
Under review for the Reinforcement Learning Conference (RLC)

Large Batch Sharing

Anonymous authors
Paper under double-blind review

Abstract

By reusing experiences collected from past different policies, experience replay sig-
nificantly improves the training efficiency of reinforcement learning algorithms.
Rapid convergence occurs when learning is based on pertinent experiences that
offer valuable information. Nonetheless, how to effectively combine experience re-
play with multi-agent reinforcement learning is still an open challenge. We study
how sharing collected experiences helps the training process and show that sharing a
small amount of selected experiences between agents improves the learning process
compared to the baseline where each agent is independent. The shared experiences
are selected by each agent on internal statistics, ensuring their meaningfulness. Our
first results on the multi-agent Pursuit environment highlight an improvement by a
substantial margin and need to be consolidated by complementary experiments.

1 Introduction

Multi-Agent Systems (Van der Hoek & Wooldridge, 2008) have benefited from Reinforcement Learn-
ing (Sutton & Barto, 2018, RL) as it enabled to address many issues (Zhang et al., 2021). In partic-
ular, RL has made improvements in adaptive decision-making (Busoniu et al., 2008), handles partial
observability (Omidshafiei et al., 2017), promotes emergent behavior and self-organization (Li et al.,
2006), provides decentralized control tools (Panait & Luke, 2005) and allows agents to generalize
over different tasks thanks to transfer learning (Foerster et al., 2016). However, when each agent
learns independently, Multi-Agent Reinforcement Learning (MARL) experiences difficulties in the
learning process due to the non-stationarity of the environment. Even though the convergence guar-
antees of MARL are an active field of research (Hernandez-Leal et al., 2019), MARL still succeeds
in learning in complex environments (Tampuu et al., 2017).

In deep RL, neural network policies and value functions can be learnt thanks to stochastic gradient
descent algorithms (Robbins & Monro, 1951, SGD) sampling an experience replay memory (Lin,
1992). This replay memory, or replay buffer, stores the transitions encountered along the interaction
with the environment. SGD-based algorithms exploit such buffers to learn relevant functions, such
as the Q-function in the case of Deep Q-Networks (Mnih et al., 2015), the return distribution
for distributional approaches (Bellemare et al., 2017), or an actor and a critic (Lillicrap et al.,
2016; Haarnoja et al., 2018) in the case of continuous state-action space problems. Most deep RL
algorithms boildown to a sequence of SGD-based, supervised learning problems. In supervised
learning, importance sampling can be used to speed up the convergence of SGD, by sampling
non-uniformly the training set to reduce the variance of the stochastic gradient estimate. As there
is a link between supervised learning and RL, accelerating the convergence thanks to non-uniform
sampling has also been explored in the latter with Prioritized Experience Replay (Schaul et al.,
2016, PER), drawing inspiration from Prioritized Sweeping (Moore & Atkeson, 1993). Extensions,
modifications, and foundations of PER have been proposed, as in (Wang & Ross, 2019) and (Lahire
et al., 2022). In this paper, we show that some of the techniques initially designed to accelerate
convergence speed in the single-agent case can be used to help agents in their learning process.

In a partially observable environment which is "anonymous" (the environment behaves the same
way for all agents) to homogeneous agents collecting at each time step their own reward, this

1

Under review for the Reinforcement Learning Conference (RLC)

work proposes a sharing-experience scheme among agents. Each agent is initialized with its own
neural network and replay buffer. At each learning step, each agent updates its neural network
parameters thanks to an SGD step with a mini-batch composed of experiences from its own replay
buffer, as well as experiences collected by other agents. The relevance of a given experience to
a given agent is checked before being used for the SGD step thanks to statistics specific to the
updated agent. Our experience-sharing method compares to independent learning, where agents
are initialized with their own neural network and replay buffer and do not share anything. We
evaluate the benefit of sharing a small amount of experiences collected by other agents in a mixed
collaborative-competitive environment.

This article is a work-in-progress and must be considered a position paper. It is structured as follows.
Section 2 clarifies the background and the goals of this work. Then Section 3 proposes an algorithm
to improve learning in multi-agent settings by sampling efficiently useful experiences collected by
the other agents. Section 4 empirically evaluates the proposed algorithm. We discuss each separate
aspect of sampling, its explanations and perspectives. Section 5 discusses the limitations of this
work and contrasts our findings with the existing literature. Section 6 summarizes and concludes.

2 Goal: Adaptive Multi-Agent Systems

We model our MARL problem as a Partially Observable Stochastic Game (POSG), a generalization
of Stochastic (Markov) Games (Littman, 1994) to settings where agents are only able to observe parts
of the state of the environment (Hansen et al., 2004). A POSG is a tuple (M, S, A, T , R, O, Te),
where M is the number of agents, S is the set of all possible global states of the environment,
A := A1 × A2 × ... × AM represents the set of actions, where Ai is the action space of agent i,
T : S × A → ∆(S) is the transition probability function between global states, based on the joint
action of the agents, R := R1 × R2 × ... × RM is the reward function, where Ri : S × A × S → R
is the individual reward function of agent i, O := O1 × O2 × ... × OM is the set of observations
with Oi representing the individual observation set for each agent i, and Te : S × A → ∆(O) is the
observation function.

The behaviour of an agent is defined by its policy πi : Oi × Ai → [0, 1]. The performance of
a policy can be assessed through its Q-function Qπi = E[

∑
t γtri,t|π], where π = (π1, ..., πM) is

the joint policy of the agents acting in the environment, γ ∈ [0, 1] is the discount factor, and
ri,t = Ri(st, at, st+1) is the reward obtained by agent i at time step t for the joint action at ∈ A at
state st ∈ S and transitioning to the next state st+1 ∈ S. The goal of each agent is to find its policy
π∗

i that has the largest possible Q-function.

As set previously, this work focuses on agents receiving their own reward in a partially observable
environment that reacts to each agent the same way. If an action taken by an agent in a particular
state yields reward, so does the environment for any other agent (the environment is said to be
"anonymous"). We also make the assumption of homogeneous agents, sharing the same set of
individual actions. All assumptions related to our multi-agent setting will be discussed in Section
5 along with extensions and limitations of our work.

In such a framework, two baseline algorithms can be used. First, one single agent, taking as input
the observation and outputting the action for the agent receiving the observation can be trained
thanks to the gathering of the agents’ interactions with the environment. This method belongs
to the Parameter Sharing (PS) algorithms, where neural network(s) and replay buffer (if any) are
shared among all agents. The second baseline we consider are independent learners, where each
agent trains its own neural network(s) thanks to its own interactions with the environment. Neural
network(s) parameters (and replay buffers) remain private.

Our contribution, consisting in designing an efficient sharing of experiences between agents, can
be applied to any underlying model-free deep RL algorithm using a replay buffer. For pedagogical
purposes, we focus on the Deep Q-Networks (Mnih et al., 2015, DQN) algorithm, which is off-policy

2

Under review for the Reinforcement Learning Conference (RLC)

Figure 1: Illustration of the Large Batch Sharing algorithm in the case of two agents.

and designed for discrete actions, and we will explain in Section 5 how the proposed methods can
be extended to other settings.

In single-agent RL with full observability, the optimal Q-function obeys equation Q∗(s, a) =
Es′,r [r + γ maxa′ Q∗(s′, a′)], called the Bellman optimality equation. DQN is the approximate Value
Iteration algorithm that uses a replay buffer of N samples (s, a, r, s′), a deep neural network Qθ, and
a few steps of gradient descent to minimize the Bellman optimality equation. Specifically, at each
training step, DQN aims to take a gradient step on the empirical loss 1

N

∑N
i=1 ℓ(Qθ(si, ai), yi), with

yi = ri +γ maxa′ Qn(s′
i, a′) and ℓ a loss (for example the L2 loss). Minimization of this empirical loss

by SGD implies drawing at each step a mini-batch of B transitions from the replay buffer and taking
a descent step θt+1 = θt−ηd in the direction of the gradient estimate d = 1

B

∑B
i=1 ∇θℓ(Qθ(si, ai), yi),

with learning rate η.

The goal of this research is not to propose an algorithm outperforming the two baselines we previously
mentioned, namely the PS and the IDQN (Independent DQN) algorithms, in the multi-agent setting
we identified. In this work, we aim at studying multi-agent systems already deployed, but in a
changing environment, forcing the agents to adapt to continue completing the task. In such an
environment, the baseline to compare with is the IDQN, even though we will also test the PS in
the comparisons. The IDQN algorithm allows each agent to continue learning by using its own
interactions with the changing environment. If the communication between agents is allowed, all
the replay buffers could be shared. The goal of this research is to study if sharing the whole replay
buffer is necessary, or if a transfer of a small amount of experiences is sufficient to continue a proper
learning. We also mention that, in cases where communication is limited or constrained, sharing the
whole replay buffer is impossible as it requires a large bandwidth, whereas sharing a small amount
of experiences remains feasible.

3 Large Batch Sharing

Our algorithm, named Large Batch Sharing (LBS) and illustrated in Figure 1, fills a large batch at
each learning step with experiences collected by all agents which communicate. Then, the absolute
Temporal Difference (TD) errors (which are L1 losses: |Qθ(si, ai) − yi|) are computed on this large
batch by each agent and we down-sample the large batch to a mini-batch thanks to the distribution

3

Under review for the Reinforcement Learning Conference (RLC)

induced by the absolute TD errors. Finally, an SGD step is taken thanks to this mini-batch to
update the neural network parameters.

The rationale behind this choice is the following. The large batch, filled by experiences from all
communicating agents, defines a training set on which the neural network Qθ has to predict the
optimal value function Q∗. In the context of deep neural networks, this optimality boils down to
finding the optimal parameters θ∗ such that: θ∗ ∈ arg minθ

1
K

∑K
k=1 ℓ(Qθ(sk, ak), yk), where K, the

large batch size, is the product of B the mini-batch size and M the number of agents.

Writing u the uniform probability distribution over the K items of the training set, i.e. ∀k ∈
[1; K], uk = 1/K, the empirical gradient of the loss function defined above can be written as an
expectation:

1
K

K∑
k=1

∇θℓ(Qθ(sk, ak), yk) = Ek∼u[∇θℓ(Qθ(sk, ak), yk)].

Writing p any probability distribution over the training set, importance sampling can be used:

Ek∼u[∇θℓ(Qθ(sk, ak), yk)] = Ek∼p

[
∇θℓ(Qθ(sk, ak), yk)uk

pk

]
= 1

N
Ek∼p

[
1
pk

∇θℓ(Qθ(sk, ak), yk)
]

.

All these expectations can be approximated with mean estimators. With B the mini-batch size, it
yields:

Ek∼p

[
1
pk

∇θℓ(Qθ(sk, ak), yk)
]

≈ 1
B

B∑
k=1

1
pk

∇θℓ(Qθ(sk, ak), yk) ,

k ∼ p. We introduce G
(t)
k = wk∇θℓ(Qθ(sk, ak), yk) with wk = 1/(Kpk) for any sampling scheme p

such that ∀k ∈ [1; K], pk > 0. This quantity will be useful to study SGD based algorithms using
sampling p, possibly non uniform. Note that, when p = u, wk = 1.

Setting η as a constant learning rate, a standard (full) gradient descent update has the form: θt+1 =
θt−ηEk∼p[G(t)

k]. This can be surprising at first sight since it seems to depend on the sampling scheme
p used, whereas there is no sampling for the standard (full) gradient descent. It is indeed the case:

Ek∼p[G(t)
k] =

K∑
k=1

pkG
(t)
k = 1

K

K∑
k=1

∇θℓ(Qθ(sk, ak), yk),

and this notation gives consistency when writing the stochastic gradient descent update under
sampling scheme p:

θt+1 = θt − η
1
B

B∑
k=1

G
(t)
k = θt − η

1
B

B∑
k=1

1
Kpk

∇θℓ(Qθ(sk, ak), yk).

Following the notations of Katharopoulos & Fleuret (2018), let us define the convergence speed S
of SGD under a sampling scheme p as S(p) = −Ek∼p

[
∥θt+1 − θ∗∥2

2 − ∥θt − θ∗∥2
2
]

. We recall that
a stochastic gradient descent update with B = 1 has the form θt+1 = θt − ηG

(t)
k , where G

(t)
k is

the gradient estimate built from sampling element k with probability p. The following derivations
from Wang et al. (2017) shed light on the relationship between variance of the stochastic gradient
estimate and convergence speed:

S(p) = −Ek∼p

[
θT

t+1θt+1 − 2θT
t+1θ∗ − θT

t θt + 2θT
t θ∗] = 2η(θt − θ∗)TEk∼p[G(t)

k] − η2Ei∼p[G(t)
k

T
G

(t)
k].

Indeed, the term Ek∼p[G(t)
k

T
G

(t)
k] can be called variance of the stochastic gradient estimate,

since it is linked to the covariance matrix Vark∼p[G(t)
k] by Ek∼p[G(t)

k

T
G

(t)
k] = Tr(Vark∼p[G(t)

k]) +

4

Under review for the Reinforcement Learning Conference (RLC)

Ek∼p[G(t)
k]TEk∼p[G(t)

k]. Recall also from Eq. 3 that Ek∼p[G(t)
k] is a constant with respect to p. Hence,

it is possible to gain a speed-up by sampling from the distribution that minimizes Ek∼p[G(t)
k

T
G

(t)
k].

Since minimizing Ek∼p[G(t)
k

T
G

(t)
k] is equivalent to minimizing Tr(Vark∼p[G(t)

k]), the sampling scheme
optimizing the convergence speed also minimizes the variance of the stochastic gradient steps per-
formed. The higher the convergence speed, the lower the variance of the stochastic gradient estimate.

The optimal distribution is p∗
k ∝ ∥∇θℓ(Qθ(sk, ak), yk)∥2, the per-sample gradient norm. This deriva-

tion is detailed in Appendix A.

Applying the chain rule to the per-sample gradient norm indicates that ∥∇θℓ(Qθ(sk, ak), yk)∥2 =
∥∂ℓ(Qθ(sk, ak), yk)/∂Qθ(sk, ak) · ∂Qθ(sk, ak)/∂θ∥2. If ℓ corresponds to the L2-loss, then
∂ℓ(Qθ(sk, ak), yk)/∂Qθ(sk, ak) is the TD error. The per-sample gradient norm of the loss is the
product of the absolute TD error and of the norm of the network output’s gradient.

Consequently, the absolute TD error is a good proxy for the optimal sampling distribution, yielding
the best variance reduction and the higher convergence speed. More importantly, sampling experi-
ences with high absolute TD errors is equivalent to sampling experiences where the neural network
has the most to learn. In our deployed multi-agent system where the environment can change,
experiences with high absolute TD errors can be considered the most surprising, hence helping the
neural networks to adapt rapidly.

We recall the Large Batch Sharing algorithm goes as follows. For each agent i ∈ [1; M], 1/ draw
a mini-batch of size B from the replay buffer with distribution p1. Aggregate the M − 1 other
mini-batches to obtain the large batch. 2/ On this large batch, compute probability distribution p2
and down-sample the large batch to a mini-batch thanks to this distribution. 3/ Finally, perform
the SGD step thanks to the samples in the mini-batch. We now detail the subtleties at each step
previously described.

Step 1 of the algorithm could simply consist in drawing uniformly a mini-batch from the replay
buffer (hence p1 = u, where ui = 1/N, ∀i ∈ [1; N]), but we will test different sampling, such as
sampling high absolute TD errors. Step 2 computes the priority which determines which samples
will yield the better SGD step thanks to distribution p2. Note that, if p2 and p1 are both uniform
distributions, then our algorithm is strictly equivalent to a parameter sharing baseline where replay
buffers are fully shared, but neural networks are not. We will, of course, test this baseline but our
aim is to explore different sampling schemes. In particular, we take p2 as the distribution induced
by the absolute TD errors. By doing this, we ensure that the samples coming from other agents
really help in taking better SGD steps.

4 Experiments

Even though many experiments remain to be run, the first results obtain on the SISL (Stanford
Intelligent Systems Laboratory) environment named Pursuit appear promising (Gupta et al., 2017).
In the Pursuit scenario, a mixed collaborative-competitive environment is presented, involving a
team of pursuers aiming to capture a group of evaders within a grid-world containing obstacles. The
evaders, depicted in blue, move randomly, while the pursuers, represented in red, are under the con-
trol of RL agents. When a group of two or more agents successfully surrounds an evader, each agent
receives a reward, and the evader is eliminated from the environment. The episode concludes either
when all evaders are captured or after 500 steps, whichever comes first. Pursuers earn a small reward
for being adjacent to an evader (even without complete surrounding) and incur a slight negative re-
ward per timestep, encouraging them to complete episodes promptly. The setup involves 8 pursuers
and 30 evaders. We perform the training for 800k timesteps and average our results over 10 seeds.

As explained earlier, the two baselines are 1/ the independent DQN agents (IDQN), and 2/ the pa-
rameter sharing agent (PS) owning one neural network and replay buffer collecting all experiments.
Our agent uses p1 as the uniform distribution, and p2 as the distribution induced by the TD errors.

5

Under review for the Reinforcement Learning Conference (RLC)

Figure 2: Performance of the four agents in Pursuit at 800k timesteps.

The fourth algorithm tested (IDQN same RB) consists in taking p1 and p2 as the uniform distri-
bution. In this case, each agent has its own neural network but the replay buffer is shared by all
agents. All hyperparameters for the DQN base agent are the same for all the tested configurations
to ensure a fair comparison and are reported in Table 1.

Figure 2 shows the average sum of rewards per episode at the end of training for each tested
algorithm. This result advocates for a high benefit of our sampling but remains to be consolidated
by other experiments. In particular, a sensitivity analysis with respect to hyper-parameters specific
to our method have to be tested. We plan to analyze the impact of: 1/ the amount of experiences
to share between agents, and 2/ the sampling distribution used for p1 and p2.

Moreover, as already stated at the end of Section 2, we aim at studying multi-agent systems already
deployed in a changing environment, forcing the agents to adapt to continue completing the task.
The Pursuit environment, as well as the experiments we ran, do not illustrate this goal. Future
works will focus on developing benchmarks of changing environments and training adaptive agents.

5 Discussions, limitations and related work

Our work restricts to homogeneous agents. An experience can be useful to another agent only
if this agent can also take the action of the experience. Moreover, in the case of heterogeneous
agents, where agents do not share the same action space, the baseline algorithms are different. In
particular, the parameter sharing baseline is not applicable. Our work also restricts to "anonymous"
environments and could not be extended to a different setting, where a certain action combined
with a certain observation does not yield the same reward to all agents. Note that this kind of
environment is rare in practice, and when encountered, it is often in the case of heterogeneous
agents, as in (Calvo & Dusparic, 2018).

6

Under review for the Reinforcement Learning Conference (RLC)

Our contribution is illustrated on collaborative systems, and it also applies to mixed and competitive
settings, as long as agents remain homogeneous and the environment anonymous. We found more
intuitive to highlight the benefits of sharing experiences on collaborative settings, as parameter
sharing is rarely seen in practice on competitive environments. Indeed, in such settings, agents often
explore the environment for their own profit, avoiding sharing information to maintain an advantage
in the environment knowledge compared to the competitors.

In cooperative multi-agent systems, where all agents share the same reward at each step, our con-
tribution can be used as well. However, note that cooperative tasks are harder to solve compared
to collaborative ones, where each agent earns its own reward, due to the credit assignment problem.
Even though it remains to be experimentally verified, we suspect our method to be less beneficial in
this setting. Sharing experiments between agents is likely to make the credit assignment even more
harder to solve, since knowing property of one experiment might help the credit assignment.

This work focuses on the DQN algorithm, as it is a common practice in the single-agent literature
to study importance sampling and prioritization on this base agent. Our contribution extends
directly to all off-policy algorithms using a replay buffer to learn a value function. This encompasses
algorithms designed for continuous actions, such as DDPG (Lillicrap et al., 2016), TD3 (Fujimoto
et al., 2018), SAC (Haarnoja et al., 2018), and also distributional RL agents, such as C51 (Bellemare
et al., 2017), QR-DQN (Dabney et al., 2018b), and IQN (Dabney et al., 2018a). Sampling high
absolute TD errors has also been proposed in the single-agent case with the Prioritized Experience
Replay algorithm (Schaul et al., 2016, PER). Note that our work brings a theoretical justification for
the sampling, whereas PER is presented as a heuristic. Sharing experiences can also be performed
with on-policy algorithms such as PPO (Schulman et al., 2017). However, as prioritizing samples
with policy-based algorithms remains a difficult problem, even in the single-agent setting, we keep
this extension of our algorithm for future works.

This enumeration of limitations is necessary to understand the scope of our study and to place it in
the literature. Perhaps the most similar work to ours is (Wang & Zhang, 2019). The authors use
PER to select the shared experiences, but do not check the relevance of a particular sample for the
agent which receives it, which is what we propose in our work. D’Eramo & Chalvatzaki (2022) couple
multi-task RL algorithms with a task-sampling policy based on the intrinsic motivation paradigm.
Nicholaus & Kang (2022) propose an exploration strategy which enables to fill the replay buffer with
experiences collected from a distribution supposed to be beneficial for the learning process.

Prioritized sampling has also been studied in multi-agent RL in settings different to ours. In cooper-
ative tasks, an extended literature has been produced in recent years studying the interplay between
non-stationarity, credit assignment, and importance sampling. For instance, Mei et al. (2023) derive
an importance sampling scheme allowing to correct the distribution of the replay buffers, hence
enabling a better convergence. Bargiacchi et al. (2020) compare to (Mei et al., 2023) but frame their
study in model-based MARL. Tian et al. (2023) study how PER can improve offline MARL thanks
to a trajectory selection using Graph Attention Networks (Veličković et al., 2018).

6 Conclusion

This work focuses on an efficient experience sharing scheme between homogeneous agents learning
in an anonymous environment. This scheme draws inspiration from the optimization literature,
and our work remains an empirical study. This article remains a work in progress, and the first
experimental results highlight the benefit of sharing a small amount of experiences between agents.

In the near future, complementary experiments have to be run. Different environments have to be
tested, as well as different numbers of agents. In particular, we would like to confirm / infirm the
following intuition: Our method brings a significant improvement on tasks where the independent
learners baseline performs well, in environments necessitating specialization of agents. Complemen-
tary experiments will also study from an empirical point of view the amount of experiments to be
shared between agents yielding the best learning improvement.

7

Under review for the Reinforcement Learning Conference (RLC)

References
Eugenio Bargiacchi, Timothy Verstraeten, Diederik M Roijers, and Ann Nowé. Model-based

multi-agent reinforcement learning with cooperative prioritized sweeping. arXiv preprint
arXiv:2001.07527, 2020.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458. PMLR, 2017.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, 2008.

Jeancarlo Arguello Calvo and Ivana Dusparic. Heterogeneous multi-agent deep reinforcement learn-
ing for traffic lights control. In AICS, pp. 2–13, 2018.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018b.

Carlo D’Eramo and Georgia Chalvatzaki. Prioritized sampling with intrinsic motivation in multi-
task reinforcement learning. In 2022 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE, 2022.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. Advances in neural information
processing systems, 29, 2016.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596, 2018.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In Autonomous Agents and Multiagent Systems: AAMAS 2017
Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16, pp.
66–83. Springer, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861–1870, 2018.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially ob-
servable stochastic games. In Proceedings of the 19th national conference on Artifical intelligence,
pp. 709–715, 2004.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent
deep reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, 2019.

Angelos Katharopoulos and Francois Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International Conference on Machine Learning, pp. 2525–2534, 2018.

Thibault Lahire, Matthieu Geist, and Emmanuel Rachelson. Large batch experience replay. In
International Conference on Machine Learning, pp. 11790–11813. PMLR, 2022.

Zhengping Li, Cheng Hwee Sim, and Malcolm Yoke Hean Low. A survey of emergent behavior
and its impacts in agent-based systems. In 2006 4th IEEE international conference on industrial
informatics, pp. 1295–1300. IEEE, 2006.

8

Under review for the Reinforcement Learning Conference (RLC)

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Yongsheng Mei, Hanhan Zhou, Tian Lan, Guru Venkataramani, and Peng Wei. Mac-po: Multi-agent
experience replay via collective priority optimization. arXiv preprint arXiv:2302.10418, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less time. Machine learning, 13(1):103–130, 1993.

Isack Thomas Nicholaus and Dae-Ki Kang. Robust experience replay sampling for multi-agent
reinforcement learning. Pattern Recognition Letters, 155:135–142, 2022.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. In Inter-
national Conference on Machine Learning, pp. 2681–2690. PMLR, 2017.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11:387–434, 2005.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemat-
ical statistics, pp. 400–407, 1951.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
ICLR (Poster), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PloS one, 12(4):e0172395, 2017.

Qi Tian, Kun Kuang, Furui Liu, and Baoxiang Wang. Learning from good trajectories in offline
multi-agent reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 11672–11680, 2023.

Wiebe Van der Hoek and Michael Wooldridge. Multi-agent systems. Foundations of Artificial
Intelligence, 3:887–928, 2008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Che Wang and Keith Ross. Boosting soft actor-critic: Emphasizing recent experience without
forgetting the past. arXiv preprint arXiv:1906.04009, 2019.

Linnan Wang, Yi Yang, Renqiang Min, and Srimat Chakradhar. Accelerating deep neural network
training with inconsistent stochastic gradient descent. Neural Networks, 93:219–229, 2017.

9

Under review for the Reinforcement Learning Conference (RLC)

Yishen Wang and Zongzhang Zhang. Experience selection in multi-agent deep reinforcement learn-
ing. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI),
pp. 864–870. IEEE, 2019.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–384,
2021.

10

Under review for the Reinforcement Learning Conference (RLC)

A Convergence Speed and Optimal Sampling Distribution

From one sampling scheme to another, the variance of the gradient estimate is different, and we
are looking for the optimal sampling scheme p∗ over items of the large batch, the one with smallest
variance. Indeed, for such a sampling scheme, the convergence speed of SGD is optimum. We define
the convergence speed S for a sampling scheme p as S(p) = −Ek∼p

[
∥θt+1 − θ∗∥2

2 − ∥θt − θ∗∥2
2
]
. We

recall that a stochastic gradient descent update has the form θt+1 = θt − ηG
(t)
k , where G

(t)
k is the

gradient estimate built from sampling element k with probability p. The following derivations from
(Wang et al., 2017) shed light on the relationship between variance and convergence speed:

S(p) = −Ek∼p

[
∥θt+1 − θ∗∥2

2 − ∥θt − θ∗∥2
2
]

= −Ek∼p

[
θT

t+1θt+1 − 2θT
t+1θ∗ − θT

t θt + 2θT
t θ∗]

= −Ek∼p

[
(θt − ηG

(t)
k)T (θt − ηG

(t)
k) + 2ηG

(t)
k

T
θ∗ − θT

t θt

]
= −Ek∼p

[
−2η(θt − θ∗)T G

(t)
k + η2G

(t)
k

T
G

(t)
k

]
= 2η(θt − θ∗)TEk∼p[G(t)

k] − η2Ek∼p[G(t)
k

T
G

(t)
k]

It is possible to gain a speed-up by sampling from the distribution that minimizes Ek∼p[G(t)
k

T
G

(t)
k].

This yields the constrained optimization problem:

min
p

Ek∼p[G(t)
k

T
G

(t)
k] = min

p

K∑
k=1

pk∥G
(t)
k ∥2

2

such that
K∑

k=1
pk = 1 and pk ≥ 0

Recall that Gk = wk∇θℓ(Qθ(sk, ak), yk) and wk = 1/(Kpk). Let gk = ∥∇θℓ(Qθ(sk, ak), yk)∥2. The
problem boils down to:

min
p

1
K2

K∑
k=1

1
pk

g2
k,

such that
K∑

k=1
pk = 1 and pk ≥ 0.

Lemma A.1 (Optimal sampling distribution) The optimal sampling distribution p∗ verifies
p∗

k ∝ ∥∇θℓ(Qθ(sk, ak), yk)∥2, the per-sample gradient norm.

Proof We note µ ∈ R the Lagrange multiplier associated to the equality constraint, ν ∈ RN
+ the

Lagrange multipliers associated to the inequality constraints. Hence:

Lag(p, µ, ν) =
K∑

k=1

1
pk

g2
k + µ

(
K∑

k=1
pk − 1

)
−

K∑
k=1

νkpk

Setting the derivatives of the Lagrangian with respect to the primal variables yields:

∀ k ∈ [1, K], −g2
k

p2
k

+ µ − νk = 0

Multiplying the above equation by pk and using ∀ k, pkνk = 0 (complementary slackness), we have:
pk = gk/

√
µ, which yields the result.

11

Under review for the Reinforcement Learning Conference (RLC)

B Hyperparameters for the Pursuit environment

Table 1: Hyperparameters

Environment hyperparamters
max cycles 500
shared reward False
horizon 500
surrounded True
tag reward 0.01
constrained window 1.0
obs range 7
x/y sizes 16/16
num evaders 30
n catch 2
n agents (pursuers) 8
urgency reward -0.1
catch rewards 5
CNN network hyperparameters
CNN layers [32, 64, 64]
Stride 1
Kernel size [2, 2]
DQN hyperparameters
learning rate 0.00016
mini-batch size 32
buffer size 120000
initial exploration epsilon 0.1
final exploration epsilon 0.001
target network update freq 1000
factor K 8

12

