
DeepStock: Reinforcement Learning with Policy
Regularizations for Inventory Management

Yaqi Xie∗ Xinru Hao† Jiaxi Liu‡ Will Ma§ Linwei Xin¶ Lei Cao† Yidong Zhang†

1 Introduction

Inventory control is a foundational problem in the field of Operations Research. Historically, the
focus has been on stylized inventory and demand models that allow for the derivation of optimal
policies. In modern times, these models can be significantly enhanced by leveraging high-dimensional
contextual data. Even though optimal policies are no longer analytically defined, Deep Reinforcement
Learning (DRL) offers a promising general methodology for learning performant policies that act on
this high-dimensional data.

However, the success of applying DRL to inventory control has been mixed [see Gijsbrechts et al.,
2025]. Indeed, a common approach is to frame inventory control as a generic sequential decision-
making problem and then apply off-the-shelf DRL methods, which leads to actions that are difficult
to interpret. More importantly, a dealbreaker is that the performance of DRL is highly sensitive to
hyperparameters, whose tuning is time-consuming.

In this paper, we show how these dealbreakers can be mitigated through policy regularizations,
where we encode simple intuitions from inventory theory into the policy learned by DRL. This not
only reduces the black-box nature of DRL, but drastically speeds up training and improves final
performance. In fact, our policy regularization techniques have enabled the full-scale deployment
of DRL at Alibaba. As of October 2025, our algorithm manages inventory replenishment for 100%
of the products (both domestic and international) sold by Alibaba on its B2C e-commerce platform,
Tmall, covering over 1 million SKU-warehouse combinations.

1.1 Description of DRL and Policy Regularizations

A DRL method learns a policy π, represented by a (deep) neural network, that can decide an inventory
ordering action from any state. In our problem, the state of an SKU at a time t includes exogenous
features xt ∈ Rm, which consists of both static attributes (e.g., product category, demand scale,
supplier, lead time, review period, profit margin) and dynamic attributes that evolve over time
(e.g., upcoming promotions, seasonality, recent social media trends). In addition, the state includes
endogenous information It about upcoming inventory shipments, which depend on prior actions (i.e.,
previously placed orders). This rich state space allows for meta-learning across SKU’s with diverse
characteristics, such as in demand scale (e.g., 10 vs. 10,000 weekly sales), lead time (domestic vs.
international), and general demand pattern (e.g., fast-moving vs. long-tailed). Neural networks can
process this high-dimensional information into useful representations while ignoring noisy signals.

∗Booth School of Business, University of Chicago, Chicago, USA. yaqi.xie@chicagobooth.edu
†Taobao & Tmall Group, Hangzhou, China. xinru.hxr@taobao.com;huaju.cl@taobao.com;yidongzster@gmail.com
‡School of Economics, Sichuan University, Chengdu, China. liujiaxi@stu.scu.edu.cn
§Graduate School of Business, Columbia University, New York, USA. wm2428@gsb.columbia.edu
¶School of Operations Research and Information Engineering, Cornell University, Ithaca, USA.

lx267@cornell.edu
5YX, XH, and JL are co-first authors with equal contribution. WM and LX provided academic guidance,

while LC and YZ offered industry leadership.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MLxOR: Mathematical
Foundations and Operational Integration of Machine Learning for Uncertainty-Aware Decision-Making.

When a DRL algorithm is applied off-the-shelf, the policy π is a typically single neural network that
outputs an order quantity π(It, xt) based on the input state It, xt.

Our first policy regularization imposes that the order quantity takes the functional form π(It, xt) =
µBASE(It, xt)− tot(It), where µBASE is the learned neural network, and tot denotes the total inven-
tory (including upcoming shipments) contained in It. Here, BASE stands for "base stock", where
µBASE(It, xt) represents the target level for the total inventory, and the order quantity π(It, xt) equals
this target level minus the total inventory tot(It) we already have. Intuitively, the learned target
µBASE(It, xt) should depend mostly on the exogenous features xt which forecasts the upcoming
demand, while the inventory information It is incorporated into the decision through the tot(It) term.

Our second policy regularization imposes the functional form π(It, xt) = µCOEFF(It, xt)
⊤feat(xt),

where µCOEFF is a learned neural network with an m′-dimensional output, providing Coefficients
for m′ features extracted from xt ∈ Rm by the mapping feat(xt) ∈ Rm′

. At Alibaba, we have
m′ = 5, with feat(xt) comprised of historical and forecasted demands in the near and distant horizons.
Intuitively, the desired order quantity should exhibit a positive relationship with these features.

Finally, we can combine both of our policy regularizations, in which case we impose the order
quantity to take the functional form π(It, xt) = µBOTH(It, xt)

⊤feat(xt)− tot(It), with µBOTH being
the learned neural network with an m′-dimensional output.

1.2 Main Results

Our policy regularizations can be tested in conjunction with any DRL method for training the neural
network that defines the policy. We test DRL methods, DDPG (Deep Deterministic Policy Gradient;
see Lillicrap et al., 2015) which is an off-policy actor-critic algorithm, and SL (Supervised Learning;
see Madeka et al., 2022, Alvo et al., 2023) which leverages demand uncensoring to treat inventory
management as a supervised learning problem.

We demonstrate three main takeaways:

I. Policy regularizations improve the performance of DRL methods, especially when hyperpa-
rameter tuning is limited.

II. Policy regularizations redefine the narrative on whether SL is actually desirable compared
to traditional DRL methods (DDPG) for inventory.

III. Policy regularizations enable a unified, full-scale deployment of DRL.

We demonstrate Takeaway I on Alibaba’s offline data with and without regularization, after each
hyperparameter trial. The improvement with regularization is more drastic under a limited number
of hyperparameter trials, even though the best performance after a large number of trials is also
improved for both DDPG and SL. To explain this finding, our regularizations encode into the policy
human intuitions that prevent obvious blunders: our BASE regularization discourages large orders
when we already have a lot of inventory in It, while our COEFF regularization ensures that larger
historical and forecasted demands imply larger orders. This helps all hyperparameter configurations
but especially the weaker ones, where learning is hindered by obvious blunders.

For Takeaway II, policy regularizations improve both traditional DRL and SL, but the improvement
is more significant when hyperparameter tuning is limited, which is more likely to be the case for
traditional DRL than for SL. We find that SL has a tendency to overfit, because it is not learning
intermediate structure in the form of a Cost-to-go function or Q-function from a state. Given enough
IID trajectories or long trajectories with consistent patterns, this overfitting subsides and SL performs
no worse than traditional DRL (with regularization), and better if hyperparameter tuning has not
plateaued. That being said, Alibaba still found DDPG to beat SL when training on 50,000 90-
day SKU trajectories, suggesting that data in practice is highly non-IID across SKU’s and have
inconsistent patterns over time.

We demonstrate Takeaway III by reporting the impact of policy regularizations on Alibaba’s deploy-
ment of DRL in the real world. Alibaba proceeded to deploy DDPG with our policy regularizations,
which generally had the best performance in its routine offline tests, as exemplified by the results on
Alibaba’s offline data presented in this paper. Although Alibaba has previously tinkered with DRL as
reported in Liu et al. [2023], that work was focused on uncertain yield for inventory orders, caused
by shortages during the Covid-19 pandemic. In addition, that DRL version was not general-purpose:

2

it required grouping similar products and training separate models per group. By contrast, we are
operating under more normal conditions, and our policy regularizations have allowed for a full-scale
deployment of DRL that is unified, where we can meta-learn a single policy across all SKU’s by
leveraging their features, instead of separating them into groups such as fast-moving and long-tail
SKU’s.

2 Model Setup

We describe the inventory control model used to train policies from offline data, which is realistic
and used by Alibaba.

• We consider a horizon of length T = 90, where each time period t corresponds to a single
physical day. For each SKU, we assume that the review period and lead time L are fixed
positive integers that remain constant over time and are exogenous to the inventory policies.

• Let ξ = (xt, dt)
T
t=1 denote a SKU trajectory, where xt ∈ Rm and dt ∈ R≥0 represent the

feature vector and realized demand at time t, respectively. In practice, m is approximately
190, and the feature vector xt includes updated demand signals and forecasts, which are as-
sumed to subsume all information contained in the past observations x1, d1, . . . , xt−1, dt−1.
Demands are treated as uncensored using a fixed statistical uncensoring algorithm.

• Let It = (I0t , I
1
t , . . . , I

L
t) ∈ RL+1

≥0 denote the inventory state at the start of time t, where I0t
is the on-hand inventory and (I1t , . . . , I

L
t) represents the inventory pipeline, i.e., the orders

placed at times t − L, . . . , t − 1, respectively. Inventory I1t arrives in time to serve the
present demand at time t.

• A policy π maps the current state st = (It, xt) ∈ RL+1
≥0 × Rm to a non-negative order

quantity. We note that the learned policy is stationary, i.e., independent of t. This is because
time-specific information (e.g., promotions) is already encoded in the feature vector xt, and
most products do not require finite-horizon planning in practice. We also note that the policy
is invoked only during review periods; the order quantity is set to zero otherwise.

• The inventory dynamics follow a lost-sales model, given by I0t+1 = max{I0t + I1t − dt, 0}.
The inventory pipeline is updated according to I1t+1 = I2t , . . . , I

L−1
t+1 = ILt , and the newly

placed order is set as ILt+1.
• We evaluate two long-term metrics over the entire trajectory ξ: the on-shelf rate ρos(π, ξ) =

1
T

∑T
t=1 1

{
I0t > 0

}
and the turnover time ρtt(π, ξ) =

∑T
t=1 I0

t∑T
t=1 min{I0

t +I1
t ,dt}

. The on-shelf
rate is the fraction of days the SKU was in stock. The turnover time equals the average
on-shelf inventory divided by the average sales, reflecting the average number of days a
unit stays on the shelf. Higher is better for on-shelf rate, while lower is better for turnover
time. These are key inventory metrics for Alibaba that are practically measurable, unlike
the theoretical notions of lost-sales and holding costs that can be difficult to quantify. To
guide learning, we combine the metrics ρos(π, ξ) and ρtt(π, ξ) into an ad hoc loss function
ℓ(π, ξ), which is calibrated to on-shelf and turnover "targets" specified by managers.

3 Training and Testing on Offline Data

DRL methods. We train inventory policies offline using two DRL methods: DDPG and SL.
DDPG learns from off-policy experiences (transitions) to update the "critic" (the Q function, a deep
neural network estimating the final reward when the current policy takes an action from a given state),
and then uses this critic to update the "actor" (i.e., the policy). Between updates, we simulate the
current policy on the historical trajectories ξ and add the resulting transitions to the buffer. In contrast,
SL is specifically designed to exploit the fact that the counterfactual performance of any inventory
policy on any historical SKU trajectory ξ can be evaluated due to uncensored demand. This reduces
the problem to supervised learning, where we can directly train a policy π to minimize the average
loss ℓ(π, ξ) over historical SKU trajectories ξ. We note that in SL, each trajectory is always treated
as a whole, with no value or Q functions defined intermediate states.

Our main focus is to compare the policy regularizations introduced in Section 1.1. Each combination
of DRL method (DDPG, SL) and regularization type (NONE, BASE, COEFF, BOTH) defines a

3

DDPG SL
NONE BASE COEFF BOTH NONE BASE COEFF BOTH

∆testρos(π
∗) (%) -10.10 -6.03 -4.41 0 -2.10 -2.18 -1.74 -1.91

∆testρtt(π
∗) (days) 6.13 6.46 -0.41 0 -1.25 -2.81 3.80 0.23

Table 1: On-shelf rates and turnover times for the 8 final policies on test data.

learning algorithm, which outputs an inventory policy given training and validation data as input.
We use πDRL,REG to denote the final policy learned by the method DRL ∈ {DDPG, SL} with the
regularization REG ∈ {NONE, BASE, COEFF, BOTH}.

Training and validation. We let Dtrain and Dvalidate denote the collections of historical SKU
trajectories used for training and validation, respectively. In the results shown here, Dtrain contains
50,000 randomly selected SKU trajectories from July to September 2024, while Dvalidate contains
5,000 randomly selected trajectories of other SKUs from the same 90-day horizon. Given a policy π,
we define Ltrain(π), Lvalidate(π) as its average loss over the trajectories in Dtrain,Dvalidate, respectively.

For each of the 8 learning algorithms, we train over multiple iterations, using a batch of trajectories
from Dtrain in each iteration. Ltrain(π) is approximated using the trajectories in the batch, and each
iteration yields an update of the policy π. Lvalidate(π) is then evaluated for the updated policy π over
Dvalidate every 10,000 episodes for DDPG algorithms and 5,000 episodes for SL algorithms, where
an episode corresponds to processing one training trajectory. Training stops if the validation loss
does not improve after one epoch, defined as one full pass through the 50,000 training data. Upon
stopping, we output the policy π from one epoch ago with lowest Lvalidate(π), and output π as the
final learned policy. Further details are omitted here due to space limitations.

We take the final policies output by the 8 algorithms and evaluate them on test trajectories. In the
results displayed here, Dtest contains 5,000 randomly selected SKU trajectories from February to
April 2024, which is chronologically later than the training horizon. We forgo the ad hoc loss function
used for training and validation and instead directly report the key metrics of interest: on-shelf rate and
turnover time. For each of the 8 final policies π, we report ∆testρos(π) :=

1
|Dtest|

∑
ξ∈Dtest

(
ρos(π, ξ)−

ρos(π
DDPG,BOTH, ξ)

)
, and ∆testρtt(π) :=

1
|Dtest|

∑
ξ∈Dtest

(
ρtt(π, ξ) − ρtt(π

DDPG,BOTH, ξ)
)
. The first

metric is measured as the % of days the SKU did not stock out, with 1% roughly corresponding to
one day over the 90-day horizon. The second metric is measured in days and represents the average
time a unit of inventory remains on the shelf. For all 8 policies, we report these metrics in comparison
to πDDPG,BOTH in Table 1 to mask Alibaba’s absolute numbers, noting that ∆testρos(π

DDPG,BOTH) =
∆testρtt(π

DDPG,BOTH) = 0.

As shown in Table 1, having BOTH regularizations produces by far the best version of DDPG, while
having the BASE regularization produces the best version of SL. This supports our Takeaway I from
the Introduction. To see the result of Takeaway II, note that without regularizations, πDDPG,NONE

is much worse than πSL,NONE; with regularizations, πDDPG,BOTH is comfortably better than πSL,BASE

(and πSL,BOTH), recalling that Stockout Rate is twice as important as Turnover Time.

Finally, related to Takeaway I, one may wonder whether the results in Table 1 are from "limited
hyperparameter search". To give some perspective, one hyperparameter trial for DDPG in this setting
(with data size ≈ 50, 000 trajectories × 90 days × 190-dimensional features) takes about 24 wall-
clock hours internally at Alibaba. Table 1 shows test results for every πDRL,REG after 10 sequential
trials, with each trial choosing new hyperparameters based on the outcome of the previous trial, over
10 physical days. Although Alibaba could have potentially improved the hyperparameter search with
some parallelization, which may decrease the improvement of πDDPG,BOTH over πDDPG,NONE, this
would only increase the advantage of DDPG over SL. Regardless, training is expensive and slow at
this scale, and the results in Table 1 depict a realistic outcome for hyperparameter tuning in practice
at Alibaba.

References

M. Alvo, D. Russo, and Y. Kanoria. Neural inventory control in networks via hindsight differentiable
policy optimization. arXiv preprint arXiv:2306.11246, 2023.

4

J. Gijsbrechts, R. N. Boute, J. A. Van Mieghem, and D. Zhang. Ai in inventory management: The
disruptive era of drl and beyond. Available at SSRN 5199616, 2025.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

J. Liu, S. Lin, L. Xin, and Y. Zhang. Ai vs. human buyers: A study of alibaba’s inventory replenish-
ment system. INFORMS Journal on Applied Analytics, 53(5):372–387, 2023.

D. Madeka, K. Torkkola, C. Eisenach, A. Luo, D. P. Foster, and S. M. Kakade. Deep inventory
management. arXiv preprint arXiv:2210.03137, 2022.

5

	Introduction
	Description of DRL and Policy Regularizations
	Main Results

	Model Setup
	Training and Testing on Offline Data

