
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

A Proximal Operator for Inducing 2:4-Sparsity

Anonymous Authors1

Abstract
Recent hardware advancements in AI Accelera-
tors and GPUs allow to efficiently compute sparse
matrix multiplications, especially when 2 out of
4 consecutive weights are set to zero. However,
this so-called 2:4 sparsity usually comes at a de-
creased accuracy of the model. We derive a reg-
ularizer that exploits the local correlation of fea-
tures to find better sparsity masks in trained mod-
els. We minimize the regularizer jointly with a
local squared loss by deriving the proximal op-
erator for which we show that it has an efficient
solution in the 2:4-sparse case. After optimizing
the mask, we introduce masked-gradient updates
to further minimize the local squared loss. We
illustrate our method on toy problems and apply it
to pruning entire large language models up to 70B
parameters. On models up to 13B we improve
over previous state of the art algorithms, whilst
on 70B models we match their performance.

1. INTRODUCTION
The extensive adoption of large language models has
sparked renewed interest in post-training model compres-
sion to reduce inference cost and latency (Chitty-Venkata
et al., 2023; Park et al., 2024). The most notable techniques
are quantization of model weights and activations (Frantar
et al., 2023; Dettmers et al., 2022; Frantar et al., 2024) as
well as model pruning, i.e., the removal of weights or struc-
tures (Frantar & Alistarh, 2023; Sun et al., 2024; Ashkboos
et al., 2024). However, pruning entire network structures
like columns and rows of weight matrices leads to nonneg-
ligible accuracy drops. Hence, the surge for more flexible
sparsity patterns that allow to prune individual weights has
sparked. This is accompanied by hardware and software sup-
port for efficient sparse matrix multiplications (Pool et al.,
2021). In this work we consider structured sparsity, that

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>. *Work initiated while being an
intern at Amazon.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

is we attempt to prune weights of linear models (or linear
layers in a neural network) into a structure where out of each
consecutive M ∈ N weights N ∈ N weights are set to zero.
Modern GPUs and AI Accelerators can efficiently represent
structured sparsity patterns to compress the memory foot-
print of the model and accelerate the matrix multiplications.

Recent work is generally designed for pruning to unstruc-
tured sparsity and has then been applied to structured pat-
terns. In this work, instead, we design a family of regular-
izers that directly induce structured sparsity. The resulting
regularized pruning problems are then solved using the cel-
ebrated proximal gradient method. Unlike existing pruning
methods, our method induces sparsity gradually over the
iterations, which can lead to better masks. The proximal
gradient method requires solving a proximal operator in
each iteration, which itself is a nonconvex problem.

The key theoretical contribution of this paper is to show that
this non-convex proximal operator can be efficiently solved
by solving three convex subproblems. We empirically show
that these regularizers tend to identify more efficient spar-
sity masks, reduce the squared loss and can lead to better
performance when applied to pruning entire large language
models. Our approach natively applies gradient descent on
the layer level while finding the mask and after freezing.
Our key empirical contribution is that we apply such local
gradient descent after masking to previous state-of-the-art
methods (WandA and SparseGPT) and find that we can im-
prove those out of the box. Since Wanda and SparseGPT
methods are extensively adopted, we expect that the masked
gradient updates will have significant impact.

We defer proofs to Appendix B.

2. PROBLEM AND RELATED WORK
Large Language Models (LLMs) based on the trans-
former architecture (Vaswani et al., 2017) have become
the workhorse of language modelling. Recent architectures
like Llama (Touvron et al., 2023) use decoder only mod-
els. Innovations on the attention calculation (Dao, 2023) or
its design as grouped-query attention (Ainslie et al., 2023)
have in few years already led to notable efficiency improve-
ments. This moves the focus more on the classic matrix
multiplication in linear layers. The idea here is to find an

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

A Proximal Operator for Inducing 2:4-Sparsity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

w1
w2
w3
w4

*
1
*
2

0.0 0.2 0.4 0.6 0.8

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

w1
w2
w3
w4

*
1
*
2

0.0 0.2 0.4 0.6 0.8

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

w1
w2
w3
w4

*
1
*
2

0.0 0.2 0.4 0.6 0.8

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

w1
w2
w3
w4

*
1
*
2

Figure 1. Illustration of the regularization path, e.g., optimal solution (w1, w2, w3, w4) as a function of λ in (7). From left to right, we
are showing the result with (a) easy input z = [1.6, 1.1, 0.8, 0.5] (b) nearly-tied z2:4 with z = [1.6, 1.11, 1.1, 1.09] (c) nearly-tied z1:3
with z = [1.6, 1.59, 1.58, 1.09] (d) All nearly tied with z = [1.6, 1.59, 1.58, 1.57]. The two dashed lines in all figures indicates the two
critical thresholds λ∗

1 and λ∗
2 when the 3-sparse solution (and 2-sparse solution) become a critical point of (7), thus λ ≥ λ∗

1 (or λ ≥ λ∗
2)

are necessary conditions for the solution to be 3-sparse (or 2-sparse), see Lemma 10 in Appendix B. Observe that in the “easy input” case,
as we increase λ, the sparsification is gradual, rather than abrupt. In the “hard input” cases, decisions about those that are nearly tied are
not made prematurely at smaller λ, the transition to exact structured sparsity happened at a much larger λ.

efficient approximation of the weight matrix such that the
multiplication can be executed more efficiently as well as
that the matrix can be stored efficiently in order to reduce
the memory footprint of the matrix multiplication.

2.1. Matrix Compression

Traditional approaches involve low-rank approximations
and sparsity. Modern hardware accelerators, which are used
to run LLMs, cannot make use of sparsity if the 0s do not
follow a regular structure. On the other hand, if a lot of
structure is imposed, for example entire rows or columns
are zeroed out, the accuracy drop is often too large.

A method aiming to strike a balance is so-called structured
sparsity or N :M sparsity. Here, out of M consecutive
weights N are set to zero (Pool et al., 2021). For the case of
2:4 sparsity, one stores only two weights as well as a two-bit
index per weight. Thus, for example, if the weights are kept
in bfloat16 the memory footprint reduces from 4 · 16 = 64
bits to 2·(16+2) = 36 bits, i.e., a compression to 56%. Also
since those patterns are efficiently supported in hardware,
it can reduce the FLOPs in matrix multiplications by a
factor of up to 2x, which is mostly relevant during prompt
encoding (aka prefill). LLM inference during decoding
is on the other hand memory-bound rather than compute
bound (Park et al., 2024). There the speedup comes from
the memory compression. We note here that this speedup
reduces when sparsity is combined with quantization (Jacob
et al., 2018; Dettmers et al., 2022; Frantar et al., 2023), as
the relative overhead of the position indices grows. With 2:4
sparsity the memory compression and decoding speedup for
16/8/4 bit datatype is 1.77x/1.6x/1.33x.

2.2. Pruning

Many recent works propose new algorithms and heuristics
to prune the linear layers in LLMs. Whilst some focus on

sparsity (Frantar & Alistarh, 2023; Sun et al., 2024; Dong
et al., 2024; Wei et al., 2023) others also remove entire
structures, like heads, channels or layers resolving the need
for special hardware support (Xia et al., 2024; Ma et al.,
2023; Muralidharan et al., 2024). All of this methods have
a non-negligible drop in performance metrics, requiring
a delicate trade-off between latency/cost and performance
degradation of the models. It is known that fine tuning after
compression recovers some of the performance drop (Sun
et al., 2024; Frantar & Alistarh, 2023; Dong et al., 2024) and
recent work have also studied more extensive distillation
with a small percentage of pretraining tokens, for example
Minitron (Muralidharan et al., 2024) or Llama-3.2.1

2.3. One-Shot Pruning with Squared Loss

In this work we focus on a local one-shot setting (Frantar &
Alistarh, 2023). We consider linear layers in a deep neural
network. Let N,M ∈ N, N < M and di, do ∈ N be the fea-
ture input and output dimension, where we assume that di is
divisible by M . We call a weight matrix W ∈ Rdo×di to be
N :M sparse if each cell of M consecutive weights contains
maximally N non-zero entries

∑M
i=1 |Wr,(k−1)·M+i|0 ≤ N

for all k ∈ [d/M] and for each row r ∈ [do]. We will de-
note the set of N :M sparse matrices as SN :M , leaving the
dependency on di, do implicit.

We assume that the network has been trained to convergence
resulting in dense weights W ∗. Assuming that we have
inputs to the liner layer X ∈ Rdi×n our goal is to find N :M
sparse weights that maintain the output of the layer as good
as possible in terms of a squared loss (LeCun et al., 1989;
Hubara et al., 2021; Frantar & Alistarh, 2023; Sun et al.,
2024):

argmin
W∈SN:M

1

n
∥WX −W ∗X∥2F . (1)

1https://huggingface.co/meta-llama/Llama-3.2-1B#training-
data

2

https://huggingface.co/meta-llama/Llama-3.2-1B#training-data
https://huggingface.co/meta-llama/Llama-3.2-1B#training-data

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

A Proximal Operator for Inducing 2:4-Sparsity

This problem can be solved for each row independently,
because N :M sparsity imposes the same level of sparsity
across all rows and the Frobenius norm decomposes over
the rows. Nonetheless, even for a single row, the problem
becomes combinatorially hard. Whilst given a sparsity pat-
tern, solving for the optimal weights is a convex problem,

the number of masks that need to be searched is
(
M
N

)di/M .
Since N,M are determined by the hardware and fixed, the
complexity grows exponentially with the matrix dimension
and in practice we inevitably need to resort to heuristics.

We rewrite the loss in terms of the Hessian H := XX⊤

n and
using ∥A∥2F = Tr(AA⊤) as

L(W) : =
1

n
∥WX −W ∗X∥2F

= Tr
(
(W −W ∗)H(W −W ∗)⊤

)
.

(2)

We will also refer to this as local squared loss to emphasize
that it is on a per-matrix level. Notice that on the diagonal
of H we simply have the mean squared activations of the
corresponding input channels.

The N :M sparse optimization problem simplifies signifi-
cantly if the Hessian H is diagonal, meaning that the input
features are uncorrelated. In this case the weights cannot
compensate for each other, that is each weight is either
pruned to zero or kept at its original value. Given a pruning
mask M ∈ {0, 1}do×di the loss is simply∑

i,j

(1−Mi,j)W
∗
i,jHj,jW

∗
i,j =:

∑
i,j

(1−Mi,j)S
2
i,j , (3)

and we can solve the minimization problem efficiently and
optimally by simply pruning those weights with smallest
scores Si,j := |W ∗

i,jH
1/2
j,j |. Although not derived in the way

presented here, this is precisely the criterion that WandA
(Weights and Activations) (Sun et al., 2024) proposes for
pruning Large Language Models (LLMs) and use it as
heuristic even when the Hessian is not diagonal.

Theorem 1 (WandA is locally optimal for diagonal Hes-
sians). Let the Hessian H be diagonal, W ∗ arbitrary and
define M∗ ∈ {0, 1}do×di such that for each M cell it
has zeros for the N values with smallest score Si,j . Then,
M∗ ⊙W ∗ is a minimizer of problem (1).

SparseGPT (Frantar & Alistarh, 2023) introduce an iterative
heuristic that prunes the weight matrix in column blocks
from left to right and takes off-diagonal elements of the Hes-
sian into account. To determine which weights to prune, they
use the criterion introduced by Hassibi & Stork (1992) and
update the weights in the remaining right blocks, by using
the inverse Hessian of the remaining sub-matrix. SparseGPT
allows to efficiently prune multiple rows at once, without
costly recomputations of the inverse Hessians.

Notice that both SparseGPT and WandA only require for-
ward passes through the full model to populate the Hessian
matrix or mean squared activations for each linear layer,
which we dub one-shot setting (Frantar & Alistarh, 2023).
Both algorithms run in a matter of minutes / hours on a
single GPU on large language models up to scales of 100B
parameters. We focus on aforementioned one-shot setting,
where we only allow local updates, but no end-to-end tun-
ing of the entire model. Further recent works one-shot
pruning works include DSnoT Zhang et al. (2024), which
provides small improvements in some cases over WandA
and SparseGPT, and ALPS Meng et al. (2024), which is
particularly suited for high sparsity.

2.4. Proximal Gradient

The proximal gradient (PG) method is a well-known op-
timization algorithm designed for solving composite min-
imization problems, where the objective function can be
decomposed into two parts: a smooth differentiable func-
tion and a nonsmooth. Such problems arise frequently in
many modern applications. In this setting, the objective
function typically has the form:

min
w
{f(w) + h(w)},

where f : Rn → R is smooth and differentiable, while
h : Rn → (−∞,∞] is a possibly nonsmooth structure-
inducing regularization term. To account for this nonsmooth
component, the Proximal Gradient (PG) method incorpo-
rates a proximal operator alongside the standard gradient
step for the smooth part, f(w). The proximal operator, de-
signed to mainly tackle nonsmooth functions, is defined as
follows:

proxh(z) = argmin
w

{
1

2
∥w − z∥2 + h(w)

}
.

Therefore, to sum-up, starting with an arbitrary w0, PG
method with step-size t > 0 generates iteratively a sequence
{wk}k∈N via the following iterative step:

wk+1 = proxth(w
k − t∇f(wk)).

The PG method is particularly efficient when the smooth
part f has a Lipschitz-continuous gradient and when the
proximal operator for h has a closed-form solution (e.g.,
the hard-thresholding operator for ℓ0-regularized problems).
However, if the proximal operator has no closed-form so-
lution it might require an additional tailored optimization
algorithm to solve the corresponding problem. Below, we
will propose a new function to promote N :M sparsity and
discuss in detail its 2:4 proximal operator.

Proximal gradient methods have been extensively studied,
particularly in the context of convex optimization problems.
For a thorough overview of their theoretical guarantees and
extensions, refer to (Beck, 2017) and references therein.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

A Proximal Operator for Inducing 2:4-Sparsity

3. PROXIMAL OPERATOR FOR N:M
SPARSITY

WandA (Sun et al., 2024) and SparseGPT (Frantar & Alis-
tarh, 2023) were both designed primarily for unstructured
sparsity and then simply applied to the N :M sparse case by
adding these additional constraints. Inspired by PG meth-
ods we propose regularizers that are explicitly designed for
N :M sparsity and iterate gradient updates on the squared
loss (done on the matrix level) with the solution of the prox-
imal operator (which decomposes into the M cells). This
leads to a gradual emergence of the pruning mask, where the
emerging pattern of one cell can in fact influence the prun-
ing pattern of other cells and avoids committing to a sparsity
pattern to early. WandA and SparseGPT do not have this
possibility. Our approach will consume more compute and
time, but this is well invested. Compared against the cost
of training the models and the inference cost, the additional
cost to find a better mask and model is well invested.

3.1. Gradient Descent

Each step of PG requires a gradient step on the unregularized
loss (2), which has a simple closed-form, see Appendix A:

W ←W − η · 2(WH −W ∗H), (4)

where we can use the largest eigenvalue of the Hessian to
set the stepsize η = 1

2γmax(H) , guaranteeing convergence.
While each gradient step has complexity O(d2i do), it allows
us to efficiently use the full parallelization of modern GPUs.

We will use gradient descent during PG, but we also propose
it as a method to improve any local pruning method. Once
the pruning mask M is fixed, we can partially compensate
for the pruning loss, by masked gradient updates:

WM ←WM − η · 2M ⊙ (WMH −W ∗H). (5)

Our first contribution is to show that WandA and SparseGPT
do benefit from such gradient updates after they completed
the pruning.

3.2. Regularization and Proximal Operator

To induce N :M sparsity, we define the following family of
regularizers2:

rN :M (w) :=
∑

S⊂[M]
|S|=N+1

∏
j∈S
|wj |. (6)

Fact 2 (The null space of the regularizer). For all w ∈ RM

we have

rN :M (w) = 0 if and only if ∥w∥0 ≤ N.

2In Appendix C we propose a few more, less elaborate, regu-
larizers for 2:4 sparsity.

The corresponding proximal operator is

proxλrN:M
(z) := argmin

w∈RM

{
1

2
∥w − z∥2 + λrN :M (w)

}
.

The regularizer rN :M promotes N :M sparsity in that N
sparse solutions are in the null space of this regularizer.
Moreover, as λ→∞, there always exists λ∗ (as a function
of input z) such that when λ ≥ λ∗, the solution of the
proximal operator becomes exactly N -sparse (see Figure 1
for an illustration).

For 2:4 sparsity, the proximal operator of interest is

argmin
w∈R4

{
1

2
∥w − z∥2 + λ(|w1||w2||w3|+ |w2||w3||w4|

+ |w3||w4||w1|+ |w4||w1||w2|)

}
. (7)

The proximal operator can be used to induce 2:4 sparsity
in all settings including: layerwise pruning, finetuning and
pretraining using proximal gradient methods or straight-
through gradient methods. We focus on layerwise pruning
via the squared loss (2). The combined loss function for the
2:4 sparse case is then

Lλ(W) := L(W) + λ
∑
w∈W

r2:4(w), (8)

where w ∈W runs over all 2:4 cells of W . Following Fact
2 the matrix W is 2:4 sparse if and only if the regularizer is
zero. Importantly the proximal operator corresponding to
the regularizer of multiple cells decomposes into multiple
2:4 proximal operators and hence the complexity of solving
the proximal operator at each iteration of PG only grows
linearly with the dimensionality of the matrix.

3.3. Solution of the 2:4-Proximal Operator

Solving the 2:4 proximal operator problem is tricky. It is
non-convex, non-smooth and appears to require an exhaus-
tive search-style approach. Nonetheless, we have identified
interesting mathematical structure of this problem which
led to a discovery of very efficient solutions to this problem
with provable guarantees.

We first prove that we can always reduce the proximal
operator to the case where z is non-negative and sorted
z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0.
Lemma 3. To solve problem (7), it suffices to solve

argmin
w∈R4

+

f(w), with (9)

f(w) :=
{1

2
∥w − z∥2 + λ(w1w2w3 + w2w3w4

+ w3w4w1 + w4w1w2)
}
, (10)

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

A Proximal Operator for Inducing 2:4-Sparsity

where z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0. Moreover, any optimal
solution w∗ of problem (9) satisfies that w∗

1 ≥ w∗
2 ≥ w∗

3 ≥
w∗

4 ≥ 0.

Observe that f(w) is smoothly differentiable, but now we
have a constrained optimization problem. The same result
can generally be stated for N :M -sparsity.

Let us define the restricted version of problem (9) when w4

is set to 0.

argmin
w∈R3

+

g(w), with (11)

g(w) :=
1

2

3∑
i=1

(wi − zi)
2 + λw1w2w3. (12)

As a side remark, the proximal operator for r2:3 can be
reduced to solving (11).
Lemma 4 (Optimality conditions). Assume z1 ≥ z2 ≥
z3 ≥ z4 > 0. The solution w∗ is one of the following three
cases.

• 2-sparse: in which case w∗ = [z1, z2, 0, 0].
• 3-sparse: in which case w∗

4 = 0 and w∗
1:3 satisfies

0 < w∗
1 = z1 − λw∗

2w
∗
3 ,

0 < w∗
2 = z2 − λw∗

1w
∗
3 ,

0 < w∗
3 = z3 − λw∗

1w
∗
2 .

• Dense: in which case w∗ = [w∗
1 , w

∗
2 , w

∗
3 , w

∗
4] > 0

satisfies that

w∗
i = zi − λ ·

∑
{j1,j2}⊂{j∈[4],j ̸=i}

w∗
j1w

∗
j2 .

In Appendix B.4 we also include necessary conditions on
λ for the solutions to be 2-/3-sparse. Whilst the 2-sparse
solution is trivial, optimizing for the 3-sparse and dense
solution requires more care. We next turn to the Hessians
of f and g, see Equation (23) and Equation (24) for their
explicit forms.
Lemma 5 (Properties of the Hessians).

• The set C3 := {w ∈ R3 | ∇2g(w) ⪰ 0} is convex.
• The set C4 := {w ∈ R4 | ∇2f(w) ⪰ 0} is convex.

This property of the Hessian is crucial, as it allows us to
focus on finding a single minimum.
Corollary 6 (No spurious local minima.). The set of all
local minima of f(w) is convex. Moreover, if there exists
w∗ ∈ argminw∈R4

+
f(w) such that w∗

i > 0 for all i ∈ [4]

(i.e., in the “Dense” case from Lemma 4), then all local
minima of f(w) are global minima.

The set of all local minima of g(w) is convex. Moreover, if
there exists w∗ ∈ argminw∈R3

+
g(w) such that w∗

i > 0 for
all i ∈ [3], then all local minima of g(w) are global minima.

To solve the proximal operator we can thus solve the follow-
ing constrained optimization problems

min
{
g(w)

∣∣ w ∈ R3, w ≥ 0,∇2g(w) ⪰ 0
}
, (13)

min
{
f(w)

∣∣ w ∈ R4, w ≥ 0,∇2f(w) ⪰ 0
}
. (14)

The optimal solutions to (13) and (14) are local minima to
(11) and (9) respectively if the solutions have gradient = 0.
In general, the set of local minima for a non-convex problem
can be scattered all over the place, but with Corollary 6 we
have shown that for these special functions f and g, the
local minima (if they exist at all) form a convex set and have
the same objective values.

Problems (13) and (14) are convex optimization prob-
lems due to Lemma 5. They can be solved using inte-
rior point methods with self-concordant barrier functions.
As barrier functions, we can use − log det∇2f(w) and
− log det∇2g(w) respectively, as well as − log(wi) to en-
code the positivity constraints (Boyd & Vandenberghe, 2004,
Chapter 11.2).

We have now reduced our initial non-convex problem to
three convex subproblems, out of which one has a trivial
solution. We can then solve those three problems and select
the minimizer among the three cases.3

Theorem 7. Algorithm 1 returns an optimal solution to (9).

Algorithm 1 Solve Prox with decreasing non-negative input
Require: z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0

1: procedure PROXENUMERATE(z, λ)
2: w(2) ← [z1, z2, 0, 0]
3: w(3) ← [solution to (13), 0].
4: w(4) ← solution to (14).
5: return argminw∈{w(2),w(3),w(4)} f(w)
6: end procedure

3.4. Generalization to N :M sparsity.

2:4 sparsity is currently the most relevant sparsity pattern. It
is plausible that general N :M sparsity patterns also benefit
from a more gradual pruning algorithm. For 1:M sparsity,
the proximal operator becomes very simple as it is just
a quadratic function and it can be solved in closed form.
However, for more general patterns when N > 2 solving
the proximal operator becomes more challenging. Lemma
4 still holds and it is enough to consider the non-negative
sorted case. However, finding the minimizers is harder. In
particular it is not obvious how one could replace Lemma 5,

3If w(4) in Section 3.5 is a local minimum of f , by Corollary
6 this suffices to know it is the global optimum and there is no
need to compute w(2), w(3). For ease of notation and to parallelize
when solving multiple cells, we nonetheless always compute the
three cases.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

A Proximal Operator for Inducing 2:4-Sparsity

i.e., the convexity of the space where the Hessian is convex.
There we used that the Hessian in the 2:4 sparse case is
linear in w, which will no longer hold for N > 3. There
might be different arguments to show that those cases can
be handled efficiently as well.

3.5. Parallelized Prox by Gradient Descent

We showed that Equations (13) and (14) are convex opti-
mization problems that can be solved with guarantees for
example with interior point methods with self-concordant
barrier functions. However, in order to apply this algorithm
at scale we need to optimize it further. For example when
pruning the MLP down projection of a Llama 70B model
(Dubey et al., 2024), the matrix has dimensions 28672 and
8192, meaning that it has around 59 million cells of four
weights. Thus at each iteration of Proximal Gradient, we
have to solve Algorithm 1 59 million times, which is in-
feasible if not done in a parallelized fashion using modern
GPUs.

We will thus resort to a gradient descent solver of which we
conjecture that it always correctly solves the problem. We
will focus on the case of (14), and the case for (13) follows
similarly. The constraints w ≥ 0 is easily enforced by pro-
jected gradient descent. The second constraint∇2f(w) ⪰ 0
is more computationally expensive and we do not want to
compute it at every iteration. Luckily, empirically we find
that we actually do not need to enforce this constraint at all.
First note two facts

Fact 8. a) w = [0, 0, 0, 0] is always a feasible point of (14).
b) Let γmax denote the largest eigenvalue of a matrix. For
all w ∈ R4

+ we have∇2f(w) ⪰ 0⇒ γmax
[
∇2f(w)

]
≤ 4.

Thus, whilst we are in the convex region of the loss, the
gradients are Lipschitz with constant 4. Using 1/4 as step
size, we are guaranteed to never cross a local minimum
as long as we stay in the convex region. In our extensive
evaluations we observe that indeed gradient descent does
never exit the region of convexity if the global minimum is
dense. This implies that we can run gradient descent without
the need of a barrier function. Whilst we could not find any
counterexamples we have not been able to formally prove
this and hence state is explicitly as a conjecture.

Conjecture 9. If the minimizer w∗ of (14) fulfills w∗
i > 0,

then

w0 = [0, 0, 0, 0]; wk+1 = max[wk − ηk∇f(wk), 0],

with η = 1/4 and the maximization done elementwise to
enforce wk+1 ∈ R4

+ converges to w∗. Furthermore, any
intermediate point wk is in the feasible set of (14).

The same considerations and empirical insights apply to
the 3-sparse case. Hence, in practice when computing w(3)

Algorithm 2 Matrix Prox Pruner 2:4
1: procedure PRUNEPROX(W ∗, H, {λk}k)
2: W ←W ∗, η ← 1

2γmax(H) , k ← 0

3: while W /∈ S2:4 do
4: W ←W − η · 2(HW −HW ∗)
5: W, s, p← PosSort(W)
6: W ← ProxEnumerate(W,λk)
7: W ← InvPosSort(W, s, p)
8: k ← k + 1
9: end while

10: return W
11: end procedure

and w(4) in Algorithm 1 we run the gradient descent based
optimization without enforcing to remain in the region of
convexity. As soon as we witness that we moved out of the
convex region, we can stop the optimization as by Conjec-
ture 9 and Corollary 6 the respective case can not be the
optimal one. In practice, we stop when witnessing that the
gradient norm increases, as this cannot happen whilst being
in the convex region with our choice of step size. Therefore,
we slightly deviate from Algorithm 1 in that in line 3 and 4
we do not compute the exact minima if we witness its not
the the minimum of the three cases anyways. If Conjecture
9 is true, then Theorem 7 holds even with this modification.

In our implementation, the GD-based Algorithm 1 is more
than 10x faster than our implementation of the interior point
method-based Algorithm 1, and they always obtain numeri-
cally the same solution.

3.6. Full Algorithm

We can now put together the full matrix pruning algorithm,
see Section 3.5. We define two functions: PosSort(W)
that returns the weights such that each 2:4 is sorted and
without sign as well as s, p that indicate the sign and origi-
nal position of the weights. InvPosSort(W, s, p) which
undoes above operation. Furthermore, we use a schedule
{λk}k for the regularization such that λk → ∞. In this
work we consider exponential schedules λk = λ0β

k, for
λ0 > 0 and β > 1.

4. EXPERIMENTS
For our experiments unless otherwise stated we use λk =
λ0β

k with λ0 = 0.01 and β = 1.01. After ending Prox-
imal Gradient, we do 1000 steps of masked gradients ac-
cording to (5) to minimize the local squared loss. Further-
more, we initialize all methods WandA style by transforming
W ∗

i,j 7→ W ∗
i,jH

1/2
j,j , Hi,j 7→ Hi,jH

−1/2
j,j H

−1/2
i,i . This helps

the proximal pruning to not commit to weights that seem
important solely in terms of magnitude, but takes the re-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

A Proximal Operator for Inducing 2:4-Sparsity

spective mean squared activations into account (Sun et al.,
2019). After pruning this transformation is reversed. All
experiments can run on a single NVIDIA A100 GPU with
40GB of memory, but we used multiple GPUs in parallel to
speed up the experimentation.

4.1. Toy Experiments

We start with a simple experiment to illustrate the inner
workings of our algorithm and the shortcoming of WandA
and SparseGPT. We consider the 2:4 sparse case of a single
row with dense weights w∗ = (0, 5, 3, 2, 0, 5, 5, 2). We
further assume that the Hessian has ones on the diagonal and
zero elsewhere except that the fourth and eighth weight are
perfectly correlated (value 1 on the respective off-diagonal
elements). In this case the optimal 2:4 sparse solution is
w = (0, 5, 0, 4, 0, 5, 5, 0). The difficulty here is that the
fourth and eighth weight if looked at individually within
their 2:4 cell, would be pruned, but instead we can merge
them into one weight and prune another weight incurring a
smaller loss.

Since WandA (Sun et al., 2024) completely ignores the
correlations, it prunes to w = (0, 5, 3, 0, 0, 5, 5, 0), which
is suboptimal. SparseGPT (Frantar & Alistarh, 2023) would
in a first step prune the first ′2′ because it can completely
absorb it into the last weight due to their correlation w 7→
w = (0, 5, 3, 0, 0, 5, 5, 4). However then in the second
step, when pruning the second cell, it drops the combined
′4′ because it incurs lower loss than pruning one of the ′5′s
w 7→ w = (0, 5, 3, 0, 0, 5, 5, 0). Therefore, the SparseGPT
heuristic can lead to deferred loss.

Our proximal optimizer in turn adapts to the situation. In
the second cell, the ′2′ is quickly pushed to 0. This in turn
increases the gradient magnitude of the first ′2′, pushing
it eventually over the value of the ′3′ in the first cell. To
simplify the understanding, we animated the evolution of
the weights with a gif→ LINK.

Next we consider the effect of correlation between input
features more structurally. Therefore we generate synthetic
Hessians and random weights:

d=1024
diag = torch.diag(torch.rand(d))
Z = torch.randn(d, d) / float(d)**(1/2)
Z = Z @ Z.T
hessian = alpha * diag + (1 - alpha) * Z
weights = torch.randn(1, d)

We then prune with all the considered methods and after
masking optimize the weights with gradient descent. Results
are discussed and shown in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

lo
ss

 r
el

at
iv

e
to

 W
an

dA
 +

 G
D

 lo
ss

prox + GD
WandA + GD
SparseGPT + GD

Figure 2. Toy experiment with generated weights and Hessians.
Without correlation (α = 1) all considered pruning methods result
in the same mask and loss. As we increase the correlations, our
proximal approach leads to the best mask as shown by the smallest
loss.

4.2. Scheduling λ

During the course of proximal gradient, we increase the
regularizer λ with an exponential schedule to guarantee,
that no matter what input, eventually the weights will be
2:4 sparse. In this work we consider exponential schedules
λk = λ0β

k, for λ0 > 0 and β > 1. Clearly, good choices
of those hyperparameters depend on each problem and are
expensive to ablate when done for each problem separately.
We show the impact of different choices on the local loss
and the runtime in the Appendix Figure 3. Notice that
the optimization problem (9) is not scale invariant when
scaling z alone. However, if w∗ is the optimal solution to
the problem z, λ, then cw∗ is the optimal solution for the
problem (cz, λ/c). Since it is too expensive to extensively
search the hyperparameters for each problem individually,
we propose to consider

λk =
λ̃0

Mean[|W ∗|]
βk. (15)

4.3. Pruning Large Language Models

To prune LLMs, we use 2 million tokens from the c4 dataset
(Raffel et al., 2020), which we pack with end-of-sequence
tokens and chunk into 1024 sequences of lengths 2048. We
estimate all Hessians from the unpruned model, and do not
propagate the pruning errors as we find that this has little
impact (Appendix D.1). As baselines we run WandA (Sun
et al., 2024) and SparseGPT (Frantar & Alistarh, 2023) both
with their original algorithms as well as with our innova-
tive additional 1000 gradient descent steps after masking,
see Section 3.1, where we observed that the local loss has
usually converged after 1000 steps as shown in Appendix
Figure 5. We also run DSnoT (Wanda) Zhang et al. (2024).
For the proximal, for small models we used our default set-
ting λk = λ0β

k with λ0 = 0.01 and β = 1.01. For the
70B models, we observed that this would require more than
2000 iterations of PQ. We thus used the heuristic from Equa-

7

https://ibb.co/0MjQrmg

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

A Proximal Operator for Inducing 2:4-Sparsity

Table 1. Validation Perplexity of OpenLlama (3B/7B/13B) and Llama3.1 (8B/70B) (Pretrained/Instruct). . All the methods with +GD are
an innovation of the present work.

3b v2 7b v2 13b 8B 8B Inst 70B 70B Inst
Method C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki
dense 9.68 14.15 8.84 12.15 8.11 11.52 9.68 7.93 11.28 7.27 7.32 3.34 8.26 3.71
wanda 29.48 60.32 17.63 27.02 13.17 35.45 36.32 27.26 43.30 26.67 13.42 10.25 13.68 8.74
wanda+GD 18.23 33.05 14.35 21.85 11.73 18.17 22.19 20.46 28.45 20.71 12.32 10.38 13.08 8.91
sp.gpt 18.76 33.78 14.24 22.29 11.91 19.51 24.95 23.18 35.55 26.19 13.00 10.93 14.05 9.37
sp.gpt+GD 16.72 29.58 13.31 20.83 11.43 17.19 21.00 19.86 27.54 20.85 12.06 10.49 13.06 8.91
DSnoT 26.54 44.17 17.62 26.17 13.71 32.89 40.66 30.40 48.80 31.46 14.34 10.54 14.51 9.16
prox+GD 16.27 28.59 13.19 20.55 11.40 17.71 20.86 19.83 26.46 20.20 12.33 10.38 13.12 8.91

tion (15) and the results of Figure 3 and selected β = 1.005,
λ̃0 = 1 ·10−3 to strike a good balance between performance
and runtime.

We prune models from the openLlama family (Geng & Liu,
2023) and the Llama-3.1 models (Dubey et al., 2024), see
Table 1. We evaluate the models both on in-distribution
validation data from c4, as well as out of distribution data
from WikiText2 (Merity et al., 2016).

On models up to 13B parameters, we see that the proxi-
mal approach consistently outperforms the other methods at
least in-distribution (C4) and mostly also on wikitext data
(wiki). In the appendix Figure 4 we show that this is re-
lated to an improvement in local squared loss. Furthermore,
WandA and SparseGPT both benefit clearly from our pro-
posed masked gradient descent based updates after pruning
with the respective strategy.

Interestingly, whilst prox tends to give the best perplexity,
it turns out that our innovation on using masked gradient
updates (Section 3.1 is empirically more relevant, as it con-
sistently improves the perplexity on C4. As a by-product of
our work we thus identified a method that can be plugged on
top of existing SOTA one-shot pruning methods. In Table 3
we evaluate the pruned Llama-3.1 8B Instruct model on 6
Downstream tasks and find that on average we improve the
SOTA more than 3%.

On the 70B models, whilst the gradient updates continue to
improve the in-distribution loss, it can harm the wiki per-
plexity in case of Wanda. Furthermore on the 70B models
we see that the method to find the mask has a very minor
impact on the final perplexity.

Overall, we find that a 2:4 sparse model is consistently
worse than the dense smaller model of the same class which
is consistent with the results on Llama 1 and 2 models found
by Sun et al. (2024, Table 3)

5. Discussion
We have introduced a method to gradually induce structured
sparsity in pretrained linear layers, for example of large
language models. The immediate objective is to minimize
the linear squared loss at the matrix level. We showed
that a local improvement of the squared loss leads to an
improvement in model perplexity. On the theoretical side,
we showed how to efficiently solve the complex proximal
operator for 2:4 sparsity.

On the empirical side, we observe that the sparsity mask
does not make a huge difference for recent LLMs, but that
our introduced local gradient based updates can also be used
on top of existing local pruning methods and improve their
performance. In particular, our proposed masked-gradient
updates can easily be used to improve the widely adopted
methods Wanda and SparseGPT. We believe that the masked
gradient updates will be widely adopted.

Whilst we thus improved the state of the art on one-shot
pruning, the resulting pruned models clearly are not good
enough to be of direct practical relevance. Looking at Ta-
ble 1, we see that the pruned 13B/7B models fall clearly
behind the dense 7B/3B model. However, for a 2x matrix
compression this should be the lowest bar a model has to
take in order to be useful. This is even more because whilst
the structured sparsity reduces the latency and footprint
of matrix multiplications, it does not decrease the sizes of
in-/output activations or the KV-cache.

One benefit of the proximal approach and the theoretical
insight we provided is that they can also be applied during
pretraining together with a regular pretraining objective.4

Other pruning approaches discretely interrupt the optimiza-
tion, whilst the proximal operator is applied at every step,
hence gradually pushing the model to sparsity. This could
pave the road for more powerful sparse models with less
quality degradation.

4Concurrent work Fang et al. (2024) found that end-to-end
learning of masks is beneficial also post training.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

A Proximal Operator for Inducing 2:4-Sparsity

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebron, F., and Sanghai, S. GQA: Training generalized
multi-query transformer models from multi-head check-
points. In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, 2023.

Ashkboos, S., Croci, M. L., do Nascimento, M. G., Hoefler,
T., and Hensman, J. SliceGPT: Compress large language
models by deleting rows and columns. In The Twelfth
International Conference on Learning Representations,
2024.

Beck, A. First-order methods in optimization, volume 25.
SIAM, 2017.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Chitty-Venkata, K. T., Mittal, S., Emani, M., Vishwanath, V.,
and Somani, A. K. A survey of techniques for optimizing
transformer inference. Journal of Systems Architecture,
pp. 102990, 2023.

Dao, T. Flashattention-2: Faster attention with better paral-
lelism and work partitioning. arXiv:2307.08691, 2023.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm.int8(): 8-bit matrix multiplication for transformers
at scale. In Advances in Neural Information Processing
Systems, 2022.

Dong, P., Li, L., Tang, Z., Liu, X., Pan, X., Wang, Q., and
Chu, X. Pruner-zero: Evolving symbolic pruning metric
from scratch for large language models. In Proceedings of
the 41st International Conference on Machine Learning,
2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
et al. The llama 3 herd of models. arXiv:2407.21783,
2024.

Fang, G., Yin, H., Muralidharan, S., Heinrich, G., Pool,
J., Kautz, J., Molchanov, P., and Wang, X. Maskllm:
Learnable semi-structured sparsity for large language
models. NeurIPS, 2024.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Interna-
tional Conference on Machine Learning, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. ICLR, 2023.

Frantar, E., Castro, R. L., Chen, J., Hoefler, T., and Alis-
tarh, D. Marlin: Mixed-precision auto-regressive parallel
inference on large language models. arXiv:2408.11743,
2024.

Geng, X. and Liu, H. Openllama: An open reproduction
of llama, May 2023. URL https://github.com/
openlm-research/open_llama.

Hassibi, B. and Stork, D. Second order derivatives for
network pruning: Optimal brain surgeon. Advances in
neural information processing systems, 1992.

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, J., and
Soudry, D. Accelerated sparse neural training: A provable
and efficient method to find n: m transposable masks.
Advances in neural information processing systems, 2021.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
2018.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
Advances in neural information processing systems, 1989.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 2023.

Meng, X., Behdin, K., Wang, H., and Mazumder, R. ALPS:
Improved optimization for highly sparse one-shot pruning
for large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. arXiv:1609.07843, 2016.

Muralidharan, S., Sreenivas, S. T., Joshi, R., Chochowski,
M., Patwary, M., Shoeybi, M., Catanzaro, B., Kautz, J.,
and Molchanov, P. Compact language models via pruning
and knowledge distillation. arXiv:2407.14679, 2024.

Park, Y., Budhathoki, K., Chen, L., Kübler, J. M., Huang,
J., Kleindessner, M., Huan, J., Cevher, V., Wang, Y.,
and Karypis, G. Inference optimization of foundation
models on ai accelerators. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2024.

9

https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

A Proximal Operator for Inducing 2:4-Sparsity

Pool, J., Sawarkar, A., and Rodge, J. Accelerating inference
with sparsity using the nvidia ampere architecture and
nvidia tensorrt, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21
(140):1–67, 2020.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
ICLR, 2024.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge
distillation for bert model compression, 2019.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv:2307.09288, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 2017.

Wei, X., Zhang, Y., Li, Y., Zhang, X., Gong, R., Guo, J., and
Liu, X. Outlier suppression+: Accurate quantization of
large language models by equivalent and optimal shifting
and scaling. EMNLP, 2023.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared LLaMA:
Accelerating language model pre-training via structured
pruning. In The Twelfth International Conference on
Learning Representations, 2024.

Zhang, Y., Zhao, L., Lin, M., Yunyun, S., Yao, Y., Han, X.,
Tanner, J., Liu, S., and Ji, R. Dynamic sparse no training:
Training-free fine-tuning for sparse LLMs. In The Twelfth
International Conference on Learning Representations,
2024.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A Proximal Operator for Inducing 2:4-Sparsity

A. Gradient and Hessian
We have the following loss function Equation (2):

L(W) = Tr
(
(W −W ∗)H(W −W ∗)⊤

)
.

The loss is simply the sum of the loss of each individual row and we e can minimize this on a per-row basis (w ∈ Rdi)

L(w) = (w − w∗)⊤H(w − w∗). (16)

From here we can simply compute the gradients:

∇L(w) = 2H(w − w∗) = 2Hw − 2Hw∗. (17)

We can the stack this again for the whole matrix and obtain:

∇L(W) = 2WH − 2W ∗H. (18)

Notice that the second term can be precomputed once, and does not need to be computed again at each iteration. Computing
the second order derivatives per row we find ∇2L(w) = 2H , hence also our naming conventions (ignoring the factor of 2).

B. Proofs
B.1. Proof of Theorem 1

Proof. We first show that a diagonal Hessian implies that for any mask, the optimal values of the remaining weights match
their dense counterparts. Therefore, let M be an arbitrary binary mask and assume that the Hessian is diagonal, i.e., Hij = 0
whenever i ̸= j. We use the formulation of Equation (2) where we explicitly add the mask

L(W,M) = Tr
(
(M ⊙W −W ∗)H(M ⊙W −W ∗)⊤

)
(19)

=
∑
i,j

(Mi,jWi,j −W ∗
i,j)

2Hj,j (20)

=
∑

i,j|Mi,j=1

(Wi,j −W ∗
i,j)

2Hj,j +
∑

i,j|Mi,j=0

(W ∗
i,j)

2Hj,j . (21)

Notice that the second term solely depends on the mask and not on the weights of W . Furthermore, the first term can be
set to zero by matching the original weights. By definition WandA selects a mask that minimizes the second term whilst
keeping the other weights fixed, hence minimizing the overall squared loss.

B.2. Proof of Fact 2

Proof. The “if” part is trivial. If ∥w∥0 ≤ N , then for any index subset S ⊂ [M] with |S| = N + 1, at least one of the
coordinate of wS is 0. To see the “only if” part, if suffices to prove the contra-positive. If ∥w∥0 > N , let S̃ to be the first
N + 1 coordinates of w in S̃, thus rN :M (w) ≥

∏
i∈S̃ |wj | > 0.

B.3. Proof of Lemma 3

Proof. First observe that the objective function of problem (7) is invariant to joint permutations and signs of w and z. In
other words, if w̃∗ is an optimal solution of problem (7) for a given input z̃ ∈ R4, then for any permutation Π and any
diagonal matrix D with diagonal elements being −1 or 1, the DΠw̃∗ is an optimal solution of problem (7) when the input
is DΠz̃ and having the same optimal value. Therefore, without the loss of generalization, we can choose Π to be the
permutation that sorts the input into a descending order by the absolute value of |z|, and D = diag(sign(Πz)).

Next, we observe that for a non-negative input z, any optimal solution of problem (7) is always non-negative. To see this,
if w∗

i is negative and zi > 0, replacing it with |w∗
i | retains the regularizer but (|w∗

i | − zi)
2 < (w∗

i − zi)
2. If zi = 0, the

corresponding optimal solution is w∗
i = 0, which is non-negative. Thus, we can remove the absolute values and focus on

solving problem (9).

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

A Proximal Operator for Inducing 2:4-Sparsity

Moreover, we observe that a sorted (descent order) input z implies that any optimal solution is also sorted in a descent order.
Indeed, we take w∗ to be an optimal solution with w∗

i < w∗
j for some 1 ≤ i < j ≤ 4. Since the regularizer is invariant

to permutations, we focus on the quadratic part and show that in this case w̃, which is defined by w̃i = w∗
j , w̃j = w∗

i and
w̃k = w∗

k for all k ̸= i, j, we have that

∥w∗ − z∥2 − ∥w̃ − z∥2 = (w∗
i − zi)

2 + (w∗
j − zj)

2 − (w̃i − zi)
2 − (w̃j − zj)

2

= (w∗
i − zi)

2 + (w∗
j − zj)

2 − (w∗
j − zi)

2 − (w∗
i − zj)

2

= 2(w∗
j zi + w∗

i zj − w∗
i zi − w∗

j zj)

= 2(w∗
j − w∗

i)(zi − zj)

≥ 0,

where the last inequality follows from the facts that w∗
i < w∗

j and zi ≥ zj . This shows that w̃, which is a sorted (descent
order) vector, is also an optimal solution.

Combining these two observations means that problem (7), which is formulated for any input z, can be rewritten only for
non-negative sorted inputs. Note that we can always invoke the above observations to recover a solution to the original
problem by first solving problem (9) to find w∗ and then Π−1D−1w∗ is an optimal solution of problem (7).

B.4. Proof of Lemma 4

We first state a slighlty extended version of Lemma 4

Lemma 10 (Optimality conditions – Extended). Let the objective function in (9) be f(w). Assume z1 ≥ z2 ≥ z3 ≥ z4 > 0.
The solution w∗ must be in one of the following three cases.5

• 2-sparse: in which case w∗ = [z1, z2, 0, 0].

• 3-sparse: in which case w∗
4 = 0 and w∗

1:3 satisfies that

0 < w∗
1 = z1 − λw∗

2w
∗
3 ,

0 < w∗
2 = z2 − λw∗

1w
∗
3 ,

0 < w∗
3 = z3 − λw∗

1w
∗
2 .

• Dense: in which case w∗ = [w∗
1 , w

∗
2 , w

∗
3 , w

∗
4] > 0 satisfies that

w∗
i = zi − λ ·

∑
{j1,j2}⊂{j∈[4],j ̸=i}

w∗
j1w

∗
j2 .

Moreover if z1, z2 > 0,

1. λ ≥ z3/(z1z2) is a necessary condition for the solution to be in the 2-sparse regime.

2. λ ≥ z4/(w
∗
1w

∗
2 + w∗

2w
∗
3 + w∗

1w
∗
3) is a necessary condition for the solution to be in the 3-sparse regime, for w∗

1:3 to be
the solution to (11). A weaker necessary condition is λ ≥ z4/(z1z2 + z2z3 + z1z3).

Proof. If an optimal solution w∗ of problem (9) is 2-sparse, it means that r2:4(w∗) ≡ 0. Therefore, w∗ is a minimizer of the
quadratic term. Moreover, since w∗ is sorted in a descent order it means that w∗

1 , w
∗
2 > 0 and w∗

3 = w∗
4 = 0. Therefore, the

desired result immediately follows.

If an optimal solution w∗ of problem (9) is 3-sparse, it means that w∗
4 = 0. Therefore, w∗ is also an optimal solution of

problem (11). Moreover, since w∗ is a non-negative 3-sparse vector it follows that w∗
1 , w

∗
2 , w

∗
3 > 0. This implies that the

5If we have equality in some of the inputs, i.e., zi = zj , permuting those two inputs also leads to valid solutions. We do not give
precedence to either of those solutions but simply chose the one that follows the order provided by the sorting algorithm. For the proof we
ignore this degeneracy to keep it simple.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

A Proximal Operator for Inducing 2:4-Sparsity

non-negative constraint of problem (11) is inactive and therefore an optimal solution must be a stationary point of the
objective function. The desired result follows by zeroing the gradient of the objective function of problem (11).

If an optimal solution w∗ of problem (9) is dense, it follows that w∗ > 0. Then, the non-negative constraint of problem (9)
is inactive at w∗. Therefore, w∗ must be a stationary point of the objective function of problem (9).

Since the optimization problem (9) is a minimization of the (non-convex) differentiable objective function f over the
non-negative constraint, it is well known that the corresponding KKT conditions are necessary for critical points w∗, which
are compactly given by∇f(w∗) ≥ 0 , w∗ ≥ 0 and∇f(w∗)Tw∗ = 0. Therefore, from the third condition it follows that for
any positive element of w∗ the corresponding partial derivative of f must be zero. Moreover, by writing the gradient of the
objective function of problem (9), we get that

∇f(w∗)Tw∗ = (w∗ − z + λ∇r2:4(w∗))Tw∗ = ∥w∗∥2 − zTw∗ + 3λr2:4(w
∗),

where the last equality follows from the fact that ∇r2:4(w)Tw = 3r2:4(w) for any w ∈ R4. From here we immediately see
that z ≥ w∗ and if r2:4(w∗) ̸= 0 then λ = (zTw∗ − ∥w∗∥2)/3r2:4(w∗). From the first condition, that is ∇f(w∗) ≥ 0, we
get that λ ≥ (zi − w∗

i)/∇ir2:4(w
∗) for all 1 ≤ i ≤ 4 that∇ir2:4(w

∗) ̸= 0.

Since the optimal solutions must be monotonically decreasing in i there are no other cases.

The two other necessary conditions about λ stem from the KKT conditions of a critical point (with active constraints) for the
constrained optimization problem. Specifically, the Lagrangian of f L(w, ν) = f(w)− νTw.

The conditions for critical points (including those at 0) are that there exists ν ∈ R4 such that

1. Stationarity: ∇wL(w, ν) = ∇f(w)− ν = 0

2. Complementary slackness: νiwi = 0 for i = 1, 2, 3, 4.

3. Primal feasibility: w ≥ 0

4. Dual feasibility: ν ≥ 0.

For any critical point to be 2-sparse i.e., w1 > 0, w2 > 0, w3 = w4 = 0, it needs to satisfy complementary slackness which
implies ν1 = ν2 = 0. Moreover, stationarity condition gives w1 = z1, w2 = z2,

ν3 =
∂

∂w3

f(w) = w3 − z3 + λw1w2 = −z3 + λz1z2

and

ν4 =
∂

∂w4

f(w) = −z4 + λz1z2

Now the dual feasiblity condition ν3, ν4 ≥ 0 gives the condition that λ ≥ z3/(z1z2).

Similarly, for any critical point to be 3-sparse, i.e., w1 > 0, w2 > 0, w3 > 0, w4 = 0, we have ν1 = ν2 = ν3 = 0, and that
there exists

ν4 =
∂

∂w4

f(w) = −z4 + λ(w1w2 + w2w3 + w3w1) ≥ 0.

w1, w2, w3 can be solved by the following non-linear system of equation
w1 + λw2w3 = z1,

w2 + λw1w3 = z2,

w3 + λw1w2 = z3.

(22)

For this reason, if we are able to first identify a solution to (22) then verify that the ν4 ≥ 0, then we certified that this solution
is a critical point — a necessary condition for this sparse solution to be a global optimal solution.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

A Proximal Operator for Inducing 2:4-Sparsity

B.5. Proof of Lemma 5

Proof.

∇2g(w) =

 1 λw3 λw2

λw3 1 λw1

λw2 λw1 1

 and (23)

∇2f(w) =


1 λ(w3 + w4) λ(w2 + w4) λ(w2 + w3)

λ(w3 + w4) 1 λ(w1 + w4) λ(w1 + w3)
λ(w2 + w4) λ(w1 + w4) 1 λ(w1 + w2)
λ(w2 + w3) λ(w1 + w3) λ(w1 + w2) 1

 . (24)

Note that the conditions that∇2g ⪰ 0 and ∇2f ⪰ 0 are Linear Matrix Inequalities, thus convex.

B.6. Proof of Corollary 6

Proof. It suffices to check the definition of a convex set, i.e., for any pair of local minima, their convex combination is also a
local minimum.

Let C4 := {w ∈ R4 | ∇2f(w) ⪰ 0} as in Lemma 5, where we showed that it is convex. Let u∗, v∗ ∈ R4 be local minima of
f . Then, since u∗, v∗ ∈ C4 and C4 is convex, for any 0 ≤ t ≤ 1, f is convex at w(t) := tu∗ + (1− t)v∗.

By the definition of C4 when restricting to this set, f is a convex function. By the first order definition of convex function

f(u∗) ≥ f(v∗) + (u∗ − v∗)T∇f(v∗) = f(v∗)

similarly
f(v∗) ≥ f(u∗) + (v∗ − u∗)T∇f(u∗) = f(u∗)

thus f(u∗) = f(v∗).

By convexity of f on the line segment, f(w(t)) ≤ tf(u∗) + (1− t)f(v∗) = f(u∗) for all t. On the other hand, as t→ 0,
we also have f(w(t)) ≥ f(u∗) due to that u∗ is a local minima. These two conditions imply that f(w(t)) = f(u∗) for all
t ∈ [0, 1], i.e., w(t) is also a local minimum.

To prove the second part we first show that the minimum of f over R4
+ exists. Therefore note that for any w ∈ R4

+ if
wi > zi, we have ∂if(w) < 0 for all i ∈ [4], implying that f is minimized within wi ≤ zi which is a closed set. Hence there
exists w∗ ∈ R4

+ such that w∗
i ≤ zi and f(w∗) = minw∈R4

+
f(w). Now assume w∗

i > 0 for all i ∈ [4], then w∗ necessarily
is a local minimum and∇2f(w∗) ⪰ 0. Conversely, since all local minima of a convex function attain the same value, the
statement follows.

The statements for g follow in analogy.

B.7. Proof of Theorem 7

Proof. The optimal solution to (9) has three possibilities: dense, 3-sparse, 2-sparse.

If the solution to (9) is 2-sparse, r2:4(w) = 0 then w(2) is the solution due to that it minimizes 1
2∥w − z∥2 subject to the

2-sparse constraint.

If the solution to (9) is 3-sparse with w1:3 > 0, then w1:3 is also the solution to (11), moreover ∇2g(w1:3) ⪰ 0. Since the
constraint is not active, and w1:3 is in the strict interior of the constraint, thus∇g(w1:3) = 0. Since w1:3 is feasible, it is also
optimal for (13). Any other solution w̃1:3 to (13) (if exists) must satisfy g(w̃1:3) = g(w1:3) thus is also an optimal solution
to (11) and (9).

Similarly, if the solution to (9) is dense with w > 0 (for all coordinates), then ∇2f(w) ⪰ 0 and ∇f(w) = 0 (due to
stationarity and complementary slackness). This checks the feasibility of w in (14) which implies that w is an optimal
solution to (14). Let w̃ ∈ R4 be any other optimal solution to (14), f(w̃) = f(w), thus w̃ is also an optimal solution to (9).

To conclude, in each of the three cases, Line 2-4 of the algorithm returns the optimal solution.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

A Proximal Operator for Inducing 2:4-Sparsity

B.8. Proof of Fact 8

Proof. a) At w = [0, 0, 0, 0] the Hessian (24) is just the identity and hence positive.

b) First note that as soon as one off-diagonal entry of (24) is larger than one, the Hessian is not positive semidefinite anymore.
Thus positivity of the Hessian implies that all off-diagonal entries are less or equal to 1. We can then use Gershgorin disc
theorem and obtain that all eigenvalues are between [−2, 4], hence γmax ≤ 4.

C. Other Regularizers for 2:4 Sparsity
Our main theoretical contribution is to show that the non-convex proximal operator can be solved efficiently by decomposing
it into smaller subproblems. In principle, there also exist simpler regularizers that induce 2:4 sparsity and whose proximal
operator can be solved more efficiently. Here we introduce three further proximal operators of simpler regularizers. To be
concise, we assume Lemma 3 has already been applied, i.e., w1 ≥ w2 ≥ w3 ≥ w4 ≥ 0 and we define the regularizers

R0(w1, w2, w3, w4) :=


0 if w4 = w3 = 0,

1 if w4 = 0, w3 > 0,

2 if w4 > 0.

(25)

R1(w1, w2, w3, w4) := w4 + w3, (26)

R2(w1, w2, w3, w4) :=
1

2
(w2

4 + w2
3). (27)

Each of those regularizers equals 0 if and only if the four weights have a 2:4 sparse pattern. So those regularizers do also
enforce 2:4 sparsity. Let’s look at their proximal operators – again assuming z1 ≥ z2 ≥ z3 ≥ z4 ≥ 0.

argmin
w∈R4

+

f(w), with (28)

f(w) :=
1

2
∥w − z∥2 + λRp(w1, w2, w3, w4). (29)

Note that the objective of those proximal operators can all be easily be decomposed for each of the variables and trivially
w∗

1 = z1 and w∗
2 = z2. The other optimizations are also simple. For R0 we have w∗

3 = 0 if λ > 1
2z

2
3 else z3; for R1 we

have w∗
3 = max (z3 − λ, 0); For R2 we have w∗

3 = z3/(1 + λ). For w∗
4 it follows in analogy for all three cases.

Thus, depending on λ, R0 forces weights to be zero if they are below a threshold (hard thresholding), R1 does a soft-
thresholding, and R2 leads to a shrinkage. For large but finite λ, R0 and R1 lead to exact 2 : 4 sparsity, whilst R2 does not
lead to exact 2:4 sparsity for finite λ.

However, those regularizers commit very early to the sparsity pattern, and none of the behavior of Figure 1 are observed for
them. Furthermore, on the toy problem in Section 4.1 they cannot find the optimal solution. We hence focused the main part
of this work on the more elaborate proximal operator. For completeness we also report perplexity numbers for it in Table 2
as well as the runtime. Since the optimization problems are trivial and have a close form solution, they are significantly
faster, but lead to slightly worse perplexity.

D. Experiment Details
In Figures 3, 4, and 5 we show further ablations and insights into our main experiments. Table 2 shows the different runtime
of the pruning methods and Table 3 shows results of the pruned models on downstream tasks.

D.1. Using the Hessian of the Unpruned Model

For our studies in the main paper we compute the Hessian matrix for each linear layer once before the pruning. This allows
us to prune layers in parallel and distribute the pruning on multiple GPUs, because the local Hessians do not depend on each
other. The alternative is to prune the matrices sequentially and propagate the pruned inputs. In our ablation Table 4 we find
however, that it’s effect is overall very minor, and it is not structurally better than using the unpruned inputs.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

A Proximal Operator for Inducing 2:4-Sparsity

0.00 0.25 0.50 0.75 1.00
0 103

1.002

1.004

1.006

1.008

1.010

5300

5350

5400

5450

5500

lo
ss

0.00 0.25 0.50 0.75 1.00
0 103

1.002

1.004

1.006

1.008

1.010

750

1000

1250

1500

1750

2000

2250

tim
e

Figure 3. Ablation for the regularizer schedule Equation (15) on the down projection of layer 18 of Llama-3.1 8B.

Table 2. Wall clock runtime of different pruning approaches on Llama-3.1 8B Instruct. The proposed regularizer leads to the best
perplexity, however, also incurs the highest pruning cost. Since this is a once-off effort, and negligibly small compared to pretraining
costs, this can be disregarded in production settings.

Runtime [s] Runtime [min] C4 Perplexity Wiki Perplexity
proposed regularizer [Section 3.2] 11,170 186.17 26.44 20.15
L0 regularizer, Equation (25) 1,346 22.43 27.25 20.21
L1 regularizer, Equation (26) 1,242 20.70 28.46 20.70
L2 regularizer, Equation (27) 2,628 43.80 27.84 20.43
wanda 258 4.30 43.30 26.67
wanda+GD 1,000 16.67 28.45 20.71
sparsegpt 313 5.22 35.55 26.19
sparsegpt+GD 1,064 17.73 27.54 20.85

Table 3. Accuracy Evaluation of pruned versions of Llama-3.1 8B Instruct on 6 Downstream Tasks. The methods (+GD) introduced in
this work reduce the accuracy gap by around 3% to 5% against previous methods.

model Mean MMLU GSM8K Winogrande Hellaswag TruthfulQA ai2 arc
original 64.28% 67.70% 75.36% 73.79% 59.19% 37.58% 72.04%
wanda 35.78% 37.02% 2.50% 62.75% 38.94% 26.19% 47.27%
wanda + GD 40.76% 40.65% 11.83% 65.27% 43.98% 27.42% 55.44%
sparsegpt 37.59% 34.97% 6.07% 64.56% 41.50% 24.60% 53.86%
sparsegpt + GD 40.98% 42.94% 8.95% 66.06% 44.74% 27.17% 56.00%
DSnoT 35.01% 36.98% 1.36% 59.75% 36.71% 26.32% 48.96%
prox + GD 40.81% 41.82% 10.01% 65.51% 44.82% 27.29% 55.41%

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

A Proximal Operator for Inducing 2:4-Sparsity

0 5 10 15 20 25
layer

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

la
ye

r
lo

ss
 v

s
W

an
dA

 +
 G

D

open_llama_3b_v2: mlp.down_proj

prox + GD
WandA + GD
SparseGPT + GD

Figure 4. Layerwise local squared loss on an example matrix of
openLlama 3bv2. We show the loss relative to the loss WandA
(with masked gradient updates) incurrs. As intended by design,
the proximal approach of pruning leads to smaller local squared
loss. In Table 1 we see that this also translates to a better end to
end performance in terms of perplexity.

0 250 500 750 1000 1250 1500
Local GD teps after pruning

12

13

14

15

16

17

18

19

20

Va
lid

at
io

n
Pe

rp
le

xi
ty

C4
Wiki

Figure 5. Effect of number of GD steps Equation (5) after masking
with Wanda. The perplexity converges quickly and the used 1000
steps in the main paper suffice to drive the local optimization
to convergence. This shows that the proximal operator indeed
identifies a more suitable mask.

Table 4. The effect of propagating the pruning errors is negligible.
Model Method Hessian C4 Wiki

3b v2
dense 9.68 14.15

wanda Original 29.49 60.35
wanda Pruned 28.65 55.98

7b v2
dense 8.84 12.15

wanda Original 17.61 27.00
wanda Pruned 17.59 26.88

13b
dense 8.11 11.52

wanda Original 13.17 35.39
wanda Pruned 13.30 37.61

17

