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ABSTRACT

This paper introduces Least Volume—a simple yet effective regularization inspired
by geometric intuition—that can reduce the necessary number of latent dimensions
needed by an autoencoder without requiring any prior knowledge of the intrinsic
dimensionality of the dataset. We show that the Lipschitz continuity of the decoder
is the key to making it work, provide a proof that PCA is just a linear special case
of it, and reveal that it has a similar PCA-like importance ordering effect when
applied to nonlinear models. We demonstrate the intuition behind the regularization
on some pedagogical toy problems, and its effectiveness on several benchmark
problems, including MNIST, CIFAR-10 and CelebA.

1 INTRODUCTION

Learning data representation is crucial to machine learning (Bengio et al., 2013). On one hand, a good
representation can distill the primary features from the data samples, thus enhancing downstream
tasks such as classification (Krizhevsky et al., 2017; Simonyan & Zisserman, 2014; He et al., 2016).
On the other hand, when the data representation lies in a low dimensional latent space Z and can be
mapped backward to the data samples via some decoder g, we can considerably facilitate generative
tasks by training generative models in Z (Ramesh et al., 2021; Rombach et al., 2022).

But what makes a data representation—i.e., Z = e(X ) ⊂ Z of a dataset X—good? Often, a
low dimensional Z is preferred. It is frequently hypothesized that a real world dataset X in high
dimensional data space X only resides on a low dimensional manifold (Fefferman et al., 2016) (or
at least most part of X is locally Euclidean of low dimension), hence due to the rank theorem (Lee,
2012), X ’s low dimensionality will be inherited by its latent set Z through an at least piecewise
smooth and constant rank encoder e (i.e., Z is low dimensional even if Z is high dimensional).

Therefore, for a Z ⊂ Z retaining sufficient information about X , a low dimensional Z can provide
several advantages. First, it can improve the efficacy of downstream tasks by aligning its latent
dimensions more with the informative dimensions of Z and alleviating the curse of dimensionality.
In addition, it can increase the robustness of tasks such as data generation. Specifically, if a subset
U ⊆ Z constitutes an n-D manifold that can be embedded in an n-D Euclidean space, then due to
the invariance of domain (Bredon, 2013), U is open in Z as long as Z is n-D. Thanks to the basis
criterion (Lee, 2010), this openness means for a conditional generative model trained in such Z, if
its one prediction ẑ is not far away from its target z ∈ U , then ẑ will also fall inside U ⊆ Z , thus
still be mapped back into X by g rather than falling outside it. Moreover, in the case where Z is
a manifold that cannot embed in similar dimensional Euclidean space, or where Z is not even a
manifold, retrieving the least dimensional Z needed to embed Z may pave the way for studying the
complexity and topology of Z and X . Additionally, people also hope the latent representation can
indicate the amount of information each dimension has (Rippel et al., 2014; Pham et al., 2022), so
that the data variations along the principal dimensions can be easily studied, and trade-offs can be
easily made when it is necessary to strip off less informant latent dimensions due to computational
cost. This is why PCA (Pearson, 1901), despite being a century old, is still widely applied to different
areas, even if it is a simple linear model.

To automatically learn a both low dimensional and ordered nonlinear latent representation, in this
work we introduce the Least Volume regularization, which is based on the intuition that packing a flat
paper into a box consumes much less space than a curved one. This paper’s contributions are:
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1. We introduce Least Volume (LV) regularization for autoencoders (AEs) that can compress
the latent set into a low dimensional latent subspace spanned by the latent space’s standard
basis. We show that upper bounding the decoder’s Lipschitz constant is the key to making it
work, and verify its necessity with an ablation study.

2. We prove that PCA is exactly a special case of least volume’s application on a linear
autoencoder. In addition, we show that just like in PCA, there is a close-to-1 positive
correlation between the latent dimension’s degree of importance and standard deviation.

3. We apply least volume to several benchmark problems including a synthetic dataset with
known dimensionality, MNIST and CIFAR-10, and show that the volume penalty is more
effective than the traditional regularizer Lasso in terms of compressing the latent set. We
make the code public on GitHub1 to ensure reproducibility.

2 METHODOLOGY AND INTUITION

As proved later in Theorem 2, if a continuous autoencoder can reconstruct the dataset perfectly,
then its latent set is a homeomorphic copy of it. Concretely speaking, if through the lens of the
manifold hypothesis we conceive the dataset as an elastic curved surface in the high dimensional
data space, then the latent set can be regarded as an intact “flattened” version of it tucked into the low
dimensional latent space by the encoder. Therefore, the task of finding the least dimensional latent
space can be imagined as the continuation of this flattening process, in which we keep compressing
this elastic latent surface onto latent hyperplanes of even lower dimensionality until it cannot be
flattened anymore. Thereafter, we can extract the final hyperplane as the desired least dimensional
latent space. Ideally, we prefer a hyperplane that is either perpendicular or parallel to each latent
coordinate axis, such that we can extract it with ease.

2.1 VOLUME PENALTY

To flatten the latent set and align it with the latent coordinate axes, we want the latent code’s standard
deviation (STD) vector σσσ to be as sparse as possible, which bespeaks the compression of the dataset
onto a latent subspace of the least dimension. The common penalty for promoting sparsity is the L1

norm. However, ∥σσσ∥1 does not necessarily lead to flattening, as we will discuss later in §A.1.1.

An alternative regularizer is
∏

i σi—the product of all elements of the latent code’s STD vector σσσ.
We call this the volume penalty. It is based on the intuition that a curved surface can only be enclosed
by a cuboid of much larger volume than a cuboid that encloses its flattened counterpart. The cuboid
has its sides parallel to the latent coordinate axes (as shown in Fig. 1) so that when its volume is
minimized, the flattened latent set inside is also aligned with these axes. To evaluate the cuboid’s
volume, we can regard the STD of each latent dimension as the length of each side of this cuboid.
The cuboid’s volume reaches zero only when one of its sides has zero length (i.e., σi = 0), indicating
that the latent surface is compressed into a linear subspace. Conceptually, we can then extract this
subspace as the new latent space and continue performing this flattening process recursively until the
latent set cannot be flattened any more in the final latent space.

In practice, though, this recursive process is troublesome to implement, whereas directly minimizing
the volume may induce vanishing gradients when several σi are marginal, hindering flattening.
Therefore, we supplement each σi with an amount η ≥ 0 to make the volume penalty become∏

i(σi + η). To avoid extremely large gradients when the latent dimension m is large, we implement
instead equivalently minimizing the geometric mean m

√∏
i(σi + η), which we evaluate using the

ExpMeanLog trick to avoid numerical issues.

2.2 LIPSCHITZ CONTINUITY REGULARIZATION ON DECODER

Mechanically encouraging such latent sparsity, however, can lead to a trivial solution where we drive
all latent STDs close to zero without learning anything useful. This can occur when the elastic latent
surface shrinks itself isotropically to naïvely shorten all of the enclosing cuboid’s sides, without

1https://github.com/IDEALLab/Least_Volume_ICLR2024
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Figure 1: Flattening the latent set via Least Volume (“−v” means reducing the cuboid’s volume).

further flattening the latent surface. To forestall this arbitrary shrinking that causes the trivial solution,
we need to properly regularize the autoencoder’s latent set’s elasticity.

The appropriate regularization turns out to be the Lipschitz continuity of the decoder. The intuition is
as follows. In the trivial solution, the encoder would naïvely compresses all latent STDs to almost
zero. The decoder would then fight the encoder’s shrinking by scaling up its network weights such
that the now small perturbations in the latent input still induce large enough output variations in data
space to achieve low reconstruction error. To do this, however, the decoder must possess a large
Lipschitz constant (K) by definition. If instead, the decoder had a small bounded Lipschitz constant,
then any latent dimension with STD close to zero must also have close-to-zero variation in the data
space due to the small K and thus correspond to a dimension perpendicular to the data surface.
Meanwhile, a principal data dimension must retain a large variation in the latent space, as otherwise,
the decoder would need to violate its bounded Lipschitz constant to achieve low reconstruction
error. This bounded Lipschitz constant on the decoder thereby prevents the encoder from arbitrarily
collapsing the latent codes to the trivial solution. Figure 1 illustrates this intuition. Ghosh et al. (2019)
imposed Lipschitz constraint on the decoder under a similar motivation.

To achieve this regularization, Lipschitz continuity can be conveniently hard-constrained via spectral
normalization (Miyato et al., 2018), namely normalizing the spectral norm (the maximum singular
value) of all linear layers to 1. With 1-Lipschitz functions such as LeakyReLU as activation functions,
the Lipschitz constant of the decoder is guaranteed to be not greater than 1. For accurate regularization
of any convolutional layers, we employ the power method in (Gouk et al., 2021).

2.3 LEAST VOLUME FORMULATION

In summary, for an unsupervised representation learning problem in which the latent set Z = eθ(X )
is required to preserve enough information of a dataset X—as per the criterion that it minimizes a
reconstruction loss function J(gθ(Z),X ), conceptually the Least Volume (LV) problem is:

argmin
θ

Lvol(Z) = Lvol(eθ(X )) (1)

s.t. Z ∈ Z⋆ := {Z = eθ(X ) | θ minimizes J(gθ ◦ eθ(X ),X )} (2)
∥gθ(z1)− gθ(z2)∥ ≤ K∥z1 − z2∥, ∀{z1, z2} ⊆ Z (3)

Observe that for any homeomorphism h—a bijective continuous function whose inverse is also
continuous—the new latent set h(Z) = (h◦eθ)(X ), which is homeomorphic to Z , is equivalent to Z
in the sense that gθ ◦ eθ(x) = (gθ ◦ h−1) ◦ (h ◦ eθ)(x). Therefore, as long as gθ and eθ have enough
complexity to respectively represent gθ ◦ h−1 and h ◦ eθ for a given set H of h, each homeomorphic
latent set h(Z) with h ∈ H must also be an optimal solution to J , thus residing in Z⋆. Hence, the
more complexity gθ and eθ have, the larger the set H is, thus a more complicated homeomorphism h
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we can obtain to flatten Z more. In reality, though, due to the complexity of this optimization, we
need to resort to the weighted sum objective

L = J + λ · Lvol (4)
to derive an approximate solution, where λ needs to be fine-tuned.

3 THEORETICAL ANALYSIS

Given the least volume formulation, in this section we formalize its surface-flattening intuition
with theoretical analysis, inspect the introduced variables’ properties and their relationships, and
demonstrate its equivalency to PCA in the linear special case, before moving onto our empirical
results in §5. For space reasons, many of the proof details are placed in §A of the appendix.

3.1 WHAT EXACTLY DO WE MEAN BY VOLUME?

The volume
∏

i σi of a latent set is the square root of the diagonal product of the covariance matrix S
of the latent codes. Apart from this trivial fact, below we show that its square is the tight upper bound
of the latent determinant detS, which is referred to as Generalized Variance (GV) in some literature.
Theorem 1. The square of volume—i.e.,

∏
i σ

2
i —is a tight upper bound of the latent determinant

detS. If detS is lower bounded by a positive value, then
∏

i σ
2
i is minimized down to detS if and

only if S is diagonal.

Theorem 1 can lead to some interesting results that we will see in §3.4. Its proof in given in §A.1.
Here the positive lower bound of detS is an unknown inherent constant determined by the dataset,
and it originates from the intuition that when the latent space reduces into the least dimensional one in
which Z cannot be flattened anymore, then detS cannot be zero, as otherwise it suggests Z resides
in a linear latent subspace and creates contradiction. Nor should detS be arbitrarily close to 0, as the
K-Lipschitz decoder prevents degenerate shrinkage.

As mentioned in §2.1, in practice we instead minimize the supplemented geometric mean
m
√∏

i(σi + η) with η ≥ 0 to avoid the recursive subspace extraction process in conception. Mini-
mizing this variable not only equivalently minimizes an upper bound of the volume, but also naturally
interpolates between m

√∏
i σi and 1

m∥σσσ∥1 gradient-wise, given that as η → ∞:

∇θ m

√∏
i

(σi + η) =
1

m

∑
i

m
√∏

i(σi + η)

σi + η
· ∇θσi −→ 1

m

∑
i

∇θσi = ∇θ
1

m
∥σσσ∥1 (5)

So we can seamlessly shift from volume penalty to L1 penalty by increasing η. We can see that the
lower the η, the more the regularizer’s gradient prioritizes minimizing smaller σi, which intuitively
should make σσσ sparser than the L1 penalty does that scales every ∇θσi equally. We shall see in
Section 5 that m

√∏
i(σi + η) is indeed more efficient. For a further simple pedagogical example

where minimizing the volume produces sparser and more compact latent sets than the L1 norm, we
refer readers to §A.1.1 in the appendix. More relevant discussions can be found in §C.

3.2 AN ERRORLESS CONTINUOUS AUTOENCODER LEARNS A TOPOLOGICAL EMBEDDING

It is pointless to only minimize the volume, given that we can always reduce it to 0 by trivially
encoding every data sample to the same latent point. To make the “flattening” process in §2
meaningful, we need to ensure the autoencoder has good reconstruction performance over the dataset,
such that the latent set is a low dimensional replica of the dataset that preserves useful topological
information. This is justified by the following propositions. Their proofs are given in §A.2.
Lemma 1. If ∀x ∈ X , g ◦ e(x) = x, then both e and g are bijective between X and Z = e(X ).

Although some regard an errorless autoencoder as “trivial” since it only learns an one-to-one repre-
sentation, it is actually not as trivial as they think, thanks to the continuity of the autoencoder.
Theorem 2. A continuous autoencoder between the data space X = Rn and the latent space
Z = Rm with the norm-based reconstruction error ∥g ◦ e(x)− x∥ = 0 everywhere on the dataset
X ⊆ X learns a topological embedding of the dataset. In other words, the latent set Z = e(X ) ⊆ Z
is a homeomorphic copy of the dataset.
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Because Z is a homeomorphic copy of X , X ’s important topological properties like connectedness
and compactness—which are invariant under homeomorphism—are preserved on Z . This means
if some of these invariant properties are the only information we rely on when analyzing X , then
analyzing Z is equivalent to directly analyzing X . For instance, if we want to know how many
disconnected components X has, or evaluate its local dimensionality, then theoretically we can derive
the same results from Z . Of course, Z becomes more efficient to analyze if it resides in a low
dimensional linear subspace easy to extract.
Corollary 2.1. If the above errorless autoencoder’s latent set has the form Z = Z ′ × c where
c ∈ Rp is constant and Z ′ ⊆ Z ′ = Rm−p, then π ◦ e|X is also a topological embedding of X , where
π : Z ′ × c → Z ′ is the projection map.

Corollary 2.1 suggests that if we can force the errorless autoencoder’s latent set to assume such a
form while increasing the vector c’s dimension p as much as possible, we can obtain a latent space
that is the lowest dimensional Euclidean space that can still correctly embed the dataset. If achieved,
the resulting low dimensional latent space is not only more efficient to analyze, but also provides
useful information about the topology of X . For instance, not every smooth m dimensional manifold
can be embedded in Rm (e.g., sphere and Klein bottle), but the Whitney Embedding Theorem (Lee,
2012) states that it can be embedded in R2m. Thus if X is a smooth manifold, then obtaining the
least dimensional Z through a smooth autoencoder can provide a lower bound of X ’s dimensionality.

In practice, the autoencoder’s ideal everywhere-errorless-reconstruction is enforced by minimizing
the mean reconstruction error ϵ = E∥g ◦ e(x)− x∥, yet due to inevitable numerical errors and data
noise that should be ignored by the autoencoder reconstruction, ϵ cannot strictly reach zero after
optimization. We can only empirically set a pragmatic tolerance δ for it, and regard the autoencoder
as having approximately learned the topological embedding when ϵ < δ. Likewise, numerically the
latent set cannot strictly take the form in Corollary 2.1, but rather only at best has marginal STDs in
several latent dimensions. Intuitively, we may consider the latent set as flattened into a thin plane and
discard these nearly-constant latent dimensions to obtain a latent set of lower dimensionality with π.
But how do we properly trim off these dimensions? And more importantly, is it safe?

3.3 IS IT SAFE TO PRUNE TRIVIAL LATENT DIMENSIONS?

After training an autoencoder with least volume, we can expect several latent dimensions learned by
the encoder e to have STDs close to zero. Although such latent set Z is not exactly in the form of
Z ′ × c in Corollary 2.1 for us to apply π, we can still regarded its dimensions of marginal STDs as
trivial latent dimensions, in the sense that pruning them—i.e., fixing their value at their mean—will
not induce much difference to the decoder g’s reconstruction, provided that g’s Lipschitz constant is
not large. This is justified by the following theorem, whose proof is presented in §A.3.
Theorem 3. Suppose the STD of latent dimension i is σi. If we fix zi at its mean z̄i for each i ∈ P
where P is the set of indices of the dimensions we decide to prune, then the L2 reconstruction error

of the autoencoder with a K-Lipschitz decoder g increases by at most K
√∑

i∈P σ2
i .

The pruned Z̃ is then of the very form Z̃ = Z ′ × c and can be fed to π to extract Z ′. The inverse π−1

helps map Z ′ back into the data space through g ◦ π−1 without inducing large reconstruction error.

This theorem also supports our intuition about why having a Lipschitz continuous decoder is necessary
for learning a compressed latent subspace—for small K, a latent dimension of near-zero STD cannot
correspond to a principal dimension of the data manifold. In contrast, in the absence of this constraint,
the decoder may learn to scale up K to align near-zero variance latent dimensions with some of the
principal dimensions.

3.4 RELATIONSHIP TO PCA AND THE ORDERING EFFECT

Surprisingly, as shown in §A.4, one can prove that PCA is a linear special case of least volume. This
implies there could be more to volume minimization than just flattening the surface.
Proposition 1. An autoencoder recovers the principal components of a dataset X after minimizing
the volume, if we:

1. Make the encoder e(x) = Ax+ a and the decoder g(z) = Bz + b linear maps,
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2. Force the reconstruction error ∥g ◦ e(X)−X∥F to be strictly minimized,

3. Set the Lipschitz constant to 1 for the decoder’s regularization,

4. Assume the rank of the data covariance Cov(X) is not less than the latent space dimension
m.

Specifically, B’s columns consist of the principal components of X , while A acts exactly the same as
B⊤ on X . When X has full row rank, A = B⊤.

The proof of Proposition 1 in §A.4 suggests that the ordering effect of PCA—i.e., the magnitude of
its each latent dimension’s variance indicates each latent dimension’s degree of importance—is at
least partially a result of reducing the latent determinant until the singular values of B reach their
upper bound 1, such that g becomes isometric and preserves distance. In other words, this means e is
not allowed to scale up the dataset X along any direction in the latent space if it is unnecessary, as it
will increase the latent determinant, and thus the volume. Therefore, likewise, although Theorem 3
does not prevent a latent dimension of large STD from being aligned to a trivial data dimension, we
may still expect minimizing the volume or any other sparsity penalties to hinder this unnecessary
scaling by the encoder e, given that it increases the penalty’s value. This suggests that the latent
dimension’s importance in the data space should in general scale with its latent STD.

To investigate if least volume indeed induces a similar importance ordering effect for nonlinear
autoencoders, we need to first quantify the importance of each latent dimension. This can be done
by generalizing the Explained Variance used for PCA, after noticing that it is essentially Explained
Reconstruction:
Proposition 2. Let λi be the eigenvalues of the data covariance matrix. The explained vari-
ance R({i}) = λi∑n

j λj
of a given latent dimension i of a linear PCA model is the ratio between

E∥·∥2
2
({i})—the MSE reconstruction error induced by pruning this dimension (i.e., setting its value to

its mean 0) and E∥·∥2
2
(Ω)—the one induced by pruning all latent dimensions, where Ω denotes the set

of all latent dimension indices.

So for PCA, the explained variance actually measures the contribution of each latent dimension in
minimizing the MSE reconstruction error E∥x− x̂∥22 as a percentage. Since for a nonlinear model
the identity R({i}) +R({j}) = R({i, j}) generally does not hold, there is no good reason to stick
with the MSE. It is then natural to extrapolate R and E to our nonlinear case by generalizing E∥·∥2

2
(P )

to ED(P ), i.e., the induced reconstruction error w.r.t. metric D after pruning dimensions in P :

ED(P ) = E[D(x̃P , x)]− ϵ = E[D(x̃P , x)]− E[D(x̂, x)] (6)

Then RD(P )—the explained reconstruction of latent dimensions in P w.r.t. metric D—can be defined
as RD(P ) = ED(P )/ED(Ω). More details about this extrapolation can be found in Remark 2.1.

For our experiments, we choose L2 distance as D, i.e., L2(x̃P , x) = ∥x̃P − x∥2, and measure the
Pearson correlation coefficient (PCC) between the latent STD and RL2({i}) to see if there is any
similar ordering effect. If this coefficient is close to 1, then the latent STD can empirically serve as
an indicator of the importance of each latent dimension, just like in PCA.

4 RELATED WORKS AND LIMITATIONS

The usual way of encouraging the latent set to be low dimensional is sparse coding (Bengio et al.,
2013), which applies sparsity penalties like Lasso (Tibshirani, 1996; Ng, 2004; Lee et al., 2006),
Student’s t-distribution (Olshausen & Field, 1996; Ranzato et al., 2007), KL divergence (Le et al.,
2011; Ng et al., 2011) etc., over the latent code vector to induce as many zero-features as possible.
However, as discussed in §2.3, a latent representation transformed by a homeomorphism h is
equivalent to the original one in the sense that gθ ◦ eθ(x) = (gθ ◦ h−1) ◦ (h ◦ e)(x), so translating
the sparse-coding latent set arbitrarily—which makes the zero-features no longer zero—provides us
an equally good representation. This equivalent latent set is then one that has zero-STDs along many
latent dimensions, which is what this work tries to construct. Yet h is not restricted to translation.
For instance, rotation is also homeomorphic, so rotating that flat latent set also gives an equivalently
good representation. IRMAE (Jing et al., 2020) can be regarded as a case of this, in which the latent
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set is implicitly compressed into a linear subspace not necessarily aligned with the latent coordinate
axes. There are also stochastic methods like K-sparse AE (Makhzani & Frey, 2013) that compress
the latent set by randomly dropping out inactive latent dimensions during training.

People also care about the information content each latent dimension contains, and hope the latent
dimensions can be ordered by their degrees of importance. Nested dropout (Rippel et al., 2014)
is a probabilistic way that makes the information content in each latent dimension decrease as the
latent dimension index increases. PCA-AE (Pham et al., 2022) achieves a similar effect by gradually
expanding the latent space while reducing the covariance loss. Our work differs given that least
volume is deterministic, requiring no multistage training, and we only require the information content
to decrease with the STD of the latent dimension instead of the latent dimension’s index number. Some
researchers have also investigated the relationship between PCA and linear autoencoders (Rippel et al.,
2014; Plaut, 2018; Kramer, 1991). In recent years more researchers started to look into preserving
additional information on top of topological properties in the latent space (Moor et al., 2020; Trofimov
et al., 2023; Gropp et al., 2020; Chen et al., 2020; Yonghyeon et al., 2021; Nazari et al., 2023), such
as geometric information. A detailed methodological comparison between least volume and some
aforementioned methods is given in Table 1 to illustrate its distinction.

Table 1: Comparison of Methods that Automatically Reduce Autoencoder Latent Dimensions

Method Least Volume Nested Dropout PCA-AE IRMAE K-sparse AE

Deterministic? ✓ ✗ ✓ ✓ ✗

Nonlinear AE? ✓ ✓ ✓ ✓ ✗

Penalty Term? ✓ ✗ ✗ ✗ ✗

Single-stage Training? ✓ ✓ ✗ ✓ ✓

Importance Ordering? ✓ ✓ ✓ ✗ ✗

It is worth noting that this work is discussed under the scope of continuous autoencoders. Recently
VQ-VAE (Van Den Oord et al., 2017) has attracted a lot of attention for its efficacy. Although it is
modelled by continuous neural networks, its encoding operation is not continuous, because mapping
the encoder’s output to the nearest embedding vector is discontinuous. Hence this work cannot be
readily applied to it. More discussions about LV’s other technical limitations are included in §C.1.

5 EXPERIMENTS

In this section, we demonstrate the primary experiment results that reflect the properties and perfor-
mance of Least Volume. We examine LV’s dimension reduction and ordering effect on benchmark
image datasets, and conduct ablation study on the volume penalty and the decoder’s Lipschitz regu-
larization. Due to the space limit, we instead present in §B of the appendix more details about these
experiments, additional examinations, applications to downstream tasks and some toy problems for
illustrating the effect of LV.

5.1 IMAGE DATASETS

In this experiment, we compare the performance of different latent regularizers that have the potential
of producing a compressed latent subspace. Specifically, these four regularizers are: L1 norm of
the latent code (denoted by “lasso”), L1 norm of the latent STD vector (denoted by “l1”), volume
penalty Lvol with η = 1 (denoted by “vol” or “vol_e1.0”) and the one in (Ranzato et al., 2007)
based on student’s t-distribution (denoted by “st”). We activate the spectral normalization on the
decoder and apply these four regularizers to a 5D synthetic image dataset (detailed in §B.2.2 of the
appendix), the MNIST dataset (Deng, 2012) and the CIFAR-10 dataset (Krizhevsky et al., 2014),
then investigate how good they are at reducing the latent set’s dimensionality without sacrificing
reconstruction performance, and whether there is any high correlation between the latent STD and
the degree of importance (We also additionally perform these experiments on the CelebA dataset (Liu
et al., 2015), which is included in the appendix §B.2.1 for space reasons). For these image datasets,
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we use latent spaces of 50, 128, and 2048 dimensions respectively. For each case, we then conduct
the experiment over a series of λ ranging from 0.03 to 0.0001 with three cross validations and use
the result’s STD as the error bars. We normalize all pixels values between 0 and 1 and use binary
cross entropy as the reconstruction loss J for all experiments, not only because in practice it has
faster convergence rate than the usual MSE loss, but also because minimizng it in the [0, 1] range is
equivalent to minimizing the other norm-based reconstruction loss. All experiments are performed
on NVIDIA A100 SXM GPU 80GB. More tips regarding hyperparameter tuning, model training and
usage can be found in §C of the appendix.

(a) Synthetic (b) MNIST (c) CIFAR-10

Figure 2: Latent Set Dimensionality vs L2 Reconstruction Error. The markers corresponds to the
records obtained at different λ listed in Table B.5. In general, the higher the λ, the lower the latent set
dimension, but the reconstruction error also increases accordingly.

Comparing these regularizers’ dimension reduction performance is not a straightforward task. This is
because each latent regularizer R, when paired with the reconstruction loss J via L = J + λ · R,
creates its own loss landscape, such that the same λ leads to different J for different R after optimizing
L. This means under the same λ, some regularizers may choose to compress the latent set more
simply by sacrificing the reconstruction quality more, so we cannot compare these regularizers under
the same λ. However, because adjusting λ is essentially trading off between reconstruction and
dimension reduction, we can plot the dimension reduction metric against the reconstruction metric
for comparison. An efficient R should compress the latent set more for the same reconstruction
quality. Figure 2 plots the latent set dimension against the autoencoder’s L2 reconstruction error,
where the latent set dimension is the number of dimensions left after cumulatively pruning the latent
dimensions with the smallest STDs until their joint explained reconstruction exceeds 1%. We can see
that for all datasets, the volume penalty Lvol always achieves the highest compression when the L2

reconstruction error is reasonable (empirically that means < 2. See §B.3.1 in the appendix).

(a) Synthetic (b) MNIST (c) CIFAR-10

Figure 3: Explained Reconstruction vs Latent Dimension # (sorted in descending order of STD)

For each dataset, we select three autoencoding cases with comparable reconstruction quality respec-
tively for the four regularizers (marked by large dots in Fig. 2). Then in Fig. 3, for each case we
sort the latent dimensions in descending order of STD value, and plot their individual explained
reconstructions against their ordered indices. For all regularizers, we see that the explained L2 recon-
struction generally increases with the latent STD, although it is not perfectly monotonic. Nevertheless,
we can conclude that the explained reconstruction is highly correlated with latent STD, since the
PCCs are all close to 1 (except for “st” based on student’s t-distribution, which has a sudden drop as
the dimension index reach 0), as shown in Fig. 3.
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5.2 ABLATION STUDY

We first investigate the necessity of the Lipschtiz regularization on the decoder. For each experiment
we keep everything the same except switching off the spectral normalization. Figure 4 shows
that without Lipschitz regularization, the latent set’s dimensionality cannot be effectively reduced.
This is indeed due to the isotropic shrinkage as mentioned in §2.2, as the latent dimensions of the
autoencoders without Lipschitz regularization have orders of magnitude lower STD values (see
§B.3.4). In addition, Fig. 5 shows that apart from the Lipschitz regularization, the regularization on
latent set is also necessary for reducing the latent set’s dimension. The Lipschitz regularization alone
does not induce any dimension reduction effect.

(a) Synthetic (b) MNIST (c) CIFAR-10

Figure 4: Latent Set Dimensionality with and without Lipschitz Constraint on Decoder.

(a) Synthetic (b) MNIST (c) CIFAR-10

Figure 5: Latent Set Dimensionality with and without Volume Penalty

6 CONCLUSION

This work introduces Least Volume regularization for continuous autoencoders. It can compress
the latent representation of a dataset into a low dimensional latent subspace for easy extraction.
We show that minimizing the volume is equivalent to minimizing an upper bound of the latent
code’s generalized variance, and that using a K-Lipschitz decoder prevents the latent set’s isotropic
shrinkage. This approach achieves better dimension reduction results than several L1 distance-based
counterparts on multiple benchmark image datasets. We further prove that PCA is a linear special
case of the least volume formulation, and when least volume is applied to nonlinear autoencoders, it
demonstrates a similar ordering effect, such that the STD of each latent dimension is highly correlated
with the latent dimension’s importance.
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A PROOFS AND REMARKS FOR §3

A.1 PROOFS FOR §3.1

Theorem 1. The square of volume—i.e.,
∏

i σ
2
i —is a tight upper bound of the latent determinant

detS. If detS is lower bounded by a positive value, then
∏

i σ
2
i is minimized down to detS if and

only if S is diagonal.

Proof. The diagonal entries of positive semi-definite matrices are always non-negative, and Cholesky
decomposition states that any real positive definite matrix S can be decomposed into S = LL⊤

where L is a real lower triangular matrix with positive diagonal entries. So detS = (detL)2 =∏
i[L]

2
ii ≤

∏
i ∥li∥22 =

∏
i[S]ii =

∏
i σ

2
i , where li is the ith row of L.

Hence for a positive definite S, the inequality can only be reduced to equality when L is diagonal,
which in turn makes S diagonal.

A.1.1 EXAMPLE: PITFALL OF L1

We can use a simple example to show that the volume is better than L1-based regularizers in terms of
determining the sparsity of σσσ, i.e., how flat the latent set is. Figure A.1 shows a straight orange line
Zl of length 3

2π and a blue arc Za of the same length. Clearly there exist an isometry h : Zl → Za.
Suppose the arc is a latent set created through Za = e(X ), then Zl = h−1 ◦ e(X ) is an equivalently
good one, provided that the encoder e has enough complexity to learn h−1 ◦ e. Moreover, because the
isometry h is 1-Lipschitz, then a K-Lipschitz decoder g with enough complexity can also learn g ◦ h
since this is also K-Lipschitz, so both Zl and Za are latent sets that can be produced by e and g with
enough complexity. Now we introduce uniform distribution over these two sets and evaluate ∥σσσ∥1
and

∏
i σi on them. Figure A.1 shows that only the volume

∏
i σi correctly tells the line Zl is flatter.

Figure A.1: A pedagogical example where minimizing the L1 regularizers produces less flattened
representations than minimizing the volume. Here “L1” refers to ∥σσσ∥1 and “Lv” refers to

∏
i σi.

A.2 PROOFS FOR §3.2

Lemma 1. If ∀x ∈ X , g ◦ e(x) = x, then both e and g are bijective between X and Z = e(X ).

Proof. e|X is injective because for any pair {x, x′} ⊆ X that satisfies e(x) = e(x′), we have
x = g ◦ e(x) = g ◦ e(x′) = x′. It is then bijective because e|X is surjective onto Z by definition.
g|Z is surjective onto X because g(Z) = g ◦ e(X ) = X . It is then injective thus bijective because
∀z = e(x) ∈ Z , e ◦ g(z) = e ◦ g ◦ e(x) = e(x) = z.

Theorem 2. A continuous autoencoder between the data space X = Rn and the latent space
Z = Rm with the norm-based reconstruction error ∥g ◦ e(x)− x∥ = 0 everywhere on the dataset
X ⊆ X learns a topological embedding of the dataset. In other words, the latent set Z = e(X ) ⊆ Z
is a homeomorphic copy of the dataset.

Proof. Due to the positive definiteness of norm and Lemma 1, both the encoder restriction e|X and
the decoder restriction g|Z are bijective functions between X and Z . Because both the encoder
e : X → Z and the decoder g : Z → X are continuous, their restrictions are also continuous
(in terms of the subspace topology). Since g|Z is then the continuous inverse function of e|X , by
definition e|X is a topological embedding (Lee, 2010).
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Corollary 2.1. If the above errorless autoencoder’s latent set has the form Z = Z ′ × c where
c ∈ Rp is constant and Z ′ ⊆ Z ′ = Rm−p, then π ◦ e|X is also a topological embedding, where
π : Z ′ × c → Z ′ is the projection map.

Proof. π is homeomorphic because it is bijective, while continuous and open in terms of the product
topology. Thus π ◦ e|X is also homeomorphic onto its image Z ′.

Remark. Because Z ′ is homeomorphic to X , the subspace dimension dimZ ′ = m − p cannot
be lower than dimX , as otherwise it violates the topological invariance of dimension (Lee, 2012).
So we need not to worry about extravagant scenarios like “Z ′ collapsing into a line while X is a
surface”. This is not guaranteed for a discontinuous autoencoder since it does not learn a topological
embedding.

A.3 PROOFS FOR §3.3

Theorem 3. Suppose the STD of latent dimension i is σi. If we fix zi at its mean z̄i for each i ∈ P
where P is the set of indices of the dimensions we decide to prune, then the L2 reconstruction error

of the autoencoder with a K-Lipschitz decoder g increases by at most K
√∑

i∈P σ2
i .

Proof. Suppose the reconstruction error ϵ is measured by L2 distance in the data space as ϵ =
E∥x− x̂∥ = E∥x−g ◦e(x)∥ = E∥x−g(z)∥. Let the new reconstruction error after latent pruning be
ϵ̃ = E∥x− x̃P ∥ = E∥x− g ◦ pP ◦ e(x)∥ = E∥x− g(z̃P )∥, where pP is the pruning operator defined

by [z̃P ]i = [pP (z)]i =

{
zi i ̸∈ P

z̄i i ∈ P
. Then due to the subadditivity of norm and the K-Lipschitz

continuity of g we have

ϵ̃− ϵ ≤ E∥x̂− x̃P ∥ = E∥g(z̃P )− g(z)∥

≤ K · E∥z̃P − z∥ = K
√

E [∥z̃P − z∥2]−Var [∥z̃P − z∥] (7)

≤ K
√
E [∥z̃P − z∥2] = K

√∑
i∈P

E [(zi − z̄i)2] = K

√∑
i∈P

σ2
i (8)

Of course, (7) is an upper bound tighter than (8), but the minimalistic (8) also conveys our idea
clearly.

A.4 PROOFS FOR §3.4

Lemma 2. Suppose for a symmetric matrix S we have A⊤SA = Σ and A⊤A = I , where Σ is a
diagonal matrix whose diagonal elements are the largest eigenvalues of S. Then A’s columns consist
of the orthonormal eigenvectors corresponding to the largest eigenvalues of S.

Proof. Denote the eigenvalues of S by σ1 ≥ σ2 ≥ · · · , the corresponding orthonormal eigenvectors
by u1, u2, · · · , and the ith column vector of A by ai. Without any loss of generality, we also assume
that the diagonal elements of Σ are sorted in descending order so that Σii = σi, as the following
proof is essentially independent of the specific order.

We can prove this lemma by induction. To begin with, suppose for a1 we have a⊤1 Sa1 = σ1, then a1
must fall inside the eigenspace Eσ1

spanned by the eigenvector(s) of σ1. Assume this is not true, then
a1 = v + v⊥ where v ∈ Eσ1

, v⊥ ⊥ Eσ1
, ∥v⊥∥ ̸= 0 and ∥a1∥2 = ∥v∥2 + ∥v⊥∥2 = 1. It follows

that a⊤1 Sa1 = v⊤Sv + v⊤⊥Sv⊥ < σ1∥v∥2 + σ1∥v⊥∥2 = σ1, which violates the assumption. The
inequality holds because we have the decomposition v⊥ =

∑
i∈I αiui, I = {i | ui ⊥ Eσ1

} where
ui’s corresponding σi is smaller than σ1, so v⊤⊥Sv⊥ =

∑
i∈I σiα

2
i < σ1

∑
i∈I α2

i = σ1∥v⊥∥2.

Now assume that for ak, its predecessors a1 . . . ak−1 respectively all fall inside the corresponding
eigenspaces Eσ1 . . . Eσk−1

. Since ak is orthogonal to a1 . . . ak−1, we can only find ak in
∑

i≥k Eσi .
Then following the same rationale as in the a1 case, ak must be inside Eσk

.

Proposition 1. An autoencoder recovers the principal components of a dataset X after minimizing
the volume, if we:
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1. Make the encoder e(x) = Ax+ a and the decoder g(z) = Bz + b linear maps,

2. Force the reconstruction error ∥g ◦ e(X)−X∥F to be strictly minimized,

3. Set the Lipschitz constant to 1 for the decoder’s regularization,

4. Assume the rank of the data covariance Cov(X) is not less than the latent space dimension
m.

Specifically, B’s columns consist of the principal components of X , while A acts exactly the same as
B⊤ on X . When X has full row rank, A = B⊤.

Proof. According to (Bourlard & Kamp, 1988), minimizing the reconstruction error cancels out the
biases a and b together, and simplifies the reconstruction loss into ∥BAX ′−X ′∥F where X ′ = X−X̄ .
Therefore, for simplicity and without any loss of generality, hereafter we assume X̄ = 0, e(x) = Ax
and g(z) = Bz. Given a dataset X ∈ Rd×n of n samples, condition #1 means the corresponding
latent codes are Z = AX , whose covariance matrix is S = 1

n−1ZZ⊤ = 1
n−1AXX⊤A⊤ = ASXA⊤

where SX is the data covariance.

Condition #2 necessitates that both the encoder A and the decoder B possess full-rank. This comes
from the Eckart–Young–Mirsky theorem (Eckart & Young, 1936) and the inequality rank(AB) ≤
min(rank(A), rank(B)). Moreover, for a full-rank decoder B = V Σ−1U⊤ (here for simplicity we
use the SVD formulation where Σ is diagonal), the encoder A must satisfy AX = B†X = UΣV ⊤X
when we minimize the reconstruction loss ∥BAX −X∥F , so the reconstruction loss reduces into
∥V V ⊤X −X∥F . From the minimum-error formulation of PCA (Bishop & Nasrabadi, 2006), we
know V should be of the form V = PQ, where Q⊤Q = QQ⊤ = I and P ’s column vectors are the
orthonormal eigenvectors corresponding to the m largest eigenvalues of the data covariance SX , such
that P⊤SXP = Λ where Λ is a diagonal matrix of the m largest eigenvalues. Therefore we can only
minimize the volume by changing U , Σ and Q.

It follows that S = ASXA⊤ = UΣV ⊤SXV Σ⊤U⊤ = UΣQ⊤ΛQΣ⊤U⊤. Because according to
Theorem 1, minimizing the volume

∏m
i

√
[S]ii minimizes the determinant detS = (detΣ)2 detΛ,

then under condition #3 and #4, this is minimized only when [Σ]ii = 1 for all i, given that the decoder
is required to be 1-Lipschitz so [Σ]ii ≥ 1 for all i, and detΛ > 0. Hence Σ = I , B† = B⊤ and B
has orthonormal columns because B⊤B = UΣ−2U⊤ = I .

Therefore S⋆—the volume-minimized S—satisfies S⋆ = UQ⊤ΛQU⊤ and thus is orthogonally
similar to Λ. Since S⋆ is diagonal (Theorem 1), it must have the same set of diagonal entries as
those of Λ, though not necessarily in the same order. Thus when the volume is minimized, we have
ASXA⊤ = B†SX(B†)⊤ = B⊤SXB = S⋆. Because B’s columns are orthonormal, according to
Lemma 2, this identity only holds when B’s column vectors are the eigenvectors corresponding to the
m largest eigenvalues of SX , so the linear decoder B consists of the principal components of X .

Remark 1.1. Although A is not necessarily equal to B⊤, it projects X into the latent space the same
way as B⊤. It can also be verified that it must have the form A = B⊤ +W where each row of W
lies in kerX⊤. This means the identity A = B⊤ holds when X has full row rank, in which case A
also recovers the principal components of X .

Remark 1.2. It is easy to check that setting the decoder’s Lipschitz constant to any value K will just
scale down all the eigenvalues by K2, without hurting any of the principal dimension aligning of
PCA or distorting the ratio between dimensions.

Remark 1.3. This proof indicates that minimizing the volume is disentangled from reducing the
reconstruction loss, at least for the linear case. Specifically, the reconstruction loss controls only P ,
while the least volume regularization controls the rotation and scaling in the latent space respectively
through U , Q and Σ. The product UΣQ⊤ then models the family H of linear homeomorphisms that
the linear autoencoder (without bias vectors) can additionally learn beyond preserving information
through P⊤, as discussed in §2.3. Indeed, the linear encoder is of the form A = (UΣQ⊤) ◦ P⊤

while the linear decoder is of the form B = P ◦QΣ−1U⊤ = P ◦ (UΣQ⊤)−1.

Due to the minimization of volume, Σ ends up being an identity matrix, making both g and e isometric
over the dataset X . This means e does not scale up or down any data dimension in the latent space.
We argue that this is the primary reason why each PCA latent dimension’s degree of importance
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scales with its variance, because one can easily check that as long as Σ = I , Proposition 2 below
still holds for an “imperfect” PCA where A = B⊤ = UQ⊤P⊤. We may expect a similar ordering
effect for nonlinear autoencoders.

The rotations U and Q, on the other hand, help cram as much data information into the most primary
latent dimensions as possible, such that when we remove any number of the least informant latent
dimensions, the remaining dimensions still store the most amount of information they can extract
from X in terms of minimizing the reconstruction loss. For nonlinear autoencoders, we may expect
a cramming effect that is similar yet not identical, because after stripping off some least informant
latent dimensions, the nonlinear autoencoder might further reduce the reconstruction loss by curling
up the decoder’s image—now of lower dimension—in the dataset to traverse more data region.

Proposition 2. Let λi be the eigenvalues of the data covariance matrix. The explained variance
λi∑n
j λj

of a given latent dimension i of a linear PCA model is the ratio between E∥·∥2
2
({i})—the MSE

reconstruction error induced by pruning this dimension (i.e., setting its value to its mean 0) and
E∥·∥2

2
(Ω)—the one induced by pruning all latent dimensions, where Ω denotes the set of all latent

dimension indices.

Proof. First we show that the ith eigenvalue λi of the data covariance matrix equals the MSE
introduced by pruning principal dimension i. Let vi denote the eigenvector corresponding to the ith
principal dimension. Then pruning this dimension leads to an incomplete reconstruction x̃{i} that
satisfies:

E∥·∥2
2
({i}) := E[∥x̃{i} − x∥22] = E[∥⟨x, vi⟩ · vi∥22] = E[⟨x, vi⟩2] = λi (9)

Next we show that the E of linear PCA has additivity, i.e., the joint MSE induced by pruning several
dimensions in P altogether equals the sum of their individual induced MSE:

E∥·∥2
2
(P ) := E[∥x̃P − x∥22] = E[∥

∑
i∈P ⟨x, vi⟩ · vi∥22]

= E[⟨
∑

i∈P ⟨x, vi⟩ · vi,
∑

i∈P ⟨x, vi⟩ · vi⟩]
= E[

∑
i∈P ⟨x, vi⟩2] =

∑
i∈P E[⟨x, vi⟩2]

=
∑

i∈P λi =
∑

i∈P E∥·∥2
2
({i})

(10)

Hence the claim is proved.

Remark 2.1. The subtraction in Eqn. 6 is a generalization of the case where the PCA model’s number
of components is set smaller than the data covariance’s rank r. In this case, the PCA model—as a
linear AE—will inevitably have a reconstruction error ϵ even if no latent dimension is pruned. Yet we
may regard this inherent error ϵ = E[∥x̃I − x∥22] as the result of implicitly pruning a fixed collection
I of additional r−n latent dimensions required for perfect reconstruction. Then λi in (9) can instead
be explicitly expressed as λi = E[∥x̃{i}∪I −x∥22]−ϵ to accommodate this implicit pruning. Therefore
the induced reconstruction error E∥·∥2

2
({i}) is actually the change in reconstruction error before and

after pruning i (with the inherent reconstruction error ϵ taken into account). The one in Eqn. 6 is
thus a generalization of this, using the change in reconstruction error to indicate each dimension’s
importance.

B TECHNICAL DETAILS OF EXPERIMENTS

B.1 TOY PROBLEMS

We apply least volume to low-dimensional toy datasets to pedagogically illustrate its effect. In each
case, we make the latent space dimension equal to the data space dimension. Figure B.2 shows that
the autoencoders regularized by least volume successfully recover the low dimensionality of the
1D and 2D data manifold respectively in the latent spaces by compressing the latent sets into low
dimensional latent subspaces, without sacrificing the reconstruction quality. Not only that, with a
large enough weight λ for the volume penalty, in the noisy 2D problem, the autoencoder also manages
to remove the data noise perpendicular to the 2D manifold (Fig. B.2b.ii).
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(a.i) Reconstruction in 2D

(a.ii) Latent Space

(a) 1D Manifold in 2D Data Space

(b.i) Reconstruction in 3D (b.ii) Projection along Y Axis

(b.iii) Latent Subspace 0-1 (b.iv) Latent Subspace 0-2

(b) Noisy 2D Manifold in 3D Data Space

Figure B.2: Least volume on low dimensional toy problems.

B.1.1 DATASET

The 1D manifold dataset {(x, y)} consists of 50 samples, where x are uniformly sampled from
[−0.5, 0.5] and y are created via y = 10x(x− 0.4)(x+ 0.35).

The 2D manifold dataset {(x, y, z)} consists of 100 samples, where x and y are uniformly sampled
from [−0.5, 0.5]× [−0.5, 0.5], and z are created via z = 10x(x− 0.3)(x+ 0.3). After this, we add
Gaussian noise N (µ = 0, σ = 0.1) to the z dimension

B.1.2 ARCHITECTURE

In Table B.1 we list the architectures of the autoencoders for both toy datasets. Here Linearn denotes
a fully connected layer of n output features, while SN-Linearn denotes one regularized by spectral
normalization. LeakyReLUα denotes a LeakyReLU activation function with negative slope α.

Table B.1: Architectures of Autoencoders

Manifold Encoder Decoder

1D

x ∈ R2

→ Linear32 → LeakyReLU0.2
→ Linear32 → LeakyReLU0.2
→ Linear32 → LeakyReLU0.2
→ Linear32 → LeakyReLU0.2

→ Linear2 → z ∈ R2

z ∈ R2

→ SN-Linear32 → LeakyReLU0.2
→ SN-Linear32 → LeakyReLU0.2
→ SN-Linear32 → LeakyReLU0.2
→ SN-Linear32 → LeakyReLU0.2

→ SN-Linear2 → x ∈ R2

2D

x ∈ R3

→ Linear128 → LeakyReLU0.2
→ Linear128 → LeakyReLU0.2
→ Linear128 → LeakyReLU0.2
→ Linear128 → LeakyReLU0.2

→ Linear3 → z ∈ R3

z ∈ R3

→ SN-Linear128 → LeakyReLU0.2
→ SN-Linear128 → LeakyReLU0.2
→ SN-Linear128 → LeakyReLU0.2
→ SN-Linear128 → LeakyReLU0.2

→ SN-Linear3 → x ∈ R3

B.1.3 HYPERPARAMETERS

The hyperparameters are listed in Table B.2. The reconstruction loss is MSE, the volume penalty is
m
√∏

i σi, and the optimizer is Adam.
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Table B.2: Hyperparameters

Dataset Batch Size λ η Learning Rate Epochs

1D 50 0.001 0 0.001 10000

2D 100 0.01 0 0.0001 10000

B.2 IMAGE DATASETS

B.2.1 CELEBA RESULT

We additionally perform the dimension reduction experiment in §5.1 on the CelebA dataset.

(a) Latent Set Dimensionality vs
L2 Reconstruction Error

(b) Explained Reconstruction vs
Latent Dimension #

(c) L2 Reconstruction vs λ (more
in §B.3.1)

Figure B.3: Dimension Reduction Result of Sparse Regularizers on CelebA

B.2.2 DATASETS

The 5D synthetic dataset is produced by feeding an image of a red circle to Torchvision’s Ran-
domAffine and ColorJitter layers to randomly generate images of transformed circles of different
colors, then resizing them to 32 × 32 × 3. Specifically, we set their parameters to translate=(0.2,
0.2), scale=(0.2, 0.5), brightness=(0.3, 1), hue=(0, 0.5), corresponding to 3 spatial dimensions
(x-translation, y-translation, circle size) and 2 color dimensions (hue and brightness). The other
information of the three image sets are listed in Table B.3. All pixel values are normalized to between
0 and 1.

Table B.3: Dataset Information

Dataset Synthetic MNIST CIFAR-10 CelebA

Training Set Size 30000 60000 50000 162770

Test Set Size 6000 10000 10000 39829

Image Dimension 32× 32× 3 32× 32× 1 32× 32× 3 32× 32× 3

B.2.3 ARCHITECTURE

In Table B.4 we list the architectures of the autoencoders for these datasets. Here Convn denotes
convolutional layer of n output channels, while SN-Deconvn denotes spectral-normalized deconvolu-
tional layer of n output channels. For all such layers we set kernel size to 4, stride to 2 and padding
to 1.

B.2.4 HYPERPARAMETERS

The hyperparameters are listed in Table B.5. The reconstruction loss is binary cross entropy and the
optimizer is Adam. Only the volume penalty needs η. By default η = 1 for all experiments.
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Table B.4: Architectures of Autoencoders

Dataset Encoder Decoder

Synthetic

x ∈ R32×32×3

→ Conv32 → LeakyReLU0.2
→ Conv64 → LeakyReLU0.2
→ Conv128 → LeakyReLU0.2
→ Conv256 → LeakyReLU0.2
→ Reshape2×2×256→1024

→ Linear50 → z ∈ R50

z ∈ R50 → SN-Linear1024
→ Reshape1024→2×2×256
→ SN-Deconv128 → LeakyReLU0.2
→ SN-Deconv64 → LeakyReLU0.2
→ SN-Deconv32 → LeakyReLU0.2
→ SN-Deconv3 → Sigmoid
→ x ∈ R32×32×3

MNIST

x ∈ R32×32×1

→ Conv32 → LeakyReLU0.2
→ Conv64 → LeakyReLU0.2
→ Conv128 → LeakyReLU0.2
→ Conv256 → LeakyReLU0.2
→ Reshape2×2×256→1024

→ Linear128 → z ∈ R128

z ∈ R128 → SN-Linear2048
→ Reshape2048→4×4×128
→ SN-Deconv64 → LeakyReLU0.2
→ SN-Deconv32 → LeakyReLU0.2
→ SN-Deconv1 → Sigmoid
→ x ∈ R32×32×1

CIFAR-10

x ∈ R32×32×3

→ Conv128 → LeakyReLU0.2
→ Conv256 → LeakyReLU0.2
→ Conv512 → LeakyReLU0.2
→ Conv1024 → LeakyReLU0.2
→ Reshape2×2×1024→4096

→ Linear2048 → z ∈ R2048

z ∈ R2048 → SN-Linear8192
→ Reshape8192→4×4×512
→ SN-Deconv256 → LeakyReLU0.2
→ SN-Deconv128 → LeakyReLU0.2
→ SN-Deconv3 → Sigmoid
→ x ∈ R32×32×3

CelebA

x ∈ R32×32×3

→ Conv128 → LeakyReLU0.2
→ Conv256 → LeakyReLU0.2
→ Conv512 → LeakyReLU0.2
→ Conv1024 → LeakyReLU0.2
→ Reshape2×2×1024→4096

→ Linear1024 → z ∈ R1024

z ∈ R1024 → SN-Linear8192
→ Reshape8192→4×4×512
→ SN-Deconv256 → LeakyReLU0.2
→ SN-Deconv128 → LeakyReLU0.2
→ SN-Deconv3 → Sigmoid
→ x ∈ R32×32×3

Table B.5: Hyperparameters

Dataset Batch Size λ η Learning Rate Epochs

Synthetic 100 {0.01, 0.003, 0.001,
0.0003, 0.0001} 1 0.0001 400

MNISTS 100 {0.03, 0.01, 0.003,
0.001, 0.0003} 1 0.0001 400

CIFAR-10 100 {0.03, 0.01, 0.003,
0.001, 0.0003} 1 0.0001 1000

CelebA 100 {0.03, 0.01, 0.003,
0.001, 0.0003} 1 0.0001 200

B.3 ADDITIONAL EXPERIMENT RESULTS OF IMAGE DATASETS

B.3.1 L2 RECONSTRUCTION LOSS

λ controls the trade-off between latent set compression and reconstruction. We can see in Fig. B.4
that as λ goes up, the autoencoder’s L2 reconstruction loss increases (without pruning, marked by
suffix “_non”), and eventually it converges to the reconstruction loss that is achieved after pruning
all latent dimensions (marked by suffix “_all”). In this extreme case, the latent set approximately
collapses into a single point and stores no useful information about the dataset. In terms of the four
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regularizers’ influence on the reconstruction, the ST regularizer seems to be the least sensitive to λ
compared with the other two that act directly on the latent STD vector σσσ.

(a) Synthetic (b) MNIST (c) CIFAR-10

Figure B.4: L2 Reconstruction vs λ

To better read Fig. 2, we need to determine which segments of the curves correspond to low quality
reconstruction, so that we can ignore them. For this, it should be helpful to plot the autoencoders’
reconstructions corresponding to different L2 loss, so that we can grasp at what level of L2 loss
do the autoencoders’ outputs have acceptable visual quality. In Fig. B.5 we can see that the image
reconstructions have good quality when the L2 reconstruction loss is under 2.

B.3.2 EFFECT OF η

As mentioned in §3.1, the supplemented volume penalty m
√∏

i σi + η interpolates between m
√∏

i σi

and the L1 penalty 1
m∥σσσ∥1 gradient-wise. We investigate this by performing experiments at different

η in {0, 1, 3, 10, 30} and plot their curves of Latent Set Dimensions vs L2 Reconstruction Loss in
Fig B.6. The hyperparameter configurations are listed in Table B.6. We can perceive this interpolation
rather clearly in Fig. B.6b and B.6c that as η increases, the dimension-reconstruction curve of the
volume penalty converges to that of the L1 penalty. The convergence to L1 is not very apparent in
Fig. B.6a probably because η is much smaller than most STDs (See Table B.7).

Table B.6: Hyperparameters

Dataset Batch Size λ η Learning Rate Epochs

Synthetic 100 {0.01, 0.003, 0.001,
0.0003, 0.0001} {0, 1, 3, 10, 30} 0.0001 400

MNISTS 100 {0.03, 0.01, 0.003,
0.001, 0.0003} {0, 1, 3, 10, 30} 0.0001 400

CIFAR-10 100 {0.03, 0.01, 0.003,
0.001, 0.0003} {0, 1, 3, 10, 30} 0.0001 1000

However, η = 0 seems to be a special case whose curves differ greatly from the other η, and in
Fig. B.6a and Fig. B.6c it is not as effective as the other η in terms of dimension reduction. This is

probably due to the gradient explosion induced by the scaling factor
m
√∏

i σi

σi
for small σi.

B.3.3 ABLATION STUDY OF ORDERING EFFECT

It seems that even without Lipschitz regularization or latent regularization, the latent STD still in
general correlates well with the explained reconstruction (or the degree of importance), as shown in
Fig. B.7 and B.8. Although there is no clear answer to this, we hypothesize that this is because an
unregularized decoder is still a Lipschitz function such that Theorem 3 still works. When minimizing
the latent regularizers during training, although an unregularized decoder’s Lipschitz constant is not
upper bounded by spectral normalization, due to the gradient-based optimization it is not likely to
increase abruptly, so practically we may regard the decoder’s Lipschitz constant as being “softly”
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(a) Synthetic

(b) MNIST

(c) CIFAR-10

Figure B.5: L2 Reconstruction Loss vs Sample
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(a) Synthetic (b) MNIST (c) CIFAR-10

Figure B.6: Dimension-Reconstruction Curve vs η

upper bounded such that it still collaborates to some degree with the latent regularization. This
hypothesis might explain the ordering effect in Fig. B.7.

However, in the case without latent regularization (Fig. B.8), both the autoencoders with and without
Lipschitz regularization possess much more “rugged” explained reconstruction curves compared
to Fig. 3 and B.7, which signifies that the latent dimensions with large STDs are more likely to
correspond to trivial data dimensions when there is no latent regularization (Fig. B.8c is a good
example of this ruggedness, especially when compared to Fig. B.7c and 3c). This agrees with our
discussion in §3.4 about the latent regularization’s role in producing the ordering effect.

(a) Synthetic (b) MNIST (c) CIFAR-10

Figure B.7: (No Lipschitz Regularization) Explained Reconstruction vs Latent Dimension # (sorted
in descending order of STD)

(a) Synthetic (b) MNIST (c) CIFAR-10

Figure B.8: (No Latent Regularization) Explained Reconstruction vs Latent Dimension # (sorted in
descending order of STD)

B.3.4 ABLATION STUDY OF ISOTROPIC SHRINKAGE

We list in Table B.7 the range of the principal latent dimensions’ STDs for the cases with and without
Lipschitz regularization on the decoder. Here “principal latent dimensions” refers to the latent
dimensions left after cumulatively pruning those with the smallest STDs until their joint explained
reconstruction exceeds 1%. We can see that the STDs in the cases without Lipschitz regularization
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are orders of magnitude smaller than those with Lipschtiz regularization, and also smaller than their
counterparts without latent regularization. This together with Fig. 4 shows that isotropic shrinkage
happens when there is no Lipschitz regularization.

Table B.7: Ranges of σi

Synthetic MNIST CIFAR-10

Regularizer Lip No Lip Lip No Lip Lip No Lip

Lasso 37.0 - 77.7 0.02 - 0.22 0.88 - 22.2 0.01 - 0.06 0.17 - 51.5 0.01 - 0.11
L1 46.7 - 102 0.01 - 0.44 3.12 - 29.1 0.01 - 0.05 0.20 - 50.7 0.004 - 0.10
Vol 105 - 1062 0.01 - 0.74 34.4 - 230 0.01 - 0.13 0.21 - 91.2 0.005 - 0.12

No Reg 2472 - 6048 4.81 - 11.4 81.9 - 171 0.91 - 2.41 29.3 - 882 0.10 - 3.17

B.3.5 DOWNSTREAM KNN CLASSIFICATION TASKS

We perform KNN classification on MNIST and CIFAR-10 using the latent representation learned by
different sparse AEs of similar sparsity levels (See Fig.B.9). In short, all methods are comparable on
MNIST (Table B.8), but LV has much better performance on CIFAR-10 (Table B.9).

(a) MNIST (b) CIFAR-10

Figure B.9: Cases Selected for Downstream Classification Tasks in Table 1 and 2 (Big dots mark the
selections).

Table B.8: Prediction Scores of Latent KNN Classifiers (k=5) on MNIST

Regularizer Recall Precision Accuracy

Lasso 97.19% ± 0.02% 97.22% ± 0.02% 97.22% ± 0.02%
L1 97.29% ± 0.08% 97.33% ± 0.09% 97.32% ± 0.08%
ST 95.63% ± 0.20% 95.70% ± 0.17% 95.70% ± 0.19%
Vol 96.68% ± 0.03% 96.73% ± 0.03% 96.73% ± 0.03%

Raw Data 97.26% 97.31% 97.29%

Table B.9: Prediction Scores of Latent KNN Classifiers (k=5) on CIFAR-10

Regularizer Recall Precision Accuracy

Lasso 34.34% ± 0.23% 41.97% ± 0.43% 34.34% ± 0.23%
L1 34.40% ± 0.09% 41.93% ± 0.11% 34.40% ± 0.09%
ST 34.96% ± 1.57% 37.64% ± 0.09% 34.96% ± 1.57%
Vol 41.08% ± 0.41% 42.15% ± 0.34% 41.08% ± 0.41%

Raw Data 33.98% 43.04% 33.98%
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C TIPS FOR HYPERPARAMETER TUNING, MODEL TRAINING AND USAGE

C.1 HYPERPARAMETER TUNING

There are three hyperparameters—K, λ, η—to tune for least volume. However, usually we only need
to take care of λ. Below we discuss them in detail.

1. K is always first settled when constructing the decoder network and fixed afterwards,
because the activation functions are fixed and the spectral normalization makes the linear
layers 1-Lipschitz. Normally K = 1 works well, just like in all the experiments we did.
However, if the data space is very high dimensional such that the data manifold has great
length scale in terms of its geodesic distance, then this will in turn make the latent set
large-scale after the flattening (check those large σi in Table B.7 when the decoder is 1-
Lipschitz). This might decelerate the training of the autoencoder, as the encoder then needs
to dramatically increase its weights to scale up the latent code to reduce the reconstruction
loss, which can be time-consuming. In this situation, increasing K could reduce the length
scale of the latent set and accelerate training.
In case the length scale of the dataset really becomes a problem, to set K and integrate it
into the autoencoders:

• As to the value of K, a practical choice is the dimension of the data space X or any
value of similar order of magnitude, provided the dataset is normalized. This value
does not need to be exact because LV works for any K.

• We can attach a scaling layer f(x) = Kx to the input of g to make it K-Lipschitz (i.e.,
dnew = d ◦ f ).
Alternatively, we can either attach f to the output of the encoder e (i.e., enew = f ◦ e)
or just increase the initial weights of e to simply scale up the latent set. This keeps the
decoder g 1-Lipschitz.

2. Empirically, it is fine to leave η at 1 by default for K = 1. In general, it had better be a value
more than one or two orders of magnitude smaller than the largest latent STDs to make it
not too L1-like.
However, it should be emphasized that in this work, this η is introduced more like a conces-
sion, an unsatisfying alternative to the ideal but uneasy-to-implement recursive subspace
extraction process introduced in §2.1. Without that recursive extraction and compression,
the optimizer will keep compressing those trivialized latent dimensions unnecessarily even
if they cannot be compressed any more. This could limit the complexity of the autoencoder
thus prevent further flattening of the latent set, especially when the latent space is higher
dimensional (given that for the same dataset, there are more trivial latent dimensions to
compress in the latent space). This is the main drawback of this work in our opinion. A
reliable realization of the recursive subspace extraction process is the missing piece that
may unleash the full potential of Least Volume, thus is worth researching in the future.

3. λ controls the trade-off between reconstruction and dimension reduction. This needs the
user to set a reasonable threshold δ for the reconstruction error ϵ, and tune λ to make ϵ < δ.
It is hard to tell what a proper δ is, given that different people have different tolerance to ϵ
for different problems. The best practice for tackling this dilemma is probably transparency
and openness: always report δ in the LV result.
We can infer that when the autoencoder’s latent dimension m needs to be changed, λ should
be adjusted in proportion to m to negate the scaling variation caused by the factor 1/m in
Eqn. 5, so that the gradients induced by the volume penalty on the model’s parameters have
consistent magnitudes across different m.

C.2 MODEL TRAINING

At the start of each training, if λ is too large, it is likely that the volume penalty will prevent the
reduction of reconstruction error, trapping the model parameters at the local minima. In case this
happens, it is practical to set a schedule for λ that gradually increases it to the target value as the
training proceeds. If λ is set correctly, normally at the start of each training the reconstruction loss
will immediately decrease, whereas the volume penalty will increase for a short period of time before

23



Published as a conference paper at ICLR 2024

4e-3

5e-3
6e-3
7e-3
8e-3
9e-3
0.01

0.02

0.03

0.04

0.05
0.06
0.07
0.08
0.09
0.1

0.2

-500 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5

(a) Reconstruction Loss

1

2

3
4
5
6
78
910

20

30
40
50
60
7080
90100

200

300
400
500
600
7008009001e+3

2e+3

3e+3

-500 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5

(b) Volume Penalty

Figure C.10: Typical training history of LV.

it starts to drop, as shown in Fig. C.10. This is because when K is not large, the latent set has to
expand itself first to reduce the reconstruction loss, according to Theorem 3.

As to determining the number of epochs for training, a useful strategy is to inspect the history curve
of the volume penalty, as usually the reconstruction loss converges faster than the volume penalty
(Fig. C.10). It is ideal to stop training when the volume penalty value converges. Monitoring the
histogram of latent STDs throughout training is another useful and informative way to assess the
dimension reduction progress.

C.3 MODEL USAGE

To quickly determine the compressed latent set’s dimension after training LV models, rather than
tediously evaluating the explained reconstructions one dimension by one dimension, a much more
convenient way is to illustrate all latent STDs in descending order in a bar plot and put the y-axis
on log scale. In every LV application we have done so far (including those outside this work), there
is always a noticeable plummet at a given index in the log-scale bar plot (a real example is shown
in Fig. C.11). All latent dimensions before this plummet can be regarded as corresponding to the
principal dimensions of the dataset, considering their significantly larger STDs and empirically also
much larger explained reconstructions.

Figure C.11: Typical pattern in the latent STDs after LV regularization. In this example the plummet
is at #15, which suggests the dataset might be 15-D or of lower dimension.
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