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Abstract

Advances in large language models (LLMs) have spurred research into enhancing
their reasoning capabilities, particularly in math-rich STEM documents. While
LLMs can generate equations or solve math-related queries, their ability to fully
understand and interpret abstract mathematical symbols in long, math-rich docu-
ments remains limited. In this paper, we introduce STEM-POM, a comprehensive
benchmark dataset designed to evaluate LLMs’ reasoning abilities on math symbols
within contextual scientific text. The dataset, sourced from real-world ArXiv docu-
ments, contains over 2K math symbols classified as main attributes of variables,
constants, operators, and unit descriptors, with additional sub-attributes including
scalar/vector/matrix for variables and local/global/discipline-specific labels for
both constants and operators. Our extensive experiments show that state-of-the-art
LLMs achieve an average of 20-60% accuracy under in-context learning and 50-
60% accuracy with fine-tuning, revealing a significant gap in their mathematical
reasoning capabilities. STEM-POM fuels future research of developing advanced
Math-AI models that can robustly handle math symbols.

1 Introduction

Large language models (LLMs) have demonstrated exceptional reasoning abilities across numerous
fields [17, 13, 12, 25, 15]. With the increasing shift towards applying LLMs to complex tasks
[6, 23, 39], the need for supplementary data beyond the general pre-trained datasets has become
increasingly important. Among these, mathematical reasoning tasks [10, 18] have recently drawn the
attention of several researchers [19, 2, 45, 28] (see Backgrounds in Appendix B). In particular, Part-
of-Math Tagging [43], the mathematical analog to part-of-speech tagging [36] where mathematical
tokens are classified according to a given taxonomy of attributes, continues to gain interest but lacks
the foundational datasets that can support advanced NLP tasks [43, 38, 37]. In addition, integrating
mathematical language into NLP models remains a substantial challenge [3, 29], especially in the
realm of document parsing [8, 24, 44]. Traditional semantic parsing methods like LateXML [31] or
arXMLiv [22] often fall short when applied to math-rich documents, where precision and structured
syntax are paramount [14, 32, 41]. These methods struggle to accurately perform pattern matching
between abstract mathematical symbols and their corresponding XML tag notations. Similarly,
recent advanced LLMs, such as ChatGPT [26], also face difficulties in understanding and reasoning
with abstract mathematical symbols due to their contextual polymorphism [35] (as Figure 3 shown).
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Figure 1: The overall pipeline for constructing the STEM-POM dataset. We extract math symbols
with corresponding text information to formulate the dataset. Each math symbol is initially classified
into one of four primary categories based on its definition. Then, the symbol is further categorized
into secondary categories by the context in which it appears or by the symbol’s dimensionality. An
LLM is evaluated via the first-level and second-level classification tasks.

For example, in the linear equation: y = mx + p, y is categorized as a variable. Whereas in the
cross-entropy loss function: L(x, y) = −

∑N
i=1 xi log(yi), the symbol y represents the fixed target

labels, which is considered a constant for a given dataset. Without the corresponding contextual
information of a mathematical symbol, LLMs are unable to distinguish between different attributes
of the symbol and cannot effectively process related mathematical reasoning tasks. Thus, tagging
math symbols within domain-specific contexts is essential for language models.

In this paper, we introduce a novel benchmark dataset, STEM-POM, designed to evaluate the
reasoning capabilities of language models on mathematical symbols across different domains. The
STEM-POM dataset consists of 2,109 instances extracted from a random sampling of over 10,000
arXiv manuscripts, which are math-rich documents spanning domains such as Mathematics, Physics,
Chemistry, and more. We provide a mathematical symbol for each dataset instance, its order in
the document, its main and sub-level attributes, and the corresponding text or expression from the
original arXiv paper containing the symbol. Each mathematical symbol in the dataset is classified
according to two levels of attributes [42]. The first-level attribute categorizes the symbol as variable,
constant, operator, or unit descriptor. The second-level attribute further classifies the symbol into one
of six types based on its first-level category: scalar, vector, matrix, local, global, or discipline-specific.
Figure 1 illustrates the dataset’s category distribution. To further enrich the STEM-POM dataset
with additional arXiv manuscripts and other math-rich document resources, we also design the
STEM-PoM Labeler, a feasible method for assisting dataset generation by automatically searching,
extracting, and recording hand-labeled mathematical symbols and their corresponding context from
long-text documents.

We conduct thorough experiments on the STEM-POM dataset to assess the mathematical reasoning
abilities of seven open- and closed-source language models, including LSTM [11], Mixtral-8x7B
[20], Llama2-13B [40], Llama3-80B [9], Claude-3.5-sonnet [4], GPT-3.5, and GPT-4o [1] with
various prompting and fine-tuning strategies. The experimental results indicate that STEM-POM
distinguishes the performance levels across different LLMs, offering insights into the mathematical
symbol reasoning abilities of these models. In addition, we investigate and analyze the influence of
context length on the ability of language models to understand mathematical symbols.

2 STEM-POM Dataset

2.1 Data Annotation

Source of Mathematical Symbols. The first crucial step in constructing the dataset is selecting
high-quality mathematical symbols. For STEM-POM, we primarily collect these symbols from two
sources: 1. Public math-symbol datasets, where we directly utilize candidate mathematical symbols
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Statistic Number
Total Symbols 2,109
Unit Descriptor 129
Constant 384

- Local 171
- Global 121
- Discipline Specific 92

Operator 363
- Local 181
- Global 105
- Discipline Specific 77

Variable 1,233
- Scalar 601
- Vector 599
- Matrix 33

Avg symbols per article 4.7
Avg tokens per sentence 31.8
Avg tokens per math symbol 1.07

Table 1: STEM-POM Dataset Statistics Figure 2: Discipline Distribution from Source ArXiv

from the mathematical token definition extraction benchmark, MTDE [14]. 2. Raw ArXiv papers
[7], where we apply the STEM-PoM Labeler to identify and extract mathematical symbols from the
ArXiv dataset. We include a detailed description of each source dataset in Appendix A.2.

Dataset Construction. After obtaining the mathematical symbols, we categorize each symbol
into different attributes and assign corresponding information to construct the STEM-POM dataset.
Specifically, we first extract the file name and symbol order for each mathematical symbol. Then,
for each symbol, we extract the contexts in which the symbol appears, using several predefined
lengths. Following this, we manually classify each symbol into four primary categories: Variable,
Constant, Operator, and Unit Descriptor. For Variable, Constant, and Operator, we further categorize
them into sub-level categories. The variable is classified as Vector, Scalar, or Matrix, while Constant
and Operator are categorized as Local, Global, or Discipline-Specific. Table 2 outlines the overall
dataset structure. We manually examine each entry of the dataset thoroughly to ensure its robustness
and correctness. We provide a detailed explanation of the dataset structure in Appendix A.3 and
the definitions of each level’s attributes in Appendix A.4. Additionally, the STEM-PoM Labeler is
described in Appendix A.5.

2.2 Dataset Statistics

We summarize the key statistics of our dataset in this section. Table 1 presents the categorical statis-
tics, including the math symbols along with their first- and second-level attributes. The distribution
of Variables, Constants, Operators, and Unit Descriptors is 58.5%, 18.2%, 17.2%, and 6.1%, respec-
tively. In addition, Figure 2 illustrates the discipline distribution of the source arXiv papers. Our
dataset covers mathematical symbols from various fields, including Mathematics, Physics, Chemistry,
Economics, Computer Science, etc.

File Name Symbol Order Symbol Main Attribute Sub Attribute Related Contents
9509/adap-org9509001.html 0 f Constant Global ...1/f noise was discovered...
9509/adap-org9509001.html 1 ∆ Operator Global ...can be quantified by studying the displacement ∆X
9509/adap-org9509001.html 2 X Unit Descriptor - ...can be quantified by studying the displacement ∆X
9509/adap-org9509001.html 3 t Variable Scalar ..after t steps, we can...

... ... ... ... ... ...

Table 2: STEM-POM Dataset Structure
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Models Context Length Overall Variable Constant Operator Unit Descriptor

LSTM
One Sentence 18.7% 24.5% 13.2% 10.3% 27.1%
Ten Sentences 22.6% 28.1% 16.8% 15.5% 30.2%
Full Manuscript - - - - -

Llama2-13B
One Sentence 36.8% 24.1% 39.3% 41.4% 42.7%
Ten Sentences 42.7% 35.6% 39.8% 46.9% 48.5%
Full Manuscript 45.9% 38.2% 42.8% 50.1% 52.4%

Mistral-8x7B
One Sentence 47.3% 38.5% 41.7% 52.9% 56.2%
Ten Sentences 49.8% 41.8% 45.9% 58.6% 56.7%
Full Manuscript 53.6% 45.7% 48.9% 61.4% 58.2%

Llama3-80B
One Sentence 48.9% 41.3% 44.6% 48.5% 61.5%
Ten Sentences 53.0% 44.8% 48.8% 54.7% 63.7%
Full Manuscript 51.7% 42.7% 43.2% 55.2% 65.8%

Claude3.5-Sonnet
One Sentence 63.7% 58.6% 62.5% 65.7% 67.8%
Ten Sentences 65.9% 61.3% 64.3% 67.9% 70.2%
Full Manuscript 66.7% 62.9% 65.8% 68.6% 69.3%

GPT-3.5
One Sentence 56.8% 51.5% 53.5% 59.4% 62.4%
Ten Sentences 58.7% 54.5% 53.6% 61.3% 65.1%
Full Manuscript 60.6% 57.2% 56.6% 63.2% 65.2%

GPT-4o
One Sentence 64.9% 60.5% 64.2% 64.9% 70.1%
Ten Sentences 67.4% 63.7% 66.1% 66.4% 73.5%
Full Manuscript 68.5% 64.2% 67.8% 68.1% 73.8%

Table 3: First-level classification accuracy with various context lengths.

Models Variable Constant Operator
(Vanilla) Scalar Vector Matrix Local DS Global Local DS Global
LSTM 13.8% 15.1% 17.2% 19.2% 17.8% 22.2% 16.6% 11.3% 14.6%

Llama2-13B 27.3% 24.4% 21.8% 33.6% 31.5% 33.6% 32.4% 28.3% 32.7%

Mistral-8x7B 36.9% 35.8% 21.6% 34.8% 31.2% 37.8% 36.4% 34.8% 35.7%

Llama3-80B 38.2% 34.1% 26.7% 37.6% 35.2% 36.1% 39.1% 32.3% 40.2%

Claude3.5-Sonnet 53.2% 49.7% 55.8% 55.9% 53.1% 49.6% 56.3% 52.2% 55.9%

GPT-3.5 44.5% 45.8% 48.3% 48.5% 42.9% 44.3% 48.4% 43.5% 49.7%

GPT-4o 54.6% 51.3% 58.6% 58.4% 54.1% 56.2% 60.5% 57.3% 58.5%

Table 4: Second-level classification accuracy with full manuscript input (Ten-sentence input for
LSTM). We abbreviate "Discipline Specific" as "DS".

3 Experiments

3.1 Setup

Models. To thoroughly evaluate our dataset across models with varying parameter sizes, we utilize
the following models: LSTM framework [11], Llama-2-13B [40], Mixtral-8x7B-v0.1 [20], and
GPT-3.5-turbo-0125 [1].

Evaluation Metrics. We apply the Precision Accuracy as our metric for the mathematical symbol
classification task, the metric can be formulated as: Precision Accuracy = Number of correct predictions

Total number of samples

Training & Inference Details. We evaluate several models under both pre-training and fine-tuning
settings. Specifically, we train an LSTM model with varying layers and apply the LoRA method
[16, 47], a PEFT technique, to GPT-3.5. We evaluate other models in the in-context learning setting.
Appendix C provides the training and model parameter details.
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3.2 First-Level Classification Results.

Table 3 presents the accuracy results for different models across varying context lengths. The result
shows that the small-parameter-size language model such as the LSTM struggles with lower accuracy,
achieving between 18.7% and 22.6%. In contrast, larger models, such as Llama2-13B and Mistral-
8x7B, show marked improvements as context length increases, with Mistral-8x7B reaching up to
53.6% on the full manuscript. In addition, Claude3.5-Sonnet achieves comparable performance
with GPT-4o across all context lengths, with accuracy consistently above 63.7% and up to 66.7%.
GPT-based models exhibit stronger performance overall, with GPT-3.5 achieving between 56.8%
and 60.6%. GPT-4o further improves across all context lengths, outperforming other models with
an overall accuracy of 68.5% with the full manuscript input. We observe that the performance gap
between models remains consistent as context length increases. For instance, GPT-4o outperforms
Llama3-80B by 16.0%, 14.4%, and 16.8% for context lengths of one sentence, ten sentences, and the
full manuscript, respectively. This consistent performance gap suggests that larger models with more
pre-trained knowledge, such as GPT-4o and Claude3.5-Sonnet, exhibit superior scalability with longer
contexts. These models are able to more effectively leverage extended context lengths to distinguish
between mathematical symbols and other nuanced elements in the input prompts. On the other hand,
the overall performance gain from increasing context length is more pronounced in smaller models,
such as Llama2-13B and Mistral-8x7B, which have less pre-trained knowledge. These models
benefit more from extended context as they rely on additional information to compensate for their
limited pre-training. Larger models like GPT-4o and Claude3.5-Sonnet, which come with extensive
pre-trained knowledge, show relatively smaller performance gains as context length increases.

3.3 Second-Level Classification Results.

Table 4 shows second-level classification accuracy with full manuscript input. In this experiment,
we assume that the model got the first-level classification correct. From the results, LSTM performs
poorly, with an accuracy as low as 11.3% for predicting the DS. Larger models, like Llama2-
13B and Mistral-8x7B, improve performance, especially in classifying Constants (up to 37.8%).
Llama3-80B shows moderate improvements, with 40.2% accuracy for Global Operators, indicating
reasonable capabilities in operator classification tasks. Claude3.5-Sonnet and GPT-3.5 show further
improvements, particularly in Global Constants and Operators classification. GPT-3.5 achieves
48.5% accuracy for Local Constants and 49.7% for Global Operators. Lastly, GPT-4o provides the
highest accuracy overall, reaching 60.5% for Local Operators and 58.6% for Matrix classification.
By horizontally comparing the same model performance on different sub-attribute classifications, we
find that the attribute Constants are generally easier to classify compared to Variables and Operators
across all sizes of models, as seen by the overall higher accuracy in Constant-related tasks. However,
Matrix and DS classification continue to present challenges, even for the largest models, indicating
that certain structures or content types within manuscripts remain difficult to categorize accurately at
the sub-attribute level.

Overall, performance across all models on both first-level and second-level classification tasks shows
a clear trend of improvement with increasing context length, highlighting the importance of context
for accurately classifying mathematical symbols. Additionally, both small and large-size language
models show a relatively higher accuracy in identifying Unit Descriptors and Operators compared
to Variables and Constants, indicating that symbols with more distinct contextual or syntactical
patterns are easier for models to classify. Through the above results, we aim to gain insights into the
extent to which different category attributes of mathematical symbols influence LLMs’ understanding
of math-rich documents by correctly classifying the symbols in real-world scenarios. We leave
additional experiments in Appendix D.

4 Conclusion

In this paper, we introduce STEM-POM, a comprehensive benchmark for evaluating language
models’ mathematical reasoning abilities to classify math symbols from scientific texts. The dataset
includes over 2,000 math instances sourced from ArXiv papers. Extensive experiments show that
the best-performing model, achieves only 73.8% and 60.5% for first and second-level Part-of-
Math Tagging classification accuracy, highlighting the challenge of extracting and categorizing
mathematical symbols from large text corpora.
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A STEM-POM Dataset Supplementary Materials

A.1 Frequency Analysis on math symbols

Figure 3: Total frequency (show-up times) of the top-50 mathematical symbols in the STEM-POM.
This illustrates the contextual polymorphism of a single mathematical symbol, i.e. it belongs to
multiple different attribute categories depending on the related context or mathematical expression.

A.2 Source Dataset

MTDE [14] contains approximately 10,000 entries of mathematical symbol names along with their
defined contexts. Each entry includes a ’short’ definition and a ’long’ definition. A short definition is a
single-word definition, while a long definition consists of one or more words. The data was collected
through random sampling from mathematical and scientific arXiv preprint manuscripts, covering
a broad range of disciplines such as Physics, Computer Science, and Biology. For pre-processing,
we ensured that the candidate data was generated via a corpus crawler and subsequently pruned and
cleaned manually.

ArXiv Paper Dataset [22] contains 1.7 million arXiv articles, spanning a wide range of disciplines,
including Mathematics, Physics, Chemistry, Economics, and Computer Science. We randomly
sample 10,000 articles from this raw dataset and manually ensure that each manuscript is math-rich,
containing numerous mathematical expressions and symbols. For pre-processing, we utilize the
STEM-PoM Labeler to extract these symbols along with their surrounding context, ensuring that the
data is representative of real-world mathematical usage across various scientific fields. Additionally,
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the extracted symbols and contexts are systematically cleaned and structured to facilitate further
classification and analysis.

A.3 Dataset Definitions in Table 2

File Name: This attribute serves as a reference point, indicating the source of the file. Specifically, it
denotes the arXiv article from which the dataset extracts its contents.

Symbol Order: This component records the sequence in which mathematical symbols appear within
the article. By capturing the ordinal position of each symbol, we facilitate a structured analysis of the
symbols’ progression and their contextual relationships within the document.

Symbols: This field encapsulates the mathematical symbols themselves, predominantly consisting of
Greek letters, albeit inclusive of additional characters. The precise documentation of these symbols is
paramount for the subsequent analytical processes.

Main and Sub Attributes: These attributes categorize each mathematical symbol into specific
classes, delineating a hierarchical structure within the dataset. This classification scheme is vital for
understanding the symbols’ roles and relationships within the mathematical discourse.

Related Contents: This segment comprises the words or sentences surrounding each symbol,
embodying a critical resource for our model training. The contextual information surrounding each
symbol is indispensable, as it imbues our models with a deeper understanding of each symbol’s
application and significance within the mathematical narrative.

A.4 First-Level and Second-Level Attributes Definition

Constant: A value that does not change in a mathematical expression.

Local Constant: Constant that is specific to a particular system or model, such as the gravitational
constant in a simulation of a specific planetary system.

Global Constant: Constant that is applicable in all contexts, like the speed of light in a vacuum.

Discipline-specified Constant: Constant that applies to particular fields of study, for instance,
Planck’s constant in quantum mechanics.

Operator: A symbol that operates on one or more operands.

Local Operators: Operator that is applied in a localized or specific context within a discipline, like a
self-defined operation in matrix processing.

Global Operators: Operators that is used broadly across different disciplines, like the addition or
multiplication operator.

Discipline-specified Operators: Operator that is unique to certain fields, such as the Hamiltonian
operator in quantum physics.

Variable: A symbol that represents an unknown or changeable quantity in a mathematical expression.

Scalar: A quantity that has only magnitude, no direction.

Vector: A quantity that has both magnitude and direction.

Matrix: A rectangular array of numbers or symbols arranged in rows and columns.

A.5 STEM-PoM Labeler

During the dataset construction, a pivotal step involves the meticulous annotation of each mathematical
symbol with corresponding tags. This process, inherently labor-intensive and repetitive, necessitates
a systematic approach to mitigate the workload and facilitate collaboration among the research team
members. To address these challenges, we developed a labeling pipeline designed to streamline the
dataset construction process. The UI design is shown in figure 4. The functionalities are delineated
below:
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Figure 4: The UI Design of STEM-PoM Labeler

File Reading: We initiate the data importing operation progress by importing files from the desig-
nated arXiv folder, ensuring a structured and accessible repository of mathematical documents for
subsequent processing.

Symbol Identification and Contextualization: For each file, we enumerate and display essential
information: the current file being processed, the total number of symbols within, the sequence
number of the current symbol, the graphical representation of the symbol, and the contextual content
surrounding the symbol. This feature aids in providing a comprehensive overview and facilitates
accurate symbol annotation.

Annotation Interface: We then present a user-friendly interface offering a set of predefined tagging
options for each symbol. Through the designed interface, we easily select the most appropriate tag
from these options, standardizing the labeling process and enhancing the consistency of the dataset.

Data Recording: Upon the selection of a tag for a symbol, We record this association by appending
a new line to the dataset, capturing the symbol along with its assigned tag. This systematic data
recording ensures the integrity and scalability of the MTCE dataset.

Dataset Evaluation: After constructing the dataset, we manually evaluate the quality and applicability
of the annotated data. Specifically, we process the evaluation process through the following steps:
Consistency Check, Inter-annotator Agreement, Statistical Analysis, and Benchmark Testing.

B Backgrounds

Part-of-Math (PoM) Tagging : The part-of-math tagging task draws inspiration from similar
tagging tasks such as part-of-speech tagging [36]. In the PoM context, the goal is to label individual
mathematical tokens or expressions in math formulas with their corresponding mathematical roles.
Such a task is essential for enabling a deeper semantic understanding of mathematical content by
machines. Several datasets or benchmarks have been developed for the part-of-tagging task, but
there also remain several challenges. Abdou [43] collects mathematical content, such as formula
representation and tagging for specific mathematical formula translations and verifications, including
converting formulae into semantic LaTeX or testing with tools like CAS (Computer Algebra Systems).
However, this focus on structured and narrow formula translations does not align with the broader,
more diverse text-based tasks required to assess NLP models, due to the lack of scalability features
in the collected math symbols. Ruocheng [37, 38] recently evaluated the potential of leveraging
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LLMs for automated annotation and Part-of-Math tagging of math symbols. However, their PoM
tagging was conducted on the Digital Library of Mathematical Functions (DLMF) [27]. Since the
source of math symbols is only one manuscript, the mathematical tokens collected only have a single
classification type and are self-consistent. In contrast, our dataset incorporates the inherent messiness
of published literature across several STEM subjects, where these domain-specific math symbols can
have multiple classifications or meanings depending on the discipline and related context information.

Large Language Models: Pre-trained large language models (LLMs) have become a cornerstone in
modern NLP [34, 46]. These models, which assign probabilities to word sequences by decomposing
the probability of a sequence into the product of conditional probabilities of subsequent tokens,
have evolved significantly over time. Early approaches were based on N-gram models, but with the
advent of distributed word embeddings [5, 30], neural language models gained prominence. The
scalability and performance improvements introduced by these models, along with the availability
of vast textual data, have enabled the unsupervised pre-training of LLMs. These models, often
referred to as foundation models [33, 23], can then be fine-tuned on smaller, task-specific datasets
to adapt them for various downstream applications. For STEM-POM, we apply one traditional
sequence-based NLP model, LSTM [11], and several recent LLMs for our dataset evaluation.

C Additional Experiment Setups

Training Details In our experiments, we train an LSTM with varying numbers of layers for the
mathematical symbol classification tasks. For LLMs, we choose GPT-3.5 and apply a common
parameter-efficient fine-tuning (PEFT) method, LoRA [16], to evaluate the model precision perfor-
mance. We split our dataset into 80%/10%/10% for training/validation/testing sets.

Model Parameters For the LSTM model, we use different layer sizes from {128, 256, 512, 1024}.
The hidden state size is set to 256, the learning rate is set from {0.1, 0.01, 0.001}, the training epoch
is 5, and the batch size is 16. We utilize the Adam optimizer [21]. For GPT-3.5 fine-tuning, we use
the GPT-3.5-turbo-0125 model version and set the training epoch to 3. For LoRA fine-tuning, we set
the LoRA rank to 32, batch size to 32, weight decay to 0.01, dropout to 0.1, and learning rate to 1e−4.

D Additional Experiments

D.1 Fine-tuning on STEM-POM

Context Length Overall Variable Constant Operator Unit Descriptor
Vanilla Inference

One Sentence 56.8% 51.5% 53.5% 59.4% 62.4%
Ten Sentences 58.7% 54.5% 53.6% 61.3% 65.1%
Full Manuscript 60.6% 57.2% 56.6% 63.2% 65.2%

LoRA Fine-tuned

One Sentence 67.4% 64.8% 67.5% 71.4% 66.1%
Ten Sentences 66.9% 65.4% 66.6% 71.3% 64.5%
Full Manuscript 62.2% 58.4% 62.2% 65.1% 63.2%

Table 5: First-level classification with various context lengths on GPT-3.5 and fine-tuned GPT-3.5.

Table 5 shows the comparison result on main attributes between fine-tuned and directly vanilla-
referenced GPT3.5. Notably, the fine-tuned GPT-3.5 model achieves an accuracy of 67.4% in the
one-sentence context. However, its performance diminishes as the context length increases, with a
noticeable drop to 66.9% for ten sentences and further down to 62.2% for full manuscript-length
context. The decreasing trend suggests that while the fine-tuning process improves performance for
shorter contexts, the model’s ability to handle longer contexts is hindered.

The vanilla inference results also show a similar pattern of improvement with context length, but
the gap between fine-tuned and vanilla inference narrows as the context length grows. For instance,
the difference in overall accuracy between fine-tuned and vanilla models is 10.6% for one-sentence
contexts but only 1.6% for full manuscripts.

12



Overall, the diminishing return for fine-tuned models with longer contexts indicates that fine-tuning
amplifies sensitivity to the introduction of noisy or less relevant information when longer contexts are
involved. The observation also could point to challenges in the fine-tuning process for long-context
LLMs, which require more refined techniques to handle context length effectively.

D.2 Ablation Study

Model size(layers) Variable Constant Operator Unit Descriptor

128 24.5% 13.2% 10.3% 27.1%
256 28.7% 17.9% 15.7% 32.5%
512 34.2% 23.2% 24.9% 40.0%

1024 46.5% 35.9% 44.2% 51.3%

Table 6: LSTM first-level classification accuracy based on different model sizes

Context Length Variable Constant Operator Unit Descriptor

One Sentence 24.5% 13.2% 10.3% 27.1%
Five Sentence 26.3% 15.6% 14.1% 29.2%
Ten Sentence 28.1% 16.8% 15.5% 30.2%

Table 7: LSTM first-level classification accuracy based on different input context lengths.

Model Performance vs Model Size Table 6 presents the classification accuracy of an LSTM model
for first-level classification across different model sizes, ranging from 128 to 1024 layers. Note that
we set the input context length to be one sentence. The results show a clear positive correlation
between the model size and classification accuracy across all four categories. For the smallest model
(128 layers), the accuracy ranges from 10.3% for the Operator class to 27.1% for the Unit Descriptor
class. As the model size increases, the performance improves notably, with the largest model (1024
layers) achieving a relatively high-performance gain in accuracy, ranging from 35.9% for the Constant
class to 51.3% for the Unit Descriptor class. The most substantial improvements are observed in the
Operator category, where accuracy increases from 10.3% for 128 layers to 44.2% for 1024 layers.
These results suggest that larger model sizes are more effective in capturing complex patterns.

Model Performance vs Data Input Lengths Table 7 displays the classification accuracy of an
LSTM model across varying input context lengths across four categories. A trend of increasing
accuracy can be observed as the input length increases. For instance, in the Variable category, the
accuracy increases from 24.5% for one sentence to 28.1% for ten sentences. Similarly, for the
Constant category, accuracy rises from 13.2% for one sentence to 16.8% for ten sentences. The
Operator category shows a modest increase from 10.3% to 15.5% as the input length expands. Finally,
for the Unit Descriptor category, accuracy grows from 27.1% to 30.2%. These results suggest that
longer input data contributes to improved classification accuracy.
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