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Abstract

Since neural classifiers are known to be sensitive to adversarial perturba-
tions that alter their accuracy, certification methods have been developed to
provide provable guarantees on the insensitivity of their predictions to such
perturbations. Furthermore, in safety-critical applications, the frequentist
interpretation of the confidence of a classifier (also known as model cali-
bration) can be of utmost importance. This property can be measured via
the Brier score or the expected calibration error. We show that attacks can
significantly harm calibration, and thus propose certified calibration as worst-
case bounds on calibration under adversarial perturbations. Specifically, we
produce analytic bounds for the Brier score and approximate bounds via
the solution of a mixed-integer program on the expected calibration error.
Finally, we propose novel calibration attacks and demonstrate how they can
improve model calibration through adversarial calibration training.

1 Introduction
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Figure 1: This work proposes a certificate (upper
bound) on the calibration error of a classifier under
adversaries. Each box on the left represents one
prediction from a certified model : The range of
each box represents a certificate on the confidence
score under adversaries, the color whether the
prediction is certifiably correct. We translate these
certificates into a certificate on the calibration
error (right), i.e. a worst-case under attack.

The black-box nature of deep neural net-
works and the unreliability of their predic-
tions under several forms of data shift hinder
their deployment in safety critical applica-
tions (Abdar et al., 2021; Linardatos et al.,
2021). It is well known that neural network
classifiers are extremely sensitive to pertur-
bations γ on image x that are small enough
to be imperceptible to the human eye, yet
x + γ yields a different prediction than x
(Goodfellow et al., 2015; Szegedy et al., 2014;
2016). While a variety of methods have been
proposed to improve the empirical robust-
ness of neural networks, certification meth-
ods have recently gained traction, since they
provide provable guarantees on the invari-
ance of predictions under adversarial attacks and thus provide guarantees on model accuracy
(Wong and Kolter, 2018) (see Appendix A.1 for a detailed introduction). Further, existing
work provides bounds on the confidence scores (i.e., the top value of the softmax output
vector) of certified models under adversarial inputs (Kumar et al., 2020). However, they do
not inform us about the average mismatch between accuracy and confidence. The reliability
of a classifier in these regards is generally quantified by the expected calibration error (ECE)
(Naeini et al., 2015) and the Brier score (BS) (Brier, 1950; Bröcker, 2009). Both describe the
calibration of confidences across a set of predictions and play a strategic role in applications
that leverage confidence scores in their decision-making process. For instance, one might
utilise reliable confidence scores in medical diagnostics to decide whether to trust the machine
learning classifier without further human intervention or whether to defer the decision to a
human expert. However, we empirically show that it is possible to produce adversaries that
severely impact the reliability of confidence scores while leaving the accuracy unchanged, even
when the classifier is explicitly trained to be robust to adversarial attacks on the accuracy.
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For this reason, we propose the notion of certified calibration to provide guarantees on the
calibration of certified models under adversarial attacks. While certification of individual
predictions enables guarantees on the accuracy of a classifier under adversaries, the additional
certificates on the confidences enable worst-case bounds on the reliability of confidence scores.

Our contributions are the following:

• We identify and demonstrate attacks on model calibration that severely impact uncertainty
estimation while remaining unnoticed when solely monitoring model accuracy.

• We introduce certified calibration quantified through the certified Brier score (CBS) and
the certified calibration error (CCE). For the former, we present a closed-form bound as
certificate, while we show a mixed-integer non-linear program reformulation for the latter
with an effective solver, dubbed approximate certified calibration error (ACCE).

• We introduce a new form of adversarial training, adversarial calibration training (ACT)
that augments training with Brier and ACCE adversaries. We obtain ACCE adversaries
by solving a mixed-integer program and demonstrate that ACT can improve certified
uncertainty calibration.

2 Confidence Calibration

We first formally introduce the notion of calibration in Section 2.1, then, in Section 2.2,
we show how attacks on confidence scores and calibration metrics may be beneficial to an
attacker. Finally, in Section 2.2, we show that such attacks are not only theoretically possible
but also realisable.

2.1 Quantifying the Confidence-Accuracy Mismatch

Let D = {xn, yn}Nn=1 be a dataset of size N with xn ∈ RD, yn ∈ Y = {1, 2, . . . ,K}, and
f : RD → ∆K be a neural network, where ∆K is a probability simplex over K classes. We
denote the k-th component of f as fk and define F : RD → Y to be the hard classifier
predicting a class label obtained by F (x) := argmaxk∈Y fk(x). This prediction is done
with the confidence provided by the soft classifier z : RD → [0, 1], obtained through
z(x) := maxk∈Y fk(x). With slight abuse of notation, we refer to functions and their outputs
simultaneously, e.g., z ∈ [0, 1] is an output of z(x). The notion of reliability of uncertainty
estimates is typically quantified through two different but related quantities that we now
introduce: the expected calibration error and the Brier score.

Expected Calibration Error. For classification tasks, calibration describes a match
between the model’s confidence and its empirical performance (DeGroot and Fienberg,
1983; Naeini et al., 2015). A well-calibrated model predicts with confidence z when the
fraction of correct predictions is exactly z, i.e., P(F = y|Z = z) = z. This enables us to
interpret z as a probability in the frequentist sense. The expected calibration error is the
expected difference between confidence and accuracy over the distribution of confidence Z,
i.e., ECE = EZ [|P(F = y|Z = z)− z|]. A common estimator is obtained by discretizing the
empirical distribution over Z through binning (Guo et al., 2017). For each set of confidences
Bm in the m-th bin, the average confidence is compared with the accuracy:

ˆECE =

M∑
m=1

|Bm|
N

∣∣∣∣∣ 1

|Bm|
∑

n∈Bm

cn −
1

|Bm|
∑

n∈Bm

zn

∣∣∣∣∣ , (1)

where N is the number of samples, zn the confidence of the n-th prediction Fn, and cn is
the prediction correctness, i.e., cn = 1 if Fn = yn, and 0 otherwise. Multiple variants of
the calibration error and its estimators exist (Kumar et al., 2019). As commonly done in
the literature, we focus on top label calibration that ignores the calibration of confidences
of lower ranked predictions. When using equal-width interval binning for the estimator in
(1), we refer to it as ECE, and when using an equal-count binning scheme, we refer to it as
AdaECE (Nguyen and O’Connor, 2015; Nixon et al., 2019).

Brier Score. Accuracy and calibration represent different concepts and one may not
infer one from the other unambiguously (see Appendix B.1). The two concepts are unified
under proper scoring rules, such as the Brier Score (BS) (Brier, 1950), which is commonly

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

used in the calibration literature. It has been shown that this family of metrics can be
decomposed into a calibration and a refinement term (Murphy, 1972; 1973; Bröcker, 2009).
An optimal score can only be achieved by predicting accurately and with appropriate
confidence. The BS is mathematically defined as the mean squared error between the
confidence vector f and a one-hot encoded label vector. Here, we focus on the top-label Brier
score TLBS = N−1∥c − z∥22, which is the mean squared error between the N confidences
z ∈ [0, 1]N and correctness of each prediction c ∈ {0, 1}N .

2.2 Calibration under Attack

Motivation. A wide range of adversarial attacks has been discussed in the literature, with
label attacks being the most prevalent (Akhtar and Mian, 2018). However, their immediate
effects on the reliability of uncertainty estimation are often overlooked: Label attacks do
not only impact the correctness of predictions, but also the confidence scores, both affecting
uncertainty calibration. Beyond label attacks, techniques directly targeting confidence scores
have been developed. Galil and El-Yaniv (2021) show that such attacks can cause significant
harm in applications where confidence scores are used in decision processes at a sample level,
e.g., for risk estimation and credit pricing in credit lending. Yet, they evade detection by
leaving predicted labels unchanged. We note that this impacts system-level uncertainty and
conclude that both label and confidence attacks leave system calibration vulnerable.

Furthermore, machine learning systems incorporating uncertainty estimates in their deci-
sion process are monitored regularly for both their predictive performance and calibration,
particularly in safety-critical applications. When abnormalities in either monitored metric
arise, the model may be pulled from deployment for further investigation, resulting in major
operational costs. To this end, an attacker might produce attacks on the accuracy of a model
to induce a Denial-of-Service (DoS). While defenses against label attacks effectively protect
the model accuracy, the calibration is not sufficiently protected: An attacker can directly
target system calibration causing harm due to increased operational risk, and cause changes
in monitored calibration metrics, thus forcing a DoS. Despite extensive countermeasures to
adversarial attacks, no existing technique addresses this vulnerability.

Extending the credit lending example, the deployment of a certified model provides several
provable protections: First, the accuracy of predictions on customer defaults is protected
because of the provable invariance of predicted labels under attack (Cohen et al., 2019).
Second, the uncertainty for each individual customers is protected by bounds on the confidence
scores (Kumar et al., 2020). However, these protections do not inform the operational risk
of the system, and the reliability of uncertainty estimation across the system remains
vulnerable. Miscalibrated uncertainty can lead to underestimation of risks, resulting in
unexpected customer defaults, or overestimation, rendering credit pricing uncompetitive
and reducing revenue. It is therefore essential for the credit lender to rigorously monitor
calibration. An attacker might exploit this by directly targeting calibration with severe
consequences for the credit lender.

Table 1: AdaECE↓ (%) when performing our
(η, ω)-ACE attacks compared to the case in
which the attack is not performed for PreAct-
ResNet18 and ResNet50 on CIFAR-10 and Ima-
geNet for models fitted through Standard Train-
ing (ST) and Adversarial Training (AT).

CIFAR 10 ImageNet

ST

Unattacked: 3.06 3.70
η ω ϵ = 8/255 ϵ = 2/255 ϵ = 3/255
−1 y 2.49 1.06 10.62
+1 y 18.79 47.23 46.92
−1 ŷ 5.19 23.72 23.73
+1 ŷ 11.87 25.17 27.84

AT

Unattacked: 20.69 9.03
η ω ϵ = 8/255 ϵ = 2/255 ϵ = 3/255
−1 y 21.84 7.36 8.51
+1 y 23.51 11.62 12.21
−1 ŷ 11.92 0.91 3.42
+1 ŷ 25.59 13.54 14.28

Feasibility of Calibration Attacks. Af-
ter discussing possible reasons for attacks on
calibration, we now demonstrate that these
are feasible. Galil and El-Yaniv (2021) show
that it is possible to produce attacks that
leave the accuracy unchanged while degrading
the Brier score. Expanding on their Attacks
on Confidence Estimation (ACE), we intro-
duce a family of parameterised ACE attacks
on the cross-entropy loss LCE that we call
(η, ω)-ACE attacks. These attacks solve the
following objective:

max
∥γ∥p≤ϵ,F (x+γ)=F (x)

ηLCE(f(x+ γ), ω), (2)

where η ∈ {1,−1}, ω ∈ {y, ŷ}, ŷ ≜ F (x + γ)
is the prediction and y the true label. For
η = 1, this attack decreases model confidence in label y or prediction ŷ, and for η = −1, it
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increases confidence, both without altering the label (i.e., F (x+ γ) = F (x)). In Table 1, we
show that all four possible configurations of our (η, ω)-ACE can be effective at significantly
altering the ECE of PreActResNet18 (He et al., 2016a) and ResNet50 (He et al., 2016b) on
the validation set of CIFAR-10 (Krizhevsky, 2009) and ImageNet-1K (Deng et al., 2009),
respectively. The attacks can even be effective on robustly trained models. For a ResNet50
on ImageNet, a (1, y)-ACE attack with radius ϵ = 2/255 can increase the ECE from 3.70
to 47.23. Performing adversarial training can partly alleviate this issue, but a (1, ŷ)-ACE
attack can still increase the ECE from 9.03 to 13.54. This clearly indicates that it is possible
to significantly manipulate the calibration of a model while preserving its accuracy. In
Appendix B.2, we provide reliability diagrams that illustrate the effect of each (η, ω)-ACE
attack in addition to more details on the experimental setup.

3 Certifying Calibration

We propose to use certification as a framework to protect calibration under adversarial
attacks. Hence, in this section, we first introduce existing methods to certify predictions and
then build upon them to introduce certified calibration.

Prerequisites. Certification methods establish mathematical guarantees on the behavior
of model predictions under adversarial perturbations. Specifically, for a given input xn,
the certified model issues a set of guarantees (such as the invariance of predictions) for all
perturbations γn up to an adversarial budget of Rn in some norm ∥ · ∥, i.e., ∥γn∥ ≤ Rn.
Practitioners deploying a system with a designated threat model of attacking budget R
receive a guarantee on each prediction with Rn ≥ R. This enables an estimate of the model’s
performance under adversaries. Most commonly discussed is the certified accuracy at R, the
fraction of certifiably correct predictions. Our method assumes two certificates.
Assumption 3.1. Model predictions are invariant under all perturbations,

∀∥γn∥ ≤ Rn : F (xn + γn) = F (xn). (C1)
Assumption 3.2. Prediction confidences are bounded under perturbations,

∀∥γn∥ ≤ Rn : l (z(xn), Rn) ≤ z(xn + γn) ≤ u(z(xn), Rn). (C2)

We further, assume that Rn, l(·) and u(·) can be computed for each sample xn. A state-
of-the-art method to obtain such ℓ2 certificates on large models and datasets is Gaussian
smoothing (Cohen et al., 2019). A smooth classifier is constructed from a base classifier by
augmenting model inputs with Gaussian perturbations, δ ∼ N(0, σ2ID), and aggregating
predictions. We refer to F̄ : RD → Y as the smoothed hard classifier, returning the predicted
class and providing radius Rn, for which the prediction is invariant (see Certificate C1). The
certificate on the prediction has been extended by Salman et al. (2019) and Kumar et al.
(2020) showing a certificate on the confidence. We denote the smooth model returning a
confidence vector as f̄ : X → ∆K and denote the smoothed soft classifier as z̄ : RD → [0, 1],
obtained through z̄(x) = maxk∈Y f̄k(x + δ). z̄ indicates the confidence of prediction F̄ .
Kumar et al. (2020) provide two different bounds on z̄ as certificate C2, the Standard and
the CDF certificate. In Appendix A.1, we provide more details on these, as well as a general
introduction to Gaussian smoothing.

3.1 Certifying Brier Score

As discussed earlier, the Brier score is a unified measure of a model’s discriminative per-
formance and its calibration, and widely used in the literature on model calibration. We
introduce the certified Brier score (CBS) as the worst-case (i.e. largest) top label Brier score
under any perturbation ∥γn∥ ≤ R over a set of N samples. We assume a model returning
certified predictions and providing lower and upper bounds l,u ∈ RN on the top confidence
z ∈ RN given the certified radius R on the input perturbation, i.e. certificate C2. Based on
this, we state the following upper bound on the Brier score.
Theorem 3.3. Let l, u be the bounds on z, and z be the output of a certified classifier.
Further, let c ∈ RN be the indicator that predictions are correct. The upper bound on the
Brier score is given by:

max
l≤z≤u

TLBS(z, c) =
1

N
∥c− l c− u (1− c) ∥22, (3)

4
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where the products are element-wise. Refer to Appendix D for the proof.

This bound is tight and relies on the fact that shifting the confidences leaves each certified
prediction F and thus c unchanged. Therefore, an adversary cannot flip the prediction to
increase the confidence gap, the sample-level distance between correctness cn and confidence
zn. The Brier score is maximised when the confidence gap is large; the opposite of a good
classifier’s expected behavior.

3.2 Certifying Calibration Error

While both the Brier score and the expected calibration error capture some notion of
calibration, the confidence scores bounding the Brier score (3) do not necessarily bound
the ECE. We show that the ECE can be increased even further. Therefore, we introduce a
definition for the certified calibration error and provide a method to approximate it.
Definition 3.4. The certified calibration error (CCE) on a dataset D = {xn, yn}Nn=1 at
radius R is defined as the maximum ECE that can be observed as a result of perturbations
on the input within an ℓ2 ball of radius R. Let, γn be the perturbation on input xn. Thus,
the CCE is:

CCE = max
∀n:∥γn∥2≤R

ˆECE
(
[z̄(xn + γn)]

N
n=1,y

)
. (4)

This is the largest estimated calibration error that is possible on a dataset if every sample is
perturbed by at most R. Such a bound on the calibration is fundamentally different from
a bound on the confidence: A certificate on the confidence as described in C2 bounds the
confidence per sample. The CCE in (4) bounds the error between confidence and frequentist
probability across a set of samples. Finding the bound in (4) is not trivial, as the estimator
of the ECE in (1) is neither convex nor differentiable. Therefore, we propose a numerical
method to estimate (4) and provide an empirical, approximate certificate, the approximate
certified calibration error (ACCE).

3.3 CCE as Mixed-Integer Program

We show in this section that we may optimize (4) by reformulating the problem into a
mixed-integer program (MIP). In the following, we first introduce the intuition and notation
to rewrite the objective and state equivalence of (5) to (4) in Theorem 3.5. Subsequently, the
constraints for equivalence are introduced in detail. We conclude by restating the problem
in canonical form for clarity. Readers unfamiliar with MIP may refer to Appendix A.3 for
a brief introduction. In Appendix E.2, we provide a numerical example to illustrate the
derivations presented in this section.

While the problem in (4) is defined over perturbations ∥γn∥2 ≤ R for each input xn, we rely
on certificate C2 and directly optimize over the confidences. Since the ECE estimator in (1)
uses bins to estimate average confidence and accuracy, maximising the estimator requires
solving a bin assignment problem, where N confidence scores zn are assigned to M bins. We
show how to jointly solve this assignment problem and find the values of zn maximising the
calibration estimator across bins.

When perturbing the input x+ γ, the bin assignment might change: z̄(x) might belong to
bin m, but z̄(x + γ) to m′ ̸= m.1 While the assignment is determined by the confidence
score, it is key to our reformulation to split these into separate variables. The motivation is
that very small changes in zn might lead to a shift in bin assignment and thus contribute
differently to the calibration error. We define the binary assignment an,m of confidence zn
to bin m and accordingly define a = [a1,1, . . . , a1,M , a2,1, . . . , aN,M ]⊤ ∈ {0, 1}NM , where N
is the number of samples and M the number of bins. The confidence scores maximising
the calibration error might be different across bins, i.e., it is possible that the worst-case
for bin m is different than for bin m′ ̸= m: z∗n,m ̸= z∗n,m′ . Therefore, we model the
confidence independently for each bin, introducing bin-specific confidences zn,m and with
it z = [z1,1, . . . , z1,M , z2,1, . . . , zN,M ]⊤ ∈ [0, 1]NM . Further, let cn be the indicator whether
prediction n is correct, i.e., cn = I{F̄ (xn) = yn} and let en,m = cn − zn,m, the sample
confidence gap. Note that cn is independent of the bin assignment as a result of certification,

1In this section, we relax the notation of z̄ to z, as we are assuming smoothed models everywhere.
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i.e., while the confidence may shift, the prediction will remain unchanged. Analog to a and
z, we define e = [e1,1, . . . , e1,M , e2,1, . . . , eN,M ]⊤ ∈ RNM . Now let B be a stack of N identity
matrices of size M , i.e., B = [IM , . . . , IM ]⊤. We define E(z) =

(
e1⊤

M

)
⊙B ∈ RNM×M where

⊙ is the Hadamard product and 1M is the 1-vector of size M . We can now rewrite the
calibration error.
Theorem 3.5. Let a and E be as defined above, and z be the output of a certified classifier.
The calibration error estimator in (1) can be expressed as:

ˆECE =
1

N
∥E(z)⊤a∥1. (5)

Maximising (5) over (a, z) is equivalent to solving (4) when subjecting a and z to the Unique
Assignment Constraint, Confidence Constraint, and Valid Assignment Constraint below.
Refer to Appendix E.1 for a proof.

Unique Assignment Constraint. The assignment variable a has to be constrained
such that each data point is assigned to exactly one bin, i.e.,

∑
m an,m = 1 ∀n. To this

end, we define C = IN ⊗ 1M ∈ RNM×N , where ⊗ is the Kronecker product. C sums up all
assignments per data point, and hence the constraint is C⊤a = 1N .

Confidence Constraint. Let lzn ≤ zn,m ≤ uz
n be the lower and upper bound on the

confidence as provided by the certificate C2. In addition, any confidence assigned to bin m
has to adhere to the boundaries of this bin, i.e., lBm ≤ zn,m ≤ uB

m. We can combine these two
conditions to unify the bounds: max(lzn, l

B
m) = ln,m ≤ zn,m ≤ un,m = min(uz

n, u
B
m). With

this, we define l = [l1,1, . . . , l1,M , l2,1, . . . , lN,M ]⊤ and u = [u1,1, . . . , u1,M , u2,1, . . . , uN,M ]⊤

and state the full constraint: l ≤ z ≤ u.2

The bounds on the confidence per bin may not intersect with the certificates on the confidence,
i.e., for some n,m [lzn, u

z
n) ∩ [lBm, uB

m) = ∅. This is expected for narrow certificates on z or
a large number of bins. For these instances, we set z to 0 and define l′ and u′ to be l and
u, respectively, with the same elements set to 0. Thus, the feasible constraint set on the
confidence per bin is defined as Sz = {z : ∀n,m : l′n,m ≤ zn,m ≤ u′

n,m}.
Valid Assignment Constraint. We have identified that some confidences can never be
assigned to some bins when the confidence certificates and bin boundaries do not intersect.
For those instances, we constrain an,m = 0. Let kn,m = I{ln,m ≥ un,m} be the indicator that
bin m is inaccessible to data point n. We define matrix K to be a NM ×N matrix summing
all inaccessible bin assignments. Formally, letting k = [k1,1, . . . , k1,M , k2,1, . . . , kN,M ]⊤, and
K = k1⊤

N ⊙ (IN ⊗ 1M ), the constraint is: K⊤a = 0N .

Formal Program Statement. We summarize the constraints above and restate the
program introduced in Theorem 3.5 in its canonical form for clarity. The MIP over (a, z) is
given by:

maximize
1

N
∥E(z)⊤a∥1 subject to: a ∈ {0, 1}NM ,C⊤a = 1N ,K⊤a = 0N , z ∈ Sz .

(6)
This problem is sparse in objectives and constraints as C, K and E contain at most NM
non-zero elements. The reformulation of (4) into (6) provides us with a useful framework to
run a numerical solver.

3.4 ADMM Solver

We propose to use the ADMM algorithm (Boyd et al., 2011) to solve (6). While ADMM has
proofs for convergence on convex problems, it enjoys good convergence properties even on non-
convex problems (Wang et al., 2019). ADMM minimises the augmented Lagrangian of the
constrained problem by sequentially solving sub-problems, alternating between minimizing
the primal variables and maximizing the dual variables. We introduce split variables to show
that the problem can be reformulated into the standard ADMM objective (see Appendix
E for more details). Due to the sparsity of the problem, ADMM has linear complexity in

2In Section 3.1 on the CBS, l,u ∈ [0, 1]N are the immediate bounds on z ∈ [0, 1]N provided by
the certificate on the confidences. Here, l,u ∈ [0, 1]NM provide bounds on the expanded z ∈ RNM

as defined in this section, now combining binning and confidence certificates.
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the number of bins and samples, O(NM). In our experiments, ADMM always converges in
under 3000 steps and runs within minutes. We provide more details on implementation, run
times, and convergences in Appendix G.1.

4 Adversarial Calibration Training

After introducing the notion of certified calibration, which extends the notion of certification
to model calibration, a natural question is whether adversarial training techniques can
improve certified calibration. First, we introduce preliminaries and then a novel training
method, adversarial calibration training, that can improve certified calibration.

Adversarial Training. Adversarial training (AT) is commonly used to improve the
adversarial robustness of neural networks (Kurakin et al., 2017; Madry et al., 2018). While
standard training minimises the empirical risk of the model under the data distribution,
AT minimises the risk under a data distribution perturbed by adversaries. Salman et al.
(2019) propose such an AT method specifically for randomized smoothing models: The
SmoothAdv method minimises the cross-entropy loss, LCE , of a smooth soft classifier f̄θ
under adversary γ∗.3 We note that the SmoothAdv objective can be seen as a constrained
optimisation problem, minimising the model risk over some perturbation, conditioning upon
that perturbation being a LCE-adversary on f̄θ. In this work, we have shown the impact of
adversaries on calibration and thus propose to minimise the model risk of f̄θ under calibration
adversaries giving rise to adversarial calibration training (ACT).

Adversarial Calibration Training. We propose to train models by minimising the
negative log-likelihood under calibration adversaries. Let LCalibration be a loss on the
calibration, and let θ ∈ Θ be the model parameters. We propose the following objective:

min
θ∈Θ
LCE

(
f̄θ (xn + γ∗

n) , yn
)

s.t. γ∗
n = argmax

∥γn∥2≤ϵ

LCalibration

([
f̄θ (xi + γi)

]N
i=1

,y
)

(7)

for adversarial calibration training (ACT) in two flavours: Brier-ACT, which uses the Brier
score to find adversaries (LBrier-adversaries), and ACCE-ACT, which uses the ACCE to
obtain LACCE-adversaries. While the former is a straight-forward extension of SmoothAdv,
the second requires more thought, as we describe now.

The LACCE-adversary can be found by extending the mixed-integer program in (6). The
purpose of the mixed-integer program in (6) is to evaluate the ACCE, thus maximising the
calibration error over confidences z and binning a. Here, we seek the adversarial input to
the model, x+ γ∗ to perform ACT and thus reformulate the mixed-integer program w.r.t.
(a,γ) instead.

More precisely, we introduce a linear function h : RN×K → RNM that maps {f̄(xn +
γn)}Nn=1 7→ z, where K is the number of classes, N the number of samples, and M the
number of bins. This function selects the top confidence from f̄θ per data point n, then
replicates that value M times across all bins and concatenates over N data points (the
mapping is RK → RM per data point). We formally state the mixed-integer program over(
a, {γn}Nn=1

)
with objective

γ∗
n,a

∗ = argmax
γ,a

∥E
(
h
([

f̄θ (xi + γi)
]N
i=1

))⊤
a∥1 (8)

subject to: a ∈ {0, 1}NM , C⊤a = 1N , K⊤a = 0N , ∥γn∥2 ≤ ϵ.

Implementation Details. We follow Salman et al. (2019), who solve the objective
using SGD and approximate the output of f̄θ using Monte Carlo samples. As introduced
in Section 3.4, we use ADMM to approximately solve the problem in (8) giving rise to
the LACCE-adversary for ACCE-ACT. We obtain z though a forward pass and update it
as function of updates on γ. Afterwards, we update other primal variables and perform
dual ascent steps. Further, we obtain the constraint variable K using the Standard C2

3As above, f̄θ denotes the model returning K class confidences, whereas z̄ returns only the top
confidence. As we are updating model parameters, we explicitly add θ to the model notation in this
section.
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Figure 3: The ACCE returned by ADMM, dECE, and the Brier confidences are shown here for
ImageNet. ADMM is the most effective method, as it uniformly yields the largest bounds.

certificate (Kumar et al., 2020) based on very few Monte Carlo samples as we certify without
abstaining. The full algorithm is stated in Appendix F.2.

Complexity. The complexity of ACCE-ACT in the data dimensionality, D, is determined
by backprop to update the adversary, γ, and hence is equal to standard training methods.
Further, the objective in (8) is sparse in C, K and E, enabling the same linear scaling in
batch size as the MIP in (6). The computational cost of ACCE attacks is comparable to
standard SmoothAdv (on average 3.4% slower on CIFAR-10 and 2.6% slower on ImageNet).
While additional primal and dual updates are required, they are cheap in comparison to the
update of adversary, that is obtained by backpropagating through the network.

5 Experiments

We empirically evaluate the methods introduced above. First, we evaluate the proposed
metrics: In Section 5.1 we discuss the certified Brier score, and in Section 5.2 we compare
various approaches to approximate the certified calibration error and demonstrate that
solving the mixed-integer program using the ADMM solver works best. Second, in Section
5.3, we evaluate adversarial calibration training (ACT) and show it yields improved certified
calibration.

5.1 Certified Brier Score

Experimental Method. We rely on Gaussian smoothing classifiers to obtain the certifiable
radius based on the hard classifier (C1) (Cohen et al., 2019) and bound confidences with
the Standard certificate (C2). We follow the work on certifying confidences (Kumar et al.,
2020) in our experimental setup. We use a ResNet-110 model for CIFAR-10 experiments
and a ResNet-50 for ImageNet trained by Cohen et al. (2019). For ImageNet, we sample 500
images from the test set following prior work. Gaussian smoothing is performed on 100, 000
samples, and we certify at α = .001. We only certify calibration at R when the prediction
can be certified at R. We compute certified metrics on R ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5,
0.75, 1.00, 1.50, 2, 2.5} for CIFAR10 and additionally 3.0 for ImageNet.
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Figure 2: Certified Brier scores on Ima-
geNet. For small radii, small smoothing
σ outperforms larger ones, but as radii
increase, large σ outperform smaller σ.

Results. The certified Brier scores for CIFAR-10 are
shown in Figure 16a (Appendix H) and for ImageNet
in Figure 2. For both datasets, we observe that the
CBSs increases with larger certified radii. Models
with small σ suffer from about a 100% increase in Brier
score at ϵ = 0.25, while stronger smoothed models
only increase by < 50%. As strongly smoothed models
yield tighter certificates on confidences (see Figure 8
in Appendix C), we find that those models are more
robust for larger radii at the cost of performance on
smaller radii.

5.2 ACCE

We compare the ACCE solution obtained by ADMM with two baseline and find that ADMM
yields better approximations than both. First, we obtain the confidences bounding the Brier
score (the “Brier confidences”, see (3)) and compute the resulting ECE as baseline. Second,
we utilise the differentiable calibration error (dECE) (Bohdal et al., 2023) and perform
gradient ascent to maximise it (see Appendix M.1). We compare these methods for a range
of certified radii and different smoothing σ.
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Experimental Method. Our experimental setup is that of Section 5.1 with the difference
that we focus on a subset of 2000 certified samples for CIFAR-10.

Results. The ACCE returned by ADMM and baselines across certified radii is shown in
Figure 15 in Appendix G.3 for CIFAR10 and in Figure 3 for ImageNet. We may observe that
large certified radii are associated with worse calibration. We find that ADMM uniformly
yields higher ACCE than the dECE with differences up to approximately 0.2, which is a strong
qualitative difference in calibration. This result suggests that solving the proposed mixed-
integer program with ADMM is far more effective than the other methods in approximating
the CCE. For larger scale experiments see Appendix G.3. Interestingly, we observe that all
three methods return ACCE scores that are approximately equal at large radii. We believe
that this is not an insufficiency of ADMM or the dECE to approximate the CCE, but rather
believe that the CCE and CBS solutions converge. For instance, for accuracies 0 and 1, and
unbounded confidences, it is trivial to see that the CCE is achieved by the same confidences
as the CBS. We conjecture that this is the case for accuracies in-between as well.

5.3 Adversarial Calibration Training

We propose to apply ACT as introduced in Section 4 as a fine-tuning method on models that
have been pre-trained using SmoothAdv (Salman et al., 2019). We refer to SmoothAdv as
standard adversarial training (AT) to disambiguate it from adversarial calibration training
(ACT). We demonstrate that our newly proposed ACT methods, Brier-ACT and ACCE-ACT
are capable of improving model calibration.

Table 2: Comparison of calibration for CIFAR-10
models achieving within 3% of the highest certi-
fied accuracy (CA) per training method across
certified radii (from 0.05 to 1.00). Metrics are the
approximate certified calibration error (ACCE ↓)
and certified Brier score (CBS ↓).

Metric Method 0.05 0.20 0.50 1.00

CA [83, 86] [74, 78] [56, 59] [35, 38]

ACCE AT 10.90 27.83 49.30 56.36
ACCE Brier-ACT 9.97 27.07 41.32 52.13
ACCE ACCE-ACT 10.06 27.22 42.16 47.08

CBS AT 8.70 10.94 28.88 36.25
CBS Brier-ACT 8.10 10.20 19.38 32.54
CBS ACCE-ACT 8.82 10.73 20.94 24.87

Experimental Method. Across all exper-
iments, we compare fine-tuning with Brier-
ACT and ACCE-ACT to the AT baseline.
For the majority of the experiments, we fo-
cus on CIFAR-10 due to the lower compu-
tational cost of SmoothAdv training and
randomized smoothing. For certified radii
{0.05, 0.2, 0.5, 1.0}, we select 1 to 3 models
from Salman et al. (2019) as baselines that
provide a good balance between certified cal-
ibration and certified accuracy (for baseline
metrics and details on the selection proce-
dure, see Appendix I.2). For each baseline,
we perform Brier-ACT and ACCE-ACT for 10 epochs using a set of 16 diverse hyperparame-
ter combinations (more details in Appendix I.3). Regarding data, model architecture, and
Gaussian smoothing, we follow the same setup as in Section 5.2. In contrast to Section 5.2,
we utilise the CDF certificate on confidences (Kumar et al., 2020) instead of the Standard
certificate as these are significantly tighter and thus will be used in practice (see Appendix
C a comparison and A.1 for a formal definition).

For each fine-tuned model, we compare the certified accuracy (CA), ACCE, and CBS. During
evaluation, the reported ACCE of any model is the maximum out of 16 runs with a diverse
grid of hyperparameter (see Appendix I.1). We obtain the CBS in closed form using (3).

0.10 0.05 0.00 0.05 0.10
Certified Accuracy

0.2

0.1

0.0

0.1

0.2

AC
CE

Radius = 0.05

0.10 0.05 0.00 0.05 0.10
Certified Accuracy

Radius = 0.2

0.10 0.05 0.00 0.05 0.10
Certified Accuracy

Radius = 0.5

0.10 0.05 0.00 0.05 0.10
Certified Accuracy

Radius = 1.0
Training

ACCE-ACT
Brier-ACT
AT

Figure 4: This figure shows the impact of fine-tuning a model via adversarial calibration training
(ACT) on certified accuracy and approximate certified calibration error (ACCE). Each sub-figure
presents an adversarial training baseline ("AT") at the origin, certified at the given radius. Following
multiple fine-tunings using Brier-ACT and ACCE-ACT, changes in metrics depicted. The ideal
corner indicated by ⋆. ACCE-ACT significantly improves certified calibration at larger radii.
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Results. We find that both flavours of ACT are capable of significantly reducing the
certified calibration error while not harming or even improving certified accuracy. In Table 2,
we compare all models that come within 3% of the highest certified accuracy (CA) achieved
by any model at a given radius, and evaluate the best certified calibration of these models.
While the effect of ACT is very small on small radii (R = 0.05 to R = 0.2), for larger
radii, we observe an improved ACCE (down to −9.3%) and CBS (down to −11.4%), both of
which are qualitatively strong differences. In particular, we find that certified calibration of
ACCE-ACT at a radius of 1.0 is better than the certified calibration of AT at a radius of
0.5. Comparing both flavours of ACT, we find that ACCE-ACT outperforms Brier-ACT on
R = 1.0 while performing similarly on smaller radii. Further, the effect of ACCE-ACT on
the CBS is strong, which indicates that the calibration of models trained with ACCE-ACT
generalizes across calibration metrics. We find that the rank correlation between the ACCE
and the CBS across all models is ρ = 0.98, indicating a strong agreement between metrics.

In this work, we have repeatedly argued for the importance of considering calibration besides
accuracy and as a result, selecting the most appropriate model is now a multi-objective
decision problem. To further illustrate this, we pick the best baseline model per certified
radius and plot the changes in ACCE against certified accuracy for each fine-tuned model in
Figure 4. In these figures, the top left quadrant is strictly dominated by the pre-trained model,
while models in the lower right corner improve upon accuracy and calibration (indicated by
⋆). Using ACT, we are able to jointly improve upon certified accuracy and calibration. In
line with results in Table 2, improvements on small radii are limited. However, for a certified
radius of 0.5, we observe decreases in ACCE of 7.5% while increasing the accuracy by 1.5
%. For a radius of 1.0, we observe an improvement of the ACCE of 12% without harming
accuracy. This is a strong qualitative difference. In Appendix I.4, we replicate Figure 4 for
more baseline models and demonstrate that improvements are also possible on baselines with
better certified calibration. Further, Appendix I.5 provides ablation studies showing that
fine-tuning with AT cannot achieve the same calibration as ACT.

We replicate these experiments on FashionMNIST (Xiao et al., 2017), SVHN (Netzer et al.,
2011), CIFAR-100 (Krizhevsky, 2009), and ImageNet (Deng et al., 2009), and present results
in Appendix J. We demonstrate consistent improvements across datasets with the exception
of ImageNet, for which only marginal effects are visible (1-2%). This is in line with prior
work optimizing calibration, which does not report ImageNet (Bohdal et al., 2023; Obadinma
et al., 2024) or struggles to find consistent effects (Karandikar et al., 2021). See Appendix K
for a discussion of trade-offs between calibration and robustness.

6 Related Work

Only few papers discuss the confidence scores on certified models. Jeong et al. (2021)
propose a variant of mixup (Zhang et al., 2018a) for certified models to reduce overconfidence
in runner-up classes with the goal of increasing the certified radius, but do not examine
confidence as uncertainty estimator. A wider body of literature relates adversarial robustness
to calibration on non-certified models. Grabinski et al. (2022) show that robust models are
better calibrated, while other work shows that poorly calibrated data points are easier to
attack (Qin et al., 2021). This is used by the latter to improve calibration through adversarial
training. Stutz et al. (2020), utilise confidence scores and calibration techniques to improve
adversarial robustness. Few works investigate the calibration of uncertainty calibration under
adversarial attack (Sensoy et al., 2018; Tomani and Buettner, 2021; Kopetzki et al., 2021),
however, their work is not necessarily applicable here, as these do not study certified models.

While some works provide bounds on calibration in various contexts, none of them are
applicable to our setup (Kumar et al., 2019; Qiao and Valiant, 2021; Wenger et al., 2020).
Further, few works have proposed to directly optimise calibration. Kumar et al. (2018)
propose a kernel-based measure of calibration that they use to augment cross-entropy training
to effectively reduce calibration error. Bohdal et al. (2023) develop the dECE and use meta-
learning to pick hyperparameters during training to reduce the dECE on a validation set. A
similar metric has been proposed by Karandikar et al. (2021) as SB-ECE alongside S-AvUC
that increases uncertainty on incorrect samples and decreases uncertainty on correct samples.
Similarly, Obadinma et al. (2024) use a combination of surrogate losses to attack calibration.
However, they do not directly train on calibration metrics.
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A Prerequisites

A.1 Gaussian Smoothing

As some readers might not be familiar with certification and Gaussian smoothing, we provide
a brief introduction here. However, before getting into the details of Gaussian smoothing,
we restate some notation introduced above and reiterate the certification assumptions from
Section 2.2 for readability.

Certification. Let f : X → ∆K be any model outputting a K-dimensional probability sim-
plex over labels Y . We denote the k-th component of f as fk. We obtain the classifier indicat-
ing the predicted label F : X → Y as the maximum of the softmax: F (x) = argmaxk∈Y fk(x).
We refer to this as the hard classifier. We denote the function indicating the confidence of
this prediction using z : X → [0, 1], which we obtain by z(x) = maxk∈Y fk(x). We refer to
this as the soft classifier.

Our method assumes two certificates.

Assumption A.1. Model predictions are invariant under all perturbations,
∀∥γn∥ ≤ Rn : F (xn + γn) = F (xn). (C1)

Assumption A.2. Prediction confidences are bounded under perturbations,
∀∥γn∥ ≤ Rn : l (z(xn), Rn) ≤ z(xn + γn) ≤ u(z(xn), Rn). (C2)

We further, assume that Rn, l(·) and u(·) can be computed for each sample xn.

Gaussian Smoothing. We achieve these guarantees using Gaussian smoothing (Cohen
et al., 2019). Gaussian smoothing scales even to large datasets such as ImageNet and is
agnostic towards model architecture. First, we obtain certificate C1, explain some nuances
of Gaussian smoothing and then introduce certificate C2.

Gaussian smoothing takes any arbitrary base model F and constructs a certified model
(Cohen et al., 2019). The smooth hard classifier, F̄ , is obtained by:

F̄ (xn) = argmax
c∈Y

Pδ(F (xn + δn) = c). (9)

where δn is sampled from an isotropic Gaussian, i.e. δn ∼ N(0, σ2ID). Cohen et al. (2019)
show the certificate C1 for F̄ with a radius Rn given by

Rn =
σ

2

(
Φ−1(pAn )− Φ−1(pBn )

)
, (10)

where Φ denotes the Gaussian CDF, pAn denotes the probability of predicting class A, i.e.,
Pδ(F (xn + δn) = cA), and pBn denotes the probability of predicting the runner-up class:
maxB ̸=A Pδ(F (xn + δn) = cB).

The true F̄ , pAn and pBn are unknown and have to be estimated. The authors propose to
use a finite number of Gaussian samples to estimate F̄ (xn), a lower bound pAn on pAn and a
an upper bound pBn on pBn , which are used to estimate certifiable radius R̂n. We choose a
significance level α ∈ (0, 1) in estimating the model (usually α = .001). With probability
larger 1−α, the true model F̄ certifiably predicts the same class as the estimated model with
a true radius of Rn ≥ R̂n. If the evidence is insufficient to certify a prediction at threshold
α, the model abstains.

This work has been extended by Kumar et al. (2020) to certify confidences, i.e. obtaining
certificate C2. We denote the smooth model as

f̄(xn) = Eδ[f(xn + δn)], (11)

from which we obtain the smooth soft classifier as z̄(xn) = maxk∈Y f̄k(xn). Kumar et al.
(2020) propose two certificates that we apply on z̄, which we refer to as the Standard
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certificate and the CDF certificate as mentioned above. The Standard certificate is very
closely related to the certificate given by Cohen et al. (2019) and bounds the confidences as

Φσ(Φ
−1
σ (z̄(xn))−R) ≤ z̄(xn + γn) ≤ Φσ(Φ

−1
σ (z̄(xn)) +R) (12)

given a radius R, where z̄(xn) and z̄(xn) are lower and upper bound on z̄(xn) obtained using
Hoeffding’s inequality, and Φσ is the Gaussian CDF with standard deviation σ. They further
propose the CDF certificate. It utilises extra information to tighten the certificate: the
eCDF is estimated and the Dvoretzky-Kiefer-Wolfowitz inequality is used to find certificate
bounds at threshold 1 − α. Let s0 = 0 and sn+1 = 1 and let s0 < si ≤ . . . ≤ sn < sn+1

partition the interval [0, 1]. The bounds are given by
n∑

j=1

(sj − sj−1) Φσ

(
Φ−1

σ

(
psj (xn)

)
−R

)
≤ z̄(xn + γn)

≤
n∑

j=1

(sj+1 − sj) Φσ

(
Φ−1

σ

(
psj (xn)

)
+R

)
, (13)

where psj is the lower bound on z̄ in the j-th bin of the eCDF, and psj is the upper bound.

A.2 Other Certification Methods

This paper employs Gaussian smoothing (Appendix A.1) due to its scalability to large models
and datasets, competitive certifiable sets, and its prominence in the literature. Nonetheless,
a variety of alternative methods exist for obtaining certificates as defined in Equations C1
and C2. Certification in machine learning is closely related to the broader field of formal
verification, which focuses on proving system correctness.

One significant branch is abstract interpretation, which includes techniques such as interval-
bound propagation (IBP) (Mirman et al., 2018; Gowal et al., 2019), CROWN (Zhang et al.,
2018b), its variant β-CROWN (Wang et al., 2021), and DeepPoly (Singh et al., 2019). Other
methods in this category leverage satisfiability modulo theories (SMT) solvers (Ehlers, 2017;
Katz et al., 2019; 2022).

Relaxation-based techniques, such as Neurify (Wang et al., 2018), approximate non-linear
constraints with computationally efficient relaxations to enable certification. Certified
training has also emerged as a crucial direction to improve model robustness by integrating
certification constraints into the training process, resulting in models that are inherently easier
to certify. For instance, Gowal et al. (2019) enhance IBP-based certified training by improving
bound tightness during training, building on the foundational work of DiffAI (Mirman et al.,
2018), which introduced differentiable abstract interpretation for robustness.

Methods such as COLT (Balunovic and Vechev, 2020) and SABR (Müller et al., 2023) focus
on improving adversarial robustness while achieving strong certification performance. While
these methods do not exclusively target certified training, they represent significant progress
in combining adversarial robustness and certification.

This overview, while not exhaustive, highlights key approaches in the field. For comprehensive
reviews, readers are referred to Liu et al. (2021), which covers verification algorithms, Silva
and Najafirad (2020), which highlights practical challenges in robustness, and Meng et al.
(2022), which provides insights into adversarial training and certification.

A.3 Mixed Integer Programs

For readers unfamiliar with mixed-integer programming we state the canonical form of a
mixed-integer program here.

A mixed-integer program (MIP) is a constrained optimization problem over variables (x ∈
RN , y ∈ ZM ) that can be written in the following form:

min
x,y

f(x, y) (14)
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subject to:
gi(x, y) ≤ 0 for i = 1, 2, . . . ,K

hj(x, y) = 0 for j = 1, 2, . . . , L

In our case the constraints are linear, leading to constraint statements such as
Ax = b, Cy = d, . . . , (15)

which are introduced in Section 3.3 after the statement of Theorem 3.5.

I’ll help transform this into a coherent LaTeX text, organizing the information more fluently
while maintaining the scientific tone and references.

B Motivation

B.1 Calibration ̸= Accuracy

It is important to note, that accuracy and calibration measure different concepts and one
may not infer model performance from calibration with certainty or vice versa. Consider
the following examples, where we fix one quantity and construct datasets resulting in other
quantity taking on opposing values. These are illustrated in Figure 5. First, we fix the
calibration error to ECE = 0.5 and for Case 1, we construct N data points with label
yn = 1, confidence zn = 0.5 and thus prediction ŷn = 1. The calibration error here is 0.5
(represented by the horizontal line between (z = 0.5, y = 1) and (z = 1, y = 1)) and the
accuracy is 1. For Case 2, our predictions remain the same, but we change the labels to
yn = 0 resulting in an accuracy of 0 while keeping the calibration error of 0.5. Next, we fix
the accuracy to 1 and construct examples with ECE = 0.5 and ECE = 0. The former is
given by Case 1. The latter (Case 3 ) can be constructed using yn = 1 and zn = 1. Thus, we
can construct a distribution over Z and Y such knowing the accuracy tells us nothing about
the calibration error and vice versa. Clearly, when evaluating the quality of predictions, it is
insufficient to only assess the accuracy. Hence, we argue that certifying accuracy in safety
relevant applications is insufficient and calibration should be considered.

0.0 0.5 1.0
Confidence (z)

0

1

La
be

l (
y)
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Case 2
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1.0
0.0
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Figure 5: This visualisation shows that we can fix either the accuracy or the calibration and
construct a dataset to obtain the other quantity with opposite values. The example looks at a
binary classification problem. The empty circle displays the point of perfect calibration and the full
circle is the calibration on the data. The distance of the line in-between is the calibration error.

B.2 Empirical Attacks

Training. We use publicly available checkpoints for the “standard training” model on
ImageNet. In particular, we use the PyTorch pretrained v1 model weights. For CIFAR-10
experiments we train a PreActResNet18 model from scratch for 100 epochs. For the robust
models we utilize standard adversarial training using PGD and train from scratch for CIFAR-
10 while fine-tuning for ImageNet. We use an increase of adversarial budget over 25 epochs
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to 3/255 and train for 100 epochs for CIFAR-10. For ImageNet we use 10 epochs to warm-up
the adversarial budget and train for 50 epochs.

Attack. We perform attacks using the criterion described in (2). Using PGD we enforce
the constraint on ∥γ∥∞ ≤ ϵ. Before applying a gradient update„ we check if the condition
F (x + γ) = F (x) is still satisfied. If this is violated, we stop the optimization. We use a
learning rate of 10 for 100 steps with automatic reduction when the loss plateaus. For further
details please refer to the published code.

There are differences to Galil and El-Yaniv (2021) in the theoretical objective and the
practical setup. Their ACE attack directly optimises confidence scores to increase them when
the model incorrect and decrease them when the model is correct. This is what our (1, y)-ACE
attack does when setting objective κ (in their notation) to be the softmax output. However,
the loss is different. While Galil and El-Yaniv directly optimise the confidence score (i.e. the
top softmax output), we optimise the entire softmax output using cross-entropy. Despite
these smaller differences, in essense, their attacks are a special case of ours. Regarding the
implementation there are various smaller differences e.g. in the learning rate scheduling and
attack methods. For example, while Galil and El-Yaniv use FGSM, while we use PGD. They
manually reduce learning rates when the prediction invariance condition would no longer be
satisfied by an update, whereas we use automatic plateauing scheduling. For further details
plase refer to Galil and El-Yaniv (2021).

Reliability diagrams.

Figure 6: Reliability diagrams for a ResNet50 trained with expected risk minimisation on ImageNet-
1K and attack radius ϵ = 2/255. (a) No attack, (b) (1, y)-ACE attack, (c) (−1, y)-ACE attack, (d)
(1, ŷ)-ACE attack, (e) (−1, ŷ)-ACE attack. The histogram on the bottom represents the distribution
of confidence scores.
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Figure 7: Reliability diagrams for a ResNet50 trained with adversarial risk minimisation on ImageNet-
1K and attack radius ϵ = 2/255. (a) No attack, (b) (1, y)-ACE attack, (c) (−1, y)-ACE attack, (d)
(1, ŷ)-ACE attack, (e) (−1, ŷ)-ACE attack. The histogram on the bottom represents the distribution
of confidence scores.
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Figure 8: Distance between upper and lower bound of the confidence certificates provided by Kumar
et al. (2020). Sub-sampled to 500 samples from the test set of CIFAR10.

.

Kumar et al. (2020) introduce bounds on the confidence score in order to issue a certificate on
the prediction given the lower bound. Therefore, they do not investigate the upper bounds
on the confidence. Here, we compute the interval of certified confidences and compare the
two certificates on the confidence: The standard Standard bound as given in (12) and the
more advanced CDF bound. In Figure 8, the distance between the upper and lower bound
is plotted for a range of smoothing σ and certification radii R on a random subset of 500
samples from the CIFAR-10 test set. The underlying models are trained by Cohen et al.
(2019). We may observe that the CDF method yields uniformly tighter bounds in practice.

D Brier Bound

Here we provide a proof to Theorem 3.3 as stated above.

Proof. Let I{·} be an element-wise indicator function. Assume z∗ = lI{c = 1}+ uI{c = 0}
is not the maximum and we want to change z∗ to maximise the TLBS. For some data point
with cn = 1, the proposed confidence is the bound z∗n = ln. Reducing z∗n is not possible
without leaving its feasible set (ln ≤ z∗n ≤ un), and thus the only way to find the maximum is
to increase it. However, increasing z∗n would reduce cn − z∗n which in turn reduces the error,
as ∥ · ∥2 is strictly increasing in cn− zn. Thus, we have a contradiction for cn = 1. The other
case, cn = 0 is analog and both are true for all n and thus, the maximum is proven.
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E Calibration as Mixed-Integer Program

E.1 Restating the Calibration Error

Here we provide a proof of Theorem 3.5.

Proof. We plug (1) into (4) and show equality to the maximum over (5). Let E(z) and a be
as defined as above and denote dn = cn − zn the gap between confidence and correctness.
Further, let em denote the m-th column of E.

max
∀n:∥γn∥2≤R

N ˆECE
(
[z̄(xn + γn)]

N
n=1,y

)
= max

l≤z≤u
N ˆECE (z,y) (16)

= max
l≤z≤u

M∑
m=1

|Bm|

∣∣∣∣∣ 1

|Bm|
∑

n∈Bm

cn −
1

|Bm|
∑

n∈Bm

zn

∣∣∣∣∣
(17)

= max
l≤z≤u

M∑
m=1

∣∣∣∣∣ ∑
n∈Bm

cn − zn

∣∣∣∣∣ (18)

= max
l≤z≤u

M∑
m=1

∣∣∣∣∣ ∑
n∈Bm

dn

∣∣∣∣∣ (19)

= max
l≤z≤u

M∑
m=1

∣∣∣∣∣
N∑

n=1

en,man,m

∣∣∣∣∣ (20)

= max
l≤z≤u

M∑
m=1

∣∣em(z)⊤a
∣∣ (21)

= max
l≤z≤u

∥E⊤a∥1 (22)

The equality in (16) is given as we translate the constraint on [γn]
N
n=1 into the confidence

constraint, l ≤ z ≤ u. The equality assumes the certificate is tight. The equality between
(19) and (20) is a result of the unique assignment and valid assignment constraints.

Dividing both sides by N yields the result.

E.2 Numerical Example for MIP

In this section, we state a simple numerical example that illustrates the derivation of the
Mixed Integer Program (MIP) as presented in Section 3.3. We first define the parameters of
this example and then show what values each variable defined in Section 3.3 takes on.

Setup. We consider a problem of N = 2 samples predicting classes Y = {CA, CB}.

Table 3: Example data for numerical example.

n F̄ (xn) yn l(z̄(xn), R) z̄(xn) u(z̄(xn), R)

1 CA CA 0.1 0.23 0.6
2 CA CB 0.5 0.78 0.9

We regard the expected calibration error with M = 3 bins and equal-width binning. Hence,
the bins are [0, 1/3), [1/3, 2/3), and [2/3, 1].

MIP variables. We obtain the vector of correctness for each prediction: c = [1 0]
⊤.
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We obtain the vector l and u. First, we obtain lz and uz from the table above: lz = [0.1 0.5]
⊤

and uz = [0.6 0.9]
⊤. We further obtain lB and uB from the binning scheme of the ECE.

lB = [0 1/3 2/3]
⊤ and uB = [1/3 2/3 1]

⊤. Using these we define l and u:

l = [0.1 1/3 2/3 0.5 0.5 2/3]
⊤
,

u = [1/3 0.6 0.6 1/3 2/3 0.9]
⊤
.

(23)

It should become clear that bin m = 3 is inaccessible to sample n = 1 and bin m = 1 is
inaccessible to sample n = 2. Hence, k = [0 0 1 1 0 0]

⊤. Using this we define l′ and
u′:

l′ = [0.1 1/3 0 0 0.5 2/3]
⊤

u′ = [1/3 0.6 0 0 2/3 0.9]
⊤ (24)

.

We define the vector of confidences z with inaccessible elements set to 0 (see “Confidence
Constraint”). The vector of confidences is not uniquely defined through the problem above.
One example is z = [0.23 0.45 0 0 0.6 0.78]

⊤ together with a = [1 0 0 0 0 1]
⊤.

We now obtain en,m = cn − zn,m to define e = [0.77 0.55 1 0 0.6 0.78]. Finally, we
obtain E by stacking e appropriately.

E =



e1,1 0 0

0 e1,2 0

0 0 e1,3

e2,1 0 0

0 e2,2 0

0 0 e2,3


=



0.77 0 0

0 0.55 0

0 0 1

0 0 0

0 0.6 0

0 0 0.78


(25)

The last variable that is value dependent is the matrix K, which we can obtain from k as
follows:

K =



k1,1 0

k1,2 0

k1,3 0

0 k2,1

0 k2,2

0 k2,3


=



0 0

0 0

1 0

0 1

0 0

0 0


(26)

E.3 Lagrangian

We follow Wu and Ghanem (2019) and Bibi et al. (2023) to reformulate the binary-constraints
on a. Note that, a ∈ {0, 1}NM ⇔ a ∈ Sb ∩ S2, where Sb is the unit hypercube and S2 is the
ℓ2-sphere, both centered at 1

2 . We introduce auxiliary variables q1 ∈ Sb and q2 ∈ S2 and
add constraints a = q1 and a = q2. Similarly, we replace the constraint z ∈ Sz by enforcing
it on g and adding z = g. Updates on the primal variables (a, z, q1, q2, g) are performed
via gradient descent.

We formally state the augmented Lagrangian. The variables a, z, q1, q2, and g are described
above, each of dimension NM .
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L(a, z,g,q1,2,λ1,2,3,4,5) = −|E(z)⊤a|1M

+ I∞{q1 ∈ Sb}+ λ⊤
1 [a− q1] +

ρ1
2
∥a− q1∥22

+ I∞{q2 ∈ S2}+ λ⊤
2 [a− q2] +

ρ2
2
∥a− q2∥22

+ λ⊤
3 [C

⊤a− 1N ] +
ρ3
2
∥C⊤a− 1N∥22

+ λ⊤
4 K

⊤a+
ρ4
2
∥K⊤a∥22

+ I∞{g ∈ Sz}+ λ⊤
5 [z− g] +

ρ5
2
∥z− g∥22

(27)

with dual variables λ1,2,5 ∈ RNM , λ3,4 ∈ RN . Here, I∞ is 0 if the statement is true and ∞
otherwise. The values of ρi > 0 are hyperparameters to be tuned.

E.4 ADMM Updates

We perform T ADMM steps. At each ADMM step we cycle through the primal variables a
and z and perform gradient descent. For the variables q1, q2 and g, we obtain an analytic
solution by equating the gradient to 0, solving the equation and projecting the variables into
their feasible set. For q1, the update Uq1 is given by

q1 ← clamp[0,1]

(
λ1

ρ1
+ a

)
, (28)

for q2 the update Uq2
is given by

q2 ←
1

2
1+

√
NM

2

λ2

ρ2
+ a− 1

21

∥λ2

ρ2
+ a− 1

21∥2
, (29)

and finally, the update Ug is given by

g← clamp[l′,u′]

(
λ5

ρ5
+ z

)
. (30)

The updates on the dual variables λi are performed through a single gradient ascent step
with step size ρi.

With these definitions, we can formalise the algorithm for the ADMM updates.
Algorithm 1 The ADMM Updates

input ADMM parameters {αa, αz, ρ1,2,3,4,5}, primal variables
{
a(0), z(0),q

(0)
1 ,q

(0)
2 ,g(0)

}
and dual variables {λi}5i=1

output ACCE
for t = 1 to T do
a(t) ← a(t−1) − αa∇aL

(
a(t−1), z(t−1),g(t−1),q

(t−1)
1,2 ,λ

(t−1)
1,2,3,4,5

)
z(t) ← z(t−1) − αz∇zL

(
a(t), z(t−1),g(t−1),q

(t−1)
1,2 ,λ

(t−1)
1,2,3,4,5

)
g(t) ← Ug

(
z(t),λ

(t−1)
5

)
q
(t)
1 ← Uq1

(
a(t),λ

(t−1)
1

)
q
(t)
2 ← Uq2

(
a(t),λ

(t−1)
2

)
λ
(t)
i ← λ

(t−1)
i + ρi∇λi

L
(
a(t), z(t),g(t),q

(t)
1,2,λ

(t−1)
1,2,3,4,5

)
for i = 1, 2, 3, 4, 5

end for
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F Adversarial Calibration Training

F.1 Lagrangian

We formally state the augmented Lagrangian. The variables a, γ, q1, q2 and are described
above, each of dimension NM .

L(a,γ,q1,2,λ1,2,3,4) = −|E(c,γ)⊤a|1M

+ I∞{q1 ∈ Sb}+ λ⊤
1 [a− q1] +

ρ1
2
∥a− q1∥22

+ I∞{q2 ∈ S2}+ λ⊤
2 [a− q2] +

ρ2
2
∥a− q2∥22

+ λ⊤
3 [C

⊤a− 1N ] +
ρ3
2
∥C⊤a− 1N∥22

+ λ⊤
4 K

⊤a+
ρ4
2
∥K⊤a∥22

(31)

with dual variables λ1,2 ∈ RNM , λ3,4 ∈ RN . Here, I∞ is 0 if the statement is true and ∞
otherwise. The values of ρi > 0 are hyperparameters to be tuned.

Note, that this is still a constrained optimisation problem in γ.

F.2 ACT Algorithm

The algorithm here follows the general notation introduced above. Additionally, we define f̄V
θ

to be the Monte Carlo approximation to f̄θ with V samples and F̄V
θ the approximation to F̄θ.

We further denote updates on the variables using U . Updates are performed as in Appendix
E.4, if not stated otherwise. Here, we use UPGD to describe an update by projected gradient
descent. In the algorithm below, the correctness, c, and the inaccessibility matrix, K, are
explicitly added, as these require a forward pass to be computed.
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Algorithm 2 Adversarial Calibration Training - One Batch

input Data {xn, yn}Nn=1,...,N , ADMM parameters {αγ , αz, ρ1,2,3,4}, perturbation bound ϵ,
and L = ACCE

output θ

γ
(0)
n ← 0 {Initialise Adversary}

a(0) ← [1/M, 1/M, . . . , 1/M ] {Initialise binning vector}
q
(0)
1 ← a(0) {Initialise for Box Constraint}

q
(0)
2 ← a(0) {Initialise for Sphere Constraint}

λi ← 0 for i = 1, 2, 3, 4 {Initialise dual variables}
for t = 1 to T do
z(t−1) ←

[
h
(
f̄V
θ

(
xn + γ

(t−1)
n

))]
n=1,...,N

if t = 1 then
K is created as described in section 3.3. Here, as function of z(0). {This is required
for the ACCE constraint.}
c←

[
I{yn = F̄V

θ (xn + γ(0))}
]
n=1,...,N

{The correctness required for the ACCE loss.}
end if
γ(t) ← UPGD

(
γ(t−1),a(t−1), c, ϵ

)
a(t) ← Ua

(
z(t−1),q

(t−1)
1 ,q

(t−1)
2 ,λ

(t−1)
1,2,3,4,K, c

)
q
(t)
1 ← Uq1

(
a(t),λ

(t−1)
1

)
q
(t)
2 ← Uq2

(
a(t),λ

(t−1)
2

)
λ
(t)
i ← λ

(t−1)
i + ρi∇λiL

(
a(t), z(t−1),q

(t)
1,2,λ

(t−1)
1,2,3,4

)
for i = 1, 2, 3, 4

Update Parameters: ρ1:4
end for
θ ← Uθ

(
f̄V
θ

(
x+ γ(T )

))
{Update model parameters}

G Experiments - ACCE

G.1 ADMM Convergence

In this section we present some insights and figures that closer examine the run time and
convergence of ADMM on the mixed-integer program (5). Numbers reported in this section
are based on CIFAR-10.

Run Time. In our experiments, ADMM always converges in under 3000 steps. Our
implementation utilises the torch.sparse package in version 2.0 (Paszke et al., 2019) and
runs in less than 2 minutes for 7000 certified data points and 15 bins on a Nvidia RTX 3090. At
convergence, we observe that all constraints are sufficiently met, and hence ADMM provides
a feasible solution (see below). We validated a number of optimization hyperparameters and
fix those for later experiments (see Appendix G.2). We recommend running ADMM on two
different initialization of z, the observed adversary-free confidences, as well as those achieving
the certified Brier score (3) and subsequently picking the larger ACCE. We find that the
maximum ACCE is achieved well before ADMM has converged. Therefore, we recommend
projecting a copy of a and z into their feasible set after each step and calculating the ACCE.

Convergence Diagnostics. Figure 9 shows the development of various components of the
Lagrangian (see (27) in Appendix E.3) across steps. Figure 10 shows how well the constraints
are met. Finally, Figure 11 plots parts of the assignment vector, a, across steps. All plots
are based on 2000 CIFAR-10 predictions of a model trained by (Cohen et al., 2019) with
σ = 0.25.

More precisely, Figure 9 plots seven metrics across 3000 steps of running ADMM. In the first
row, you may observe the Lagrangian (ignoring the I∞ components). In the second row, you
may observe the soft objective divided by N , which is the relaxed ECE. Further, we project
the solution to exactly satisfy the constraints, the projected ECE. The third and fourth plot
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Figure 9: Components of the Lagrangian for ADMM to find the ACCE on CIFAR-10 with ϵ = 1.0.
Labels explained in Appendix G.1. Observe, that all constraints are fully met.

are the Box and Sphere Constraints on a as described above. Together they are equivalent
to a binary constraint a. The fifth row plots the constraint on the confidences l ≤ z ≤ u.
The sixth row shows the Unique Assignment constraint and the seventh and final row shows
the Valid Assignment constraint. You may observe, that all components converge well.

To closer describe Figure 10, we first introduce some notation: For some vector x and set
S, we define dp(x, S) := miny∈S ∥x− y∥p. Each subplot in Figure 10 tracks one constraint
across the ADMM steps. For each constraints we provide p = 1 and p =∞ norms for the
distance from the constraint being met, i.e. the projection distance to the feasible set. We
measure whether the confidence is bounded using dp(z, Sz) where Sz = {z : l ≤ z ≤ u}.
The Binary Assignment constraint is measured by dp(a,A), where A is the set of all binary
vectors. Deviation from the Unique Assignment and Valid Assignment constraints are given
by ∥C⊤a− 1∥p, and ∥K⊤a∥p, respectively.
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Figure 10: The deviation of constraints of the mixed-integer program given in (6). For precise
definitions of the y-axis please refer to Appendix G.1.

Finally, we investigate the values of the assignment vector a closer. In Figure 11, we plot
the first 150 elements of a for steps 0, 500 and 3000. These elements are the assignments
of 10 data points to 15 bins. As you can see the initialization of a is uniform, while a
“preference” for some bins becomes apparent at 500 steps and finally, at 3000 steps the vector
has converged to a near-perfect binary vector.

G.2 ADMM Hyperparameter Search

We performed a random hyperparameter search for the ADMM solver to find reasonable
hyperparameters that are efficient across experiments.

• The learning rate for z, αz: We test values from 1× 10−5 to 1× 10−2 and find it
has little influence.
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Figure 11: The first 150 elements of the assignment vector in the mixed-integer program across
steps of the ADMM solver. The vector is initialized uniform but converges to a binary vector.

• The learning rate for a, αa: We test values from 5× 10−4 to 5× 10−2 for ImageNet
and from 1× 10−5 to 1× 10−2 for CIFAR10. Larger learning rates are preferred. In
our experiments 0.001 to 0.05 worked best.

• The Lagrangian smoothing variable ρi: We tested starting values from 0.001 to
0.5. We find little influence but values around 0.01 to 0.05 works best. We test
multiplicative schedules to increase ρi over time with increases starting at 1‰ to
4%. While larger values of ρ improve constraint convergence, they can dominate
gradients when the constraints have not sufficiently converged yet, and thus ADMM
easily diverges. Schedules with factors around 1.02 to 1.05 per step are effective and
we stop increasing ρ at 10, which is completely sufficient to meet the constraints.
We find, that ρi scheduling is important. Applying the same schedule described
above for all ρ1, . . . , ρ5 works reasonably well.

• We test performing 1 to 3 updates for a and z per ADMM step and find that more
steps do not aid results while slowing down ADMM. We thus, recommend 1 step
per ADMM step.

• We test clipping values of a. As we constrain a = q2, we clip a s.t. ∥a− 1/2∥∞ ≤
1.2∥q2−1/2∥∞. Note that when a converges, it will be significantly smaller than this
constraint. We have never observed any decline in performance with this approach
but seen that it stabilises the optimisation in rare instances.

• We clip the gradients of a to 5 in infinity norm aiding stability.
• The initialisation of a has a major effect on the performance of ADMM, more so

than any other hyperparameter. While it is an obvious solution to initialise a(0)

such that it is a valid assignment for z(0), we find that this is majorly outperformed
by uniform initialisations. We tested 0, 1/M and 1 and find that 1/M works best.

• The initialisation of z has a mild effect on ADMM performance given that sometimes,
we might have prior knowledge on how and in which direction the model currently
is miscalibrated. We recommend initialising it with adversary-free confidences and
with the confidences achieving the Brier bound and subsequently picking the larger
one.

G.3 ADMM vs. dECE vs. Brier Bound

To further assess the efficacy of the ADMM algorithm, we compare it to an alternative
methods of approximating bounds: the differentiable calibration error (dECE) (Bohdal
et al., 2023) and the bounds obtained by the confidences that maximise the Brier score
(Brier confidences). We find that ADMM outperforms both other techniques. We performed
hyperparameter searches for ADMM and dECE with a wide range, but carefully selected
hyperparameters. For ADMM we run between 259 and 1560 trials (depending on the runtime)
and for dECE always 2000 trials. We explore a subset of radii and smoothing σ (as visible
from our plots). Our first observation is, that the dECE is very sensitive to the initialisation
of confidence scores indicating that gradient ascent on dECE (even with very large learning
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rates) does not sufficiently explore the loss surface. While differences are also observable for
ADMM, these are very small. Figure 12 show these differences for ImageNet.
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Figure 12: The results of the hyperparameter search are shown here. For each combination of
dataset, σ, radius, and initialisation of z, the maximum achieved by the three methods, ADMM,
dECE and Brier are shown here. ADMM performs well regardless of the initialization of z. The
dECE is depends highly on the initialisation.

Second, as a result of our hyperparameter search, we note that the best ADMM results
outperform the best dECE by a significant margin. To demonstrate this, we compare the
maxima achieved across trials by the dECE, the Brier bound and ADMM in Figure 13.
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Figure 13: The results of the hyperparameter search are shown here. For each combination of
dataset, σ, and radius, the maximum achieved by the three methods, ADMM, dECE and Brier
are shown here. While dECE is able to be uniformly better than the Brier confidences, ADMM
outperforms both by a significant margin.

As noted in the main paper, for large radii, the methods converge to each other. Beyond
the comparison of maximum values above, we find that even a single one-size-fits-all set of
hyperparameters for ADMM outperforms the maximum achieved by the dECE hyperparam-
eter search in most cases as shown in Figure 14. The hyperparameters used for ADMM are
as follows: All ρis are initialised to 0.01 with increases every step by a factor of 0.4%. Both
learning rates are set to 0.001. The assignments are initialised to 1/M , the confidence is
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initialised to adversary-free and Brier confidence, a measure benefiting the dECE much more
than the ADMM. The gradients of the assignment variable a are clipped to 1.
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Figure 14: We compare a single set of parameters for ADMM across all dataset, smoothing and
radius combinations and find that it performs at least as good as the maximum dECE from a
hyperparameter search of 2000 samples in 17/19 instances.

We use our results from the hyperparameter searches to run ADMM and dECE on a finer
grid of certified confidences as referenced in section 5.2. Here, we present the results for the
finer grid for CIFAR-10 (see Figure 15). The results for ImageNet are shown in Figure 3.
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Figure 15: The ACCE is shown here for ADMM, dECE and the Brier confidences. One set of
carefully selected hyperparameter is used. For a wider overview see Figure 13

H Experiments - Brier Score
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(a) Certified Brier scores (CBS) on CIFAR-10
across a range of certified radii for models with
different smoothing σ. Each CBS is based on all
certifiable samples at that radius.
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(b) Certified Brier scores (CBS) on CIFAR-10
across a range of certified radii for models with
different smoothing σ. Each data point is based
on the same set data points per model.

In Figure 16a we plot the certified Brier scores on CIFAR-10 for a range of certified radii.
Observe that the CBS increases significantly with certified radius and there is a trade-off
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for CBS governed by σ: Heavily smoothed models achieve worse CBS on small radii but
maintain it better for larger radii.

In 16b we plot the CBS on a constant subset of data that is certifiable at all shown radii.
Hence, the certified accuracy is constant in this plot. We observe that these “most certifiable
samples” maintain their CBS very well for small and medium radii. The CBS on these
samples is significantly lower than the CBS on all certifiable samples as shown in 16a.

I Experiments - Adversarial Calibration Training

I.1 ACCE Evaluation Parameters

In order to evaluate the ACCE during experiments on Adversarial Calibration Training, we
report the maximum value over a grid of 16 runs. We do this to prevent overfitting the
ACCE on a certain set of hyperparameters and thus ensure ACCE-ACT is not given an
unfair advantage during evaluation. We run ADMM 16 times and pick the largest ACCE
across them. The hyperparameters are given by the product of following parameters:

• Initialisation of the confidences using the observed, clean confidences, and the Brier
confidences.

• The learning rate for the confidences is 0.001 or 0.01.
• The learning rate for the binning variable is 0.01 or 0.1.
• The multiplicative factor for scheduling of the ρi’s for the ADMM solver: 1.004 or
1.01.

I.2 Baseline Models

This section provides more details on how models from Salman et al. (2019) were chosen for
fine-tuning.

CIFAR-10. In Table 14 and 15 in Salman et al. (2019), the authors list the parameters
of their adversarial training runs and the certified accuracy per radius. For each certified
radius we pick the best PGD result from each table (see Table 4) and perform certification
on these checkpoints with 100,000 certification samples. We then use these certificates to
obtain the ACCE and CBS, and verify that our certified accuracy lies within ±3% of Salman
et al. (2019)’s reported results. Finally, we pick one or multiple models per certified radius
on (or very close to) the Pareto curve between certified accuracy and ACCE, i.e., for each of
the models there exist no other model that simultaneously improves ACCE and certified
accuracy (also see Table 4). For all radii we pick the model achieving the highest accuracy
and for larger radii we also pick two more models that are already better calibrated (at the
cost of accuracy) to investigate whether our training can improve calibration on these models
too. We use these models as baseline for fine-tuning.

ImageNet. For ImageNet, the authors list their models in Table 6 in Salman et al. (2019).
For each certified radius we pick the best model. Analog to CIFAR10, we perform certification,
verify that our results are close to Salman et al. (2019) and certify calibration. The results
are shown in Table 5. We use each of these four models for fine-tuning.
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Table 4: Certified metrics for the best models from Salman et al. (2019) on CIFAR-10. Results are based on 100,000 certification samples and the full CIFAR-10
test set. We report approximate certified calibration error (ACCE), certified accuracy (CA), the certified brier score (CBS) and whether that model was chosen as
baseline for our fine-tuning experiments. The hyperparameters follow Salman et al. (2019) notation: T is the number of adversarial steps, mtrain the number of
Monte Carlo samples, σ the smoothing parameter and ϵ is the L2 upper bound on the adversary.

T mtrain σ ϵ ACCE CA CBS Baseline for Radius
0.05 0.20 0.50 1.00 0.05 0.20 0.50 1.00 0.05 0.20 0.50 1.00

2 2 0.25 1.00 15.95 29.22 49.90 - 70.34 65.60 55.66 0.00 16.75 18.97 31.14 - -
2 2 0.50 2.00 20.77 26.78 44.99 64.24 52.16 49.71 44.92 37.03 25.15 26.70 30.96 45.93 -
2 4 0.12 0.25 11.06 27.94 - - 84.31 76.50 0.00 0.00 9.12 11.21 - - 0.05, 0.20
2 4 0.25 0.50 17.85 21.39 42.89 - 76.00 70.16 55.71 0.00 12.64 13.88 21.21 - 0.50
2 4 1.00 2.00 24.60 26.36 36.52 50.66 44.93 42.44 38.00 30.87 28.32 29.55 32.39 37.46 -
2 8 0.12 0.50 12.09 30.43 - - 83.44 76.67 0.00 0.00 9.54 13.56 - - -

10 1 0.12 0.50 17.14 35.30 - - 77.76 71.34 0.00 0.00 12.84 18.71 - - -
10 1 0.50 0.50 18.26 31.00 38.13 53.38 62.31 58.07 48.17 32.64 18.50 20.41 23.34 32.17 -
10 1 0.50 1.00 15.98 31.13 44.16 59.81 57.27 54.32 47.06 35.10 22.04 23.93 28.16 41.36 -
10 1 0.50 2.00 19.93 24.94 45.73 64.35 48.48 46.08 41.42 33.89 25.74 27.11 31.18 46.18 -
10 2 0.50 0.50 17.98 30.26 33.59 50.97 64.11 59.08 49.40 32.62 17.06 18.61 20.94 28.67 0.50
10 2 0.50 1.00 16.21 30.61 39.51 56.36 61.02 57.43 49.50 36.10 19.66 21.40 24.97 36.25 -
10 2 0.50 2.00 22.34 29.03 45.76 64.59 52.59 50.16 44.88 37.20 25.92 27.38 31.53 46.52 1.00
10 2 1.00 2.00 22.70 24.18 35.11 46.71 43.10 41.01 36.90 30.40 27.53 28.62 31.05 36.13 1.00
10 4 0.12 0.25 11.32 28.50 - - 83.41 75.96 0.00 0.00 9.63 12.06 - - -
10 4 0.25 1.00 15.21 27.25 49.30 - 72.13 67.24 56.98 0.00 15.45 17.52 28.96 - -
10 4 0.50 0.25 19.29 27.93 29.87 44.96 66.23 60.10 47.07 26.89 15.04 16.40 16.79 22.00 -
10 4 0.50 1.00 16.28 29.62 37.69 52.78 63.46 58.87 49.54 34.30 18.97 20.57 23.51 32.90 1.00
10 8 0.12 0.25 10.90 27.83 - - 84.00 75.78 0.00 0.00 8.70 10.94 - - -
10 8 0.25 0.50 17.20 20.53 41.34 - 76.78 70.45 55.20 0.00 12.01 12.94 19.51 - -
10 8 0.25 1.00 15.21 28.68 49.65 - 73.43 68.58 57.62 0.00 15.22 17.25 28.88 - 0.50
10 8 1.00 2.00 26.14 28.13 41.08 50.96 46.36 44.03 39.32 31.35 28.36 29.52 32.34 37.40 -
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Table 5: Certified metrics for the best four models from Salman et al. (2019) on ImageNet. Results are based on 100,000 certification samples and 500 test set
samples. For notation refer to the caption of Table 4. For all models T = 1 and mtrain = 1.

σ ϵ ACCE CA CBS
0.05 0.50 1.00 2.00 3.00 0.05 0.50 1.00 2.00 3.00 0.05 0.50 1.00 2.00 3.00

0.25 0.50 15.81 50.18 - - - 66.00 58.00 0.00 0.00 0.00 16.65 32.23 - - -
0.50 1.00 15.46 36.30 54.24 - - 57.60 52.80 45.60 0.00 0.00 17.82 23.40 35.16 - -
1.00 2.00 13.19 32.53 37.97 56.78 80.93 42.80 38.60 35.80 28.80 21.80 19.72 22.78 27.14 40.29 66.25
1.00 4.00 16.05 28.47 38.67 56.38 82.57 37.60 34.00 30.40 24.40 20.40 21.05 23.22 26.91 40.91 68.88
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I.3 Fine-tuning parameters

In this section, we provide more details on the hyperparameters for CIFAR-10 experiments.
We fine-tune various model checkpoints provided by Salman et al. (2019). Generally, we
adopt the number of Gaussian perturbations (mtrain in Salman et al. (2019) notation, V in
ours), the attack boundary ϵ and the smoothing σ from the model checkpoint as trained
before. We train using SGD with batch size 256 and weight decay of 0.0001. We use gradients
obtained through backpropagation as recommended by (Salman et al., 2019) opposed to Stein
gradients. We further follow the authors in setting the learning rate for the attack as function
of ϵ and T , i.e. the attack bound and the number of optimization steps. However, we allow
for some scaling and use a learning rate of 2v ϵ

T with factor v as additional hyperparameter.

Brier-ACT. We fine-tune for 10 epochs with a linear warm-up schedule for ϵ that reaches
full size at epoch 3. We decrease the learning rate for the model weights every 4 epochs by a
factor of 0.1. We train 16 models per baseline model that share these parameters, but form
a grid over the factor to scale attack learning rates v ∈ {0.01, 0.1, 1.0, 2.0}, weight learning
rates {0.01, 0.05} and the number of steps used in the attack, T ∈ {1, 4}.
ACCE-ACT. We fine-tune for 10 epochs with ϵ schedule and weight learning rate schedule
as described above. As the calibration loss is a distributional measure over a set of samples,
a larger batch size is advisable and thus all of the runs are performed on a batch size of 2048.
We train 16 models per baseline with hyperparameters sampled from the Cartesian product of
the following hyperparameters: The attack learning rate scaling factor v ∈ {0.01, 0.1, 1.0, 2.0},
number of steps T ∈ {1, 4, 10, 20}, weight learning rates {0.01, 0.05}, and the factor in the
multiplicative schedule of ρi ∈ {0.01, 0.05, 0.1, 0.5} in the Lagrangian that governs how early
the constraints will be enforced.

I.4 CIFAR-10 Fine-tuning Effects

CIFAR10 for all baseline models. Above, we compare fine-tuning methods on the
baseline models with the highest certified accuracy for each radius. However, due to the
trade-off identified between certified accuracy and certified calibration, these models tend
to have poor certified calibration. Therefore we also investigate whether, ACT is able to
improve certified calibration on baselines that are naturally better calibrated. In Figure
17, you may observe that for each model that is certified for a radius R ≥ 0.5, significant
improvements are possible.
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Figure 17: Each sub-figure depicts the effects of fine-tuning on the accuracy and ACCE for one
pre-training model checkpoint. The pre-training model checkpoints (“AT”) lie on the Pareto curve
between ACCE and accuracy at the radius shown in the title. You may observe the ACCE-ACT
yields significant ACCE improvements for all models at larger radii. These are achieved without
adverse effects on the accuracy for all but the last model “R=1.00 | s-1.00-e-512-m-2-T-10”).
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I.5 Ablation Studies

To investigate the effectiveness of ACT beyond further fine-tuning using standard AT, we also
fine-tune the baseline models with AT. We use the same hyperparameters as for Brier-ACT
as outlined in I.3. The results are shown in Table 6 (the setup is equivalent to Table 2). You
may observe that fine-tuning the model using AT yields similar results to Brier-ACT but does
not show the same effectiveness as ACCE-ACT. It is well-known that cross-entropy training is
equivalent to maximum likelihood estimation. It is further known that the log likelihood is a
proper scoring rule such as the Brier score. Hence, it is not surprising that careful utilisation
for the cross-entropy loss is capable improving calibration. However, literature suggests that
the Brier score can be more effective in training for calibration and cross-entropy tends to
lead to overconfident predictions (Guo et al., 2017; Mukhoti et al., 2020; Hui and Belkin,
2021). In Figure 18, we show that fine-tuning ACCE-ACT outperforms AT on all tested
baselines.
Table 6: Comparison of calibration for CIFAR-10 models achieving within 3% of the highest certified
accuracy (CA) per training method across certified radii (from 0.05 to 1.00). Metrics are the
approximate certified calibration error (ACCE ↓) and certified Brier score (CBS ↓).

Metric Method 0.05 0.20 0.50 1.00

CA [83, 86] [74, 78] [56, 59] [35, 38]

ACCE AT 10.90 27.83 49.30 56.36
ACCE Finetuned AT 9.99 27.15 42.72 51.71
ACCE Brier-ACT 9.97 27.07 41.32 52.13
ACCE ACCE-ACT 10.06 27.22 42.16 47.08

CBS AT 8.70 10.94 28.88 36.25
CBS Finetuned AT 8.09 10.12 20.86 31.89
CBS Brier-ACT 8.10 10.20 19.38 32.54
CBS ACCE-ACT 8.82 10.73 20.94 24.87
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Figure 18: Fine-tuning results for every model checkpoint including Fine-tuning using AT.

J Experiments - Adversarial Calibration Training - Further
Datasets

J.1 FashionMNIST Results

We replicate the CIFAR-10 experiments on FashionMNIST and find similar effects.

36



1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955

J.1.1 Experimental Setup

We replicate the CIFAR-10 experiments exactly, except for the following differences.

• We train our own baselines as Salman et al. (2019) do not discuss FashionMNIST.
We use the hyperparameters they report for CIFAR-10, however, we use a linear
warm-up schedule for σ over 8 epochs. Further, we set ϵ = 0 for 8 epochs and then
use their warm-up schedule for 8 epochs. These adaptions were required to prevent
models from diverging for σ ≥ 0.5.

• We certify 500 samples on FashionMNIST rather than the full test-set on CIFAR-10
due to the cost of randomized smoothing.

• We additionally certify radius R = 0.1.
• We follow Zhai et al. (2020), who apply LeNet (LeCun et al., 1998) on MNIST and

apply it to FashionMNIST.

J.1.2 Results

Below we present Table 7 for FashionMNIST, that replicates Table 2. We compare models
that come within 3% of the model with the highest certified accuracy for each certified radius.
We compare the best calibration achieved by any model. We observe that the Brier-ACT
performs similar to AT (standard adversarial training). ACCE-ACT outperforms both other
methods.
Table 7: Comparison of calibration for FashionMNIST models achieving within 3% of the highest
certified accuracy (CA) per training method across certified radii (from 0.05 to 1.00). Metrics are
the approximate certified calibration error (ACCE ↓) and certified Brier score (CBS ↓).

Metric Method 0.05 0.10 0.20 0.50 1.00

CA [87, 90] [86, 89] [82, 85] [76, 79] [60, 63]
ACCE AT 11.44 13.71 16.51 42.55 48.03
ACCE Brier-ACT 10.96 12.96 15.20 42.35 48.03
ACCE ACCE-ACT 10.32 11.26 13.19 39.62 43.78
CBS AT 7.73 7.93 8.34 22.32 27.87
CBS Brier-ACT 7.05 7.37 7.88 21.95 27.34
CBS ACCE-ACT 6.76 7.07 7.28 17.77 21.51

J.2 SVHN Results

We replicate the CIFAR-10 experiments on the Street View House Number dataset and find
similar effects.

J.2.1 Experimental Setup

We replicate the CIFAR-10 experiments exactly, except for the following differences.

• We train our own baselines as Salman et al. (2019) do not discuss SVHN. We use
the hyperparameters they report for CIFAR-10, however, we use a linear warm-up
schedule for σ over 8 epochs. Further, we set ϵ = 0 for 8 epochs and then use their
warm-up schedule for 8 epochs. These adaptions were required to prevent models
from diverging for σ ≥ 0.5. The baselines perform similar to (Zhai et al., 2020).

• We certify 500 samples on SVHN rather than the full test-set on CIFAR-10 due to
the cost of randomized smoothing.

• We additionally certify radius R = 0.1.

J.2.2 Results

Below we present Table 8 for SVHN, that replicates Table 2. We compare models that come
within 3% of the model with the highest certified accuracy for each certified radius. We
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compare the best calibration achieved by any model. We observe that the Brier-ACT performs
better than AT (standard adversarial training) on small radii. ACCE-ACT outperforms
both other methods across all conditions.
Table 8: Comparison of calibration for SVHN models achieving within 3% of the highest certified
accuracy (CA) per training method across certified radii (from 0.05 to 1.00). Metrics are the
approximate certified calibration error (ACCE ↓) and certified Brier score (CBS ↓).

Metric Method 0.05 0.10 0.20 0.50 1.00

CA [89, 92] [87, 90] [81, 84] [61, 64] [27, 30]

ACCE AT 14.31 15.04 18.42 41.09 60.18
ACCE Brier-ACT 11.55 12.63 15.09 44.37 61.98
ACCE ACCE-ACT 11.40 12.15 14.20 39.29 49.68

CBS AT 6.79 6.53 7.40 18.25 41.64
CBS Brier-ACT 4.73 5.08 5.58 18.56 44.26
CBS ACCE-ACT 4.49 4.51 5.45 16.21 26.08

J.3 CIFAR-100 Results

We replicate the CIFAR-10 experiments on CIFAR-100 and find similar effects.

J.3.1 Experimental Setup

We replicate the CIFAR-10 experiments exactly, except for the following differences.

• We train our own baselines as Salman et al. (2019) do not discuss CIFAR-100.
We use the hyperparameters they report for CIFAR-10, however, we use a linear
warm-up schedule for σ over 8 epochs. Further, we set ϵ = 0 for 8 epochs and then
use their warm-up schedule for 8 epochs. These adaptions were required to prevent
models from diverging for σ ≥ 0.5.

• We certify 500 samples on CIFAR-100 rather than the full test-set on CIFAR-10 due
to the cost of randomized smoothing.

• We additionally certify radius R = 0.1.

J.3.2 Results

Below we present Table 9 for CIFAR-100, that replicates Table 2. We compare models that
come within 3% of the model with the highest certified accuracy for each certified radius.
We compare the best calibration achieved by any model. We observe that the Brier-ACT
performs best for small radii and ACCE-ACT for large radii. Both outperform the AT
baseline.
Table 9: Comparison of calibration for CIFAR-100 models achieving within 3% of the highest
certified accuracy (CA) per training method across certified radii (from 0.05 to 1.00). Metrics are
the approximate certified calibration error (ACCE ↓) and certified Brier score (CBS ↓).

Metric Method 0.05 0.10 0.20 0.50 1.00

CA [45, 48] [43, 46] [38, 41] [28, 31] [15, 18]

ACCE AT 29.00 32.23 35.52 55.77 60.46
ACCE Brier-ACT 25.14 31.54 32.91 56.89 55.88
ACCE ACCE-ACT 27.21 30.70 30.95 51.85 53.11

CBS AT 19.08 20.77 23.86 37.80 43.71
CBS Brier-ACT 18.09 19.93 21.13 39.60 36.99
CBS ACCE-ACT 18.78 20.33 22.16 34.35 32.04
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J.4 ImageNet Results

In this section, we provide details for the adversarial training experiments we conducted on
ImageNet.

J.4.1 Experimental Setup

For ImageNet we pick the best PGD model for each certified radius reported by Salman
et al. (2019) in their Table 6. These baselines and their certified metrics can be found in
5. For these four models, we perform fine-tuning with Brier-ACT and ACCE-ACT. The
experimental setup is similar to that for CIFAR-10 (see Section 5.3). We train with batch size
256 for Brier and 1024 for ACCE, and fine-tune 6 models per baseline. The hyperparameters
for these 6 models are the product of weight learning rates {0.001, 0.005, 0.01} and attack
learning rate factor of {1.0, 5.0} (see I.3 for an explanation). For all ACCE-ACT models we
use the same ADMM parameters (ρ = 0.01). Due to the cost of certification, only use 10’000
Gaussian noise samples to obtain the smooth model.

J.4.2 Results

In Table 10, we compare models that come within 3% of the model with the highest certified
accuracy for each certified radius. We compare the best calibration achieved by any model per
training method. The calibration of ACT is consistently, but only marginally below that of
AT. The best performing method here is “ACCE-ACT*”, which is a variant of ACCE-ACT in
which we update model weights using loss ηLCE(f̄(x+γ∗), y)+(1−η)ACCE(f̄(x+γ∗), a∗, y).
We pick η between 0.8 and 0.99, as the ACCE may be magnitudes larger than the CE. We
think using the ACCE as part of the loss for updating the weights is a promising direction,
but leave this for future work.
Table 10: Comparison of calibration for ImageNet models achieving within 3% of the highest
certified accuracy (CA) per training method across certified radii (from 0.05 to 1.00). Metrics are
the approximate certified calibration error (ACCE ↓) and certified Brier score (CBS ↓).

Metric Method 0.05 0.50 1.00 2.00

CA [66, 69] [57, 60] [44, 47] [27, 30]

ACCE AT 23.08 63.69 66.09 68.33
ACCE Brier-ACT 21.60 62.85 64.29 68.58
ACCE ACCE-ACT 22.45 62.62 64.99 67.92
ACCE ACCE-ACT* 21.67 61.96 64.23 67.56

CBS AT 17.20 42.95 45.84 49.71
CBS Brier-ACT 16.45 41.69 43.48 49.01
CBS ACCE-ACT 16.79 41.73 44.41 48.17
CBS ACCE-ACT* 16.28 40.84 43.75 47.91

K Robustness-Calibration-Trade-Off

Previous literature on accuracy certification identifies a robustness-accuracy trade-off governed
by a smoothing parameter σ: Strongly smoothed models achieve high certified accuracy on
large radii, but tend to perform worse within small radii and vice versa (Cohen et al., 2019;
Salman et al., 2019). We observe a similar trade-off for certified calibration: Models with
small σ provide tighter certified calibration on small radii, while heavily smoothed models
maintain certified calibration much better. This becomes apparent for both the ACCE (see
Figure 15) and CBS (see Figure 16a).

Further, we observe an association between calibration (ACCE and CBS), certified accuracy
(CA) and average certified radius (ACR) (Zhai et al., 2020) that is heavily moderated by
the certification radius. In Figure 19, the rank correlation between these metrics across all
baseline and fine-tuned models are shown. For small radii, we observe that metrics harmonise:
Large CA is associated with low ACCE and CBS. As the certification radius increases, these
relationships invert, and we observe metrics competing : High CA is associated with high
CBS and ACCE, i.e., poor calibration and low ACR is associated with poor calibration.
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These relationships imply that there is a trade-off between calibration and accuracies at
large certified radii. Certified accuracy and ACR both benefit strongly from large margins
between the top and the runner-up confidence, which can increase overconfidence and thus
harm calibration. We leave a closer investigation of the causes for future work.

CA CBS ACCE ACR
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Figure 19: Spearman rank correlation for certified accuracy (CA ↑), Certified Brier Score (CBS
↓), Approximate Certified Calibration Error (ACCE ↓) and average certified radius (ARC ↑) for
different certified radii. For small radii, optimal CBS, CA, and ACCE coincide. For larger radii
there is a trade-off.

L Future Work

Our study offers an extensive analysis of certified calibration while highlighting avenues for
future research. Initially, we note the capability of the MIP to optimise adaptive binning
ECE, which we do not explore due to limitations of the baseline against which we compare.
Additionally, our ACCE method approximates an upper limit for the estimated ECE, paving
the way for applying confidence intervals to better align this metric with the true ECE (e.g.,
Kumar et al. (2019)). Further, we suggest to perform adversarial training as an inverse
problem, where the targets are given by the worst-case confidences on the dataset. We also
recognize a calibration generalization gap in ImageNet, suggesting that a meta-learning
framework might yield improvements (Bohdal et al., 2023).

M Differentiable Calibration Error

M.1 Definition

Bohdal et al. (2023) propose a differentiable approximation to the ECE estimator. The
authors note that the standard calibration error estimator is non-differentiable in two
operations: the accuracy and the hard binning. As we are assuming certified predictions,
their correctness cn (and thus the accuracy per bin) is constant with respect to the confidence
scores zn and thus does not need to be differentiable. We therefore simplify their dECE and
apply only one differentiable approximation. We restate the calibration error estimator from
(1) and simplify:

ˆECE =

M∑
m=1

|Bm|
N

∣∣∣∣∣ 1

|Bm|
∑

n∈Bm

cn −
1

|Bm|
∑

n∈Bm

zn

∣∣∣∣∣ (32)

=
1

N

M∑
m=1

∣∣∣∣∣
N∑

n=1

an,m(cn − zn)

∣∣∣∣∣ (33)

where an,m ∈ {0, 1} is the hard indicator whether data point n is assigned to bin m. This is
replaced with a soft indicator sn,m ∈ [0, 1] with

∑
m sn,m = 1. Define matrix S ∈ [0, 1]N×M

with elements sn,m and let e = [c1 − z1, . . . , cN − zN ]. We can write the differentiable
calibration error ˆdECE as:

ˆdECE =
1

N
∥S⊤e∥1 (34)
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The soft assignment sn,m is obtained the following way. For M equal width bins with cut-offs
β1 < . . . < βM−1, we define b with elements bi = −

∑i−1
m=1 βm. Further, let w = [1, 2, . . . ,M ]

we obtain the soft assignments sn through a tempered softmax function: sn = σ((wzn+b)/τ).
For τ → 0, the vector sn approximates a one-hot encoded vector and (34) recovers the
original ECE.

M.2 dECE Parameters

As for ADMM, we perform an extensive hyperparameter search for the dECE. Our key
insight is to start the optimisation with high values of τ , i.e. 0.01 as this increases the
smoothness of the objective function and slowly decrease τ to about 1× 10−6 at which point
we usually observe a difference between the ECE and dECE of less than 1× 10−6.

We use the dECE as one method to approximate the CCE. As for ADMM, we test a wide
range of hyperparameters for the dECE. The one most significant hyperparameter is the
initialization of z. We test the same initialisation as for ADMM, i.e. the adversary-free and
Brier confidences. In addition, we test random Gaussian and random uniform initialisation.
We do not find a single optimal strategy. It is possible that the adversary-free ECE is higher
than the ECE obtained by using the Brier confidences and hence the Brier confidences are
not universally better values to initialize z. As dECE shows poor performance in exploring
the loss surface, we recommend initialisation to whatever initialisation yields the largest error
to begin with. All other hyperparameters are insignificant in comparison and usually over
95% of variation in results explained by the initialisation of z. We test various learning rates,
schedulers for τ (as mentioned above), learning rate schedulers (Cosine Annealing, Constant,
ReduceOnPleateau) and optimizer momentum and find none of these hyperparameters to be
significant.

N Compute Cost

We outline computational cost required to replicate experiments. We mostly use A40 GPUs
and equivalent older models.

• The experiments in the motivation section require adversarial inference and possibly
training. GPU hours 70 including training.

• The experiments performing parameter search for ADMM and dECE to estimate
the ACCE take around 400 GPU hours.

• Training baselines that are not provided by Salman et al. (2019) requires 600 GPU
hours.

• Performing randomized smoothing on baseline models takes 1000 GPU hours.
• Performing randomized smoothing on fine-tuned models takes 2200 GPU hours.
• Fine-tuning models takes 350 GPU hours.
• Running an ensemble of ADMMs to estimate the ACCE for the evaluation of

baselines requires 320 GPU hours (baselines are certified on many radii).
• Running an ensemble of ADMMs to estimate the ACCE for fine-tuned models

requires 90 GPU hours.

In total, we use around 5000 GPU hours for the experiments in this paper. Additional
exploratory experiments are not included.
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