main drawback was that users were required to have access to a physical robot to create human257

demonstrations, which may not be feasible for all potential users. Additionally, some participants258

encountered difficulties, noting that the end effector of the physical robot was heavy to manipulate259

and that closing the grippers required more effort.260

6 Conclusion261

In this paper, we conducted a comprehensive study with 35 participants of different interaction inter-262

faces for collecting virtual demonstrations in AR setting. From the result, the Kinesthetic Teaching263

with AR has a highlighted performance over almost all the metrics. Due to its limitation of complex264

hardware setting, we also conclude that Motion Controller and Hand Tracking is also a promising265

way to create high-quality human demonstration. For virtual Kinesthetic Teaching, it was considered266

as a novelty way but it didn’t have a good performance during this study. Gamepad, as a low-cost267

way to create human demonstration, has worked well in simple tasks such as pick and place, but it is268

not feasible for complex 3D manipulation. Our research will help the further studies about learning269

from demonstration, and may provide them with a novel perspective to create and study how human270

demonstrations influence the intelligent agent.271
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