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ABSTRACT

Large reasoning models (LRMs) achieve strong reasoning performance by emitting
long chains of thought. Yet, these verbose traces slow down inference and often
drift into unnecessary detail, known as the overthinking phenomenon. To better
understand LRMs’ behavior, we systematically analyze the token-level misalign-
ment between reasoning and non-reasoning models. While it is expected that their
primary difference lies in the stylistic “thinking cues”, LRMs uniquely exhibit
two pivotal, previously under-explored phenomena: a Global Misalignment Re-
bound, where their divergence from non-reasoning models persists or even grows
as response length increases, and more critically, a Local Misalignment Dimin-
ish, where the misalignment concentrates at the “thinking cues” each sentence
starts with but rapidly declines in the remaining of the sentence. Motivated by the
Local Misalignment Diminish, we propose FoReal-Decoding, a collaborative fast-
slow thinking decoding method for cost-quality trade-off. In FoReal.-Decoding,
a Leading model leads the first few tokens for each sentence, and then a weaker
draft model completes the following tokens to the end of each sentence. FoReal -
Decoding adopts a stochastic gate to smoothly interpolate between the small and
the large model. On four popular math-reasoning benchmarks (AIME24, GPQA-
Diamond, MATHS500, AMC23), FoReal.-Decoding reduces theoretical FLOPs by
30 - 50% and trims CoT length by up to 40%, while preserving 86 - 100% of model
performance. These results establish FoReal.-Decoding as a simple, plug-and-play
route to controllable cost-quality trade-offs in reasoning-centric tasks.

1 INTRODUCTION

Reasoning has become a pivotal capability of large language models (LLMs), driving rapid progress
in mathematical problem solving, code generation, and commonsense question answering (Huang &
Chang, [2023; |Ahn et al.| 2024} |Wang et al., [2024b; 2025b). Contemporary Large Reasoning Models
(LRMs) such as OpenAI’s GPT-o01 (OpenAll |2024) and the open-source DeepSeek-R1 (DeepSeek-Al
et al.|2025) demonstrate this trend by producing explicit long chains of thought (CoT) (Wei et al.|
2023)) that markedly improve performance on challenging tasks in mathematics (Xiong et al., 2025}
Xia et al.}[2025b), programming (Liu et al.| 2024a), and other complex domains. These deeper, longer,
and more precise reasoning trajectories represent the advanced “slow-thinking” patterns (Kahneman,
20115 Li et al.,|2024d; 2025b)). Although these slow-thinking LRMs showcase impressive reasoning
skills, communities are increasingly concerned about the efficiency and fidelity of their often-lengthy
chains of thought, a phenomenon known as “overthinking” (Chen et al.l [2025¢; [Fan et al., [2025)),
where excessive computational resources are allocated for simple problems with minimal benefit.

To alleviate overthinking and improve efficiency, a series of methods has been propose Most
of these, however, require further post-training or manipulate the LRM’s distribution itself, adding
complexity or computational overhead. Motivated by Speculative Decoding (Leviathan et al., [2023)
and the distinctions between fast and slow thinking, we ask: Where do reasoning models make a
difference? To answer this, we first seek to pinpoint what truly differentiates strong reasoning models
from standard instruction-following LLMs at the token level. For instruction-following models,

'The detailed related works are shown in Appendix
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Okay, so I have this problem about a regular hexagon and some equilateral triangles. Let me try to th lnk
understand what it‘s asking. It says a regular hexagon can be divided into six equilateral triangles. Hmm, I us) white C om p ute
remember that a regular hexagon has all sides equal and all angles equal. If you divide it into six equilateral
triangles, that must mean each triangle has sides equal to the sides of the hexagon. The problem gives me |
the perimeter of one of these triangles as 21 inches. I need to find the perimeter of the regular hexagon. st ‘
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its sides. So, if each triangle is equilateral, all three sides are equal. That means each side of the triangle is “sqrt w7
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Figure 1: Left: An example comparing the token distribution alignment between DeepSeek-R1-Distill-
Owen-32B and Qwen2.5-1.5B-Instruct, qualitatively showing that the misaligned tokens (colored
in red) are related to thinking patterns, and probably appear at the start of sentences. Right: The
WordCloud of the misaligned tokens calculated on a mix of math datasets, quantitatively showing the
high-frequency misaligned tokens like “wait”, “perhaps”, “maybe”, “let”, and “alternatively”.

LIMA (Zhou et al, |2023)) proposes the “superficial alignment” hypothesis, in which it shows that
most of the knowledge has been learned in the pretraining and only a small amount of data is needed
for alignment. [Lin et al.|(2023) further verifies this hypothesis from token-level analysis between the
base model and the aligned model.

Leveraging the diagnostic framework of (Lin et al.,|2023), our systematic analysis of misalignment
across various model types (large reasoning, small reasoning, instruction-following, and pretrained
model) reveals critical insights. We observe a “superficial alignment” phenomenon similar to (Lin
et al.,[2023)), where misaligned tokens are predominantly stylistic (e.g., “Wait”, “Let me check”) rather
than content-specific, often related to explicit thinking patterns. More strikingly, while previous work
showed that misalignment between instruction-following and base models diminishes with longer
context, we find this does not hold for reasoning models. Instead, we identify a Global Misalignment
Rebound, where overall misalignment between reasoning and non-reasoning models can slightly
grow with response length, suggesting that increasing the length cannot reduce the misalignment.
This indicates that the reasoning abilities are not as superficial as instruction-following. Crucially,
despite this global trend, we uncover a corresponding Local Misalignment Diminish phenomenon:
most token misalignments occur at the beginning of each sentence, then rapidly decrease until the next
sentence starts. These findings reveal a novel periodical, sentence-level misalignment diminishing
pattern unique to LRMs, driven by thinking-pattern indicators concentrated at sentence openings,
shedding light on a better understanding of token-level divergences of these two types of models.

Based on this core insight that the reasoning pattern of LRMs is often front-loaded in each sentence,
we hypothesize that strategic, limited intervention by a strong LRM can guide a weaker model,
balancing reasoning quality with efficiency. To this end, we propose Follow the Reasoning Leader
(FoReaL-Decoding), an efficient collaborative decoding method. In FoReal.-Decoding, a strong
Leading model generates the initial few tokens of each sentence (capturing the potentially misaligned
“thinking cues”), after which a weaker Draft model completes the sentence. To further mitigate
potential overthinking from the Leading model (e.g., endlessly generating “Wait”), we introduce a
stochastic binary gate that controls whether the Leading model intervenes. These two control knobs,
lead token count and lead probability, allow FoRealL.-Decoding to smoothly interpolate between the
Draft and Leading models, offering strong controllability over the cost-quality spectrum.

Contributions. In summary, our primary contributions can be illustrated as follows:

* We conduct a systematic token-level analysis comparing LRMs with non-reasoning models,
identifying two pivotal, under-explored phenomena: (1) Global Misalignment Rebound, where
the token distribution of LRMs diverges from that of non-reasoning models and their gap even
increases with longer responses; (2) Local Misalignment Diminish, where LRMs only make
noticeable difference on generating stylistic “thinking-patterns” at the very beginning of each
sentence. But such divergence from non-reasoning models rapidly drops on subsequent tokens
within the sentence. This periodical sentence-level misalignment diminishing pattern has not been
explored previously. These two discoveries significantly advance the understanding of LRMs.



Under review as a conference paper at ICLR 2026

» Leveraging these analytical insights (particularly the Local Misalignment Diminish), we propose
FoReaL-Decoding, a training-free, collaborative algorithm that mixes the strength of a “slow-
thinking” LRM (as Leading model) with the efficiency of a “fast-thinking”, weaker model (as
draft model). FoReal.-Decoding is designed to be plug-and-play, offering strong controllability to
balance the cost and quality under diverse budgets of tokens.

* Experimental results on several reasoning-heavy math tasks (AIME24, GPQA-Diamond,
MATHS500, AMC23) demonstrate that FoReal.-Decoding reduces FLOPS by 30-55% and CoT
length by up to 40%, while preserving 86-100% of the leading model’s performance, effectively
mitigating “overthinking”.

2 TOKEN DISTRIBUTIONS OF REASONING VS. NON-REASONING MODELS

Large-scale reasoning models (LRMs) often outperform smaller instruction-tuned models on complex
reasoning-heavy tasks, yet how their generation behavior differs from instruction models within
the same model family remains unclear. (Lin et al.,2023) proposes an analytical method through
the lens of token-distribution shifts and finds that alignments between instruction-following and
base pretrained models are often superficial. This phenomenon is supported by nearly identical
decoded tokens in the majority of token positions under the same input contexts, with distribution
shifts occurring mainly with stylistic tokens like discourse markers. However, the critical question
remains: “Does this superficial alignment finding on instruction-following LLMs still hold for today’s
capable LRMs?” Thus, our work systematically investigates token misalignment across various
model combinations involving LRMs.

Experimental Setup & Metric. In this analysis, we utilize DeepSeek-R1-Distill-Qwen-32B as
the targeting LRM, which we notate as the Leading model Py, (+). The corresponding small models,
within the same family, that are used for comparison are noted as the Draft models Pp(-). The
Draft models can be (i) the pretrained base model (Qwen2.5-1.5B), (ii) the instruction-following
model (Qwen2.5-1.5B-Instruct), or (iii) the small reasoning model (DeepSeek-R1-Distill-Qwen-1.5B)
in our analysis and method. For a user query ¢, the output response generated greedily from the
Leading model can be notated as y = {y1, ..., yr }, where T represents the length of the response.
This response serves as the target for calculating the token distribution for the Draft model. At each
position ¢, the context for predicting this token can be presented as ¢; =< ¢; y<; >, where <; >
represents the concatenation operation.

In the analysis, the aligned positions are defined as those token steps where the Draft model, when
conditioned on the Leading model’s history, would greedily generate exactly the same token as the
Leading model, which means that the two models have the same most probable behavior under the
same context, indicating the alignment.

Suppose V is the vocabulary for next-token prediction, then the aligned token indices are:
A= {t €{1,...,T} : argmax Pp(y | ¢;) = argmax Pr(y | ct)}, (1)
yev yey

which collects exactly those positions where the Draft model’s top-1 prediction matches the Leading
model’s emitted token under the shared causal context c;. Thus, the aligned and misaligned tokens

can be defined:
ya=A{ylte A  yuo ={u|t¢ A} 2

Qualitative Analysis on Misaligned Tokens. Figure[](left) shows a qualitative example (truncated)
from MATHS00, comparing the token distribution alignment between DeepSeek-R I-Distill-Qwen-
32B as the Leading model and Qwen2.5-1.5B-Instruct as the Draft model. The shown response y is
generated by the Leading model, the aligned tokens y 4 are colored in blue, and misaligned tokens
¥ 4¢ are colored in red. Through the example, it can be intuitively perceived that the misaligned
tokens are mostly stylistic tokens related to thinking patterns, and the beginning of each sentenceE]
has a larger probability of being misaligned. To further quantitatively investigate what exactly these
misaligned tokens are, we extract all the misaligned tokens from the mix of AIME24, AMC23,
GPQA, and MATH datasets, count their frequencies, and generate the corresponding WordCloud
shown in Figure [1] (right). From the WordCloud, it is observed that most of the high-frequency

?Sentences are defined as tokens separated by a period, question mark, exclamation mark, or newline symbol.
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misaligned tokens are related to thinking patterns of LRMs, like “wait”, “perhaps”, “maybe”, “let”,
and “alternatively”, which shows a similar but different superficial phenomenon than previous
instruction-following LLMs: While misalignment in both types of models is primarily stylistic rather
than content-based, those in LRMs are distinctively characterized by tokens reflecting their overt
reasoning or self-correction patterns. Thus, our qualitative exploration reveals that LRM misalignment
is characterized by stylistic “thinking cues” concentrated at sentence beginnings, prompting a more
detailed quantitative analysis of their underlying distribution patterns.

Global Misalignment Rebound. Existing
analysis on token distribution shifts between in- 101
struct and base models has identified that such 09
shifts will gradually diminish over time during
the decoding process due to the more compre-  gos

Global Misalignment Rebound for LRM

—— R1-Distill-Qwen-32B -> Qwen2.5-1.5B-Instruct
R1-Distill-Qwen-32B -> Qwen2.5-1.5B

—— R1-Distill-Qwen-32B -> R1-Distill-Qwen-1.5B

—— Qwen2.5-32B-Instruct -> Qwen2.5-1.5B

hensive context given, as shown in Figure 2 (up- ~ 2°° \
per, red line). 1n the figure, the y-axis represents  £o3 j\ AT S M AN
the average misalignment rate at each token po- o2\l T
.. . . . 0.1
sition, while the x-axis represents the token posi- 00
tion within the whole response (upper panel) or O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Token position within response (Global)

sentence (lower panel). As shown, the red line,
representing misalignment between the instruct
model and base model, decreases and remains 0.4
at a low rate. This implies that providing longer
context can gradually compensate for the mis-
alignment between instruct and base models.

Local Misalignment Diminish for LRM

—— R1-Distill-Qwen-32B -> Qwen2.5-1.5B-Instruct

|l-Qwen-32B -> Qwen2.5-1.5B
—— R1-Distill-Qwen-32B -> R1-Distill-Qwen-1.5B
—— Qwen2,5-32B-Instruct -> Qwen2.5-1.5B

o
w

Misalignment
I
o

However, this response-level misalignment di-
minishing phenomenon does not strictly hold for 01
LRMs. As illustrated in Figure 2] (upper), lines
corresponding to LRM as the Leading model ex-
hibit different behaviors. When the Draft models

o 10 20 30 40 50
Token position within sentence (Local)

are instruct (blue line) or base (orange line) mod-
els, the misalignment rates initially decrease dra-
matically to around 0.2, then rebound and persist
around 0.3. In contrast, the green line, repre-
senting misalignment between large and small
reasoning models (which belong to the same
family and are trained on similar data), shows
consistently low misalignment from the begin-
ning, indicating a distinct trend. We term the
observed persistent or rebounding divergence
between LRMs and non-reasoning models the
Global Misalignment Rebound phenomenon.
This phenomenon, characteristic of LRM com-

Figure 2: Top: Response-level misalignment
changes with response length. Bottom: sentence-
level misalignment changes with response length.
The y-axis represents the average misalignment
rate at each token position, the x-axis represents
the token position within the whole response or
sentence. We reveal the novel Global Misalign-
ment Rebound and Local Misalignment Diminish
phenomenon that only occurs on current LRMs,
shown as the blue, , and lines of the
upper figure. This phenomenon does not hold for
the previous alignment between the instruction-
following and base models, shown in the red line.

parisons with non-reasoning models, is mainly

caused by LRMs continuously generating thinking patterns at the beginning of sentences, partly to
prevent premature conclusion of the generation process. This finding demonstrates that merely extend-
ing context length is insufficient to resolve the misalignment between reasoning and non-reasoning
models, indicating that reasoning capability is not as superficial as instruction-following.

Local Misalignment Diminish. It is uncommon that a longer context does not benefit the alignment.
Thus, to further understand this behavior, we conduct the sentence-level analysis by calculating the
token misalignment rate at each sentence-level position. In the response, sentences can be separated
by periods, question marks, exclamation marks, and the newline symbol. Specifically, for any position
x, we first collect every sentence that is at least « tokens long. Mark the x-th token in each of those
sentences as 1 if it is misaligned and O if it is aligned. The average of these 0-1 indicators across all
selected sentences is the misalignment rate for position .

As shown in Figure || (lower), for the red line, there is no obvious misalignment decrease that can be
observed. It means that between the instruct and the base model, the misalignment occurs relatively
evenly across the whole sentence. On the contrary, for LRM-involved model combinations, the
blue, orange, and green lines, the misalignment rates drop dramatically at the first several tokens,
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e.g., from 0.4 to 0.15, and then keep diminishing, indicating a totally different behavior. Thus, we
term this phenomenon the Local Misalignment Diminish phenomenon for reasoning models. These
findings reveal a novel periodical, sentence-level misalignment diminish pattern unique to LRMs,
driven by thinking-pattern indicators concentrated at sentence openings, shedding light on a better
understanding of token-level divergences of these two types of models.

Findings. From this section, several key findings can be concluded:

* LRM misalignment with non-reasoning models, while largely superficial and characterized by
stylistic “thinking cues”, uniquely exhibits a Global Misalignment Rebound. Unlike instruct
models that increasingly align with more context, token divergence at the response level can persist
or even grow, underscoring deeper, ingrained differences in their generative behavior.

* LRMs distinctively display a Local Misalignment Diminish. This manifests as a novel, periodical
sentence-level pattern where high misalignment, driven by “thinking cues” concentrated at sentence
beginnings, rapidly decreases as the sentence progresses. This predictable intra-sentence dynamic
is a crucial insight for developing LRM-guided decoding and understanding LRM patterns.

3 FOREAL-DECODING

Motivated by the above token divergence analysis, we propose a collaborative fast-slow thinking
decoding method for cost-quality Trade-off, Follow the Reasoning Leader (FoReal-Decoding),
a plug-and-play training-free method that mixes the strength of a slow but highly capable large
reasoning model with the speed of a small model. The central idea is to let the strong, large (Leading)
model lead at the beginning of sentences, and allow the weaker, small (Draft) model to complete the
rest of the tokens. This decoding algorithm is of strong controllability, which can smoothly transfer
into the Leading model only or downgrade to the Draft model only, by controlling the probability and
the number of tokens to lead’|

Preliminaries. The two control knobs that govern the trade-off between cost and quality: Required
lead count n € N: the minimum number of tokens the Leading model generates before yielding
control to the Draft model. Lead probability p € [0,1]: probability that a sentence is led by the
Leading model. When p = 0, the decoding system degenerates to pure Draft model decoding; when
p = 1 and n exceeds the sentence length, it transfers to Leading model decoding. Intermediate
settings form a continuity of compute—accuracy trade-offs.

In addition, let t € N represent the global token index in the response, and s € N represent the
sentence index. g; ~ Bernoulli(p) represents the sentence-level gate to decide what model to start
the sentence s: the sentence will be led by the Leading model if g = 1. 7, represents the global
position of the first token in s. s(t) = max{s : 7, < t} is the function that maps the token ¢ to the
sentence index that ¢ belongs to. Ay = ¢ — 7,(;) + 1 is the local position of token ¢ within its sentence.

Intra-Sentence Lead Within a sentence s, the generation of each token at position ¢ is governed by
the token-level policy,

L gn=1A[N<nVit<HMN],
— { Gs(t) [ t s(t)] 3)

D otherwise.

gs(+) = 1 represents this sentence s(t) should be led by the Leading model, decided by the gate. L
and D represent the Leading model and Draft model, respectively. \; < n represents the index of
this token within this sentence that is smaller than the required lead count n, thus should be generated
by the Leading model. H!" is the first token index within s where the top-1 token generated by the
Draft model matches that of the Leading model for k consecutive steps:

HYM = min{t : s(t) = s, \p > n, hy = k}, )
where h; represents the number of consecutive hits within the max sliding window of k:
k—1
hy = Z Ot—i, Op = 1{argmaXPD(-|ct) = arg maXPL(-|ct)} %)
i—0 yey yev

3The detailed pseudo code is shown in Appendix
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Put it simply, for each sentence, if the Bernoulli gate decides to let Py, lead the sentence with the
probability p, Pr, will generate the first n tokens. Then, Pp begins the generation process as well,
with the purpose of measuring the alignment between the two models. When the top-1 predictions
of these two models aligned with each other for k times, the generation process is yielded to Pp,
otherwise, Py, generates the whole sentence. On the contrary, if the gate decides not to let P, lead,
then the whole sentence will be completely generated by Pp.

Sentence-level likelihood. For sentence s with token span Yy = (yr.,...,¥r,,, 1) and length L,
the conditional likelihood under FoRealL.-Decoding is:
Li—1
Peo(Ya | 9s) = [[ Prooii(yrsi | erigi), (6)
i=0

Whenever 7y = L, the factor draws its probability from the distribution Py, of the Leader model;
otherwise from the Draft model of distribution Pp,.

Inter-Sentence Transfer Upon encountering a sentence boundary at the token ¢, i.e., the sentence
is complete, we execute the inter-sentence update by resetting the hit counter and resampling the gate
for the next sentence.

s+ s+1, gs~ Bernoulli(p), h;<+ 0 @)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Models, Datasets, and Setup. To assess the effects of FoReal.-Decoding, extensive experiments are
conducted for different model combinations in the Qwen2.5 family, including reasoning models like
RI-Distill-Qwen-32B (DeepSeek-Al et al., [2025), RI-Distill-Qwen-1.5B (DeepSeek-Al et al.| 2025)),
non-reasoning instruct models like Qwen2.5-7B-Instruct (Team, [2024), Qwen2.5-1.5B-Instruct (Team,
2024), and base models like Qwen2.5-1.5B (Team, [2024)). To cover a wide scope of potential trade-
offs, we utilize the reasoning models as the Leading models, while any of the above types as the
Draft models. Moreover, our extensive experiments on the recently released Qwen3 (Team,[2025)
series further verify the generalizability of our method. We evaluate our method on relatively hard,
reasoning-heavy math datasets, including AIME2024 (AI-MO, 2024a)), GPQA-Diamond (Rein et al.}
2024), AMC23 (AI-MO, 2024b)), and MATHS00 (Lightman et al.| [2023). All experiments were
conducted on NVIDIA A100 GPUs (80G), utilizing the Huggingface Transformers package. During
the generation, we follow the recommended generation configuration from R1-Distill models as
temperature=0.6, top_p=0.95, top_k=40 for all the experiments. During the generation, we
always let the Leading model generate the first paragraph, and we fix the required hits for generation
transfer as k = 5 for all the experiments.

4.2 MAIN RESULTS

Table[T] presents the comparisons between accuracy and efficiency (TFLOPs) of FoReaL-Decoding
on commonly used reasoning-heavy math problem tasks. We provide some different configurations
as controls to show the wide trade-off scopes of our method. We also present the reported results of
the concurrent work, Speculative Thinking (Yang et al., [2025), for better comparison. The accuracies
on each line are compared with the Draft model, and the TFLOPs are compared with the Leading
models: better values are colored in green, otherwise red. We utilize the theoretically estimated
TFLOP{] as the efficiency measurement since it takes the generation length into account, different
from the estimated speed. In the main comparison, we focus on 3 collaborative settings. Across four
benchmarks, FoReal-Decoding cuts inference cost by 30 — 55% relative to Leader-only decoding
while retaining 86 - 100% of its accuracy. The detailed statistics, including response length and
leading ratios on AIME24, can be found in Table [2|for better understanding.

R1-Distill-Qwen-32B for Leading, R1-Distill-Qwen-1.5B for Draft. This collaborative setting yields
the highest accuracies for all of the math reasoning datasets. In this setting, the larger 32B reasoning
model takes charge of the leading of the sentences, while the smaller 1.5B reasoning model needs to

*The estimated TFLOPs are calculated based on the detailed formulas presented in Appendix
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Table 1: Comparisons of Accuracy and Efficiency (TFLOPs) of FoReal.-Decoding on commonly
used reasoning-heavy math problem tasks. To further show the wide trade-off scopes of our method,
we provide some different configurations as the control. The results of Speculative Thinking are the
reported results. The accuracies are better with higher (1) values, while the TFLOPs are better with
lower (J) values. The accuracies on each line are compared with the Draft model, and the TFLOPs
are compared with the Leading models: better values are colored in green, otherwise red.

Model AIME24 GPQA-D MATHS500 AMC23
Method Config ACC (%)1 TFLOPs| ACC(%)t TFLOPs| ACC(%)T TFLOPs| ACC (%)t TFLOPs/|
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-32B 66.7 15.72 59.6 8.09 93.6 4.13 95.0 7.54
DeepSeek-R1-Distill-Qwen-1.5B 233 2.86 222 1.13 814 1.14 65.0 2.51
Speculative Thinking 322 5.75 41.9 2.62 89.4 1.51 80.0 3.31
FoRealL-Decoding n=15,p=0.4  33.3 (+10.0) 5.60 (-10.12) 43.3 (+21.1) 2.47 (-5.62) 90.2 (+8.8) 1.43 (-2.88) 80.0 (+15.0) 2.91 (-4.63)
FoReal-Decoding n=15,p=0.6  50.0 (+26.7) 6.77 (-8.95) 482 +260)  4.50 (:3.59) 91.4 +10.0) 2.40 (-1.26) 80.0 (+15.0) 3.99 (:3.55)
FoReal-Decoding n=15,p=0.8 50.0 +26.7) 8.47 (-1.25) 54.6 (+32.4) 4.69 (-3.40) 93.4 (+12.0) 2.70 (-1.43) 90.0 (+25.0) 5.37 217
FoRealL-Decoding n=15,p=1.0  66.7 (+43.4) 9.16 (-6.56) 56.6 (+34.4) 6.21 (-1.88) 93.2 (+11.8) 3.14 (-0.99) 92.5 (+27.5) 5.28 (-2.26)
FoReal-Decoding n=25,p=0.8  53.3 3000  10.95 (477)  57.1 (+34.9) 5.65 (-2.44) 92.6 (+112) 3.13 (-1.00) 92.5 (+27.5) 4.99 (255
FoReal-Decoding n=25,p=1.0  66.7 (+43.4) 10.54 (5.18)  57.6 (+35.4) 6.68 (-1.41) 94.5 (+13.1) 3.50 0.63) 95.0 (+30.0) 5.66 (-1.88)
DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct
DeepSeek-R1-Distill-Qwen-32B 66.7 15.72 59.6 8.09 93.6 4.13 95.0 7.54
Qwen2.5-1.5B-Instruct 0.0 0.12 23.7 0.12 49.2 0.09 15.0 0.10
FoReaL-Decoding n=15,p=0.8  20.0 (+20.0) 9.05 (-6.67) 38.4 (+14.7) 5.63 (-2.46) 76.2 (+27.0 2.85 (-1.28) 65.0 (+50.0) 5.22 (232
FoRealL-Decoding n=15,p=1.0  20.0 (+20.0) 11.19 (453  47.5 +238) 5.86 (-2.23) 85.9 (+36.7) 3.28 (-0.85) 85.0 (-70.0) 6.15 (-1.39)
FoReal-Decoding n=25,p=0.8  36.7 :36.7) 9.58 (-6.14) 450 +213) 437 (372) 82.0 (+32.8) 2.52 (-1.61) 72.5 (+57.5) 4.65 (-2.89)
FoRealL-Decoding n=25,p=1.0  40.0 (+40.0) 11.00 (472)  57.1 (+33.49) 6.27 (-1.82) 90.8 (+2.8) 3.36 077 92.5 (-77.5) 6.88 (-0.66)
DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-1.5B 233 2.86 222 1.13 81.4 1.14 65.0 2.51
Qwen2.5-7B-Instruct 6.7 0.95 384 0.89 76.0 0.61 525 0.75
Speculative Thinking 6.7 4.93 31.8 6.73 74.8 2.04 55.0 4.97
FoReal-Decoding n=15,p=0.8  16.7 (+10.0) 2.05 -0.81) 34.3 (a1 1.07 (-0.06) 76.4 (+0.4) 0.57 -057) 57.5 +5.0) 1.08 (-1.43)
FoReal-Decoding n=15,p=1.0  16.7 +100)  6.47 ¢:361) 29.8 (-8.6) 3.08 (+1.95) 79.6 (+3.6) 1.42 (+0.28) 52.5 +0.0) 3.35 (+0.84)
FoReaL-Decoding n=25,p=0.8  20.0 (+13.3) 1.57 (129 33.3 5.0 0.80 (-0.33) 78.6 (+2.6) 0.55 (-0.59) 65.0 (+12.5) 1.76 075
FoReal-Decoding n=25,p=1.0  23.3 (+16.6) 3.18 (+0.32) 29.3 (9.1 2.53 (+1.40) 79.2 +3.2) 1.04 o.10) 65.0 (+12.5) 1.66 (-0.85)

complete the remaining sentence. In this setting, both models have the reasoning capabilities, but
FoReal.-Decoding implicitly separates the generation of each sentence into two phases and yields the
less informative Draft phase to the smaller model for better efficiency. As shown in the table, all our
results obtain better performances compared with the Draft model and efficiencies compared with
the Leading model, and also exceed Speculative Thinking, indicating the capability of our methods.
Moreover, on all of the tasks except GPQA-D, FoReal.-Decoding reaches similar or even slightly
higher performances than the 32B Leading model with fewer TFLOPs.

RI-Distill-Qwen-32B for Leading, Qwen?2.5- Table 2: The detailed results of different collabora-
1.5B-Instruct for Draft. This setting represents tive settings on AIME. Additional configuration that

a direct mixture of a large reasoning model 5% base model for Draft is included.
and a small non-reasoning model. As shown
in the table, the 1.5B instruct model perf Modd ATVER
in the ta ¢ e‘ : l'l’lS ruct mode pe orms Method Config ACC (%) Length Ratio TFLOPs
badly on the given difficult math problems. DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
The use of a stronger reasoning model for lead-  “Foreal-Decoding n=15, p=0.4 333 11876 0272 560
. . FoReal-Decoding n=15, p=0.6 50.0 10934 0.401 6.77
mng largely improves ‘the accuracy, although FoReaL-Decoding n=15, p=0.8 500 11532 0527 847
with more computation required. The re- gogeﬂtfgecoging n:;g P:(l)»g gg; :28;? 8232 ]90 1965
‘OReal.-Decoding n= » p=U., . X .93
sponse lengths are largely shorter than R/-  FoReal-Decoding n=25p=1.0 667 11116 0683 1054
Distill-Qwen-1.5B, representing an alleviation DeepSeck-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct
1 1 1 1 FoReaL-Decoding n=15, p=0.8 20.0 12584 0.571 9.05
Of Overthlnlﬂpg. Compared Wlth uSlI.Ig. %nOther FoReaL-Decoding n=15, p=1.0 20.0 14188 0.588 11.19
small reasoning model for Draft, utilizing the =~ FoReaL-Decoding n=25,p=0.8 367 11575 0710  9.58
. . . - i =25, p=1. . 3 . .
instruction model leads to suboptimal perfor- ~foReb-Decoding =25, p=10 400 11259 0813 1100
. DeepSeek-R1-Distill-Qwen-32B + Qwen2.5-1.5B (Base)
mance. TO underStand thlS phenomenon’ fur- FoReaL-Decoding n=15, p=0.8 233 12224 0.547 9.56
ther experiments are conducted where the base FoReal-Decoding n=15,p=1.0 200 12107 0664  10.39
pretrained model QW€n25']5B is utilized as DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
: FoReal-Decoding n=15, p=0.8 16.7 4120 0.545 2.05
the Dra.ft mOdel' AS ShOWn mn Table@l’ the FoReaL-Decoding n=15, p=1.0 16.7 14132 0.651 6.47
accuracies, response lengths, and estimated gogeut—gecoging nzgg.p:?»g ggg ﬁﬁa gng ;?g
. . . ‘ORkeal.-Decodin, n= , p=1. J. 3 R 3.
TFLOPs are almost identical compared with £ &
using base and instruct models, which means the previous instruction-aligned process does not benefit
the current reasoning settings. Moreover, we also include the results of using Qwen3 family models

with similar settings, which shows much better performance due to the stronger capabilities.
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R1-Distill-Qwen-32B + R1-Distill-Qwen-1.58 R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
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Figure 3: Effects of lead count and lead probability on AIME24 and AMC23 datasets, based on 2
collaborative configurations. FoReal.-Decoding provides a smooth cost-quality trade-off, making the
transition from the weak Draft model to the strong Leading model smooth and controllable.

RI-Distill-Qwen-1.5B for Leading, Qwen2.5-7B-Instruct for Draft. Different from the above settings,
in which a strong but large reasoning model is used as the Leading model, this setting considers a
different and most efficient scenario, utilizing a small reasoning model for leading and a slightly larger
instruct model for Draft. In this setting, the efficiencies are reduced to an extremely low level, even
faster than directly utilizing the small reasoning models. As shown in Table 2] FoReal.-Decoding
largely reduces the length required for the problem, thus largely reducing the computation required.
On AIME24 and AMC23, our method reaches the same accuracy as the Leading model with similar
or less computation. On GPQA, our method reaches an intermediate accuracy, since the abnormal
situation where a non-reasoning model has better performance than the reasoning model.

4.3 EFFECTS OF LEAD COUNT AND LEAD PROBABILITY

Figure [3] sweeps the two hyperparameters that govern the controllability of FoReaL-Decoding,
lead count n and lead probability p on AIME24 and AMC23 datasets, based on 2 collaborative
configurations, DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-
RI-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct, representing the high-performance and high-efficiency
settings, respectively. For each model combination, we run experiments on n € {5,15,25, +0c0},p €
{0,0.2,0.4,0.6,0.8,1.0}. When p = 0, FoReaL-Decoding utilizes the Draft model only, and utilizes
the Leading model only when p = 1 and n = 4o00. According to the figure, FoRealL.-Decoding
provides a smooth cost-quality trade-off, making the transition from the weak Draft model to the
strong Leading model smooth and controllable. For any fixed n, increasing the probability p of the
Leader intervention shifts the operating point up and to the right: accuracy rises while estimated
TFLOPs grows almost linearly. The resulting curve is smooth, allowing practitioners to trade latency
for quality by adjusting (n, p). The jump from n = 5 ton = 15 yields large accuracy gains at a modest
cost increase. Further enlarging the Leader count (n > 25) adds little accuracy yet inflates compute up
a lot, indicating that sentence-level guidance already captures most of the benefit of slow reasoning.

4.4 TRADE-OFF CURVES

Figure ] plots the trade-off curves between accu- AIME24 TFLOPS vs. Accuracy AMC23 TFLOPS s, Accuracy

racy and estimated TFLOPs for every (n, p) con- AN P
figuration tested on AIME24 (left) and AMC23 :
(right), according to our experiment scopes on
Qwen?2.5 family. Blue markers correspond to

our variants, red circles denote the correspond- = Lo -
ing LRMs, and the dashed line is the empiri- i o psoronter | LS ==l L
cally computed Pareto frontier. On both bench- T Tl PR T e
marks, every LRM point is Pareto dominated:

an alternative FoRealL-Decoding setting always

Figure 4: The trade-off curves between accuracy
achieves higher accuracy at lower cost. More- and estimated TFLOPs. Blue markers correspond
over, we find that the frontier rises sharply be- to our variants, red circles denote the correspond-
tweén 0.5 and 2 estimated TFLOPs. as each 11 LRMs, and the dashed line is the empirically
additional estimated TFLOPs yields 10-15 per- computed Pare;to .frontier. On bOth benchmarks,
centage points of accuracy. However, beyond ~€very LRM point is Pareto dominated.

~2) estimated TFLOPs, the curve flattens; extra compute buys only marginal improvements up to the
ceiling.
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4.5 RESULTS ON QWEN3 FAMILIES

To further verify the effectiveness and gener- Table 3: The detailed results of Qwen3 series mod-
alizability of FoReaL-Decoding on otehr mod- €ls on AIME, including the comparision with Spec-
els, additional experiments are conducted on ulative Decoding, where m denotes the draft length.
the Qwen3 series of models, including Qwen3- FoReal.-Decoding shows promising performance
32B, Qwen3-1.7B, and Qwen3-0.6B, due to the in this additional family.

various sizes of models provided in the fam-

ily. Since Qwen3 family models have both rea- Model AIME24
. . aqe Method Config ACC (%) Length Ratio TFLOPs
soning and non-reasoning modes, we utilize
Base Models

both modes for these models and follow ex- 5 o378 - o6 Bas - 157

1 1 Qwen3-1.7B - 40.0 14990 - 2.81
act1.y the same generation copﬁguratlol} asour et - 00 W - 28
main experiments. The detailed experimental 5 .n3:328 (reasoning) + Qwen3-1.7B (reasoning)
results are shown in Table [3l As shown in the ForecaL-Decoding ~ n=15, p=04  60.0 14840 0272 7.0

- - FoReaL-Decoding  n=15, p=0.6 733 14110 0412 883
table, FoReal.-Decoding shows promising per- FoReaL-Decoding  n=15, p=0.8  73.3 15081 0536 1143

fOrmanCCS on all the Conﬁgurations. Most no- Qwen3-32B (reasoning) + Qwen3-0.6B (reasoning)

tably’ in the Owen3-32B (reasonin, g) + Qwen3-  FoReal-Decoding n=15, p=0.4 36.7 17782 0.281 7.44
. . FoReaL-Decoding n=15, p=0.6 63.0 14279 0410 8.18
0.6B (non-reasoning) configuration, FoReal.-  Foreal-Decoding ~ n=15,p=0.8 600 15478 0560 1101

Decoding reaches a similar accuracy (66.6% to ~_Qwen3-32B (reasoning) + Qwen3-0.6B (non-reasoning)
733%) Wlth Only half Of the estimated TFLOPS FoReal-Decoding n=15, p=0.6 60.0 8762 0472 524

FoReaL-Decoding n=15, p=0.8 66.6 9468 0.558 6.73

and with less response length. Compared with =~ FoReaL-Decoding  n=15,p=10 733 10267 0673 832
the utilzing Qwen2.5 famlly models llSil’lg rea- Speculative Decoding: Qwen3-32B (reasoning) + Qwen3-0.6B (non-reasoning)
. . Speculative Decoding m =20 73.3 15374 0427 10.25
soning plus non-reasoning models, Qwen3 fam-  Specuiaive Decoding ~ m = 10 733 14672 0403 9.02

ily models achieve much better performance,
these results not only present the effectiveness and generalizability of FoReal.-Decoding, but also
shows the potential of our method using stronger models.

4.6 COMPARED WITH SPECULATIVE DECODING

In this section, we compare and analyze FoReal-Decoding with Speculative Decoding (SD)
(Leviathan et al.l [2023) on the Qwen3 family models. Technically, FoReal.-Decoding can be
viewed as a variant of SD, but with a crucial difference in the interaction pattern between the strong
and weak models. In standard SD, the weaker model first generates a fixed number of tokens m,
after which the stronger model verifies and potentially corrects them. In contrast, FoReal.-Decoding
has a stronger model that generates the initial tokens, those most likely to cause divergence, before
handing off to the weaker model to complete the remainder of the sequence. As shown in the Table
FoReal.-Decoding achieves similar accuracy as SD but has lower estimated TFLOPs, which is
mainly caused by the reduction on response lengthes, i.e., alleviate the phenomenon of overthinking.
As mentioned in the motivation, SD has the same distribution with the verifier model, promising the
performance but also keeping the overthinking problem.

For qualitative comparison, FoReal.-Decoding is particularly advantageous in scenarios where
misaligned tokens are clustered together, which is common in current reasoning models, as shown
in our findings on token divergence. For instance, if there are n consecutive misaligned tokens,
FoReal.-Decoding requires the strong model to generate only these n tokens. In contrast, SD with a
draft length of m would require the weak model to generate m tokens, followed by verification and
correction by the strong model, repeating this process until all n misaligned tokens are covered. This
results in n X m tokens generated by the weak model and n tokens by the strong model, an n x m
increase in weak model computation compared to FoReal.-Decoding.

5 CONCLUSION

Our systematic token-level analysis comparing Large Reasoning Models (LRMs) with non-reasoning
models has uncovered two pivotal, previously under-explored divergence phenomena: Global Mis-
alignment Rebound and Local Misalignment Diminish. This pattern reveals a novel, periodical
sentence-level pattern wherein LRM-specific stylistic “thinking cues” cause high token divergence at
the very beginning of sentences, after which this misalignment rapidly decreases within the sentence.
Building upon this insight, we proposed FoReal.-Decoding, a training-free, plug-and-play collab-
orative decoding algorithm. It allows a strong LRM to lead the crucial initial tokens of sentences
(capturing these divergent “thinking cues”), while a lightweight Draft model efficiently completes the
subsequent, more aligned portions. Our experiments demonstrate that FoReal.-Decoding achieves
good cost-quality trade-off on reasoning-heavy math tasks.
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THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we utilized large language models exclusively as writing assistants to
enhance clarity and presentation. The models were employed to suggest improvements to sentence
structure, readability, and stylistic consistency throughout the document. Following each set of
Al-generated suggestions, we carefully reviewed, evaluated, and selectively incorporated or modified
the proposed changes to ensure accuracy and appropriateness. Importantly, large language models
did not contribute to any aspect of research conceptualization, methodological design, experimental
implementation, data analysis, or interpretation of results.
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A PSEUDO CODE

The pseudo code of our FoReal.-Decoding is provided below, all the variables are kept the same as in
the main context.

Algorithm 1: FoReal.-Decoding

Input: Leading model Py, Draft model Pp, lead count n, lead probability p, hit threshold k,
input prompt ¢, max new tokens MAX_LEN

Qutput: Generated tokens y

vy [,h+ 0,A«0;

c+—q; // Initial context

g+ 1; // Initialize gate

while len(y) < MAX_LEN do

if is_sentence_boundary(y[—1]) then

g ~ Bernoulli(p) ; // Sample gate for new sentence
h+0; // Reset hit counter
A0, // Reset position in sentence
A A+1; // Increment position in sentence

// Generate next token

ifg=1and (A <norh < k) then

|t < sample(PL(:|c)) ; // Use Leading model
else

|t < sample(Pp(-|c)) ; // Use Draft model

// Check alignment when approaching transition point
if g =1and \ > n — k then
if top-1(Pp(+|c)) = top-1(Pr(+|c)) then
h+ h+1;
else
L h « 0;

y.append(¢);
¢ « concat(c, t) ; // Update context
if t € EOS_tokens then

L break;

return y;
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B FLOPS CALCULATION

Empirical latency depends on vendor-specific kernel fusion and memory layouts, so a timing measured
on one backend may not transfer to another. Counting floating-point operations (FLOPs) provides
a hardware-agnostic yardstick that isolates algorithmic differences. The performance figures we
report are presented in TeraFLOPs (TFLOPs), where one TFLOP equals 1012 FLOPs. The generation
process for the speculative decoding (SD)-type methods can be categories in three modes, prefill,
decode, and prefix:

* Prefill: This stage corresponds to loading the entire prompt into the model without any
KV cache. The cost here is determined by the length of the input (e.g., question and chat
template) and is incurred only once per inference.

* Decode: This stage involves the continuous generation of new tokens, where each token
is generated sequentially with the benefit of the KV cache. This is typically the most
computationally intensive part of inference.

* Prefix: This stage occurs whenever there is a switch between models (e.g., from Drafting
to Leading or vice versa), it mainly used in the SD-type methods. Here, the model must
process a sequence of tokens given the KV cache of previous tokens. In SD, this happens
each time the verifier model checks tokens generated by the draft model, and each time the
draft model resumes generation after verification. In FoReal.-Decoding, prefix computation
is triggered whenever control is transferred between the two models. Notably, the prefix
stage incurs a nearly fixed cost (largely independent of the number of tokens), which is a key
reason why SD-based methods can be efficient even though both models process all tokens.

The total FLOPs for a single inference is thus computed as: Prefill(Drafting) + Prefill(Leading) +
Decode(Drafting) + Decode(Leading) + Prefix(Drafting — Leading) + Prefix(Leading — Drafting).
When GPU memory is sufficient, profiling shows that producing multiple tokens during the prefix
phase costs almost the same as decoding a single token. Therefore, we upper-bound the prefix cost
by the single-token decode cost, following Speculative Thinking (Yang et al., [2025). We calculate
the precise total FLOPs using the detailed formulas presented below, which is based on (Chen et al.,
2024; |Han| 2024; |Yang et al.,|2025). The resulting total FLOPs are then converted to estimated
TFLOPs for reporting.

The variables involved are defined as:

* s: Represents the sequence length.

— For the prefill stage (FLOPsfii (), s is the length of the input prompt, denoted as p;.

— For the decode stage (FLOPSgecode (S)), s is the current length of the context (prompt +
tokens generated so far) that the model attends to via its Key-Value (KV) cache.

h: The hidden size of the model.
» h': The intermediate size of the feed-forward network (FFN).

¢ n: The number of attention heads.

* p;: The length of the initial problem prompt.

* d;: The number of tokens to be generated in the solution.
It is noted that the hidden size h relates to the number of attention heads n and the size of each
attention head d by h = n - d.

The FLOPs for the prefill stage, which processes the initial input prompt of length s = py, is given by
Equation 8}
FLOPS et (s) = 8sh? + 16sh + 4s?h + 4s°n + 6shh’ + 2sh’ (8)

The FLOPs for the decode stage, which generates a single token when the current KV cache has a
length of s, is given by Equation [0

FLOPSgecode (5) = 8h? + 16h + 4sh + 4sn + 6hh’ + 21 )
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The total FLOPs to generate d; tokens from a prompt of length p; combines the prefill cost for the
prompt and the sum of decode costs for each generated token, as shown in Equation [T0}

d;—1
FLOPsta1 = 1::Lopspreﬁll (pl) + Z FLOPSgecode (pl + Z) (10)
=0

In this formula, for the i-th token being generated (0-indexed), the argument to FLOPSgecoqe 18 p; + ©,
representing the sequence length in the KV cache at that generation step.
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C RELATED WORKS

C.1 LARGE REASONING MODELS

Recent advances in large language models (LLMs) have spurred a surge of work aimed at strengthen-
ing their reasoning abilities (Ahn et al.| 2024} |Besta et al., [2025} |Chen et al.,|2025a). Core reasoning
skills are already instilled during pre-training, where models absorb commonsense and mathematical
patterns from vast text corpora (Touvron et al.| 2023; OpenAl 2024). Researchers have therefore
concentrated on post-training techniques to further polish these skills. One prominent direction
employs reinforcement learning to nudge models toward more effective chains of thought (Shao et al.,
2024; [Xiong et al., [2025} |Cui et al. 2025} [Wang et al., [2025a)). Another line shows that carefully
curated instruction-tuning data can likewise deliver sizable gains in reasoning accuracy (Ye et al.|
2025; Muennighoff et al., 2025} /Wang et al., 2024a).

Despite the impressive benchmark scores of recent Reasoning Language Models, several studies
have begun to probe the quality and efficiency of the reasoning they generate. (Xia et al., 2025b)
conduct a broad assessment and reveal substantial redundancy in many model-produced solutions.
Follow-up investigations (Chen et al.,|2025c; |Cuadron et al., 2025} |Qu et al., 2025} |Liu et al., 2025}
Fan et al.| 2025) underscore an “overthinking” phenomenon, whereby models craft unduly verbose
derivations even for simple problems. Capitalizing on this trait, (Kumar et al.l 2025) demonstrate
a slowdown attack: small input perturbations can trigger excessive reasoning, markedly degrading
inference speed.

To alleviate overthinking and improve efficiency for reasoning models, a series of efficient reasoning
methods has been proposed. For example, (Yu et al.}[2024; Team et al., 2025 |Aggarwal & Welleck,
2025; Xia et al., [2025a; [Luo et al.l 2025) utilize model-based methods that either add further
constraints on RL rewards or SFT on diverse lengths of CoTs, (Hao et al.,[2024} [Shen et al.| [2025b;a;
Zhang et al.| 2025)) utilize latent-space reasoning methods that transfer the massive tokens into the
embedding space, (Han et al., [2024; Xu et al., 2025; Renze & Guven, 2024) utilize the prompt-based
methods, (Sun et al.| 2024; [Wan et al.| [2024; |Wu et al.| 2025) utilize the sampling methods. Most of
these methods either require further post-training or manipulating the distribution of LRM itself.

C.2 ALIGNMENT AND TOKEN PATTERN ANALYSIS

A key empirical foundation for LLM Alignment is LIMA (Zhou et al., [2023)), which demonstrated
that just 1, 000 carefully curated instruction—-response pairs are already enough for LLM alignment,
crystallizing the “superficial alignment” hypothesis. While a line of work directly follows the
hypotheses by introducing data selection or alignment methods (Chen et al., 2023b; |L1 et al., 2024f;
2023;12024b; Du et al., [2023; L1 et al., [2024a; [Bukharin & Zhao| 2023 |Liu et al., |2023}; L1 et al.,
2024efc; 2025a; | Xu et al.| [2024), there are also works that try to further investigate this phenomenon.

(Lin et al., [2023)) provides a comprehensive token-level evidence by comparing the top-k token
distributions of base models and their chat-tuned counterparts. The authors show that almost all
divergence concentrates on discourse markers, politeness phrases, and safety disclaimers, while core
content tokens remain unchanged. (Chen et al.,|2025b) dissects which prompt-level cues are sufficient
(and which are not) for alignment, showing that reasoning gaps emerge precisely where superficial
patterns end. The debate has sparked push-back as well: (Raghavendra et al.,|2024)) demonstrates
systematic performance gains when the amount of post-training data scales up, arguing that some
deeper representational changes do accrue beyond mere style. Researchers are also probing where
superficial signals live: (Li & Kiml [2024)) argues that data curation, not extra optimization steps, is the
primary lever: filtering for safety disclaimers yields larger alignment jumps than adding thousands
of generic examples. Together, these works paint a nuanced picture: much of the alignment gap
after pre-training is indeed “superficial”, residing in a narrow band of stylistic tokens that can be
manipulated through tiny prompts, judicious data selection. However, in this paper, we show that the
reasoning capabilities might not be as superficial as previous findings.

C.3 SPECULATIVE DECODING AND COLLABORATIVE DECODING

Speculative decoding, inaugurated by (Leviathan et al.,|2023)), uses a small “draft” model to pro-
pose several tokens that the large “target” model then verifies in one batch, yielding 2-3x latency
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reductions with provably identical output distributions. Follow-up work, such as (Chen et al., 2023a)
extends the idea to 70 B-parameter models and confirms similar speed-ups, while (Cai et al.| 2024)
replaces the external draft model with extra decoding heads to remove system complexity System-
level schedulers like (Liu et al.l 2024b)) dynamically adapt draft length to traffic conditions and push
end-to-end gains beyond 3 x in production settings.

Collaborative decoding improves text quality by letting multiple models cooperate during generation.
(L1 et al., [2022) runs a weak “amateur” model alongside a strong “expert” and selects tokens that
maximize their likelihood gap, sharply reducing repetition and incoherence without retraining. (Jin
et al.|[2024) introduces a critical-token strategy that switches to the pretrained base model whenever
factual precision is needed, cutting hallucinations in instruction-tuned LLMs. At an even finer grain,
(Shen et al., 2024) treats “who should emit the next token” as a latent variable, enabling on-the-fly
delegation between a generalist LLM and domain specialists and outperforming any single model on
cross-domain tasks.

Comparisons with related methods. In speculative decoding (Leviathan et al.,[2023)), the final
text provably matches what the large model alone would have produced. However, our FoRealL-
Decoding focuses on the reasoning-heavy scenarios where the responses generated by the LRM itself
are not desirable due to the overthinking. Thus, our method serves as a deliberate mixture of two
distributions, aiming at reducing the overthinking problem of LRMs by inserting the distribution
from weaker models, and at the same time increasing the efficiency. A recent work, RSD (Liao
et al.l 2025), also aims at reducing computation cost by utilizing speculative decoding. However, it
introduces an additional process reward model as the judge, while our method focuses on utilizing
the collaborative models themselves only, thus, it is largely different from our settings. Another
concurrent work, Speculative Thinking (Yang et al., [2025)), also shares similar motivation as ours,
in which a “small-writes, large-fixes” mechanism is utilized, which differs from our “large-leads,
small-follows”. Moreover, FoRealL-Decoding provides a smooth transition from the small to the
large model, representing wider trade-off scopes.
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D DETAILED RESULTS

Table ] and Table [5|show the detailed results of different settings of our method.

Table 4: The detailed results of different collaborative settings on AIME24, GPQA-D, MATH500,
and AMC23, including length and ratio.

Model AIME24 GPQA-D MATH500 AMC23
Method Config  ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs ACC(%) Length Ratio TFLOPs
DeepSeck-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
DecpSeek-R I-Distill-Qwen-32B 66.7 13035 - 15.72 59.6 6602 - 8.09 93.6 3542 - 4.13 95.0 6243 - 7.54
DeepSeek-R1-Distill-Qwen-1.5B 233 18021 - 286 222 8696 - 113 814 6704 114 65.0 1331 - 251
FoReaL-Decoding n—15, p—0.4 333 11876 0272 560 433 5841 0294 247 902 3402 0312 145 80.0 6043 0304 291
FoReaL-Decoding 5,p=06  50.0 10934 0401 677 482 7007 0431 450 914 3995 0452 240 80.0 6460 0429 3.9
FoReaL-Decoding 5 p=08  50.0 11532 0527 847 54.6 6110 0570 469 934 3658 0590 270 90.0 7037 0571 537
FoReal-Decoding 5,p=10 667 10617 0666  9.16 56.6 679 0692 621 932 3655 0726 3.4 925 5942 0708 528
FoReal-Decoding n=25, p=0.8 533 12081 0676  10.95 57.7 6223 0702 565 926 3585 0719 3.3 25 5529 0710 499
FoReaL-Decoding n=25, p=1.0 667 11116 0683  10.54 576 6065 0882 668 94.5 3403 0890 350 95.0 5422 0872 566
DeepSeck-R1-Distill-Qwen-32B + Qwen2.5-1.5B-Instruct
DeepSeck-RI-Distill-Qwen-32B 66.7 13035 - 1572 59.6 6602 - 8.09 93.6 3542 - 4.13 95.0 6243 - 7.54
Qwen2.5-1.5B-Instruct 0.0 998 - 0.12 237 923 - 0.12 49.2 747 - 0.09 15.0 818 - 0.10
FoReal-Decoding 7 08 200 12584 0571 9.05 475 7013 0587 563 762 3792 0614 285 65.0 7629 0514 522
FoReaL-Decoding n=15, p=1.0  20.0 14188 0588 1119 415 6294 0737 586 85.9 3894 0750 3.8 65.0 7673 0707 615
FoReaL-Decoding n=25, p=0.8  36.7 11575 0710 938 56.7 4718 0719 437 82.0 3025 0729 232 725 5415 0.649 465
FoReaL-Decoding  n=25, p=1.0  40.0 11239 0813 11.00 57.1 5044 0887 627 90.8 3403 0894 336 925 6989 0867 6.8
DeepSeck-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-1.5B 233 18021 - 286 22 8696 - 113 814 6704 114 65.0 13311 - 251
Qwen2.5-7B-Instruct 6.7 1243 - 095 384 1054 - 0.89 76.0 773 0.61 525 994 - 075
FoReaL-Decoding n=15, p=0.8  16.7 4120 0545 205 343 2130 0602 107 76.4 1341 0634 057 575 2515 0580 108
FoReaL-Decoding 5. p=1.0 167 14132 0651 647 29.8 7913 0703 3.08 79.6 3480 0735 142 525 7330 0686 335
FoReal-Decoding 7 ! 200 4474 0693 157 331 1801 0718 080 786 1498 0736 055 65.0 3778 0683 176
FoReaL-Decoding  n— 233 11436 0841 3.8 293 6800 0863 253 792 3586 0891 104 60.0 5721 0865 1.6
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Table 5: The detailed results of different collaborative settings on AIME24 and AMC23, including
length and ratio.

Model AIME24 AMC23
Method Config ACC (%) Length Ratio TFLOPs ACC (%) Length Ratio TFLOPs
DeepSeek-R1-Distill-Qwen-32B + DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-32B 66.7 13035 - 15.72 95.0 6243 - 7.54
DeepSeek-R1-Distill-Qwen-1.5B 23.3 18021 - 2.86 65.0 13311 - 2.51
FoReaL-Decoding n=>5, p=0.2 233 12926  0.076 3.47 71.5 5634 0.089 1.39
FoReal-Decoding n=>5, p=0.4 26.7 11590  0.145 3.92 80.0 6549  0.157 2.18
FoReaL-Decoding  n=>5, p=0.6 36.7 11560  0.202 4.81 80.0 7081 0.228 2.95
FoReal-Decoding  n=>5, p=0.8 433 11907 0.270 5.82 82.5 6399  0.294 3.29
FoReal-Decoding  n=>5, p=1.0 50.0 13750  0.328 7.82 85.0 6916  0.355 3.86
FoRealL-Decoding n=15, p=0.2 26.7 12457  0.138 4.03 70.0 6680  0.154 2.05
FoReal-Decoding n=15, p=0.4 33.3 11876  0.272 5.60 80.0 6043  0.303 291
FoReal-Decoding n=15, p=0.6 50.0 10934  0.401 6.77 80.0 6460  0.429 3.99
FoReal-Decoding n=15, p=0.8 50.0 11532 0.527 8.47 90.0 7037  0.571 5.37
FoReal-Decoding n=15, p=1.0 66.7 10617  0.666 9.16 92.5 5942 0.708 5.28
FoRealL-Decoding n=25, p=0.2 36.7 10805  0.178 3.88 71.5 6798  0.193 2.32
FoReal-Decoding n=25, p=0.4 333 11428  0.347 6.30 80.0 5929  0.362 3.17
FoReal-Decoding n=25, p=0.6 50.0 10816  0.515 7.71 90.0 6169  0.537 4.49
FoRealL-Decoding n=25, p=0.8 533 12081  0.675 10.95 92.5 5529  0.710 4.99
FoRealL-Decoding n=25, p=1.0 66.7 11117  0.683 10.54 95.0 5422 0.872 5.66
FoReal-Decoding n=00, p=0.2 30.0 12241 0.204 4.84 75.0 6502 0216 2.43
FoReal-Decoding n=o0, p=0.4 46.7 11906  0.417 7.37 85.0 6719  0.423 4.07
FoRealL-Decoding n=00, p=0.6 50.0 11515 0.605 9.69 92.5 5671 0.607 4.42
FoReal-Decoding n=o0, p=0.8 60.0 10538  0.798 10.83 92.5 5925  0.797 5.87
FoRealL-Decoding n=00, p=1.0 66.7 13035  1.000 15.72 95.0 6244 1.000 7.54
DeepSeek-R1-Distill-Qwen-1.5B + Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-1.5B 233 18021 - 2.86 65.0 13311 - 2.51
Qwen2.5-7B-Instruct 6.7 1243 - 0.95 52.5 994 - 0.75
FoReal-Decoding  n=>5, p=0.2 10.0 1047  0.170 0.73 50.0 923 0.179 0.64
FoReal-Decoding  n=>5, p=0.4 10.0 1381 0.230 0.91 55.0 1065  0.244 0.69
FoRealL-Decoding n=>5, p=0.6 133 2377 0.306 1.61 62.5 2574 0.302 1.97
FoReal-Decoding  n=>5, p=0.8 13.3 4203  0.345 2.87 475 2897  0.373 1.83
FoReal-Decoding n=>5, p=1.0 16.7 7236 0.382 4.45 50.0 5614  0.428 3.24
FoReaL-Decoding n=15, p=0.2 33 1936 0.208 1.38 47.5 985 0.224 0.65
FoReal-Decoding n=15, p=0.4 16.7 1189  0.339 0.70 45.0 1055  0.360 0.61
FoRealL-Decoding n=15, p=0.6 16.7 1793  0.455 0.92 52.5 1307  0.482 0.65
FoReal-Decoding n=15, p=0.8 16.7 4120  0.545 2.05 57.5 2515  0.580 1.08
FoRealL-Decoding n=15, p=1.0 16.7 14132 0.651 6.47 52.5 7330  0.686 3.35
FoRealL-Decoding n=25, p=0.2 13.3 1243 0.249 0.80 50.0 958 0.231 0.62
FoReal-Decoding n=25, p=0.4 20.0 1317 0.389 0.73 42.5 1077  0.405 0.59
FoRealL-Decoding n=25, p=0.6 16.7 1743 0.536 0.79 57.5 2047 0.560 1.14
FoRealL-Decoding n=25, p=0. 20.0 4474 0.693 1.57 65.0 3778  0.683 1.76
FoRealL-Decoding n=25, p=1.0 23.3 11436  0.841 3.18 65.0 5721 0.865 1.66
FoRealL-Decoding n=00, p=0.2 13.3 1072 0.260 0.69 50.0 986 0.290 0.61
FoReal-Decoding n=o0, p=0.4 6.7 1276 0.420 0.68 42.5 1140  0.467 0.56
FoReaL-Decoding n=00, p=0.6 10.0 1914  0.614 0.78 57.5 1324 0.618 0.53
FoReal-Decoding n=c0, p=0.8 233 4244 0.788 1.26 65.0 2854  0.817 0.79
FoRealL-Decoding n=o0, p=1.0 233 18021  1.000 2.86 65.0 13311 1.000 2.51
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