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ABSTRACT

Large reasoning models (LRMs) achieve strong reasoning performance by emitting
long chains of thought. Yet, these verbose traces slow down inference and often
drift into unnecessary detail, known as the overthinking phenomenon. To better
understand LRMs’ behavior, we systematically analyze the token-level misalign-
ment between reasoning and non-reasoning models. While it is expected that their
primary difference lies in the stylistic “thinking cues”, LRMs uniquely exhibit
two pivotal, previously under-explored phenomena: a Global Misalignment Re-
bound, where their divergence from non-reasoning models persists or even grows
as response length increases, and more critically, a Local Misalignment Dimin-
ish, where the misalignment concentrates at the “thinking cues” each sentence
starts with but rapidly declines in the remaining of the sentence. Motivated by the
Local Misalignment Diminish, we propose FoReaL-Decoding, a collaborative fast-
slow thinking decoding method for cost-quality trade-off. In FoReaL-Decoding,
a Leading model leads the first few tokens for each sentence, and then a weaker
draft model completes the following tokens to the end of each sentence. FoReaL-
Decoding adopts a stochastic gate to smoothly interpolate between the small and
the large model. On four popular math-reasoning benchmarks (AIME24, GPQA-
Diamond, MATH500, AMC23), FoReaL-Decoding reduces theoretical FLOPs by
30 - 50% and trims CoT length by up to 40%, while preserving 86 - 100% of model
performance. These results establish FoReaL-Decoding as a simple, plug-and-play
route to controllable cost-quality trade-offs in reasoning-centric tasks.

1 INTRODUCTION

Reasoning has become a pivotal capability of large language models (LLMs), driving rapid progress
in mathematical problem solving, code generation, and commonsense question answering (Huang &
Chang, 2023; Ahn et al., 2024; Wang et al., 2024b; 2025b). Contemporary Large Reasoning Models
(LRMs) such as OpenAI’s GPT-o1 (OpenAI, 2024) and the open-source DeepSeek-R1 (DeepSeek-AI
et al., 2025) demonstrate this trend by producing explicit long chains of thought (CoT) (Wei et al.,
2023) that markedly improve performance on challenging tasks in mathematics (Xiong et al., 2025;
Xia et al., 2025b), programming (Liu et al., 2024a), and other complex domains. These deeper, longer,
and more precise reasoning trajectories represent the advanced “slow-thinking” patterns (Kahneman,
2011; Li et al., 2024d; 2025b). Although these slow-thinking LRMs showcase impressive reasoning
skills, communities are increasingly concerned about the efficiency and fidelity of their often-lengthy
chains of thought, a phenomenon known as “overthinking” (Chen et al., 2025c; Fan et al., 2025),
where excessive computational resources are allocated for simple problems with minimal benefit.

To alleviate overthinking and improve efficiency, a series of methods has been proposed1. Most
of these, however, require further post-training or manipulate the LRM’s distribution itself, adding
complexity or computational overhead. Motivated by Speculative Decoding (Leviathan et al., 2023)
and the distinctions between fast and slow thinking, we ask: Where do reasoning models make a
difference? To answer this, we first seek to pinpoint what truly differentiates strong reasoning models
from standard instruction-following LLMs at the token level. For instruction-following models,

1The detailed related works are shown in Appendix C.
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Figure 1: Left: An example comparing the token distribution alignment between DeepSeek-R1-Distill-
Qwen-32B and Qwen2.5-1.5B-Instruct, qualitatively showing that the misaligned tokens (colored
in red) are related to thinking patterns, and probably appear at the start of sentences. Right: The
WordCloud of the misaligned tokens calculated on a mix of math datasets, quantitatively showing the
high-frequency misaligned tokens like “wait”, “perhaps”, “maybe”, “let”, and “alternatively”.

LIMA (Zhou et al., 2023) proposes the “superficial alignment” hypothesis, in which it shows that
most of the knowledge has been learned in the pretraining and only a small amount of data is needed
for alignment. Lin et al. (2023) further verifies this hypothesis from token-level analysis between the
base model and the aligned model.

Leveraging the diagnostic framework of (Lin et al., 2023), our systematic analysis of misalignment
across various model types (large reasoning, small reasoning, instruction-following, and pretrained
model) reveals critical insights. We observe a “superficial alignment” phenomenon similar to (Lin
et al., 2023), where misaligned tokens are predominantly stylistic (e.g., “Wait”, “Let me check”) rather
than content-specific, often related to explicit thinking patterns. More strikingly, while previous work
showed that misalignment between instruction-following and base models diminishes with longer
context, we find this does not hold for reasoning models. Instead, we identify a Global Misalignment
Rebound, where overall misalignment between reasoning and non-reasoning models can slightly
grow with response length, suggesting that increasing the length cannot reduce the misalignment.
This indicates that the reasoning abilities are not as superficial as instruction-following. Crucially,
despite this global trend, we uncover a corresponding Local Misalignment Diminish phenomenon:
most token misalignments occur at the beginning of each sentence, then rapidly decrease until the next
sentence starts. These findings reveal a novel periodical, sentence-level misalignment diminishing
pattern unique to LRMs, driven by thinking-pattern indicators concentrated at sentence openings,
shedding light on a better understanding of token-level divergences of these two types of models.

Based on this core insight that the reasoning pattern of LRMs is often front-loaded in each sentence,
we hypothesize that strategic, limited intervention by a strong LRM can guide a weaker model,
balancing reasoning quality with efficiency. To this end, we propose Follow the Reasoning Leader
(FoReaL-Decoding), an efficient collaborative decoding method. In FoReaL-Decoding, a strong
Leading model generates the initial few tokens of each sentence (capturing the potentially misaligned
“thinking cues”), after which a weaker Draft model completes the sentence. To further mitigate
potential overthinking from the Leading model (e.g., endlessly generating “Wait”), we introduce a
stochastic binary gate that controls whether the Leading model intervenes. These two control knobs,
lead token count and lead probability, allow FoReaL-Decoding to smoothly interpolate between the
Draft and Leading models, offering strong controllability over the cost-quality spectrum.

Contributions. In summary, our primary contributions can be illustrated as follows:

• We conduct a systematic token-level analysis comparing LRMs with non-reasoning models,
identifying two pivotal, under-explored phenomena: (1) Global Misalignment Rebound, where
the token distribution of LRMs diverges from that of non-reasoning models and their gap even
increases with longer responses; (2) Local Misalignment Diminish, where LRMs only make
noticeable difference on generating stylistic “thinking-patterns” at the very beginning of each
sentence. But such divergence from non-reasoning models rapidly drops on subsequent tokens
within the sentence. This periodical sentence-level misalignment diminishing pattern has not been
explored previously. These two discoveries significantly advance the understanding of LRMs.
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• Leveraging these analytical insights (particularly the Local Misalignment Diminish), we propose
FoReaL-Decoding, a training-free, collaborative algorithm that mixes the strength of a “slow-
thinking” LRM (as Leading model) with the efficiency of a “fast-thinking”, weaker model (as
draft model). FoReaL-Decoding is designed to be plug-and-play, offering strong controllability to
balance the cost and quality under diverse budgets of tokens.

• Experimental results on several reasoning-heavy math tasks (AIME24, GPQA-Diamond,
MATH500, AMC23) demonstrate that FoReaL-Decoding reduces FLOPS by 30-55% and CoT
length by up to 40%, while preserving 86-100% of the leading model’s performance, effectively
mitigating “overthinking”.

2 TOKEN DISTRIBUTIONS OF REASONING VS. NON-REASONING MODELS

Large-scale reasoning models (LRMs) often outperform smaller instruction-tuned models on complex
reasoning-heavy tasks, yet how their generation behavior differs from instruction models within
the same model family remains unclear. (Lin et al., 2023) proposes an analytical method through
the lens of token-distribution shifts and finds that alignments between instruction-following and
base pretrained models are often superficial. This phenomenon is supported by nearly identical
decoded tokens in the majority of token positions under the same input contexts, with distribution
shifts occurring mainly with stylistic tokens like discourse markers. However, the critical question
remains: “Does this superficial alignment finding on instruction-following LLMs still hold for today’s
capable LRMs?” Thus, our work systematically investigates token misalignment across various
model combinations involving LRMs.

Experimental Setup & Metric. In this analysis, we utilize DeepSeek-R1-Distill-Qwen-32B as
the targeting LRM, which we notate as the Leading model PL(·). The corresponding small models,
within the same family, that are used for comparison are noted as the Draft models PD(·). The
Draft models can be (i) the pretrained base model (Qwen2.5-1.5B), (ii) the instruction-following
model (Qwen2.5-1.5B-Instruct), or (iii) the small reasoning model (DeepSeek-R1-Distill-Qwen-1.5B)
in our analysis and method. For a user query q, the output response generated greedily from the
Leading model can be notated as y = {y1, ..., yT }, where T represents the length of the response.
This response serves as the target for calculating the token distribution for the Draft model. At each
position t, the context for predicting this token can be presented as ct =< q; y<t >, where <;>
represents the concatenation operation.

In the analysis, the aligned positions are defined as those token steps where the Draft model, when
conditioned on the Leading model’s history, would greedily generate exactly the same token as the
Leading model, which means that the two models have the same most probable behavior under the
same context, indicating the alignment.

Suppose V is the vocabulary for next-token prediction, then the aligned token indices are:

A =
{
t ∈ {1, . . . , T} : argmax

y∈V
PD

(
y | ct

)
= argmax

y∈V
PL

(
y | ct

)}
, (1)

which collects exactly those positions where the Draft model’s top-1 prediction matches the Leading
model’s emitted token under the shared causal context ct. Thus, the aligned and misaligned tokens
can be defined:

yA = { yt | t ∈ A} yA∁ = { yt | t /∈ A} (2)

Qualitative Analysis on Misaligned Tokens. Figure 1 (left) shows a qualitative example (truncated)
from MATH500, comparing the token distribution alignment between DeepSeek-R1-Distill-Qwen-
32B as the Leading model and Qwen2.5-1.5B-Instruct as the Draft model. The shown response y is
generated by the Leading model, the aligned tokens yA are colored in blue, and misaligned tokens
yA∁ are colored in red. Through the example, it can be intuitively perceived that the misaligned
tokens are mostly stylistic tokens related to thinking patterns, and the beginning of each sentence2

has a larger probability of being misaligned. To further quantitatively investigate what exactly these
misaligned tokens are, we extract all the misaligned tokens from the mix of AIME24, AMC23,
GPQA, and MATH datasets, count their frequencies, and generate the corresponding WordCloud
shown in Figure 1 (right). From the WordCloud, it is observed that most of the high-frequency

2Sentences are defined as tokens separated by a period, question mark, exclamation mark, or newline symbol.
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misaligned tokens are related to thinking patterns of LRMs, like “wait”, “perhaps”, “maybe”, “let”,
and “alternatively”, which shows a similar but different superficial phenomenon than previous
instruction-following LLMs: While misalignment in both types of models is primarily stylistic rather
than content-based, those in LRMs are distinctively characterized by tokens reflecting their overt
reasoning or self-correction patterns. Thus, our qualitative exploration reveals that LRM misalignment
is characterized by stylistic “thinking cues” concentrated at sentence beginnings, prompting a more
detailed quantitative analysis of their underlying distribution patterns.

Figure 2: Top: Response-level misalignment
changes with response length. Bottom: sentence-
level misalignment changes with response length.
The y-axis represents the average misalignment
rate at each token position, the x-axis represents
the token position within the whole response or
sentence. We reveal the novel Global Misalign-
ment Rebound and Local Misalignment Diminish
phenomenon that only occurs on current LRMs,
shown as the blue, orange, and green lines of the
upper figure. This phenomenon does not hold for
the previous alignment between the instruction-
following and base models, shown in the red line.

Global Misalignment Rebound. Existing
analysis on token distribution shifts between in-
struct and base models has identified that such
shifts will gradually diminish over time during
the decoding process due to the more compre-
hensive context given, as shown in Figure 2 (up-
per, red line). In the figure, the y-axis represents
the average misalignment rate at each token po-
sition, while the x-axis represents the token posi-
tion within the whole response (upper panel) or
sentence (lower panel). As shown, the red line,
representing misalignment between the instruct
model and base model, decreases and remains
at a low rate. This implies that providing longer
context can gradually compensate for the mis-
alignment between instruct and base models.

However, this response-level misalignment di-
minishing phenomenon does not strictly hold for
LRMs. As illustrated in Figure 2 (upper), lines
corresponding to LRM as the Leading model ex-
hibit different behaviors. When the Draft models
are instruct (blue line) or base (orange line) mod-
els, the misalignment rates initially decrease dra-
matically to around 0.2, then rebound and persist
around 0.3. In contrast, the green line, repre-
senting misalignment between large and small
reasoning models (which belong to the same
family and are trained on similar data), shows
consistently low misalignment from the begin-
ning, indicating a distinct trend. We term the
observed persistent or rebounding divergence
between LRMs and non-reasoning models the
Global Misalignment Rebound phenomenon.
This phenomenon, characteristic of LRM com-
parisons with non-reasoning models, is mainly
caused by LRMs continuously generating thinking patterns at the beginning of sentences, partly to
prevent premature conclusion of the generation process. This finding demonstrates that merely extend-
ing context length is insufficient to resolve the misalignment between reasoning and non-reasoning
models, indicating that reasoning capability is not as superficial as instruction-following.

Local Misalignment Diminish. It is uncommon that a longer context does not benefit the alignment.
Thus, to further understand this behavior, we conduct the sentence-level analysis by calculating the
token misalignment rate at each sentence-level position. In the response, sentences can be separated
by periods, question marks, exclamation marks, and the newline symbol. Specifically, for any position
x, we first collect every sentence that is at least x tokens long. Mark the x-th token in each of those
sentences as 1 if it is misaligned and 0 if it is aligned. The average of these 0-1 indicators across all
selected sentences is the misalignment rate for position x.

As shown in Figure 1 (lower), for the red line, there is no obvious misalignment decrease that can be
observed. It means that between the instruct and the base model, the misalignment occurs relatively
evenly across the whole sentence. On the contrary, for LRM-involved model combinations, the
blue, orange, and green lines, the misalignment rates drop dramatically at the first several tokens,
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e.g., from 0.4 to 0.15, and then keep diminishing, indicating a totally different behavior. Thus, we
term this phenomenon the Local Misalignment Diminish phenomenon for reasoning models. These
findings reveal a novel periodical, sentence-level misalignment diminish pattern unique to LRMs,
driven by thinking-pattern indicators concentrated at sentence openings, shedding light on a better
understanding of token-level divergences of these two types of models.

Findings. From this section, several key findings can be concluded:

• LRM misalignment with non-reasoning models, while largely superficial and characterized by
stylistic “thinking cues”, uniquely exhibits a Global Misalignment Rebound. Unlike instruct
models that increasingly align with more context, token divergence at the response level can persist
or even grow, underscoring deeper, ingrained differences in their generative behavior.

• LRMs distinctively display a Local Misalignment Diminish. This manifests as a novel, periodical
sentence-level pattern where high misalignment, driven by “thinking cues” concentrated at sentence
beginnings, rapidly decreases as the sentence progresses. This predictable intra-sentence dynamic
is a crucial insight for developing LRM-guided decoding and understanding LRM patterns.

3 FOREAL-DECODING

Motivated by the above token divergence analysis, we propose a collaborative fast-slow thinking
decoding method for cost-quality Trade-off, Follow the Reasoning Leader (FoReaL-Decoding),
a plug-and-play training-free method that mixes the strength of a slow but highly capable large
reasoning model with the speed of a small model. The central idea is to let the strong, large (Leading)
model lead at the beginning of sentences, and allow the weaker, small (Draft) model to complete the
rest of the tokens. This decoding algorithm is of strong controllability, which can smoothly transfer
into the Leading model only or downgrade to the Draft model only, by controlling the probability and
the number of tokens to lead3.

Preliminaries. The two control knobs that govern the trade-off between cost and quality: Required
lead count n ∈ N: the minimum number of tokens the Leading model generates before yielding
control to the Draft model. Lead probability p ∈ [0, 1]: probability that a sentence is led by the
Leading model. When p = 0, the decoding system degenerates to pure Draft model decoding; when
p = 1 and n exceeds the sentence length, it transfers to Leading model decoding. Intermediate
settings form a continuity of compute–accuracy trade-offs.

In addition, let t ∈ N represent the global token index in the response, and s ∈ N represent the
sentence index. gs ∼ Bernoulli(p) represents the sentence-level gate to decide what model to start
the sentence s: the sentence will be led by the Leading model if gs = 1. τs represents the global
position of the first token in s. s(t) = max{s : τs ≤ t} is the function that maps the token t to the
sentence index that t belongs to. λt = t− τs(t) + 1 is the local position of token t within its sentence.

Intra-Sentence Lead Within a sentence s, the generation of each token at position t is governed by
the token-level policy,

πt =

{
L gs(t) = 1 ∧

[
λt ≤ n ∨ t < Hhit

s(t)

]
,

D otherwise.
(3)

gs(t) = 1 represents this sentence s(t) should be led by the Leading model, decided by the gate. L
and D represent the Leading model and Draft model, respectively. λt ≤ n represents the index of
this token within this sentence that is smaller than the required lead count n, thus should be generated
by the Leading model. Hhit

s is the first token index within s where the top-1 token generated by the
Draft model matches that of the Leading model for k consecutive steps:

Hhit
s = min{t : s(t) = s, λt > n, ht = k}, (4)

where ht represents the number of consecutive hits within the max sliding window of k:

ht =

k−1∑
i=0

δt−i, δt = 1
{
argmax

y∈V
PD(·|ct) = argmax

y∈V
PL(·|ct)

}
(5)

3The detailed pseudo code is shown in Appendix A.
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Put it simply, for each sentence, if the Bernoulli gate decides to let PL lead the sentence with the
probability p, PL will generate the first n tokens. Then, PD begins the generation process as well,
with the purpose of measuring the alignment between the two models. When the top-1 predictions
of these two models aligned with each other for k times, the generation process is yielded to PD,
otherwise, PL generates the whole sentence. On the contrary, if the gate decides not to let PL lead,
then the whole sentence will be completely generated by PD.

Sentence-level likelihood. For sentence s with token span Ys = (yτs , . . . , yτs+1−1) and length Ls,
the conditional likelihood under FoReaL-Decoding is:

PCoL
(
Ys | gs

)
=

Ls−1∏
i=0

Pπτs+i

(
yτs+i | cτs+i

)
, (6)

Whenever πt = L, the factor draws its probability from the distribution PL of the Leader model;
otherwise from the Draft model of distribution PD.

Inter-Sentence Transfer Upon encountering a sentence boundary at the token t, i.e., the sentence
is complete, we execute the inter-sentence update by resetting the hit counter and resampling the gate
for the next sentence.

s← s+ 1, gs ∼ Bernoulli(p), ht ← 0 (7)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Models, Datasets, and Setup. To assess the effects of FoReaL-Decoding, extensive experiments are
conducted for different model combinations in the Qwen2.5 family, including reasoning models like
R1-Distill-Qwen-32B (DeepSeek-AI et al., 2025), R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025),
non-reasoning instruct models like Qwen2.5-7B-Instruct (Team, 2024), Qwen2.5-1.5B-Instruct (Team,
2024), and base models like Qwen2.5-1.5B (Team, 2024). To cover a wide scope of potential trade-
offs, we utilize the reasoning models as the Leading models, while any of the above types as the
Draft models. Moreover, our extensive experiments on the recently released Qwen3 (Team, 2025)
series further verify the generalizability of our method. We evaluate our method on relatively hard,
reasoning-heavy math datasets, including AIME2024 (AI-MO, 2024a), GPQA-Diamond (Rein et al.,
2024), AMC23 (AI-MO, 2024b), and MATH500 (Lightman et al., 2023). All experiments were
conducted on NVIDIA A100 GPUs (80G), utilizing the Huggingface Transformers package. During
the generation, we follow the recommended generation configuration from R1-Distill models as
temperature=0.6, top_p=0.95, top_k=40 for all the experiments. During the generation, we
always let the Leading model generate the first paragraph, and we fix the required hits for generation
transfer as k = 5 for all the experiments.

4.2 MAIN RESULTS

Table 1 presents the comparisons between accuracy and efficiency (TFLOPs) of FoReaL-Decoding
on commonly used reasoning-heavy math problem tasks. We provide some different configurations
as controls to show the wide trade-off scopes of our method. We also present the reported results of
the concurrent work, Speculative Thinking (Yang et al., 2025), for better comparison. The accuracies
on each line are compared with the Draft model, and the TFLOPs are compared with the Leading
models: better values are colored in green, otherwise red. We utilize the theoretically estimated
TFLOPs4 as the efficiency measurement since it takes the generation length into account, different
from the estimated speed. In the main comparison, we focus on 3 collaborative settings. Across four
benchmarks, FoReaL-Decoding cuts inference cost by 30 – 55% relative to Leader-only decoding
while retaining 86 - 100% of its accuracy. The detailed statistics, including response length and
leading ratios on AIME24, can be found in Table 2 for better understanding.

R1-Distill-Qwen-32B for Leading, R1-Distill-Qwen-1.5B for Draft. This collaborative setting yields
the highest accuracies for all of the math reasoning datasets. In this setting, the larger 32B reasoning
model takes charge of the leading of the sentences, while the smaller 1.5B reasoning model needs to

4The estimated TFLOPs are calculated based on the detailed formulas presented in Appendix B.
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Table 1: Comparisons of Accuracy and Efficiency (TFLOPs) of FoReaL-Decoding on commonly
used reasoning-heavy math problem tasks. To further show the wide trade-off scopes of our method,
we provide some different configurations as the control. The results of Speculative Thinking are the
reported results. The accuracies are better with higher (↑) values, while the TFLOPs are better with
lower (↓) values. The accuracies on each line are compared with the Draft model, and the TFLOPs
are compared with the Leading models: better values are colored in green, otherwise red.

Model AIME24 GPQA-D MATH500 AMC23
Method Config ACC (%) ↑ TFLOPs ↓ ACC (%) ↑ TFLOPs ↓ ACC (%) ↑ TFLOPs ↓ ACC (%) ↑ TFLOPs ↓
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-32B 66.7 15.72 59.6 8.09 93.6 4.13 95.0 7.54
DeepSeek-R1-Distill-Qwen-1.5B 23.3 2.86 22.2 1.13 81.4 1.14 65.0 2.51
Speculative Thinking 32.2 5.75 41.9 2.62 89.4 1.51 80.0 3.31
FoReaL-Decoding n=15,p=0.4 33.3 (+10.0) 5.60 (-10.12) 43.3 (+21.1) 2.47 (-5.62) 90.2 (+8.8) 1.43 (-2.88) 80.0 (+15.0) 2.91 (-4.63)
FoReaL-Decoding n=15,p=0.6 50.0 (+26.7) 6.77 (-8.95) 48.2 (+26.0) 4.50 (-3.59) 91.4 (+10.0) 2.40 (-1.26) 80.0 (+15.0) 3.99 (-3.55)

FoReaL-Decoding n=15,p=0.8 50.0 (+26.7) 8.47 (-7.25) 54.6 (+32.4) 4.69 (-3.40) 93.4 (+12.0) 2.70 (-1.43) 90.0 (+25.0) 5.37 (-2.17)

FoReaL-Decoding n=15,p=1.0 66.7 (+43.4) 9.16 (-6.56) 56.6 (+34.4) 6.21 (-1.88) 93.2 (+11.8) 3.14 (-0.99) 92.5 (+27.5) 5.28 (-2.26)

FoReaL-Decoding n=25,p=0.8 53.3 (+30.0) 10.95 (-4.77) 57.1 (+34.9) 5.65 (-2.44) 92.6 (+11.2) 3.13 (-1.00) 92.5 (+27.5) 4.99 (-2.55)

FoReaL-Decoding n=25,p=1.0 66.7 (+43.4) 10.54 (-5.18) 57.6 (+35.4) 6.68 (-1.41) 94.5 (+13.1) 3.50 (-0.63) 95.0 (+30.0) 5.66 (-1.88)

DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct
DeepSeek-R1-Distill-Qwen-32B 66.7 15.72 59.6 8.09 93.6 4.13 95.0 7.54
Qwen2.5-1.5B-Instruct 0.0 0.12 23.7 0.12 49.2 0.09 15.0 0.10
FoReaL-Decoding n=15,p=0.8 20.0 (+20.0) 9.05 (-6.67) 38.4 (+14.7) 5.63 (-2.46) 76.2 (+27.0) 2.85 (-1.28) 65.0 (+50.0) 5.22 (-2.32)

FoReaL-Decoding n=15,p=1.0 20.0 (+20.0) 11.19 (-4.53) 47.5 (+23.8) 5.86 (-2.23) 85.9 (+36.7) 3.28 (-0.85) 85.0 (-70.0) 6.15 (-1.39)

FoReaL-Decoding n=25,p=0.8 36.7 (+36.7) 9.58 (-6.14) 45.0 (+21.3) 4.37 (-3.72) 82.0 (+32.8) 2.52 (-1.61) 72.5 (+57.5) 4.65 (-2.89)
FoReaL-Decoding n=25,p=1.0 40.0 (+40.0) 11.00 (-4.72) 57.1 (+33.4) 6.27 (-1.82) 90.8 (+2.8) 3.36 (-0.77) 92.5 (-77.5) 6.88 (-0.66)

DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-1.5B 23.3 2.86 22.2 1.13 81.4 1.14 65.0 2.51
Qwen2.5-7B-Instruct 6.7 0.95 38.4 0.89 76.0 0.61 52.5 0.75
Speculative Thinking 6.7 4.93 31.8 6.73 74.8 2.04 55.0 4.97
FoReaL-Decoding n=15,p=0.8 16.7 (+10.0) 2.05 (-0.81) 34.3 (-4.1) 1.07 (-0.06) 76.4 (+0.4) 0.57 (-0.57) 57.5 (+5.0) 1.08 (-1.43)
FoReaL-Decoding n=15,p=1.0 16.7 (+10.0) 6.47 (+3.61) 29.8 (-8.6) 3.08 (+1.95) 79.6 (+3.6) 1.42 (+0.28) 52.5 (+0.0) 3.35 (+0.84)

FoReaL-Decoding n=25,p=0.8 20.0 (+13.3) 1.57 (-1.29) 33.3 (-5.1) 0.80 (-0.33) 78.6 (+2.6) 0.55 (-0.59) 65.0 (+12.5) 1.76 (-0.75)

FoReaL-Decoding n=25,p=1.0 23.3 (+16.6) 3.18 (+0.32) 29.3 (-9.1) 2.53 (+1.40) 79.2 (+3.2) 1.04 (-0.10) 65.0 (+12.5) 1.66 (-0.85)

complete the remaining sentence. In this setting, both models have the reasoning capabilities, but
FoReaL-Decoding implicitly separates the generation of each sentence into two phases and yields the
less informative Draft phase to the smaller model for better efficiency. As shown in the table, all our
results obtain better performances compared with the Draft model and efficiencies compared with
the Leading model, and also exceed Speculative Thinking, indicating the capability of our methods.
Moreover, on all of the tasks except GPQA-D, FoReaL-Decoding reaches similar or even slightly
higher performances than the 32B Leading model with fewer TFLOPs.

Table 2: The detailed results of different collabora-
tive settings on AIME. Additional configuration that
uses base model for Draft is included.

Model AIME24
Method Config ACC (%) Length Ratio TFLOPs
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
FoReaL-Decoding n=15, p=0.4 33.3 11 876 0.272 5.60
FoReaL-Decoding n=15, p=0.6 50.0 10 934 0.401 6.77
FoReaL-Decoding n=15, p=0.8 50.0 11 532 0.527 8.47
FoReaL-Decoding n=15, p=1.0 66.7 10 617 0.666 9.16
FoReaL-Decoding n=25, p=0.8 53.3 12 081 0.676 10.95
FoReaL-Decoding n=25, p=1.0 66.7 11 116 0.683 10.54

DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct
FoReaL-Decoding n=15, p=0.8 20.0 12 584 0.571 9.05
FoReaL-Decoding n=15, p=1.0 20.0 14 188 0.588 11.19
FoReaL-Decoding n=25, p=0.8 36.7 11 575 0.710 9.58
FoReaL-Decoding n=25, p=1.0 40.0 11 239 0.813 11.00

DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B (Base)
FoReaL-Decoding n=15, p=0.8 23.3 12 224 0.547 9.56
FoReaL-Decoding n=15, p=1.0 20.0 12 107 0.664 10.39

DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
FoReaL-Decoding n=15, p=0.8 16.7 4 120 0.545 2.05
FoReaL-Decoding n=15, p=1.0 16.7 14 132 0.651 6.47
FoReaL-Decoding n=25, p=0.8 20.0 4 474 0.693 1.57
FoReaL-Decoding n=25, p=1.0 23.3 11 436 0.841 3.18

R1-Distill-Qwen-32B for Leading, Qwen2.5-
1.5B-Instruct for Draft. This setting represents
a direct mixture of a large reasoning model
and a small non-reasoning model. As shown
in the table, the 1.5B instruct model performs
badly on the given difficult math problems.
The use of a stronger reasoning model for lead-
ing largely improves the accuracy, although
with more computation required. The re-
sponse lengths are largely shorter than R1-
Distill-Qwen-1.5B, representing an alleviation
of overthinking. Compared with using another
small reasoning model for Draft, utilizing the
instruction model leads to suboptimal perfor-
mance. To understand this phenomenon, fur-
ther experiments are conducted where the base
pretrained model Qwen2.5-1.5B is utilized as
the Draft model. As shown in Table 2, the
accuracies, response lengths, and estimated
TFLOPs are almost identical compared with
using base and instruct models, which means the previous instruction-aligned process does not benefit
the current reasoning settings. Moreover, we also include the results of using Qwen3 family models
with similar settings, which shows much better performance due to the stronger capabilities.
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Figure 3: Effects of lead count and lead probability on AIME24 and AMC23 datasets, based on 2
collaborative configurations. FoReaL-Decoding provides a smooth cost-quality trade-off, making the
transition from the weak Draft model to the strong Leading model smooth and controllable.

R1-Distill-Qwen-1.5B for Leading, Qwen2.5-7B-Instruct for Draft. Different from the above settings,
in which a strong but large reasoning model is used as the Leading model, this setting considers a
different and most efficient scenario, utilizing a small reasoning model for leading and a slightly larger
instruct model for Draft. In this setting, the efficiencies are reduced to an extremely low level, even
faster than directly utilizing the small reasoning models. As shown in Table 2, FoReaL-Decoding
largely reduces the length required for the problem, thus largely reducing the computation required.
On AIME24 and AMC23, our method reaches the same accuracy as the Leading model with similar
or less computation. On GPQA, our method reaches an intermediate accuracy, since the abnormal
situation where a non-reasoning model has better performance than the reasoning model.

4.3 EFFECTS OF LEAD COUNT AND LEAD PROBABILITY

Figure 3 sweeps the two hyperparameters that govern the controllability of FoReaL-Decoding,
lead count n and lead probability p on AIME24 and AMC23 datasets, based on 2 collaborative
configurations, DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-
R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct, representing the high-performance and high-efficiency
settings, respectively. For each model combination, we run experiments on n ∈ {5, 15, 25,+∞}, p ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0}. When p = 0, FoReaL-Decoding utilizes the Draft model only, and utilizes
the Leading model only when p = 1 and n = +∞. According to the figure, FoReaL-Decoding
provides a smooth cost-quality trade-off, making the transition from the weak Draft model to the
strong Leading model smooth and controllable. For any fixed n, increasing the probability p of the
Leader intervention shifts the operating point up and to the right: accuracy rises while estimated
TFLOPs grows almost linearly. The resulting curve is smooth, allowing practitioners to trade latency
for quality by adjusting (n, p). The jump from n = 5 to n = 15 yields large accuracy gains at a modest
cost increase. Further enlarging the Leader count (n ≥ 25) adds little accuracy yet inflates compute up
a lot, indicating that sentence-level guidance already captures most of the benefit of slow reasoning.

4.4 TRADE-OFF CURVES

Figure 4: The trade-off curves between accuracy
and estimated TFLOPs. Blue markers correspond
to our variants, red circles denote the correspond-
ing LRMs, and the dashed line is the empirically
computed Pareto frontier. On both benchmarks,
every LRM point is Pareto dominated.

Figure 4 plots the trade-off curves between accu-
racy and estimated TFLOPs for every (n, p) con-
figuration tested on AIME24 (left) and AMC23
(right), according to our experiment scopes on
Qwen2.5 family. Blue markers correspond to
our variants, red circles denote the correspond-
ing LRMs, and the dashed line is the empiri-
cally computed Pareto frontier. On both bench-
marks, every LRM point is Pareto dominated:
an alternative FoReaL-Decoding setting always
achieves higher accuracy at lower cost. More-
over, we find that the frontier rises sharply be-
tween 0.5 and 2 estimated TFLOPs, as each
additional estimated TFLOPs yields 10-15 per-
centage points of accuracy. However, beyond
≈5 estimated TFLOPs, the curve flattens; extra compute buys only marginal improvements up to the
ceiling.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.5 RESULTS ON QWEN3 FAMILIES

Table 3: The detailed results of Qwen3 series mod-
els on AIME, including the comparision with Spec-
ulative Decoding, where m denotes the draft length.
FoReaL-Decoding shows promising performance
in this additional family.

Model AIME24
Method Config ACC (%) Length Ratio TFLOPs
Base Models
Qwen3-32B – 76.6 13 275 – 15.75
Qwen3-1.7B – 40.0 14 990 – 2.81
Qwen3-0.6B – 13.3 15 839 – 1.14

Qwen3-32B (reasoning) + Qwen3-1.7B (reasoning)
FoReaL-Decoding n=15, p=0.4 60.0 14 840 0.272 7.20
FoReaL-Decoding n=15, p=0.6 73.3 14 110 0.412 8.83
FoReaL-Decoding n=15, p=0.8 73.3 15 081 0.536 11.43

Qwen3-32B (reasoning) + Qwen3-0.6B (reasoning)
FoReaL-Decoding n=15, p=0.4 36.7 17 782 0.281 7.44
FoReaL-Decoding n=15, p=0.6 63.0 14 279 0.410 8.18
FoReaL-Decoding n=15, p=0.8 60.0 15 478 0.560 11.01

Qwen3-32B (reasoning) + Qwen3-0.6B (non-reasoning)
FoReaL-Decoding n=15, p=0.6 60.0 8 762 0.472 5.24
FoReaL-Decoding n=15, p=0.8 66.6 9 468 0.558 6.73
FoReaL-Decoding n=15, p=1.0 73.3 10 267 0.673 8.32

Speculative Decoding: Qwen3-32B (reasoning) + Qwen3-0.6B (non-reasoning)
Speculative Decoding m = 20 73.3 15 374 0.427 10.25
Speculative Decoding m = 10 73.3 14 672 0.403 9.02

To further verify the effectiveness and gener-
alizability of FoReaL-Decoding on otehr mod-
els, additional experiments are conducted on
the Qwen3 series of models, including Qwen3-
32B, Qwen3-1.7B, and Qwen3-0.6B, due to the
various sizes of models provided in the fam-
ily. Since Qwen3 family models have both rea-
soning and non-reasoning modes, we utilize
both modes for these models and follow ex-
actly the same generation configuration as our
main experiments. The detailed experimental
results are shown in Table 3. As shown in the
table, FoReaL-Decoding shows promising per-
formances on all the configurations. Most no-
tably, in the Qwen3-32B (reasoning) + Qwen3-
0.6B (non-reasoning) configuration, FoReaL-
Decoding reaches a similar accuracy (66.6% to
73.3%) with only half of the estimated TFLOPs
and with less response length. Compared with
the utilzing Qwen2.5 family models using rea-
soning plus non-reasoning models, Qwen3 fam-
ily models achieve much better performance,
these results not only present the effectiveness and generalizability of FoReaL-Decoding, but also
shows the potential of our method using stronger models.

4.6 COMPARED WITH SPECULATIVE DECODING

In this section, we compare and analyze FoReaL-Decoding with Speculative Decoding (SD)
(Leviathan et al., 2023) on the Qwen3 family models. Technically, FoReaL-Decoding can be
viewed as a variant of SD, but with a crucial difference in the interaction pattern between the strong
and weak models. In standard SD, the weaker model first generates a fixed number of tokens m,
after which the stronger model verifies and potentially corrects them. In contrast, FoReaL-Decoding
has a stronger model that generates the initial tokens, those most likely to cause divergence, before
handing off to the weaker model to complete the remainder of the sequence. As shown in the Table
3, FoReaL-Decoding achieves similar accuracy as SD but has lower estimated TFLOPs, which is
mainly caused by the reduction on response lengthes, i.e., alleviate the phenomenon of overthinking.
As mentioned in the motivation, SD has the same distribution with the verifier model, promising the
performance but also keeping the overthinking problem.

For qualitative comparison, FoReaL-Decoding is particularly advantageous in scenarios where
misaligned tokens are clustered together, which is common in current reasoning models, as shown
in our findings on token divergence. For instance, if there are n consecutive misaligned tokens,
FoReaL-Decoding requires the strong model to generate only these n tokens. In contrast, SD with a
draft length of m would require the weak model to generate m tokens, followed by verification and
correction by the strong model, repeating this process until all n misaligned tokens are covered. This
results in n×m tokens generated by the weak model and n tokens by the strong model, an n×m
increase in weak model computation compared to FoReaL-Decoding.

5 CONCLUSION

Our systematic token-level analysis comparing Large Reasoning Models (LRMs) with non-reasoning
models has uncovered two pivotal, previously under-explored divergence phenomena: Global Mis-
alignment Rebound and Local Misalignment Diminish. This pattern reveals a novel, periodical
sentence-level pattern wherein LRM-specific stylistic “thinking cues” cause high token divergence at
the very beginning of sentences, after which this misalignment rapidly decreases within the sentence.
Building upon this insight, we proposed FoReaL-Decoding, a training-free, plug-and-play collab-
orative decoding algorithm. It allows a strong LRM to lead the crucial initial tokens of sentences
(capturing these divergent “thinking cues”), while a lightweight Draft model efficiently completes the
subsequent, more aligned portions. Our experiments demonstrate that FoReaL-Decoding achieves
good cost-quality trade-off on reasoning-heavy math tasks.
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THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we utilized large language models exclusively as writing assistants to
enhance clarity and presentation. The models were employed to suggest improvements to sentence
structure, readability, and stylistic consistency throughout the document. Following each set of
AI-generated suggestions, we carefully reviewed, evaluated, and selectively incorporated or modified
the proposed changes to ensure accuracy and appropriateness. Importantly, large language models
did not contribute to any aspect of research conceptualization, methodological design, experimental
implementation, data analysis, or interpretation of results.
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Kwaśniewski, Jürgen Müller, Łukasz Flis, Hannes Eberhard, Hubert Niewiadomski, and Torsten
Hoefler. Reasoning language models: A blueprint, 2025. URL https://arxiv.org/abs/
2501.11223.

Alexander Bukharin and Tuo Zhao. Data diversity matters for robust instruction tuning, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca with
fewer data, 2023b.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models, 2025a. URL https://arxiv.org/abs/2503.
09567.

Runjin Chen, Gabriel Jacob Perin, Xuxi Chen, Xilun Chen, Yan Han, Nina ST Hirata, Junyuan Hong,
and Bhavya Kailkhura. Extracting and understanding the superficial knowledge in alignment.
arXiv preprint arXiv:2502.04602, 2025b.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Do not think that much for 2+3=? on the overthinking of o1-like llms, 2025c. URL https:
//arxiv.org/abs/2412.21187.

10

https://arxiv.org/abs/2503.04697
https://aclanthology.org/2024.eacl-srw.17/
https://aclanthology.org/2024.eacl-srw.17/
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://arxiv.org/abs/2501.11223
https://arxiv.org/abs/2501.11223
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yushuo Chen, Tianyi Tang, Erge Xiang, Linjiang Li, Wayne Xin Zhao, Jing Wang, Yunpeng Chai,
and Ji-Rong Wen. Towards coarse-to-fine evaluation of inference efficiency for large language
models. arXiv preprint arXiv:2404.11502, 2024.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, Nicholas Thumiger, Aditya Desai, Ion Stoica,
Ana Klimovic, Graham Neubig, and Joseph E. Gonzalez. The danger of overthinking: Examining
the reasoning-action dilemma in agentic tasks, 2025. URL https://arxiv.org/abs/2502.
08235.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. URL https://arxiv.org/
abs/2502.01456.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, and etc. Deepseek-
r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2501.12948.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. Mods: Model-oriented data selection for instruction
tuning, 2023.

Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou. Missing premise exacerbates overthinking: Are
reasoning models losing critical thinking skill? arXiv preprint arXiv:2504.06514, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Xiaotian Han. Reproduce the inference-time scaling experiment, 2024. URL https://ahxt.
github.io/blog/2024-12-30-inference-time-scaling-exp/.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey,
2023. URL https://arxiv.org/abs/2212.10403.

Lifeng Jin, Baolin Peng, Linfeng Song, Haitao Mi, Ye Tian, and Dong Yu. Collaborative decoding of
critical tokens for boosting factuality of large language models. arXiv preprint arXiv:2402.17982,
2024.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr,
and Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms, 2025. URL https:
//arxiv.org/abs/2502.02542.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Jianwei Li and Jung-Eun Kim. Superficial safety alignment hypothesis. arXiv preprint
arXiv:2410.10862, 2024.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, and Tianyi Zhou. Reflection-tuning: Recycling data
for better instruction-tuning. In NeurIPS 2023 Workshop on Instruction Tuning and Instruction
Following, 2023.

Ming Li, Han Chen, Chenguang Wang, Dang Nguyen, Dianqi Li, and Tianyi Zhou. Ruler: Improving
llm controllability by rule-based data recycling. arXiv preprint arXiv:2406.15938, 2024a.

11

https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://ahxt.github.io/blog/2024-12-30-inference-time-scaling-exp/
https://ahxt.github.io/blog/2024-12-30-inference-time-scaling-exp/
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2502.02542
https://arxiv.org/abs/2502.02542


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxiang Gu, and Tianyi Zhou. Selective reflection-
tuning: Student-selected data recycling for LLM instruction-tuning. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics ACL
2024, pp. 16189–16211, Bangkok, Thailand and virtual meeting, August 2024b. Association for
Computational Linguistics. URL https://aclanthology.org/2024.findings-acl.
958.

Ming Li, Pei Chen, Chenguang Wang, Hongyu Zhao, Yijun Liang, Yupeng Hou, Fuxiao Liu, and
Tianyi Zhou. Mosaic-it: Free compositional data augmentation improves instruction tuning. arXiv
preprint arXiv:2405.13326, 2024c.

Ming Li, Yanhong Li, and Tianyi Zhou. What happened in llms layers when trained for fast vs. slow
thinking: A gradient perspective. arXiv preprint arXiv:2410.23743, 2024d.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and
Tianyi Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14255–14273,
Bangkok, Thailand, August 2024e. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.769.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting LLM performance with self-guided
data selection for instruction tuning. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 7595–
7628, Mexico City, Mexico, June 2024f. Association for Computational Linguistics. URL
https://aclanthology.org/2024.naacl-long.421.

Ming Li, Yanhong Li, Ziyue Li, and Tianyi Zhou. How instruction and reasoning data shape post-
training: Data quality through the lens of layer-wise gradients. arXiv preprint arXiv:2504.10766,
2025a.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
arXiv preprint arXiv:2210.15097, 2022.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhiwei
Li, Bao-Long Bi, Ling-Rui Mei, Junfeng Fang, Zhijiang Guo, Le Song, and Cheng-Lin Liu.
From system 1 to system 2: A survey of reasoning large language models, 2025b. URL https:
//arxiv.org/abs/2502.17419.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. arXiv preprint
arXiv:2501.19324, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi Chandu,
Chandra Bhagavatula, and Yejin Choi. The unlocking spell on base llms: Rethinking alignment
via in-context learning. arXiv preprint arXiv:2312.01552, 2023.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Codemind:
A framework to challenge large language models for code reasoning, 2024a. URL https:
//arxiv.org/abs/2402.09664.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. arXiv preprint
arXiv:2312.15685, 2023.

12

https://aclanthology.org/2024.findings-acl.958
https://aclanthology.org/2024.findings-acl.958
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.naacl-long.421
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiaoxuan Liu, Cade Daniel, Langxiang Hu, Woosuk Kwon, Zhuohan Li, Xiangxi Mo, Alvin Cheung,
Zhijie Deng, Ion Stoica, and Hao Zhang. Optimizing speculative decoding for serving large
language models using goodput. arXiv preprint arXiv:2406.14066, 2024b.

Yue Liu, Jiaying Wu, Yufei He, Hongcheng Gao, Hongyu Chen, Baolong Bi, Jiaheng Zhang, Zhiqi
Huang, and Bryan Hooi. Efficient inference for large reasoning models: A survey, 2025. URL
https://arxiv.org/abs/2503.23077.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning, 2025.
URL https://arxiv.org/abs/2501.12570.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

OpenAI. OpenAI o1 System Card, December 2024. URL https://cdn.openai.com/
o1-system-card-20241205.pdf.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, Peng Li, Wei Wei, Jing Shao, Chaochao Lu, Yue Zhang, Xian-
Sheng Hua, Bowen Zhou, and Yu Cheng. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond, 2025. URL https://arxiv.org/abs/
2503.21614.

Mohit Raghavendra, Vaskar Nath, and Sean Hendryx. Revisiting the superficial alignment hypothesis.
arXiv preprint arXiv:2410.03717, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476–483. IEEE, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Shannon Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, and David Sontag. Learning to decode
collaboratively with multiple language models. arXiv preprint arXiv:2403.03870, 2024.

Xuan Shen, Yizhou Wang, Xiangxi Shi, Yanzhi Wang, Pu Zhao, and Jiuxiang Gu. Efficient reasoning
with hidden thinking. arXiv preprint arXiv:2501.19201, 2025a.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025b.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Qwen Team. Qwen3, April 2025. URL https://qwenlm.github.io/blog/qwen3/.

13

https://arxiv.org/abs/2503.23077
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.19393
https://cdn.openai.com/o1-system-card-20241205.pdf
https://cdn.openai.com/o1-system-card-20241205.pdf
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen3/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and etc. Llama 2: Open foundation
and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Dynamic self-consistency: Leveraging reasoning
paths for efficient llm sampling. arXiv preprint arXiv:2408.17017, 2024.

Xiyao Wang, Zhengyuan Yang, Linjie Li, Hongjin Lu, Yuancheng Xu, Chung-Ching Lin, Kevin
Lin, Furong Huang, and Lijuan Wang. Scaling inference-time search with vision value model for
improved visual comprehension. arXiv preprint arXiv:2412.03704, 2024a.

Xiyao Wang, Yuhang Zhou, Xiaoyu Liu, Hongjin Lu, Yuancheng Xu, Feihong He, Jaehong Yoon,
Taixi Lu, Gedas Bertasius, Mohit Bansal, et al. Mementos: A comprehensive benchmark for multi-
modal large language model reasoning over image sequences. arXiv preprint arXiv:2401.10529,
2024b.

Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
visual reasoning self-improvement. arXiv preprint arXiv:2504.07934, 2025a.

Yaoting Wang, Shengqiong Wu, Yuecheng Zhang, Shuicheng Yan, Ziwei Liu, Jiebo Luo, and Hao
Fei. Multimodal chain-of-thought reasoning: A comprehensive survey, 2025b. URL https:
//arxiv.org/abs/2503.12605.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025a.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
reasoning beyond accuracy, 2025b. URL https://arxiv.org/abs/2404.05692.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-
rewarding correction for mathematical reasoning, 2025. URL https://arxiv.org/abs/
2502.19613.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu,
Dacheng Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models.
ArXiv, abs/2402.13116, 2024. URL https://api.semanticscholar.org/CorpusID:
267760021.

Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiaotian Han. Speculative thinking: Enhancing
small-model reasoning with large model guidance at inference time, 2025. URL https://
arxiv.org/abs/2504.12329.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning, 2025. URL https://arxiv.org/abs/2502.03387.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression. arXiv preprint
arXiv:2502.15589, 2025.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36:55006–55021, 2023.

14

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2503.12605
https://arxiv.org/abs/2503.12605
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2502.19613
https://arxiv.org/abs/2502.19613
https://api.semanticscholar.org/CorpusID:267760021
https://api.semanticscholar.org/CorpusID:267760021
https://arxiv.org/abs/2504.12329
https://arxiv.org/abs/2504.12329
https://arxiv.org/abs/2502.03387


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

TABLE OF CONTENTS FOR APPENDIX

A Pseudo Code 16

B FLOPs Calculation 17

C Related Works 19

D Detailed Results 21

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PSEUDO CODE

The pseudo code of our FoReaL-Decoding is provided below, all the variables are kept the same as in
the main context.

Algorithm 1: FoReaL-Decoding
Input: Leading model PL, Draft model PD, lead count n, lead probability p, hit threshold k,

input prompt q, max new tokens MAX_LEN
Output: Generated tokens y
y← [], h← 0, λ← 0;
c← q ; // Initial context
g ← 1 ; // Initialize gate
while len(y) < MAX_LEN do

if is_sentence_boundary(y[−1]) then
g ∼ Bernoulli(p) ; // Sample gate for new sentence
h← 0 ; // Reset hit counter
λ← 0 ; // Reset position in sentence

λ← λ+ 1 ; // Increment position in sentence
// Generate next token
if g = 1 and (λ ≤ n or h < k) then

t← sample(PL(·|c)) ; // Use Leading model
else

t← sample(PD(·|c)) ; // Use Draft model

// Check alignment when approaching transition point
if g = 1 and λ > n− k then

if top-1(PD(·|c)) = top-1(PL(·|c)) then
h← h+ 1;

else
h← 0;

y.append(t);
c← concat(c, t) ; // Update context
if t ∈ EOS_tokens then

break;

return y;
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B FLOPS CALCULATION

Empirical latency depends on vendor-specific kernel fusion and memory layouts, so a timing measured
on one backend may not transfer to another. Counting floating-point operations (FLOPs) provides
a hardware-agnostic yardstick that isolates algorithmic differences. The performance figures we
report are presented in TeraFLOPs (TFLOPs), where one TFLOP equals 1012 FLOPs. The generation
process for the speculative decoding (SD)-type methods can be categories in three modes, prefill,
decode, and prefix:

• Prefill: This stage corresponds to loading the entire prompt into the model without any
KV cache. The cost here is determined by the length of the input (e.g., question and chat
template) and is incurred only once per inference.

• Decode: This stage involves the continuous generation of new tokens, where each token
is generated sequentially with the benefit of the KV cache. This is typically the most
computationally intensive part of inference.

• Prefix: This stage occurs whenever there is a switch between models (e.g., from Drafting
to Leading or vice versa), it mainly used in the SD-type methods. Here, the model must
process a sequence of tokens given the KV cache of previous tokens. In SD, this happens
each time the verifier model checks tokens generated by the draft model, and each time the
draft model resumes generation after verification. In FoReaL-Decoding, prefix computation
is triggered whenever control is transferred between the two models. Notably, the prefix
stage incurs a nearly fixed cost (largely independent of the number of tokens), which is a key
reason why SD-based methods can be efficient even though both models process all tokens.

The total FLOPs for a single inference is thus computed as: Prefill(Drafting) + Prefill(Leading) +
Decode(Drafting) + Decode(Leading) + Prefix(Drafting → Leading) + Prefix(Leading → Drafting).
When GPU memory is sufficient, profiling shows that producing multiple tokens during the prefix
phase costs almost the same as decoding a single token. Therefore, we upper-bound the prefix cost
by the single-token decode cost, following Speculative Thinking (Yang et al., 2025). We calculate
the precise total FLOPs using the detailed formulas presented below, which is based on (Chen et al.,
2024; Han, 2024; Yang et al., 2025). The resulting total FLOPs are then converted to estimated
TFLOPs for reporting.

The variables involved are defined as:

• s: Represents the sequence length.

– For the prefill stage (FLOPsprefill(s)), s is the length of the input prompt, denoted as pl.
– For the decode stage (FLOPsdecode(s)), s is the current length of the context (prompt +

tokens generated so far) that the model attends to via its Key-Value (KV) cache.

• h: The hidden size of the model.

• h′: The intermediate size of the feed-forward network (FFN).

• n: The number of attention heads.

• pl: The length of the initial problem prompt.

• dl: The number of tokens to be generated in the solution.

It is noted that the hidden size h relates to the number of attention heads n and the size of each
attention head d by h = n · d.

The FLOPs for the prefill stage, which processes the initial input prompt of length s = pl, is given by
Equation 8:

FLOPsprefill(s) = 8sh2 + 16sh+ 4s2h+ 4s2n+ 6shh′ + 2sh′ (8)

The FLOPs for the decode stage, which generates a single token when the current KV cache has a
length of s, is given by Equation 9:

FLOPsdecode(s) = 8h2 + 16h+ 4sh+ 4sn+ 6hh′ + 2h′ (9)
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The total FLOPs to generate dl tokens from a prompt of length pl combines the prefill cost for the
prompt and the sum of decode costs for each generated token, as shown in Equation 10:

FLOPstotal = FLOPsprefill(pl) +

dl−1∑
i=0

FLOPsdecode(pl + i) (10)

In this formula, for the i-th token being generated (0-indexed), the argument to FLOPsdecode is pl + i,
representing the sequence length in the KV cache at that generation step.
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C RELATED WORKS

C.1 LARGE REASONING MODELS

Recent advances in large language models (LLMs) have spurred a surge of work aimed at strengthen-
ing their reasoning abilities (Ahn et al., 2024; Besta et al., 2025; Chen et al., 2025a). Core reasoning
skills are already instilled during pre-training, where models absorb commonsense and mathematical
patterns from vast text corpora (Touvron et al., 2023; OpenAI, 2024). Researchers have therefore
concentrated on post-training techniques to further polish these skills. One prominent direction
employs reinforcement learning to nudge models toward more effective chains of thought (Shao et al.,
2024; Xiong et al., 2025; Cui et al., 2025; Wang et al., 2025a). Another line shows that carefully
curated instruction-tuning data can likewise deliver sizable gains in reasoning accuracy (Ye et al.,
2025; Muennighoff et al., 2025; Wang et al., 2024a).

Despite the impressive benchmark scores of recent Reasoning Language Models, several studies
have begun to probe the quality and efficiency of the reasoning they generate. (Xia et al., 2025b)
conduct a broad assessment and reveal substantial redundancy in many model-produced solutions.
Follow-up investigations (Chen et al., 2025c; Cuadron et al., 2025; Qu et al., 2025; Liu et al., 2025;
Fan et al., 2025) underscore an “overthinking” phenomenon, whereby models craft unduly verbose
derivations even for simple problems. Capitalizing on this trait, (Kumar et al., 2025) demonstrate
a slowdown attack: small input perturbations can trigger excessive reasoning, markedly degrading
inference speed.

To alleviate overthinking and improve efficiency for reasoning models, a series of efficient reasoning
methods has been proposed. For example, (Yu et al., 2024; Team et al., 2025; Aggarwal & Welleck,
2025; Xia et al., 2025a; Luo et al., 2025) utilize model-based methods that either add further
constraints on RL rewards or SFT on diverse lengths of CoTs, (Hao et al., 2024; Shen et al., 2025b;a;
Zhang et al., 2025) utilize latent-space reasoning methods that transfer the massive tokens into the
embedding space, (Han et al., 2024; Xu et al., 2025; Renze & Guven, 2024) utilize the prompt-based
methods, (Sun et al., 2024; Wan et al., 2024; Wu et al., 2025) utilize the sampling methods. Most of
these methods either require further post-training or manipulating the distribution of LRM itself.

C.2 ALIGNMENT AND TOKEN PATTERN ANALYSIS

A key empirical foundation for LLM Alignment is LIMA (Zhou et al., 2023), which demonstrated
that just 1, 000 carefully curated instruction–response pairs are already enough for LLM alignment,
crystallizing the “superficial alignment” hypothesis. While a line of work directly follows the
hypotheses by introducing data selection or alignment methods (Chen et al., 2023b; Li et al., 2024f;
2023; 2024b; Du et al., 2023; Li et al., 2024a; Bukharin & Zhao, 2023; Liu et al., 2023; Li et al.,
2024e;c; 2025a; Xu et al., 2024), there are also works that try to further investigate this phenomenon.

(Lin et al., 2023) provides a comprehensive token-level evidence by comparing the top-k token
distributions of base models and their chat-tuned counterparts. The authors show that almost all
divergence concentrates on discourse markers, politeness phrases, and safety disclaimers, while core
content tokens remain unchanged. (Chen et al., 2025b) dissects which prompt-level cues are sufficient
(and which are not) for alignment, showing that reasoning gaps emerge precisely where superficial
patterns end. The debate has sparked push-back as well: (Raghavendra et al., 2024) demonstrates
systematic performance gains when the amount of post-training data scales up, arguing that some
deeper representational changes do accrue beyond mere style. Researchers are also probing where
superficial signals live: (Li & Kim, 2024) argues that data curation, not extra optimization steps, is the
primary lever: filtering for safety disclaimers yields larger alignment jumps than adding thousands
of generic examples. Together, these works paint a nuanced picture: much of the alignment gap
after pre-training is indeed “superficial”, residing in a narrow band of stylistic tokens that can be
manipulated through tiny prompts, judicious data selection. However, in this paper, we show that the
reasoning capabilities might not be as superficial as previous findings.

C.3 SPECULATIVE DECODING AND COLLABORATIVE DECODING

Speculative decoding, inaugurated by (Leviathan et al., 2023), uses a small “draft” model to pro-
pose several tokens that the large “target” model then verifies in one batch, yielding 2–3× latency
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reductions with provably identical output distributions. Follow-up work, such as (Chen et al., 2023a)
extends the idea to 70 B-parameter models and confirms similar speed-ups, while (Cai et al., 2024)
replaces the external draft model with extra decoding heads to remove system complexity System-
level schedulers like (Liu et al., 2024b) dynamically adapt draft length to traffic conditions and push
end-to-end gains beyond 3× in production settings.

Collaborative decoding improves text quality by letting multiple models cooperate during generation.
(Li et al., 2022) runs a weak “amateur” model alongside a strong “expert” and selects tokens that
maximize their likelihood gap, sharply reducing repetition and incoherence without retraining. (Jin
et al., 2024) introduces a critical-token strategy that switches to the pretrained base model whenever
factual precision is needed, cutting hallucinations in instruction-tuned LLMs. At an even finer grain,
(Shen et al., 2024) treats “who should emit the next token” as a latent variable, enabling on-the-fly
delegation between a generalist LLM and domain specialists and outperforming any single model on
cross-domain tasks.

Comparisons with related methods. In speculative decoding (Leviathan et al., 2023), the final
text provably matches what the large model alone would have produced. However, our FoReaL-
Decoding focuses on the reasoning-heavy scenarios where the responses generated by the LRM itself
are not desirable due to the overthinking. Thus, our method serves as a deliberate mixture of two
distributions, aiming at reducing the overthinking problem of LRMs by inserting the distribution
from weaker models, and at the same time increasing the efficiency. A recent work, RSD (Liao
et al., 2025), also aims at reducing computation cost by utilizing speculative decoding. However, it
introduces an additional process reward model as the judge, while our method focuses on utilizing
the collaborative models themselves only, thus, it is largely different from our settings. Another
concurrent work, Speculative Thinking (Yang et al., 2025), also shares similar motivation as ours,
in which a “small-writes, large-fixes” mechanism is utilized, which differs from our “large-leads,
small-follows”. Moreover, FoReaL-Decoding provides a smooth transition from the small to the
large model, representing wider trade-off scopes.
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D DETAILED RESULTS

Table 4 and Table 5 show the detailed results of different settings of our method.

Table 4: The detailed results of different collaborative settings on AIME24, GPQA-D, MATH500,
and AMC23, including length and ratio.

Model AIME24 GPQA-D MATH500 AMC23
Method Config ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 59.6 6602 - 8.09 93.6 3542 - 4.13 95.0 6243 - 7.54
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 22.2 8696 - 1.13 81.4 6704 - 1.14 65.0 13311 - 2.51

FoReaL-Decoding n=15, p=0.4 33.3 11876 0.272 5.60 43.3 5841 0.294 2.47 90.2 3402 0.312 1.45 80.0 6043 0.304 2.91
FoReaL-Decoding n=15, p=0.6 50.0 10934 0.401 6.77 48.2 7007 0.431 4.50 91.4 3995 0.452 2.40 80.0 6460 0.429 3.99
FoReaL-Decoding n=15, p=0.8 50.0 11532 0.527 8.47 54.6 6110 0.570 4.69 93.4 3658 0.590 2.70 90.0 7037 0.571 5.37
FoReaL-Decoding n=15, p=1.0 66.7 10617 0.666 9.16 56.6 6796 0.692 6.21 93.2 3655 0.726 3.14 92.5 5942 0.708 5.28
FoReaL-Decoding n=25, p=0.8 53.3 12081 0.676 10.95 57.7 6223 0.702 5.65 92.6 3585 0.719 3.13 92.5 5529 0.710 4.99
FoReaL-Decoding n=25, p=1.0 66.7 11116 0.683 10.54 57.6 6065 0.882 6.68 94.5 3403 0.890 3.50 95.0 5422 0.872 5.66

DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct
DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 59.6 6602 - 8.09 93.6 3542 - 4.13 95.0 6243 - 7.54
Qwen2.5-1.5B-Instruct 0.0 998 - 0.12 23.7 923 - 0.12 49.2 747 - 0.09 15.0 818 - 0.10

FoReaL-Decoding n=15, p=0.8 20.0 12584 0.571 9.05 47.5 7013 0.587 5.63 76.2 3792 0.614 2.85 65.0 7629 0.514 5.22
FoReaL-Decoding n=15, p=1.0 20.0 14188 0.588 11.19 47.5 6294 0.737 5.86 85.9 3894 0.750 3.28 65.0 7673 0.707 6.15
FoReaL-Decoding n=25, p=0.8 36.7 11575 0.710 9.58 56.7 4718 0.719 4.37 82.0 3025 0.729 2.52 72.5 5415 0.649 4.65
FoReaL-Decoding n=25, p=1.0 40.0 11239 0.813 11.00 57.1 5944 0.887 6.27 90.8 3403 0.894 3.36 92.5 6989 0.867 6.88

DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 22.2 8696 - 1.13 81.4 6704 - 1.14 65.0 13311 - 2.51
Qwen2.5-7B-Instruct 6.7 1243 - 0.95 38.4 1054 - 0.89 76.0 773 - 0.61 52.5 994 - 0.75

FoReaL-Decoding n=15, p=0.8 16.7 4120 0.545 2.05 34.3 2130 0.602 1.07 76.4 1341 0.634 0.57 57.5 2515 0.580 1.08
FoReaL-Decoding n=15, p=1.0 16.7 14132 0.651 6.47 29.8 7913 0.703 3.08 79.6 3480 0.735 1.42 52.5 7330 0.686 3.35
FoReaL-Decoding n=25, p=0.8 20.0 4474 0.693 1.57 33.1 1801 0.718 0.80 78.6 1498 0.736 0.55 65.0 3778 0.683 1.76
FoReaL-Decoding n=25, p=1.0 23.3 11436 0.841 3.18 29.3 6800 0.863 2.53 79.2 3586 0.891 1.04 60.0 5721 0.865 1.66
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Table 5: The detailed results of different collaborative settings on AIME24 and AMC23, including
length and ratio.

Model AIME24 AMC23
Method Config ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 95.0 6243 - 7.54
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 65.0 13311 - 2.51

FoReaL-Decoding n=5, p=0.2 23.3 12926 0.076 3.47 77.5 5634 0.089 1.39
FoReaL-Decoding n=5, p=0.4 26.7 11590 0.145 3.92 80.0 6549 0.157 2.18
FoReaL-Decoding n=5, p=0.6 36.7 11560 0.202 4.81 80.0 7081 0.228 2.95
FoReaL-Decoding n=5, p=0.8 43.3 11907 0.270 5.82 82.5 6399 0.294 3.29
FoReaL-Decoding n=5, p=1.0 50.0 13750 0.328 7.82 85.0 6916 0.355 3.86
FoReaL-Decoding n=15, p=0.2 26.7 12457 0.138 4.03 70.0 6680 0.154 2.05
FoReaL-Decoding n=15, p=0.4 33.3 11876 0.272 5.60 80.0 6043 0.303 2.91
FoReaL-Decoding n=15, p=0.6 50.0 10934 0.401 6.77 80.0 6460 0.429 3.99
FoReaL-Decoding n=15, p=0.8 50.0 11532 0.527 8.47 90.0 7037 0.571 5.37
FoReaL-Decoding n=15, p=1.0 66.7 10617 0.666 9.16 92.5 5942 0.708 5.28
FoReaL-Decoding n=25, p=0.2 36.7 10805 0.178 3.88 77.5 6798 0.193 2.32
FoReaL-Decoding n=25, p=0.4 33.3 11428 0.347 6.30 80.0 5929 0.362 3.17
FoReaL-Decoding n=25, p=0.6 50.0 10816 0.515 7.71 90.0 6169 0.537 4.49
FoReaL-Decoding n=25, p=0.8 53.3 12081 0.675 10.95 92.5 5529 0.710 4.99
FoReaL-Decoding n=25, p=1.0 66.7 11117 0.683 10.54 95.0 5422 0.872 5.66
FoReaL-Decoding n=∞, p=0.2 30.0 12241 0.204 4.84 75.0 6502 0.216 2.43
FoReaL-Decoding n=∞, p=0.4 46.7 11906 0.417 7.37 85.0 6719 0.423 4.07
FoReaL-Decoding n=∞, p=0.6 50.0 11515 0.605 9.69 92.5 5671 0.607 4.42
FoReaL-Decoding n=∞, p=0.8 60.0 10538 0.798 10.83 92.5 5925 0.797 5.87
FoReaL-Decoding n=∞, p=1.0 66.7 13035 1.000 15.72 95.0 6244 1.000 7.54

DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 65.0 13311 - 2.51
Qwen2.5-7B-Instruct 6.7 1243 - 0.95 52.5 994 - 0.75

FoReaL-Decoding n=5, p=0.2 10.0 1047 0.170 0.73 50.0 923 0.179 0.64
FoReaL-Decoding n=5, p=0.4 10.0 1381 0.230 0.91 55.0 1065 0.244 0.69
FoReaL-Decoding n=5, p=0.6 13.3 2377 0.306 1.61 62.5 2574 0.302 1.97
FoReaL-Decoding n=5, p=0.8 13.3 4203 0.345 2.87 47.5 2897 0.373 1.83
FoReaL-Decoding n=5, p=1.0 16.7 7236 0.382 4.45 50.0 5614 0.428 3.24
FoReaL-Decoding n=15, p=0.2 3.3 1936 0.208 1.38 47.5 985 0.224 0.65
FoReaL-Decoding n=15, p=0.4 16.7 1189 0.339 0.70 45.0 1055 0.360 0.61
FoReaL-Decoding n=15, p=0.6 16.7 1793 0.455 0.92 52.5 1307 0.482 0.65
FoReaL-Decoding n=15, p=0.8 16.7 4120 0.545 2.05 57.5 2515 0.580 1.08
FoReaL-Decoding n=15, p=1.0 16.7 14132 0.651 6.47 52.5 7330 0.686 3.35
FoReaL-Decoding n=25, p=0.2 13.3 1243 0.249 0.80 50.0 958 0.231 0.62
FoReaL-Decoding n=25, p=0.4 20.0 1317 0.389 0.73 42.5 1077 0.405 0.59
FoReaL-Decoding n=25, p=0.6 16.7 1743 0.536 0.79 57.5 2047 0.560 1.14
FoReaL-Decoding n=25, p=0.8 20.0 4474 0.693 1.57 65.0 3778 0.683 1.76
FoReaL-Decoding n=25, p=1.0 23.3 11436 0.841 3.18 65.0 5721 0.865 1.66
FoReaL-Decoding n=∞, p=0.2 13.3 1072 0.260 0.69 50.0 986 0.290 0.61
FoReaL-Decoding n=∞, p=0.4 6.7 1276 0.420 0.68 42.5 1140 0.467 0.56
FoReaL-Decoding n=∞, p=0.6 10.0 1914 0.614 0.78 57.5 1324 0.618 0.53
FoReaL-Decoding n=∞, p=0.8 23.3 4244 0.788 1.26 65.0 2854 0.817 0.79
FoReaL-Decoding n=∞, p=1.0 23.3 18021 1.000 2.86 65.0 13311 1.000 2.51
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