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Abstract

We study Model Predictive Control (MPC) and propose a general analysis pipeline
to bound its dynamic regret. The pipeline first requires deriving a perturbation
bound for a finite-time optimal control problem. Then, the perturbation bound is
used to bound the per-step error of MPC, which leads to a bound on the dynamic
regret. Thus, our pipeline reduces the study of MPC to the well-studied problem
of perturbation analysis, enabling the derivation of regret bounds of MPC under a
variety of settings. To demonstrate the power of our pipeline, we use it to generalize
existing regret bounds on MPC in linear time-varying (LTV) systems to incorporate
prediction errors on costs, dynamics, and disturbances. Further, our pipeline leads
to regret bounds on MPC in systems with nonlinear dynamics and constraints.

1 Introduction

Model Predictive Control (MPC) is an optimal control approach that solves a Finite-Time Optimal
Control Problem (FTOCP) using future predictions in a receding horizon manner [1]. It is a flexible
approach that is able to accommodate nonlinear and time-varying dynamics, state and actuation
constraints, and general cost functions [2–5]. As a result, it is broadly applied in a wide spectrum of
control problems, including robotics [6–10], autonomous vehicles [11–17], power systems [18–24],
process control [25–27], etc.

Despite the popularity of MPC, its theoretic analysis has been quite challenging. Early works along
this line focused on the stability and recursive feasibility of MPC [28–31]. More recently, there has
been tremendous interest in providing finite-time learning-theoretic performance guarantees for MPC,
such as regret and/or competitive ratio bounds [32, 33]. For example, progress has recently been
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made toward (i) regret analysis of MPC in linear time-invariant (LTI) systems with prediction errors
on the trajectory to track [34], (ii) the dynamic regret and competitive ratio bounds of MPC under
linear time-varying (LTV) dynamics with exact predictions [35], and (iii) exponentially decaying
perturbation bounds of the finite-time optimal control problem in time-varying, constrained, and
non-linear systems [36, 37]. Beyond MPC, providing regret and/or competitive ratio guarantees for a
variety of (predictive) control policies has been a focus in recent years. Examples include RHGC
[38, 39] and AFHC [20, 40] for online control/optimization with prediction horizons, OCO-based
controllers [41, 42] for no-regret online control, and variations of ROBD for competitive online
control without predictions [43, 44] or with delayed observations [45]. In addition, regret lower
bounds have been studied in known LTI systems [46] and unknown LTV systems [47].

A promising analysis approach that has emerged from the literature studying MPC and, more
generally, predictive control, is the use of perturbation analysis techniques, or more particularly, the
use of so-called exponential decaying perturbation bounds. Such techniques underlie the results in
[34–37]. This research direction is particularly promising since perturbation bounds exist for FTOCP
in many dynamical systems, e.g., [48–52], and thus it potentially allows the derivation of regret
and/or competitive ratio bounds in a variety of settings. However, to this point the approach has
only yielded results in unconstrained linear systems with no prediction errors (e.g., [35]), and often
requires adjusting MPC to include a counter-intuitively large re-planning window due to technical
challenges in the analysis (e.g., [48, 49]).

Thus, though perturbation analysis techniques might seem promising, many important questions about
applying them for the study of predictive control remain open. Firstly, one of the major reasons for
the extensive application of MPC is its flexibility in incorporating constraints and nonlinear dynamics
[53]. However, none of the existing results and approaches can analyze the performance of MPC under
constraints and/or nonlinear dynamics. In fact, the anlyasis of MPC under constraints or nonlinearity
has long been known to be challenging because of the intractable form of cost-to-go functions and
optimal solutions. Secondly, prediction error is inevitable for real-world implementations of MPC
due to unpredictable noise and model mismatch, yet the analysis of MPC subject to prediction errors
is limited. Thirdly, existing approaches analyze MPC in a case-by-case manner and, in most cases,
the analysis framework is specific to the assumptions of the particular case (e.g. quadratic costs,
perfect predictions, etc) in a way that does not generalize to other settings [33–35, 48, 49].

Contributions. In this paper, we propose a general analysis pipeline (Section 3) that converts
perturbation bounds for an FTOCP into dynamic regret bounds for MPC across a variety of settings.
More specifically, the pipeline consists of three steps (see Figure 1). In Step 1, we obtain the required
perturbation bounds for the specific setting. In Step 2, as shown in Lemma 3.1, the perturbation
bounds are used to bound the per-step error, which is defined to be the error of the MPC action against
the clairvoyant optimal action (see Definition 3.1). In Step 3, the per-step error bound is converted
to a dynamic regret bound for MPC, as shown in Lemma 3.2. The full pipeline is summarized into
a Pipeline Theorm (Theorem 3.3), which directly converts perturbation bounds into bounds on the
dynamic regret of MPC in general settings, including those with time-variation, prediction error,
constraints, and nonlinearities. The key technical insight that enables the pipeline is the following
recursive relationship between Step 2 and Step 3 (Lemma 3.1 and Lemma 3.2): Step 2 guarantees
a “small” per-step error et once the current state xt of MPC is “near” the offline optimal trajectory
(OPT), while Step 3 guarantees the next state xt+1 of MPC will be near OPT if all previous per-step
errors ({e⌧}⌧t) are small. Thus Step 2 and Step 3 work together to guarantee MPC states are always
near OPT and thus MPC per-step errors are always small (Theorem 3.3).

To demonstrate the power of the proposed pipeline, we apply it to a range of settings, as summarized
in Table 1. Our first applications are to two settings with linear time-varying (LTV) dynamics and
prediction errors on (i) disturbances, Section 4.1, and (ii) the dynamical matrices and cost functions,
Section 4.2. The state-of-the-art results in the LTV setting are [35], which requires exact knowledge
of the disturbances and of the dynamics. To the best of our knowledge, our work provides the first
regret result for MPC with prediction error on the dynamics (see Theorem 4.2), a result that enables
the bounds in settings where MPC is applied to learned dynamics [54].

Our second application is to a setting with nonlinear dynamics and constraints (Section 5). We show
the first dynamic regret bound for MPC under state and actuation constraints in nonlinear systems with
general costs (Theorem 5.1). Very few prior results exist for MPC in this setting, even with nonlinear
dynamics or constraints individually. The most related works are [48], which studies constrained
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MPC, and [49], which studies nonlinear MPC. In both cases, a counter-intuitive re-planning window
is added to MPC to facilitate the analysis, a downside that our pipeline could avoid. Besides, [48]
and [49] require exact predictions of the cost functions, dynamics, and constraints for the exponential
convergence property of MPC to hold, while our result can apply to more general noisy predictions.

2 Preliminaries

In this section, we first introduce the general predictive online control problem including the settings,
the objective, available information, and the predictive controller class. Then, we introduce the MPC
algorithm, which is a widely-used predictive controller that we focus on in this work. Specifically,
we consider a general, finite-horizon, discrete-time optimal control problem with time-varying costs,
dynamics and constraints, namely

min
x0:T ,u0:T�1

T�1X

t=0

ft(xt, ut; ⇠
⇤
t
) + FT (xT ; ⇠

⇤
T
)

s.t. xt+1 = gt(xt, ut; ⇠
⇤
t
), 80  t < T,

st(xt, ut; ⇠
⇤
t
)  0, 80  t < T, (1)

x0 = x(0).

Here, xt 2 Rn is the state, ut 2 Rm is the control input or action; ft is a time-varying stage cost
function, gt is a time-varying dynamical function, and st is a time-varying constraint function, all
parameterized by a ground-truth parameter ⇠⇤

t
(unknown to an online controller); and FT is a terminal

cost function parameterized by ⇠⇤
T

that regularizes the terminal state.

The offline optimal trajectory OPT is obtained by solving (1) with the full knowledge of the true
parameters ⇠⇤0:T . In contrast, an online controller can only observe noisy estimations of the parameters
in a fixed prediction horizon to decide its current action ut at each time step t. For example, MPC
picks ut by calculating the optimal sub-trajectory confined to the prediction horizon. The objective
is to design an online controller that can compete against the offline optimal trajectory OPT. We
use dynamic regret as the performance metric, which is widely used to evaluate the performance of
online controllers/algorithms in the literature of online control [32, 34, 35] and online optimization
[38, 43, 55]. Specifically, for a concrete problem instance (x(0), ⇠⇤0:T ), let cost(OPT) denote the
total cost incurred by OPT, and cost(ALG) denote the total cost incurred by an online controller
ALG. The dynamic regret is defined as the worst-case additional cost incurred by ALG against OPT,
i.e., sup

x(0),⇠⇤0:T
(cost(ALG)� cost(OPT)).

The formulation in (1) is general enough to include a variety of challenging settings. In this paper,
we consider three important settings to illustrate how to apply our analysis pipeline. The settings
differ in (a) the form of costs, dynamics, and constraints, and (b) the quantities in the system to be
predicted (i.e., parameterized by ⇠⇤

t
), and the prediction error allowed. An overview of the settings is

presented in Table 1 below.

Table 1: Overview of the settings considered in this paper
Section Costs Dynamics Constraints Prediction ⇠t Prediction error

4.1 decomposable LTV none disturbance: wt arbitrary

4.2 quadratic LTV none cost: Qt, Rt, x̄t

dynamics: At, Bt

sufficiently small

5 general non-linear
time-varying

non-linear
stage constraint

cost: ft
dynamics: gt
constraints: st

sufficiently small

In each setting, we impose different assumptions on cost functions, dynamical systems, constraints,
and properties of the predicted quantities as functions of parameter ⇠t. In general, we require well-
defined costs, Lipschitz and uniformly controllable dynamics, and Lipschitzness of the predicted
quantities with regard to ⇠t. For constraints, additional assumptions characterizing the active con-
straints along and near the optimal trajectory are imposed. Detailed definitions and statements are
deferred to Appendix B and Sections 3, 4, and 5. To facilitate the statement of the pipeline, we
assume the following universal properties hold throughout the paper:

• Stability of OPT: there exists a constant Dx⇤ such that kx⇤
t
k  Dx⇤ for every state x⇤

t
on the

offline optimal trajectory OPT.
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• Lipschitz dynamics: the ground-truth dynamical function gt(·, ·; ⇠⇤t ) is Lipschitz in action; i.e.,
for any feasible xt, ut, u0

t
, gt satisfies kgt(xt, ut; ⇠⇤t )� gt(xt, u0

t
; ⇠⇤

t
)k  Lg kut � u0

t
k .

• Well-conditioned costs: every stage cost ft(·, ·; ⇠⇤t ) and the terminal cost FT (·; ⇠⇤T ) are nonnega-
tive, convex, and `-smooth in (xt, ut) and xT , respectively.

2.1 Predictive Online Control

While Step 3 (Lemma 3.2) in our pipeline can be generally applied to all online controllers, in the
subsequent applications we focus on Model Predictive Control (MPC), a popular classical controller.
In this subsection, we first define the available information (predictions) as well as its quality
(prediction power), and how general predictive online controllers make decisions. Then, we define a
useful optimization problem called FTOCP, and introduce MPC as a predictive online controller.

We represent the uncertainties in cost functions, dynamics, constraints, and terminal costs as function
families parameterized by ⇠t: Ft := {ft(xt, ut; ⇠t) | ⇠t 2 ⌅t},Gt := {gt(xt, ut; ⇠t) | ⇠t 2 ⌅t},
St := {st(xt, ut; ⇠t) | ⇠t 2 ⌅t}, and FT := {FT (xT ; ⇠T ) | ⇠T 2 ⌅T }. The online controller
knows the function families F0:T , G0:T�1, and S0:T�1 as prior knowledge, but it does not know the
true parameters ⇠⇤0:T 2

Q
T

⌧=0⌅⌧ . Instead, at time step t, the online controller has access to noisy
predictions of these parameters for the future k time steps (where k is called the prediction horizon),
represented by ⇠t:t+k|t 2

Q
t+k

⌧=t
⌅⌧ . The parameter space ⌅t at each time step t may have different

dimensions.

We formally define the quality of predictions by introducing the following notion of prediction error.
Definition 2.1. The prediction error is defined as ⇢t,⌧ :=

��⇠t+⌧ |t � ⇠⇤t+⌧

�� for an integer ⌧ � 0. The
power of ⌧ -step-away predictions (for parameter ⇠) is defined as P (⌧) :=

P
T�⌧

t=0 ⇢2
t,⌧

.

Under this noisy prediction model, a general predictive online controller ALG decides the control
action based on the current state and the latest available predictions of future parameters. We formally
define the class of predictive online controllers considered in this paper in Definition 2.2, which
includes MPC as a special case.
Definition 2.2. A predictive online controller ALG is a function that takes the current state xt and
the available predictions ⇠t:t+k|t as inputs at time t and outputs the current control action ut, i.e.,
ut = ALG(xt, ⇠t:t+k|t). We use x0

u0�! x1
u1�! · · · uT�1���! uT to denote the trajectory achieved by

ALG, and use x0
u
⇤
0�! x⇤

1
u
⇤
1�! · · ·

u
⇤
T�1���! u⇤

T
to denote the offline optimal trajectory OPT.

A core component of both the design of online controllers and our analysis is the following finite-time
optimal control problem (FTOCP). Given a time interval [t1, t2], the FTOCP solves the optimal
sub-trajectory subjected to the given initial state z, terminal cost F , and a sequence of (potentially
noisy) parameters ⇠t1:t2�1, ⇣t2 , as formalized in the following definition.
Definition 2.3. The finite-time optimal control problem (FTOCP) over the horizon [t1, t2], with initial
state z, parameters ⇠t1:t2�1 and ⇣t2 , and terminal cost F (·; ·), is defined as

◆t2
t1
(z, ⇠t1:t2�1, ⇣t2 ;F ) := min

yt1:t2 ,vt1:t2�1

t2�1X

t=t1

ft(yt, vt; ⇠t) + F (yt2 ; ⇣t2)

s.t. yt+1 = gt(yt, vt; ⇠t), 8t1  t < t2,

st(yt, vt; ⇠t)  0, 8t1  t < t2, (2)
yt1 = z,

and a corresponding optimal solution as  t2
t1
(z, ⇠t1:t2�1, ⇣t2 ;F ). We shall use the shorthand notation

 t2
t1
(z, ⇠t1:t2 ;F ) :=  t2

t1
(z, ⇠t1:t2�1, ⇠t2 ;F ) when the context is clear.

Note that the formulation of the FTOCP in Definition 2.3 does not include a terminal constraint set.
To compensate for this, we allow the terminal cost F (·; ⇣t2) to take value +1 in some subset of Rn,
and ⇣t2 is not necessarily an element in ⌅t2 . For example, a terminal cost function that we frequently
use later is the indicator function of the terminal parameter ⇣t2 , where ⇣t2 2 Rn. We use I to denote
such indicator terminal cost (i.e., I(yt2 ; ⇣t2) = 0 if yt2 = ⇣t2 and I(yt2 ; ⇣t2) = +1 otherwise).
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Finally, given the definition of the FTOCP, we are ready to formally introduce MPC. The pseudocode
of this online controller is given in Algorithm 1. Basically, at time step t, MPCk solves a k-step
predictive FTOCP using the latest available parameter predictions, and commits the first control action
in the solution. When there are only fewer than k steps left, MPCk directly solves a (T � t)-step
FTOCP at time t until the end of the horizon, using the predicted real terminal cost FT (·; ⇠T |t). This
MPC controller (and its variants) has a wide range of real-world applications.

Algorithm 1 Model Predictive Control (MPCk)
Require: Specify the terminal costs Ft for k  t < T .

1: for t = 0, 1, . . . , T � 1 do
2: t0  min{t+ k, T}
3: Observe current state xt and obtain predictions ⇠t:t0|t.
4: Solve and commit control action ut :=  t

0

t
(xt, ⇠t:t0|t;Ft0)vt .

3 The Pipeline: Bounded Regret via Perturbation Analysis

The goal of this section is to give an overview of a novel analysis pipeline that converts a perturbation
bound into a bound on the dynamic regret. We begin by highlighting the form of perturbation bounds
required in the pipeline, and then describe the 3-step process of applying the pipeline. In subsequent
sections, we apply this pipeline to obtain new regret bounds for MPC in different settings.

3.1 Per-Step Error and Perturbation Bounds

A key challenge when comparing the performance of an online controller against the offline optimal
trajectory is that the online controller’s state xt is different from the offline optimal state x⇤

t
at time

step t. Due to such discrepancy in states, we cannot simply evaluate the online controller’s action ut

via comparison against the offline optimal action u⇤
t
. To address this challenge, our pipeline uses the

notion of per-step error (Definition 3.1) inspired by the performance difference lemma and its proofs
in reinforcement learning (RL) [35]. Specifically, we compare ut to the clairvoyant optimal action
one may adopt at the same state xt if all true future parameters ⇠⇤

t:T are known, which leads to the
definition of per-step error as follows.
Definition 3.1. The per-step error et incurred by a predictive online controller ALG at time step t is
defined as the distance between its actual action ut and the clairvoyant optimal action, i.e.,

et :=
��ut �  T

t
(xt, ⇠

⇤
t:T ;FT )vt

�� , where ut = ALG(xt, ⇠t:t+k|t).

The clairvoyant optimal trajectory starting from xt is defined as x⇤
t:T |t :=  T

t
(xt, ⇠⇤t:T ;FT )yt:T .

Note that the clairvoyant optimal trajectory can be viewed as being generated by an MPC controller
with long enough prediction horizon and exact predictions. This notion highlights the reason why
MPC can compete against the clairvoyant optimal trajectory, since the per-step error in a system
controlled by MPCk becomes et =

�� t+k

t
(xt, ⇠t:t+k|t;Ft+k)vt �  T

t
(xt, ⇠⇤t:T ;FT )vt

�� . Intuitively,
the per-step error converges to zero as the prediction horizon k increases and the quality of predictions
improves (i.e.

��⇠t:t+k|t � ⇠⇤t:t+k

��! 0).

This intuition highlights the important role of perturbation bounds in comparing online controllers
against (offline) clairvoyant optimal trajectories. As we have discussed in Section 1, many previous
works [36, 37, 48, 49] have established (local) decaying sensitivity/perturbation bounds for different
instances of the FTOCP (2). These bounds may take different forms, but for the application of our
pipeline we require two types of perturbation bounds that are both common in the literature:

(a) Perturbations of the parameters ⇠t1:t2 given a fixed initial state z:
��� t2

t1
(z, ⇠t1:t2 ;F )

vt1
�  t2

t1

�
z, ⇠0

t1:t2 ;F
�
vt1

��� 
 

t2X

t=t1

q1(t� t1)�t

!
kzk+

t2X

t=t1

q2(t� t1)�t,

(3)
where �t := k⇠t � ⇠0tk for t 2 [t1, t2], and scalar functions q1 and q2 satisfy limt!1 qi(t) = 0,P1

t=0 qi(t)  Ci for constants Ci � 1, i = 1, 2. This perturbation bound is useful in bounding
the per-step error et, as we will discuss in Lemma 3.1.
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(b) Perturbation of the initial state z given fixed parameters ⇠t1:t2 :
��� t2

t1
(z, ⇠t1:t2 ;F )

yt/vt
�  t2

t1
(z0, ⇠t1:t2 ;F )

yt/vt

���  q3(t� t1) kz � z0k , for t 2 [t1, t2], (4)

where the scalar function q3 satisfies
P1

t=0 q3(t)  C3 for some constant C3 � 1. This bound is
useful in preventing the accumulation of per-step errors et throughout the horizon (see Lemma 3.2).
Compared with (3), the right hand side of (4) has a simpler form.

Existing perturbation bounds usually combine the above two types ((3) and (4)) into a single equation
that characterizes perturbations on z and ⇠t1:t2 simultaneously, e.g., [35, 37]. Here, we decompose
them into two separate types because they are used in different parts of our pipeline.

3.2 A 3-Step Pipeline from Perturbation Bounds to Regret Step 1. obtain perturbation
bounds (3) & (4)

Step 2. bound the per-step
error et (Lemma 3.1)

Step 3. bound dynamic
regret (Lemma 3.2)

dynamic regret bound

The
Pipeline

Theorem
3.3

Figure 1: Illustrative diagram of the
3-step pipeline from perturbation
analysis to bounded regret.

An overview of the pipeline is given in Figure 1, which illus-
trates the high-level ideas of the pipeline that starts by obtaining
perturbation bounds, proceeds to bound the per-step error using
perturbation bounds, and finally combines the per-step error
and perturbation bounds to bound the dynamic regret. In the
following we describe each step in detail.

Step 1: Obtain the perturbation bounds given in (3) and (4).
The form of the perturbation bounds depends heavily on the
specific form of the FTOCP, and thus the derivation requires
case-by-case study (e.g., see Section 4 and Section 5). However,
off-the-shelf bounds are available in most cases, as there has
been a rich literature on perturbation analysis of control systems
(e.g., [35–37, 48, 49] and the references therein). The following
property summarizes precisely what is expected to be derived
for bounds (3) and (4) in Steps 2 and 3.
Property 3.1. Suppose there exists a positive constant R such
that the perturbation bound (3) holds for the following specifications: with t1 = t and t2 = t+ k for
t < T � k, (3) holds for F : Rn ! Rn be the identity function I, and

z 2 B(x⇤
t
, R); ⇠t:t+k�1 2 ⌅t:t+k�1, ⇠

0
t:t+k�1 = ⇠⇤

t:t+k�1; ⇠t+k, ⇠
0
t+k
2 B(x⇤

t+k
, R) ✓ Rn;

with t1 = t and t2 = T for t � T � k, (3) holds for z 2 B(x⇤
t
, R); ⇠t:T 2 ⌅t:T , ⇠t:T = ⇠⇤

t:T ; F =
FT . Further, perturbation bound (4) holds for any z, z0 2 B(x⇤

t
, R) and ⇠t1:t2 = ⇠⇤

t1:t2 .

As a remark, note that for the first specification of Property 3.1 with t1 = t and t2 = t+ k, ⇠t+k and
⇠0
t+k

live in the state space Rn rather than ⌅t+k because they represent the target terminal state of
the FTOCP solved by MPCk. Intuitively, Property 3.1 states that perturbation bounds (3) and (4)
hold in a small neighborhood (specifically, a ball with radius R) around the offline optimal trajectory
OPT, which is much weaker than the global exponentially decaying perturbation bounds required
by previous work (e.g., [35]) in the following sense: (i) in the general settings where the dynamical
function gt is non-linear, or where there are constraints on states and actions, one cannot hope the
perturbation bound to hold globally for all possible parameters [37, 49, 50]; (ii) the decay functions
{qi}i=1,2,3 are only required to converge to zero and satisfy

P1
⌧=0 qi(⌧)  Ci, which means the

exponential decay rate as in [35] is not necessary — in fact, polynomial decay rates can also satisfy
these properties, which greatly broadens the applicability of our pipeline.

Step 2: Bound the per-step error et. The core of the analysis is to apply the perturbation bounds to
bound the per-step error. For MPCk, under Property 3.1, this step can be done in a universal way, as
summarized in Lemma 3.1 below. A complete proof of Lemma 3.1 can be found in Appendix C.
Lemma 3.1. Let Property 3.1 hold. Suppose the current state xt satisfies xt 2 B(x⇤

t
, R/C3) and the

terminal cost Ft+k of MPCk is set to be the indicator function of some state ȳ(⇠t+k|t) that satisfies
ȳ(⇠t+k|t) 2 B(x⇤

t+k
, R) for t < T � k. Then, the per-step error of MPCk is bounded by

et 
kX

⌧=0

✓✓
R

C3
+Dx⇤

◆
· q1(⌧) + q2(⌧)

◆
⇢t,⌧ + 2R

✓✓
R

C3
+Dx⇤

◆
· q1(k) + q2(k)

◆
. (5)
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Lemma 3.1 is a straight-forward implication of perturbation bound (3) specified in Property 3.1. To
see this, for t < T � k, note that the per-step error et can be bounded by

et =
�� t+k

t
(xt, ⇠t:t+k�1|t, ȳ(⇠t+k|t); I)vt �  T

t
(xt, ⇠

⇤
t:T ;FT )vt

�� (6a)

=
��� t+k

t
(xt, ⇠t:t+k�1|t, ȳ(⇠t+k|t); I)vt �  t+k

t
(xt, ⇠

⇤
t:t+k�1, x

⇤
t+k|t; I)vt

��� (6b)


k�1X

⌧=0

�
kxtk · q1(⌧) + q2(⌧)

�
⇢t,⌧ +

�
kxtk · q1(k) + q2(k)

� ���ȳ(⇠t+k|t)� x⇤
t+k|t

��� . (6c)

Here, we apply the principle of optimality to conclude that the optimal trajectory from xt to x⇤
t+k|t

(i.e.,  t+k

t
(xt, ⇠⇤t:t+k�1, x

⇤
t+k|t; I) in (6b)) is a sub-trajectory of the clairvoyant optimal trajectory

from xt (i.e.,  T

t
(xt, ⇠⇤t:T ;FT ) in (6a)), and (6c) is obtained by directly applying perturbation bound

(3). Note that kxtk  R

C3
+Dx⇤ , and that both ȳ(⇠t+k|t) and x⇤

t+k|t are in B(x⇤
t+k

;R) by assumption
and by perturbation bound (4) specified in Property 3.1, we conclude that (5) hold for t < T � k.
The case t � T � k can be shown similarly. We defer the detailed proof to Appendix C.

Step 3: Bound the dynamic regret by
PPPT�1

t=0 e2t . This final step builds upon perturbation bound
(4), and aims at deriving dynamic regret bounds in a universal way, as stated in Lemma 3.2 below.
Specifically, under the assumption that a local decaying perturbation bound in the form of (4) holds
around the offline optimal trajectory OPT, and the property that per-step errors et are sufficiently
small, we can show that the online controller will not leave the “safe region” near the offline optimal
trajectory as specified in Property 3.1, and thus the dynamic regret of ALG is bounded as in (7) (note
that ALG is not confined to MPC, but is allowed to be any algorithm with bounded per-step errors). A
complete proof of Lemma 3.2 can be found in Appendix D.
Lemma 3.2. Let Property 3.1 hold. If the per-step errors of ALG satisfy e⌧  R/(C2

3Lg) for all
time steps ⌧ < t, the trajectory of ALG will remain close to OPT at time t, i.e. xt 2 B(x⇤

t
, R/C3).

Further, if et  R/(C2
3Lg) for all t < T , the dynamic regret of ALG is upper bounded by

cost(ALG)� cost(OPT) = O

0

@

vuutcost(OPT) ·
T�1X

t=0

e2
t
+

T�1X

t=0

e2
t

1

A . (7)

Summary. Combining Steps 2 and 3 of the pipeline yields the following Pipeline Theorem for MPCk

(see Theorem 3.3). Basically it states that, when the prediction horizon k is sufficiently large and
the prediction errors ⇢t,⌧ are sufficiently small, Lemma 3.1 and Lemma 3.2 can work together to
make sure that MPCk never leaves a (R/C3)-ball around the offline optimal trajectory OPT; thus
we obtain a dynamic regret bound.
Theorem 3.3 (The Pipeline Theorem). Let Property 3.1 hold. Suppose the terminal cost Ft+k of
MPCk is set to be the indicator function of some state ȳ(⇠t+k|t) that satisfies ȳ(⇠t+k|t) 2 B(x⇤

t+k
, R)

for all time steps t < T � k. Further, suppose the prediction errors ⇢t,⌧ are sufficiently small and the
prediction horizon k is sufficiently large, such that

kX

⌧=0

✓✓
R

C3
+Dx⇤

◆
· q1(⌧) + q2(⌧)

◆
⇢t,⌧ + 2R

✓✓
R

C3
+Dx⇤

◆
· q1(k) + q2(k)

◆
 R

C2
3Lg

.

Then, the trajectory of MPCk will remain close to OPT, i.e. xt 2 B(x⇤
t
, R/C3) for all time steps t,

and the dynamic regret of MPCk is upper bounded by

cost(MPCk)� cost(OPT) = O
⇣p

cost(OPT) · E + E
⌘
, (8)

where E :=
P

k�1
⌧=0 (q1(⌧) + q2(⌧))P (⌧) +

�
q1(k)2 + q2(k)2

�
T .

The proof of Theorem 3.3 can be found in Appendix E. To interpret the dynamic regret bound in
(8), note that we have cost(OPT) = O(T ) as a result of our model assumptions. Thus, the dynamic
regret of ALG is in the order of

p
TE + E. When there is no prediction error, the regret bound

O((q1(k) + q2(k)) · T ) reproduces the result in [35], and the bound will degrade as the prediction
error increases. It is also worth noticing that, when the prediction power improves over time as the
online controller learns the system better and k = ⌦(lnT ), the dynamic regret can be o(T ).
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4 Unconstrained LTV Systems

We now illustrate the use of the Pipeline Theorem by applying it in the context of (unconstrained)
LTV systems with prediction errors, either on disturbances or the dynamical matrices.

4.1 Prediction Errors on Disturbances

In this section, we consider the following special case of problem (1), where the dynamics is LTV
and the prediction error can only occur on the disturbances wt:

min
x0:T ,u0:T�1

T�1X

t=0

(fx

t
(xt) + fu

t
(ut)) + FT (xT )

s.t. xt+1 = Atxt +Btut + wt(⇠
⇤
t
), 80  t < T, (9)

x0 = x(0).

All necessary assumptions on the system are summarized below in Assumption 4.1.
Assumption 4.1. Assume the following holds for the online control problem instance (9):

• Cost functions: {fx

t
}T�1
t=0 , {fu

t
}T�1
t=0 , FT are nonnegative µ-strongly convex and `-smooth. And

we assume fx

t
(0) = fu

t
(0) = FT (0) = 0 without the loss of generality.

• Dynamical systems: the LTV system {At, Bt} is �-uniform controllable with controllability index
d, and kAtk  a, kBtk  b, and kB†

t
k  b0 hold for all t, where B†

t
denotes the Moore–Penrose

inverse of matrix Bt.. The detailed definitions can be found in Assumption F.1 in Appendix F.
• Predicted quantities: kwt(⇠t)k  Dw holds for all ⇠t 2 ⌅t and all t. For every time step t, wt(⇠t)

is a Lw-Lipschitz function in ⇠t, i.e., kwt(⇠t)� wt(⇠0t)k  Lw k⇠t � ⇠0tk , 8⇠t, ⇠0t 2 ⌅t.

Under Assumption 4.1, we can again apply the perturbation bounds shown in [35] to show Property
3.1. In particular, we already know that for some constants H1 � 1 and �1 2 (0, 1), perturbation
bounds (3) and (4) hold globally for q1(t) = 0, q2(t) = H1�t1, and q3(t) = H1�t1. Since both of
these perturbation bounds hold globally, radius R in Property 3.1 can be set arbitrarily, and we shall
take R := max

n
Dx⇤ , 2LgH

3
1

(1��1)3

o
so that Theorem 3.3 can be applied to MPCk with terminal cost

Ft+k(·; ⇠t|t+k) ⌘ I(·; 0). This leads to the following dynamic regret bound:
Theorem 4.1. In the unconstrained LTV setting (9), under Assumption 4.1, when the prediction
horizon k is sufficiently large such that k � ln

⇣
4H3

1Lg

(1��1)2

⌘
/ ln(1/�1), the dynamic regret of MPCk

(Algorithm 1) with terminal cost Ft+k(·; ⇠t|t+k) ⌘ I(·; 0) is bounded by cost(MPCk)�cost(OPT) 

O

✓q
T ·
P

k�1
⌧=0 �

⌧

1P (⌧) + �2k1 T 2 +
P

k�1
⌧=0 �

⌧

1P (⌧)

◆
.

A complete proof of Theorem 4.1 can be found in Appendix F. When there are no prediction errors,
the bound in Theorem 4.1 reduces to O(�k1T ), which reproduces the result of [35]. Further, it is also
worth noticing that due to the form of discounted sum

P
k�1
⌧=0 �

⌧

1P (⌧), prediction errors for the near
future matter more than those for the far future.

4.2 Prediction Error on Costs and Dynamical Matrices

We now consider prediction errors on cost functions and dynamics, rather than disturbances. Specifi-
cally, we consider the following instance of problem (1):

min
x0:T ,u0:T�1

T�1X

t=0

�
(xt � x̄t(⇠

⇤
t
))>Qt(⇠

⇤
t
)(xt � x̄t(⇠

⇤
t
)) + u>

t
Rt(⇠

⇤
t
)ut

�
+ FT (xT ; ⇠

⇤
t
)

s.t. xt+1 = At(⇠
⇤
t
) · xt +Bt(⇠

⇤
t
) · ut + wt(⇠

⇤
t
), 80  t < T, (10)

x0 = x(0),

where the terminal cost is given by FT (xT ; ⇠⇤T ) := (xT � x̄T (⇠⇤T ))
>PT (⇠⇤T )(xT � x̄(⇠⇤

T
)).

All necessary assumptions on the system are summarized below in Assumption 4.2.
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Assumption 4.2. Assume the following holds for the online control problem instance (10):

• Cost: µI � Qt(⇠t) � `I, µI � Rt(⇠t) � `I, and µI � PT (⇠T ) � `I , 8⇠t 2 ⌅t, 8t.
• Dynamical systems: both the ground-truth LTV system {At(⇠⇤t ), Bt(⇠⇤t )}T�1

t=0 and any predicted
LTV system {At(⇠t+⌧ |t), Bt(⇠t+⌧ |t)}k�1

⌧=0 (for all ⇠t 2 ⌅t and all t) satisfy the controllability
assumptions in Assumption G.1 in Appendix G.

• Predicted quantities: bounds kwt(⇠t)k  Dw, kx̄t(⇠t)k  Dx̄, kAt(⇠t)k  a, kBt(⇠t)k  b
hold for all ⇠t 2 ⌅t and all t. LA is a uniform Lipschitz constant such that kAt(⇠t)�At(⇠0t)k 
LA k⇠t � ⇠0tk , 8⇠t, ⇠0t 2 ⌅t holds for all t, and LB , LQ, LR, Lx̄, Lw are defined similarly.

Under Assumption 4.2, we can show that for some constants H2 � 1 and �2 2 (0, 1), perturbation
bounds (3) and (4) hold globally for q1(t) = H2�2t2 , q2(t) = H2�t2, and q3(t) = H2�t2 under the
specifications of Property 3.1. Thus, Property 3.1 holds for arbitrary R, and we can set R = D⇤

x
+Dx̄

so that Theorem 3.3 can be applied to MPCk with terminal cost Ft+k(·; ⇠t|t+k) = I(·; x̄(⇠t|t+k)),
which leads to the following dynamic regret bound:
Theorem 4.2. In the unconstrained LTV setting (10), under Assumption 4.2, when the prediction
horizon k � O(1) 1 and the prediction errors satisfy

P
k

⌧=0 �
2⌧
2 ⇢t,⌧  ⌦(1) for all t, the dynamic

regret of MPCk (Algorithm 1) with terminal cost Ft+k(·; ⇠t|t+k) = I(·; x̄(⇠t|t+k)) is bounded by

cost(MPCk)� cost(OPT)  O

✓q
T ·
P

k�1
⌧=0 �

⌧

2P (⌧) + �2k2 T 2 +
P

k�1
⌧=0 �

⌧

2P (⌧)

◆
.

The exact constants and a complete proof of Theorem 4.2 can be found in Appendix G. Compared with
Theorem 4.1, Theorem 4.2 additionally requires the discounted total prediction errors

P
k

⌧=0 �
2⌧
2 ⇢t,⌧

to be less than or equal to some constant. This is actually expected, and emphasizes the critical
difference between the prediction errors on dynamical matrices (At, Bt) and the prediction errors
on wt, since an online controller cannot even stabilize the system when the predictions on (At, Bt)
can be arbitrarily bad. It is worth noting that Assumption 4.2 requires the uniform controllability
to hold for the unknown ground-truth LTV dynamics and any predicted dynamics. The goal is
to ensure the perturbation bounds for KKT matrix inverse hold in Lemma G.2. Intuitively, this
assumption is necessary because otherwise the solution of MPC (by solving FTOCP induced by the
predicted dynamics) can be unbounded. We provided two examples (Example G.4 and G.5) that
satisfy Assumption 4.2 while the true dynamics are unknown.

5 General Dynamical Systems

We now move beyond unconstrained linear systems to constrained nonlinear systems given by the
general online control problem (1) in Section 2. All necessary assumptions are summarized in
Assumption H.1 in Appendix H. Perhaps surprisingly, decaying perturbation bounds can hold even in
this case. In particular, using Theorem 4.5 in [50], we can show that there exists a small constant
R such that, for some constants H3 � 1 and �3 2 (0, 1), perturbation bounds (3) and (4) hold for
q1(t) = 0, q2(t) = H3�t3, and q3(t) = H3�t3. Thus, Property 3.1 holds (see Appendix H for formal
statements) and we can apply Theorem 3.3 to obtain the following dynamic regret bound:
Theorem 5.1. In the general system (1), under Assumption H.1 in Appendix H, Property 3.1 holds
for some positive constant R and q1(t) = 0, q2(t) = H3�t3, and q3(t) = H3�t3. Suppose the
terminal cost Ft+k of MPCk is set to be the indicator function of some state ȳ(⇠t+k|t) that sat-
isfies ȳ(⇠t+k|t) 2 B(x⇤

t+k
, R) for t < T � k. Suppose the prediction errors ⇢t,⌧ are sufficiently

small and the prediction horizon k is sufficiently large such that H3
P

k�1
⌧=0 �

⌧

3⇢t,⌧ + 2RH3�k3 
(1��3)

2
R

H
2
3Lg

. Then, the dynamic regret of MPCk is upper bounded by cost(MPCk) � cost(OPT) 

O

✓q
T ·
P

k�1
⌧=0 �

⌧

3P (⌧) + �2k3 T 2 +
P

k�1
⌧=0 �

⌧

3P (⌧)

◆
.

A complete proof of Theorem 5.1 can be found in Appendix H. An assumption in Theorem 5.1 that is
difficult to satisfy in general is that the reference terminal states ȳ(⇠t+k|t) of MPCk must be close
enough to the offline optimal state x⇤

t+k
, i.e., ȳ(⇠t+k|t) 2 B(x⇤

t+k
, R), while the offline optimal state

x⇤
t+k

is generally unknown. This can be achieved in some special cases, for example, when we

1When we say z � O(1), we mean there exists c = O(1) such that z � c holds.
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know k⇠⇤
t
k is sufficiently small. In this case, one can first solve FTOCP  T

0 (x0,0;FT ) and use it
as a reference to set the terminal states of MPCk. This intuition is formally shown in Appendix H.
Another limitation is that Theorem 5.1 is only a bound on the cost of MPC, not its feasibility. There
are many ways to guarantee recursive feasibility of MPC [53], which we leave as future work. We
also discuss how to verify Assumption H.1 in two simple examples that arise from a simple inventory
dynamics in Appendix I. The first positive example shows that Assumption H.1 is not vacuous, and
the second negative example shows exponentially decaying perturbation bounds may not hold when
Assumption H.1 is not satisfied.
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