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I. MOTIVATION

Changing climate conditions have consequences for both
natural and man-made systems, e.g., transportation, food pro-
duction, energy consumption, and wildlife. To obtain accurate
and predictive models, data samples are needed at different
spatial and temporal scales [34, 37]. Unfortunately, collecting
this type of data is challenging both in terms of cost and
logistics. Existing solutions rely on sparse human collected
data and/or temporally rich but spatially sparse static sensor
network data [1]. One promising solution to overcome the data
sparsity problem is to augment data collection with a robot
team equipped with sensors [6].

Robot teams can cover large spaces [3], persist in challenging
environments [6], and collect heterogeneous data samples
[34], all while maintaining robustness against single points
of failure [31]. Environmental monitoring with a robot team
requires breaking down task specifications [39], assigning
robots to tasks [23], communicating task essential information
[17], and controlling robots in the team [3]. A persistent
challenge when monitoring dynamic environments is ensuring
robot team adaptability to changing environment conditions
and/or task requirements [28, 30]. My research uses complex
systems theory abstractions to design flexible, adaptive, and
resilient robot team solutions for tasks in dynamic and uncertain
environments, as summarized in Fig. 1.

My research lies at the intersection of Complex Systems
theory, Dynamical Systems theory, and Robotics. I aim to
combine environment models with models from complex
systems theory to control robot teams to monitor dynamic
environments. My interdisciplinary background makes me
well suited to develop novel multi robot sensing and modeling
capabilities with applications for improving climate resiliency,
protecting urban infrastructure, devising evacuation strategies,
and enhancing military reconnaissance. To advance robot
collective capability, I plan to develop the next generation
of team-wide reasoning methods to coordinate heterogeneous
multi robot systems for operations in extreme environments.
In addition, advanced robot team sensing capabilities enable
new scientific studies about the disruptions to natural systems
as a result of changing climate conditions.

II. PAST AND CURRENT RESEARCH

To develop highly capable multi robot teams, I address how
to effectively assign robots to informative sample locations
[23]. Assignment solutions must be flexible and adaptive to
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Fig. 1: I use macroscopic ensemble methods to design team-
wide allocation solutions (Fig. 1a). I introduce robot-robot
collaboration (Fig. 1b) and environment feedback (Fig. 1c) to
improve macroscopic model adaptability in dynamic settings.

reassign robots in response to changing regions of importance.
My research uses model abstractions from complex systems
theory that improve robot team assignment and control in
changing conditions.

1) Multi Robot Task Allocation (MRTA) in Dynamic Envi-
ronments: Environmental monitoring with robot teams requires
methods that effectively assign robots to informative sample
locations, a variant of the MRTA problem [24, 16, 39]. Existing
monitoring approaches solve the MRTA problem for each
individual robot which works well if the team is small (less
than 10 agents) and operating in a simple environment (an open
field) [2, 36, 25, 5]. Macroscopic ensemble methods are known
to easily control large heterogeneous robot teams [30, 20, 12].
Nevertheless, these methods rely on the law of large number
assumption and ignore environment feedback, limiting the team
allocation effectiveness in dynamic environments. To overcome
these limitations, I implemented an online adaptive macroscopic
ensemble allocation framework which incorporates feedback
from data driven environment models [43]. I performed
evaluation using four miniature Autonomous Surface Vehicles
(mASVs in Figs. 2a and 2b) in mixed reality experiments [11].
The results support that effectively assigning robots improves
monitoring performance in different dynamic environments
when compared to adaptive coverage control baselines.

2) Collaboration in Robot Teams using Complex System
Models: Some dynamic environments have predictable changes,
e.g., tidally impacted water systems like the ocean. Existing
methods that perform assignment for each robot must undergo
computationally expensive online replanning [26, 4]. In contrast,
we can design top-down macroscopic ensemble models to
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Fig. 2: I perform experimental evaluation of macroscopic
allocation using custom built miniature Autonomous Surface
Vehicles (mASVs) (Figs. 2a and 2b). Separately, I use the
Crazyflie UAV (Fig. 2c) to evaluate collective behaviors[29].

leverage known environment changes that control robot team
assignment. However, while macroscopic ensemble models
are known to be scalable, the current models used in robotics
can only achieve fixed steady state [12]. As a result, these
methods also require replanning [30, 11]. Fortunately, existing
compartment models in complex systems theory model interac-
tion between compartments as nonlinear terms introducing the
potential for periodic equilibrium [18]. To achieve time-varying
populations of robots, I introduce robot-robot collaboration
terms to macroscopic ensemble robot team modeling [8]. A
collaboration is when individual robots share spatial proximity
and change their task based on the desired global team
state, Fig. 1b. I have shown the application of collaborative
macroscopic ensemble models to environmental monitoring
scenarios [9], and I have studied model predictions when the
well-mixed assumption is violated [10]. The results demonstrate
not only novel team-wide population behavior, but also suggest
possibilities for using artificial systems to inform population
models used in fields like epidemiology.

3) Experimental Verification of 2D Collective Motion:
Biology has long inspired engineers and scientists to understand
and generate artificial collective behavior; where many indi-
viduals contribute via simple rules to a global pattern [42]. A
known phenomena in natural collectives is that the propagation
of information through the collective is subject to delays
[14]. To study this, differential delay equations are used to
model artificial collective behavior [15]. It has been previously
observed with mean field analysis that a spring potential model
with communication delay undergoes a Hopf Bifurcation and
transitions between various collective states corresponding
to changes in the delay [41]. To build on this theoretical
understanding, I performed mixed reality experiments with
Unmanned Aerial Vehicles (UAVs). An example UAV is shown
in Fig. 2c . My experiments validated the existence of the
collective behaviors and demonstrated delay induced state
transitions [7]. These results inspired follow-on studies led
by my collaborators about previously unseen bistability [21]
and more physically realistic range based delay [38].

III. FUTURE RESEARCH

Monitoring changing environments requires highly capable,
coordinated, heterogeneous robotic systems. There are three

natural extensions to the work I have pursued so far: 1)
incorporating environment information, e.g., scalar or flow
field data, into robot team control, 2) novel representations of
capability, and 3) studying natural collectives to understand the
interactions between multi robot systems and the environment.

1) Modeling the Environment as a Complex System: Using
point sensor measurements of the environment to update
robot behavior is a longstanding approach to environmental
monitoring, e.g., adaptive sampling [24]. The challenge when
the environment changes over time is effectively allocating team
resources and achieving scalable environment representations
of relevant measurements [28]. One scalable approach to
achieve novel team-wide allocation is to extend collaborative
macroscopic ensemble methods to incorporate the environment,
as is often done in chemistry [19]. Unlike other compartment
modeling methods that approximate non-state model values, a
robot team can provide real-time estimates of environmental
concentration terms using machine learning methods. In addi-
tion, reduced order modeling (ROM) techniques like Dynamic
Mode Decomposition (DMD) are scalable representations
of dynamic environments [35, 37, 22], but using ROM in
robotics settings requires novel methods to handle real-time
data acquisition with distributed communication [34, 33].

2) Capabilities as Complex Networks: Heterogeneous
robotic teams allow data collection at different spatial and
temporal scales, which in turn enables better dynamic environ-
ment representations and autonomous decision making [34].
However, adequately using team resources requires understand-
ing robot and team capabilities [32, 13]. The challenge is
modeling capabilities and their connections in a meaningful
and computationally tractable way that does not simply require
modeling the entire system. Recently, Basset-Smith and Zurn
shared descriptions of how curiosity can be modeled as a
complex network / graph [44]. There are similarities between
robot capabilities and human curiosity which suggest a graph
as a reasonable modeling tool. The benefits of using a graph
are the extensive existing tools and inherent scalability. A
new capability graph representation would enable novel smart
planning and allocation techniques, e.g., macroscopic ensemble
allocation combined with ergodic planning.

3) Collective Motion Inspired by Biological Systems:
Natural complex systems, e.g., creatures of the ocean like
Salp’s, live in dynamic environments and help regulate their
local ecosystems [40]. Taking inspiration from these types
of natural systems, the long term goal is to enable multi
robot systems to influence the environment using coordinated
behavior. For example, during flooding events, a robot team
could move into place and use the collective onboard propulsion
to direct the flow of debris away from critical infrastructure. A
promising direction is to explore 3D collective motion inspired
by the novel helical trajectories of Salp Colonies studied by
Sutherland et al. [40]. The first step is to design a 3D model
that combines the physical state with phase coupled oscillators
like in the Swarmulators [27]. The next step involves measuring
the local interactions between the robots and the environment
to understand how the collective impacts the world.
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