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Abstract

Longitudinal data analysis is essential in vari-
ous fields, providing insights into associations
between interpretable explanatory variables and
temporal response variables. Recent progress in
generative modelling has demonstrated models
that can learn low-dimensional representations of
complex longitudinal data and capture intricate
interactions between high-dimensional features.
Ideally, the trained generative model can be used
for various downstream tasks, such as data gener-
ation, prediction and classification. In this work,
we evaluate the performance of the longitudinal
variational autoencoder model in predicting ad-
verse events in clinical trials. We also propose a
general training approach that can learn versatile
generative models while simultaneously optimis-
ing performance on a specific downstream task.
Our experiments on two simulated datasets and
one clinical trial dataset demonstrate that the pro-
posed training objective provides results that are
either comparable or better than results obtained
with the standard training methods. Our results
also suggest that longitudinal information is use-
ful for adverse event prediction in clinical trials.

1. Introduction
Longitudinal data arises in numerous fields, including psy-
chology, sociology, economics, medicine, public health, etc.
and involves repeated measurements over time for each
subject. Due to its temporal nature, such data provides valu-
able insights into the interrelationships among explanatory
variables and response variables, enabling the discovery
of temporal associations and putative causal relationships.
Furthermore, longitudinal data is often high dimensional,
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contains missing values, and has both independent explana-
tory covariates and dependent response variables.

Variational autoencoders (VAE) (Kingma & Welling, 2014;
Rezende et al., 2014) have become a popular method to
learn low-dimensional representations of complex data, fa-
cilitating data compression and reconstruction as well as
generation of new data samples. Conditional variational
autoencoders (CVAE) (Sohn et al., 2015) extend the stan-
dard VAEs by incorporating interpretable auxiliary covariate
information directly in the generative and inference mod-
els. A limitation of both standard VAEs and CVAEs is that
they assume the independence of data points, thus failing to
capture, e.g., instance-specific (or patient-specific) temporal
structure or correlations across all the samples.

Gaussian process prior VAEs (GP-VAE) and its extensions
(Casale et al., 2018; Fortuin et al., 2020; Ramchandran et al.,
2021) have been proposed to model arbitrary correlations
across samples. In GP-VAEs, the i.i.d. standard Gaussian
prior is replaced with a Gaussian process (GP) prior [see
Williams & Rasmussen (2006) for an introduction to GPs].
Building upon this, the longitudinal VAE (L-VAE) (Ram-
chandran et al., 2021) uses a multi-output additive GP prior
that captures both shared as well as patient-specific temporal
structures by utilising the interpretable auxiliary covariate
information. Therefore, L-VAE is a generative model that is
specifically designed for longitudinal data.

Adverse events (also known as adverse reactions or adverse
effects) refer to any undesirable or harmful events that occur
during the course of a drug trial or after the administration of
a medication. These events may range from mild discomfort
to severe, life-threatening complications. Adverse events
can be caused by the drug under investigation, concomitant
medication, the underlying condition being treated, or other
factors related to the trial process. Adverse events are moni-
tored and recorded to evaluate the safety of the treatment;
however, they are frequently under-reported. Therefore, pre-
dicting these events can help in assessing and understanding
the potential risks associated with a medication before it can
be used in the general population.

Contribution: In this work, we evaluate the performance of
longitudinal latent variable models (L-VAE in particular) for
the task of predicting adverse events in clinical trials. We
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also propose a general training approach, called D-ELBO,
for deep latent variable models that combines the standard
training objective with an objective that is specific to a given
downstream task.

2. Methods
Notation: In our setting, we have N =

∑P
p=1 np obser-

vations, where P is the number of unique instances (i.e.,
patients) and np is the number of longitudinal samples from
instance p. The longitudinal samples are divided into two
categories, Xp and Yp. Xp contains the auxiliary covari-
ate information for the instance p as Xp = [xp1, . . . ,x

p
np
],

where xpt ∈ X = X1× . . .×XQ are covariates for a sample.
Q is the number of auxiliary covariates and Xq is the domain
of the q-th covariate. Yp = [yp1, ...,y

p
np
] contains longitudi-

nal samples for instance p, where ypt ∈ Y = RD, and D is
the dimension of the longitudinal samples. Instance-specific
observations form our longitudinal data [X,Y ], where X =
[X1, . . . , XP ] = [x1, . . . ,xN ] and Y = [Y1, . . . , YP ] =
[y1, . . . ,yN ]. The low-dimensional latent space is denoted
as Z = RL, where Z = [z1, . . . , zN ] ∈ RN×L and zn is
an embedding to dimension L for sample [xn,yn]. For ex-
ample, in the context of clinical trial data, X could contain
patient-specific demographics, concomitant medication and
adverse events, and Y could contain observed laboratory
measurements.

2.1. Conditional variational autoencoder

CVAE is an extension to the standard VAE where the gen-
erative model is conditioned with auxiliary covariates. In
general, the conditional distribution of the CVAE can be
written, e.g., as pw(y, z|x) = pψ(y|z)pθ(z|x). CVAE
models are typically trained by maximising the evidence
lower bound (ELBO), which can be expressed for a sin-
gle data sample as L(ϕ, ψ, θ,y|x) = Eqϕ [log pψ(y|z)] −
KL[qϕ(z|y,x)||pθ(z|x)], where the expectation is over the
latent variable z and qϕ(z|y,x) denotes the variational ap-
proximation of the true posterior pw(z|y,x). Due to the
independence of the prior pθ(z|x) across the data samples,
optimisation of the model is straightforward to do with mini-
batch based stochastic gradient descent (SGD).

2.2. Longitudinal variational autoencoder

The longitudinal variational autoencoder (L-VAE) is a con-
ditional generative model as the generative process depends
on auxiliary covariates. It makes use of a multi-output GP
prior over the latent space z|x ∼ GP(µ(x), k(x,x′|θ)),
where we assume zero mean (µ(x) = 0), and k(x,x′|θ) =∑R

r=1 k
(r)(x(r),x′(r)|θ(r)) is the sum of R positive defi-

nite cross-covariance functions (CF) – one for each of the
GP components and θ(r) refers to the corresponding ker-

nel parameters. The additive GP model is analogous to
the well-known linear mixed models, where the function is
decomposed into R additive effects, such that each effect
depends only on a small number (typically one or two) of
auxiliary covariates x(r). The CFs can be, e.g., the squared
exponential kernel for temporal effects or for other contin-
uous covariates, binary or categorical kernel for discrete-
valued inputs (such as gender), their products (interactions),
or essentially any valid kernel. The L-VAE model can be
trained using the standard ELBO objective L(ϕ, ψ, θ, Y |X).
However, due to the GP prior p(Z|X), the training objective
does not factorise across the data samples and, therefore,
the time complexity of the standard inference would be in
the order of O(N3) w.r.t. the number of training data points.
We use the scalable, mini-batch compatible training method
from (Ramchandran et al., 2021) that uses the inducing point
approximation for GPs.

2.3. Downstream analysis tasks

After training a conditional generative model, we may want
to generate new data samples or, alternatively, use the
trained model for various downstream tasks. As an ex-
ample, we consider the task of classifying samples. As-
sume that the q-th covariate is binary-valued and represents
whether the data samples belongs to one of the two classes.
For example, in our clinical dataset, the presence or ab-
sence of a specific adverse event for a patient p at time
point t is encoded by the q-th covariate, xptq ∈ {0, 1}. If
the value of the q-th covariate is missing from a new data
sample (x∗,y∗), we can use the trained model to classify
it by calculating the lower bound for the log probability
of the new data sample for the two alternative events as
Li = L(ϕ, ψ, θ, Y,y∗|X,x∗, xptq = i), where i ∈ {0, 1}.
The prediction probability can then be computed as:

Pi =
exp(Li)

exp(L1−i) + exp(Li)
. (1)

2.4. A new discriminative training objective

In order to create a bespoke generative model for a pre-
determined downstream task, we propose a new training
objective D-ELBO:

L = α · ELBO+ (1− α) ·D, (2)

where D is an objective of a specific downstream task and
α ∈ [0, 1] is a scaling factor. For example, in the case of the
two-class prediction task described in Section 2.3, D can be
defined using the log of the Bernoulli likelihood as

D =

P∑
p=1

np∑
n=1

xpnq log(p
p
nq) + (1− xpnq) log(1− ppnq) (3)
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where ppnq = P1 = P (xpnq = 1) is the predicted proba-
bility obtained from the generative model (see Eq. 1), and
xpnq is the observed value for the auxiliary covariate that is
available during the training time. In the following exper-
iments, we replace the sum over n by a random subset of
time points Tp ⊂ {1, . . . , np}, with |Tp| = 4. For α = 1,
D-ELBO reverts back to the standard generative model train-
ing, whereas α = 0 results in a purely discriminative objec-
tive. In practice, α can be chosen using cross-validation or
performance on a held-out validation dataset. Overall, the
training objective in Eq. 2 provides a simple approach to
re-train or fine-tune, a general purpose generative model for
a variety of downstream tasks as we demonstrate below.

3. Experiments
We demonstrate the ability of a GP prior based conditional
generative model to predict adverse events with three dis-
tinct datasets: two types of simulated datasets (based on
MNIST digits) and a real clinical trial dataset. The L-VAE
model is learnt on the training data using the ELBO ob-
jective (L-VAE + ELBO) and performing adverse event
prediction using Eq. 1. We also evaluate the performance of
the proposed new objective function by learning the L-VAE
model using the D-ELBO in Eq. 2 (L-VAE + D-ELBO) and
then predicting using Eq. 1. We use a grid search for the α
parameter (α ∈ {0.1, ..., 10−6, 0}) using the mean over the
validation folds, and use the mean of the corresponding test
folds as the estimate of the objective that is compared. We
took the average of the results over the five independent runs
and compared it against L-VAE that was trained using the
standard ELBO objective (L-VAE + ELBO). As a baseline
method, we compare our results against a standard multi-
layer perceptron (MLP) that is applied in a cross-sectional
manner, i.e., its input data is from a single time point. We
use the area under the receiver operating characteristic curve
(AUROC) and the area under the precision recall curve (PR
AUC) metrics to account for varying adverse event frequen-
cies [see (Murphy, 2022)].

Different cross-covariance functions (CF) for the additive
multi-output GP prior are denoted as: fca(·) for categorical
CF, fse(·) for the squared exponential CF, and fbin(·) for
binary CF. The definitions for different cross-covariance
functions can be found in the Supplementary Material in
Section B. In all the experiments, the first four time points
from validation and test subjects were included in the train-
ing data. These samples were neither used for the validation
nor the final evaluation.

3.1. Simulated dataset with MNIST digits

We created two simulated datasets that make use of MNIST
digits (LeCun et al., 2010) to represent simulated biomed-
ical longitudinal data. Both datasets consist of P = 400

unique digits (i.e., instances or patients) with np = 20
observations (therefore, N = 8000). Each instance has
Q = 4 auxiliary covariates: unique id (id), gender (gen-
der), time (time), and adverse event (ae). We assume two
genders (for convenience) such that a number ‘3’ repre-
sents female and ‘6’ represents male. To simulate a shared
time-dependent effect, all digit instances where shifted to-
wards the bottom-right corner over time. In the two datasets,
we simulate the adverse events differently: (1) the inten-
sity of a digit diminishes when the event occurs, or (2)
the orientation of a digit changes when the event occurs
(see Supplementary Fig. 2 for an illustration). Adverse
events occur in 50% of the unique instances (i.e., 200 out
of 400 unique instance) with the adverse event occuring
in 20% of the observations. In all of the experiments,
the following additive multi-output GP model was used:
fca(id) + fse(time) + fca(gender) + fbin(ae).

Table 1 shows that the proposed training objective (L-VAE
+ D-ELBO) results in an improved adverse event prediction
accuracy in almost all variants.

3.2. Clinical trial data

We demonstrate the efficacy of the two objectives for ad-
verse event prediction using data from a randomised con-
trolled trial (RCT) for the treatment of colorectal can-
cer (dataset identifier: Colorec SanfiU 2007 131) from the
open data sharing platform, ‘Project dataspehere’ (Green
et al., 2015). The control arm of the study consists of 610
subjects. We performed the following pre-processing steps:

• Laboratory measurements (lb), adverse event informa-
tion (ae), vital signs (vs), concomitant medication (cm),
and demographic information (dm) were selected as
source domains.

• Information on the domains were formulated as lon-
gitudinal samples Y comprising [lb, vs] and auxiliary
covariates X comprising [dm, ae, cm]. We considered
only measurement time points in ae and cm where we
know both the start and end time of the event.

• Time points with less than 70% of information in Y
were excluded.

• We included the 10 most common ae and cm in X

• Patients with less than 5 observations were excluded.

• The measurements (Y ) were standardised per feature.

After preprocessing, the dataset comprised P = 480 sub-
jects, with N = 6605 observations. The dimension of the
longitudinal samples in Y was 30, which consists of 27
laboratory measurements and 3 vital signs. The auxiliary co-
variates (X) have a dimension (Q) of 24 and include: three
types of demographic information (id, gender, age), time of
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Table 1. Adverse event prediction accuracies on the simulated datasets for the L-VAE model, trained using the ELBO (L-VAE + ELBO)
and the proposed D-ELBO (L-VAE + D-ELBO). AUROC and PR AUC values are computed on test subjects. Higher values are better.

Experiment
AUROC (↑) PR AUC (↑)

L-VAE + ELBO L-VAE + D-ELBO L-VAE + ELBO L-VAE + D-ELBO

Intensity fades by 5% 0.779±0.035 0.847±0.030 0.290±0.029 0.449±0.063
Intensity fades by 10% 0.922±0.018 0.963±0.024 0.532±0.072 0.788±0.106
Intensity fades by 20% 0.998±0.001 0.999±0.001 0.986±0.009 0.991±0.008

Rotation changes 1◦ 0.791±0.017 0.796±0.021 0.244±0.021 0.244±0.041
Rotation changes 3◦ 0.863±0.016 0.884±0.016 0.595±0.054 0.674±0.042
Rotation changes 5◦ 0.945±0.029 0.946±0.016 0.789±0.047 0.782±0.032

Figure 1. Comparison of L-VAE (L-VAE + ELBO) with the baseline cross-sectional approach using a MLP on the Project Datasphere
dataset. The numbers on the x-axis correspond to the adverse events in Table 2. Higher values are better

Table 2. Adverse event prediction accuracies on the Project Datasphere dataset. We demonstrate the results of L-VAE with the two
objectives: L-VAE + ELBO and L-VAE + D-ELBO. The occurrence (Occ.) is the fraction of instances with a particular adverse event,
and Mo is the mean of the fraction of observations with a particular adverse event on the given P instances. AUROC and PR AUC values
are computed using 5-fold cross-validation. Higher values are better.

Adverse event Occ. (%) Mo (%)
AUROC (↑) PR AUC (↑)

L-VAE + ELBO L-VAE + D-ELBO L-VAE + ELBO L-VAE + D-ELBO

(1) Skin appendage conditions 28 45 0.934±0.006 0.946±0.003 0.816±0.018 0.834±0.005
(2) General system disorders nec 35 35 0.890±0.013 0.900±0.006 0.652±0.031 0.684±0.014
(3) Gastrointestinal signs and symptoms 42 31 0.873±0.007 0.871±0.005 0.585±0.013 0.589±0.004
(4) Gastrointestinal motility and def. cond. 35 27 0.868±0.011 0.874±0.012 0.575±0.016 0.564±0.013
(5) White blood cell disorders 37 25 0.810±0.014 0.816±0.008 0.377±0.023 0.395±0.003
(6) Oral soft tissue conditions 22 25 0.843±0.007 0.857±0.007 0.497±0.017 0.500±0.006
(7) Neurological disorders nec 14 30 0.905±0.006 0.914±0.004 0.571±0.009 0.569±0.021
(8) Respiratory disorders nec 18 22 0.873±0.010 0.887±0.004 0.514±0.005 0.519±0.011
(9) Appetite and general nutritional disorders 16 27 0.914±0.004 0.913±0.012 0.502±0.042 0.556±0.018
(10) Infections pathogen unspecified 19 15 0.701±0.009 0.710±0.006 0.185±0.021 0.188±0.021

the measurement (time), 10 adverse events (ae), and 10 con-
comitant medications (cm). In the experiments, the structure
of the GP model was: fse(time) + fca(id) + fca(gender) +∑10
i=1 fbin(aei) +

∑10
i=1 fbin(cmi).

The results of predicting 10 different adverse events in Fig. 1
show that using the L-VAE model to predict adverse events

provides a significant performance improvement over a stan-
dard cross-sectional approach using a MLP. Furthermore,
Table 2 demonstrates that the proposed D-ELBO training
objective (L-VAE + D-ELBO) improves the prediction ac-
curacy for almost all considered adverse events.
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4. Conclusion
In this work, we examined the applicability of a GP prior
based conditional generative model to predict adverse events.
Additionally, we introduced the D-ELBO, a novel objective
function, designed to enhance the performance of generative
models on a predetermined downstream task, while preserv-
ing its comprehensive properties. We performed evaluations
on two simulated datasets and one real-world dataset. The
results showed evidence of the L-VAE’s capability to con-
fidently predict adverse events across the majority of the
endpoints. Furthermore, the results demonstrated the bene-
fit of the new training objective, D-ELBO, which provided
consistent results that were either comparable or better than
the results obtained with the standard training objective.
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A. Supplementary images
A.1. Health MNIST data

Figure 2. Visualisation of a simulated adverse event effect on the MNIST digits.

A.2. Datasphere data

Figure 3. Visualisation of np distribution on Datasphere data.

B. Cross-covariance functions (CF)
Definitions for the cross-covariance functions used in our experiments:

Squared exponential CF

kse(x
(r),x′(r)|θse) = σ2

se exp

(
− (x− x′)2

2l2se

)
, θse = (σ2

se, lse),
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where x(r) = x ∈ Xj denotes a univariate continuous-valued covariate, σ2
se is the magnitude parameter (also called scale),

and lse is the length scale. The magnitude controls the marginal variance of the GP and the length-scale controls its
smoothness (Rasmussen & Williams, 2006).

Categorical CF

kca(x
(r),x′(r)) =

{
1, if x = x′

0, otherwise
, θca = ∅,

where x(r) = x ∈ Xj denotes a categorical or discrete covariate.

Binary CF

kbin(x
(r),x′(r)) =

{
1, if x = x′ = 1

0, otherwise
, θbin = ∅,

where x(r) = x ∈ Xj = {0, 1} denotes a binary-valued covariate.

C. Supplementary tables

Hyperparameter Value

Inference
network

Dimensionality of input 36× 36
Number of convolution layers 2
Number of filters per convolution layer 144
Kernel size 3× 3
Stride 2
Pooling Max pooling
Pooling kernel size 2× 2
Pooling stride 2
Number of feedforward layers 2
Width of feedforward layers 300, 30
Dimensionality of latent space L
Activation function of layers RELU

Generative
network

Dimensionality of input L
Number of transposed convolution layers 2
Number of filters per transposed convolution layer 256
Kernel size 4× 4
Stride 2
Number of feedforward layers 2
Width of feedforward layers 30, 300
Activation function of layers RELU

Table 3. Neural network architectures used in the MNIST digits (L-VAE).
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Hyperparameter Value

Inference
network

Dimensionality of input 30
Number of feedforward layers 2
Number of elements in each feedforward layer 15, 7
Dimensionality of latent space L
Activation function of layers RELU

Generative
network

Dimensionality of input L
Number of feedforward layers 2
Number of elements in each feedforward layer 7, 15
Activation function of layers RELU, Sigmoid

Table 4. Neural network architectures used in the clinical trial dataset (L-VAE).

Hyperparameter Value
Dimensionality of input 54
Number of feedforward layers 2
Number of elements in each feedforward layer 15, 7
Activation function of layers RELU, Sigmoid

Table 5. Neural network architecture used in the clinical trial dataset (MLP).
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