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Abstract

Cosmological hydrodynamical simulations, while
the current state-of-the art methodology for gen-
erating theoretical predictions for the large scale
structures of the Universe, are among the most
expensive simulation tools, requiring upwards of
100 millions CPU hours per simulation. N-body
simulations, which exclusively model dark matter
and its purely gravitational interactions, repre-
sent a less resource-intensive alternative, however,
they do not model galaxies, and as such cannot di-
rectly be compared to observations. In this study,
we use conditional score-based models to learn a
mapping from N-body to hydrodynamical simula-
tions, specifically from dark matter density fields
to the observable distribution of galaxies. We
demonstrate that our model is capable of gen-
erating galaxy fields statistically consistent with
hydrodynamical simulations at a fraction of the
computational cost, and demonstrate our emula-
tor is significantly more precise than traditional
emulators over the scales 0.36 h Mpc*1 <k <
3.88 h Mpc L.

1. Introduction

One of the most powerful tools in cosmology are hydrody-
namical (hydro-) simulations, which are able to evolve the
universe from billions of years into the past until present day
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(e.g. Nelson et al., 2019; Davé et al., 2019; Bird et al., 2022).
These simulations make detailed and reliable predictions
for the distribution of matter in the universe by carefully
modeling the complex interactions of gravity, mass, ther-
modynamics, and electrodynamics. They have developed
into a cornerstone of modern cosmology, creating a gateway
connecting observations of the night sky with physical un-
derstandings of dark matter (Bozorgnia & Bertone, 2017),
dark energy (Baldi et al., 2010), galaxies (Vogelsberger
et al., 2020) and black holes (Chen et al., 2022).

These powerful simulations come at a cost: they are ex-
tremely computationally expensive. High-resolution hydro-
simulations can require hundreds of millions of CPU-hours
to properly resolve galactic astrophysics (Vogelsberger et al.,
2014). This computational cost is due to the O(n?) scal-
ing of computing thermodynamic interactions between dark
matter, gas, and star particles and is a major barrier for mod-
ern cosmology. Furthermore, recent works attempt to run
not only one hydro-simulation, but suites of thousands (e.g.
Villaescusa-Navarro et al., 2023; Schaye et al., 2023), with
each simulation varying the configurations of cosmological
models and galaxy astrophysics. These suites are essential
to understand the effect of (latent) physical model parame-
ters on astronomical observables, hence making it possible
to infer the value of these latent parameters for our Universe
from survey data, with traditional method but also using
machine learning (e.g. de Santi et al., 2023; Kugel et al.,
2023; Ho et al., 2023; 2024). With the increasing quality and
volumes of survey data, such suites of hydro-simulations
are projected to drive the next-generation of computational
cosmology (National Academies of Sciences, Engineering,
and Medicine, 2023), and it is therefore paramount to de-
velop faster methods for running them which exceed the
traditional scaling laws.

A cheaper alternative to hydro-simulations are N-body sim-
ulations (e.g. Heitmann et al., 2019; Maksimova et al.,
2021; Villaescusa-Navarro et al., 2020), which only seek
to model interactions between collision-less dark matter
particles. Ignoring thermodynamic interactions reduces the
computational scaling of N-body simulations to O(nlogn),
a marked improvement over hydro-simulations. N-body
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simulations are accurate approximations for the spatial dis-
tribution of all matter, as dark matter is believed to make
up ~ 85% of the total matter budget in the universe. How-
ever, as N-body simulations do not directly simulate stars
and galaxies, we must rely on a plethora of simplifying as-
sumptions when comparing them to real observations (Des-
jacques et al., 2018). The parameters of these assumptions
are particularly challenging to constrain for populations
of smaller galaxies which dominate the statistics of obser-
vational surveys (e.g. Richardson et al., 2012; Yuan et al.,
2022; Garcia-Quintero et al., 2024). In these high-resolution
regimes, the use of hydro-simulations, or their respective
emulators, is crucial.

In this work, we develop an emulator for high-resolution
hydro-simulations by populating N-body simulations with
galaxies. We make use of a conditional score-based dif-
fusion model (Song et al., 2021; Legin et al., 2023) that
generates samples containing the number of galaxies at dif-
ferent grid positions given the mass of matter evolved in an
N-body simulation over a pixelated grid.

Our model is trained on the 3D CAMELS-Astrid simula-
tion from the LH set (Villaescusa-Navarro et al., 2022),
which consists of one thousand pairs of N-body and hydro-
simulations. Each pair of simulations has a different con-
figuration of cosmological and astrophysical parameters,
varying the total matter density (£2,,), the amplitude of mat-
ter density fluctuations (og), the energy of galactic winds
(Asn1), the wind speed of galactic winds (Agns), the rate of
energy injection from active galactic nuclei (Apgn1), and
the radio mode threshold for active galactic nuclei (Aagn2).
Each of these parameters has a strong, non-linear effect on
the spatial distribution of galaxies in the universe.

Using a diffusion model with this dataset allows us to learn
the distribution of galaxy counts over multiple cosmolo-
gies. This means that, given an N-body simulation at a fixed
cosmology, we can generate in parallel 100 different realiza-
tions of galaxy counts which match the summary statistics
of a hydro-simulation in 20 minutes. Meanwhile, obtaining
an analogous result with traditional methods would entail
running one hundred hydro-simulations, each requiring mil-
lions of CPU hours.

Furthermore, we show that our model is able to correctly
predict galaxy counts on cosmological and astrophysical
parameters that were not seen during training, enabling
us to explore how the parameter space of configurations
affects galaxy clustering in a time-efficient manner. To the
best of our knowledge, this is the first work connecting
probabilistically N-body simulations to galaxies with the
degree of accuracy of a hydro-simulations over a wide range
of cosmological and astrophysical parameter values.

2. Related Works

Within this section we briefly discuss alternative works aim-
ing to connect N-body simulation to baryonic properties.
In section 2.1, we present the most commonly used closed-
form parametric model used in cosmology while in section
2.2 we highlight other recent approaches which use ma-
chine learning. We highlight some of the advantages and
limitations of each model.

2.1. Halo Occupancy Distribution

To circumvent the need for expensive hydrodynamical simu-
lations, Halo Occupancy Distribution (HOD) models are of-
ten used to connect N-body simulations to galaxies (Zheng
et al., 2005; 2007). As the name suggests, these models
identify halos which are clustering of dark matter over a
certain length scale. Halos create gravitational potential
wells which attract baryons and becomes locations where
galaxies form.

Once dark matter halos are identified in an N-body simula-
tion, individual halos are assigned a probability of hosting a
galaxy given their mass. The HOD model separates galaxies
into two categories: a central galaxy sitting at the minima
of the gravitational well and satellite galaxies which are
progressively added and that orbit around the central galaxy.
The expected value for the number of central (N¢,) and
satellite (Ng) galaxy as a function of halo mass (M) is
described by,

1 log M — log M yin
(New(M)) = £ [1 i erf( og M — log )]
2 OlogM

(1)
(Naae(M)) = (Neen(M)) (MJ\_41MO> .

Here, erf is the Gaussian error function. The parameter
M i is the halo mass at which there is a 0.5 expected
value of hosting a central galaxy. On the other hand, ojogm
controls how fast this expectation grows to one for different
halo masses. Similarly, M, determines the minimum halo
mass to have a non-zero expectation of hosting a satellite
galaxy. The parameter M; and « control how fast this
expectation grows. We note that here the expectation is not
bounded by one as we can have multiple satellite galaxies
within a single halo.

An HOD works by identifying all of the halos in a N-body
along with their position and mass. It parses through each
individual halo and computes the expected number of galax-
ies based on equation (1). For central satellites, a Bernoulli
distribution is sampled with the expectation value set by
(Neen(M)) to determine whether that halo hosts a central
satellite. If so, a Poisson distribution with the expectation
(Neat(M)) is sampled to populate the halo with satellites.
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Because of their simplicity, HOD models are very inex-
pensive, and also have the notable advantage that they pro-
duce population of galaxies in a probabilistic manner. How-
ever, previous works have shown that simple HODs broadly
marginalize over complex baryonic physics, thus lacking
sufficient precision to match the data quality that is expected
from upcoming observational surveys (Hadzhiyska et al.,
2020). Furthermore, the HOD model described above ig-
nores the effect of environment, which is known to signifi-
cantly impact the process of galaxy formation. Finally, the
parametrization in equation (1) does not include cosmologi-
cal parameters.

2.2. Alternative ML Approaches

In prior work, machine learning techniques have been em-
ployed to estimate galaxy counts from N-body only simu-
lations. For instance, (Zhang et al., 2019) utilized convo-
lutional neural networks to map from N-body simulations
to galaxy counts, achieving superior accuracy compared to
the traditional Halo Occupation Distribution (HOD). It is
presumed these improved results were due to the fact that
CNNss capture local information, hence, focusing on envi-
ronmental factors instead of only considering halo mass as
is done in an HOD. Nevertheless, a significant limitation
of this approach is the deterministic nature of the model’s
predictions concerning galaxy numbers. Such deterministic
predictions fail to encapsulate the inherent stochasticity of
the task at hand, since the information from dark matter
N-body simulations is insufficient to exactly predict galaxy
counts from hydrodynamical simulations.

Score-based generative models have shown significant
promise in recent field-level inference tasks, where samples
can be generated from learned probability distributions over
cosmological fields (Legin et al., 2023). These models can
address the limitations inherent in deterministic approaches
as noted by (Zhang et al., 2019), while simultaneously pro-
viding a more realistic representation of galaxy counts com-
pared to the Halo Occupation Distribution (HOD) model.
Similarly, Ono et al. (2024) used score-based generative
models to infer the dark matter distribution from the galaxy
field, using two-dimensional slices of hydro-simulations.
While this approach was applied to a task opposite to that
of the generative model under consideration here, this work
demonstrated that score-based generation could effectively
capture the dark-matter-galaxy connection.

Motivated by these previous points, we explore the use of
score-based generative modeling to develop a more accu-
rate model for predicting galaxy counts from dark matter
N-body simulations. Furthermore, we demonstrate that the
score-based model can also learn to implicitly marginalize
over cosmological parameters and improve accuracy over
multiple cosmologies. A similar methodology was taken by

Cuesta-Lazaro & Mishra-Sharma (2023) which used diffu-
sive graph neural networks to model the spatial distribution
of halos in dark-matter-only simulations. While aptly cap-
turing the uncertainty of generative modeling, this approach
was limited to modeling the dark-matter-only component
of simulations and also required complex graph representa-
tions, which greatly limited the generative capacity to only
5,000 halos under GPU memory limitations. Our chosen
approach using convolutional architectures allows for sim-
ple factorization of the generative distribution over the box
volume, allowing for effective ‘outpainting’ to arbitrarily
large volumes (e.g. Rouhiainen et al., 2023).

In the following section, we provide a concise overview
of score-based generative models and their application in
sampling the probability distribution p(x|y) of plausible
realizations of galaxy count fields  conditioned on dark
matter N-body simulations y.

3. Score-Based Models

Score-based generative modeling leverages neural networks
to approximate the score - the gradient of the log probabil-
ity of the data - which enables efficient sampling in high
dimensional space from learned distributions. Specifically,
given a data distribution p(x), a neural network is trained
to approximate the score of the distribution V4 log p(x).
Typically, the goal of score-based generative modeling is
to generate samples from a data distribution p(x) by solv-
ing the following reverse-diffusion stochastic differential
equation (Anderson, 1982; Song et al., 2021),

dx = (f(x,t) — g(t)*Velogpi(x)) dt + g(t)dw, (2)

where V log p;(x) is the probability distribution of x at
time ¢. To solve equation (2), a neural network s(x,t) is
trained via denoising score matching (Vincent, 2011; Song
et al., 2021; Hyvérinen, 2005) to approximate the correct
score of the data distribution V5 log p; () for different lev-
els of noise parameterized by a time variable .

The data generation process achieved by solving equation
(2) can be extended to sampling conditional distributions
p(x|y) by training a neural network to approximate the
conditional score V log p;(x|y). In this case, the neural
network is fed the conditional variables y as additional
inputs.

In this work, we train a neural network, denoted as
s(x,y,t), to learn the score of the conditional distribution
pt+(x|y) of galaxy count fields « obtained from computa-
tionally expensive hydro-simulations conditioned on com-
putationally inexpensive N-body simulations y. By learning
this distribution, we can solve equation (2) to efficiently
generate realizations of galaxy count fields, and circumvent
the computational cost of running direct hydro-simulations.
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For sampling, we choose to use the Variance-Exploding
Stochastic Differential Equation, which is characterized by

f(x,t) =0and g(t) = \/w. The noise level during
¢
sampling is set by o(t) = omin (U"‘“‘) . We explain how

Omin

the parameters oy, and on,x are set in section 3.2.

3.1. Network Architecture

Following the work of (Legin et al., 2023) we adopt a U-net
architecture (Ronneberger et al., 2015) with 3D convolu-
tions to predict the conditional score distribution p(x|y).
We closely follow the architecture code implemented in the
package score-models!, specifically, our model con-
tains 4 downsampling/upsampling levels, each featuring 2
residual blocks derived from the BigGAN model (Brock
et al., 2018). The base number of feature maps is 32, and
is doubled on the third and fourth downsampling step. We
train the network for 50,000 epochs, with a batch size of
20, on a single NVIDIA A100 40GB GPUs. The network
weights are optimized with the Adam optimizer (Kingma
& Ba, 2015) with a fixed learning rate of 2 x 1074, We
apply gradient clipping to restrict the weight gradients to
a maximum norm of 1. The entire duration of training is
approximately 70 hours for 2.25 million iterations.

To incorporate the condition variable y, we introduce it as an
additional channel in the network’s input. Since the values
in N-body simulations are to the power of 10 we take a base-
10 logarithmic in order to have values ranging from roughly
12 to 16 allowing for training to be more stable. Since we
do not directly input the cosmological and astrophysical
parameters to the neural network, it learns the score of
the conditional galaxy count distribution marginalized over
these parameters.

3.2. Diffusion and Discrete Data

Our goal is to learn the number of galaxies at each voxel
which is an inherently discrete value. In recent years, frame-
works for discrete diffusion have been proposed (Santos
et al., 2023; Austin et al., 2023; Campbell et al., 2022);
however their scalability and ability to perform as well as
their continuous counterpart is still unclear. Therefore, we
preferred developing our work with the well established
continuous space denoising model.

However, we observed that directly applying continuous
space models to discrete data led to inaccurate results specif-
ically being unable to predict high valued galaxy counts in
the hundreds. To mediate this issue we decided to log our
galaxy counts on a base-10 which made the galaxy counts
range within zero and three.

!github.com/Alexandre Adam/score_models

Based on this transformed data, we set the noising param-
eters oy to the largest euclidean distance in the training
set as proposed by (Song & Ermon, 2020), which gave
Omax = 44. As for op, it is set to 1 x 1075 which is
below the integer precision needed to identify individual
galaxy counts when reversing the log transform. Based on
these two parameters, we set the number of discretized steps
needed to sample between t€[1,0] when solving equation
(2) to 3000 in order to have a 96% change of staying in
distribution (Song & Ermon, 2020).

Furthermore, we follow the idea of passing high frequency
information to our network in order to better learn small
scale information and better predict values of individual
voxels (Kingma et al., 2021). To do so we pass our logged
galaxy data through a sin and cos function which have a set
frequency of 64 and 128. These frequencies were seen to
give the best results in (Kingma et al., 2021), and these four
additional maps are given as extra channels to the network.
This procedure helped in better modeling sudden low to
high value changes between nearby voxels.

4. Simulations

We used the Latin Hypercube (LH) set of simulations from
the CAMELS-ASTRID suite (Villaescusa-Navarro et al.,
2022). This dataset includes 1000 pairs of N-body and hy-
drodynamical simulations, each at a volume of 25 (Mpc/h)?
and run using unique configuration of cosmological and as-
trophysical parameters. These parameters span a uniform
prior over specified ranges: {25, € [0.1,0.5], o € [0.6, 1.0],
Asni € [0.25,4], Agne € [0.5,2], Aagn1 € [0.25,4],
Arane € [0.25,4].

We identify galaxies in the hydro-simulation by using the
provided catalogue of halos and subhalos which were found
with the Friends of Friends (Davis et al., 1985) and SubFind
(Springel et al., 2001) methods respectively. The chosen cri-
teria for a subhalo to host a galaxy is containing stellar mass
and having a mass greater than 10°-®> M, /h . We then place
the galaxy catalogue on a 3D grid of size 323. Similarly, for
the N-body simulation, the dark matter mass is set on a 3D
grid of size 323. We divide the pair of gridded simulation
into training and testing sets, allocating 900 simulations for
training and 100 simulations for testing.

5. Results

For a given dark matter N-body simulation y, we generate
100 samples of galaxy counts & from the conditional dis-
tribution p(x|y). This is achieved by solving equation (2)
using our trained score network s(x, y, t). Our testing set
contains 100 different N-body simulations leading to a total
of 10,000 samples generated using 20 NVIDIA A100 40GB
GPUs in parallel within 80 minutes.
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Figure 1. Comparison of galaxy count fields from a hydrodynamical simulation with predictions made by the Halo Occupation Distribution
(HOD) method and our score-based generative diffusion model based on the corresponding dark matter N-body simulation. Each of the 2D
fields showcased were obtained by summing the fields over the depth of the full 3D volume. The parameters used for the hydro-simulation
are Qs = 0.25140, o3 = 0.8606, Asn1 = 0.73002, Aagn1 = 1.13131, Agne = 0.70466, Aagne = 1.07848. The leftmost column
shows the dark-matter-only N-body and corresponding hydro-simulation, ran at the same cosmology and initial conditions. We then
show the median and 84th-16th percentile range of the galaxy counts for both the HOD and diffusion models. The N-body is shown
for illustrative purposes and its color bar is not presented. The 84th-16th percentile range has a different color bar to better reflect the
spread of galaxy counts predictions made by the HOD. This comparison highlights the differences in spatial distributions of galaxy counts
between the two models and the improved prediction of the diffusion model over HOD.

In order to assess the validity of our samples we compare
them to the hydro-simulation associated with the N-body
simulation and the traditional HOD method. We take a
Bayesian approach to best fit the parameters of the HOD
to the power spectra of the fields over multiple cosmolo-
gies. Uniform priors are set on all 5 parameters of the HOD
within the ranges log My, € [9,12], o1oem € [0.1,0.6],
log My € [11,16], log M; € [11,16] and « € [0,1.5]. An
analytic likelihood for the power spectra at each cosmology
cannot be used for the CAMELS-Astrid LH dataset as it
only has one simulation per cosmology. Therefore, a Neural
Likelihood Estimator (NLE) (Papamakarios et al., 2019) is
trained on the power spectras of the 900 hydro-simulations
in the training set. This allows the NLE to learn the condi-
tional probability of HOD parameters which best reproduces
the hydro-simulation power spectra over the different cos-
mologies in the training set. Finally, with the uniform priors
and trained NLE, one hundred parameters from the posterior
distribution are sampled using Markov Chain Monte Carlo
at each cosmology in the testing set.

We first present the results for a single N-body simulation
at a fixed cosmology in the test set. Figure 1 displays sam-
ples derived from the learned distribution alongside those
generated by the HOD parametric method, accompanied
by the corresponding true simulation of the galaxy count
field. In Figure 2, we present a comparison of summary
statistics of the generated galaxy count samples versus the
ground truth galaxy count field from the hydrodynamical
simulation showcased in Figure 1 (see additional examples
of power spectra obtained for varying cosmological parame-
ters in Appendix A). This comparison specifically includes
the power spectrum, the transfer function (defined as the ra-
tio of power spectra between the generated samples and the
ground truth galaxy count field), and the cross-correlation
of the two fields.

In order to assess the accuracy of the learned conditional dis-
tribution p(x|y) over all cosmologies in the testing set, we
employ the Test of Accuracy with Random Points (TARP)
coverage test from Lemos et al. (2023). This test determines
whether the set of generated samples Zgamples accurately
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Figure 2. Summary statistics of the galaxy count fields for the
results presented in Figure 1. The ground truth is the hydro-
simulation @ in red while conditional samples p(x|y) generated
using the score network and the HOD are presented in blue and
orange respectively. From top to bottom, for each method we
plot the power spectra, power spectra ratio between the ground
truth and generated samples, and the cross-correlation between the
ground truth and generated samples. The median of the power and
cross-correlation is presented for the diffusion and HOD while the
uncertainty region is traced by the 16th and 84th percentile using
100 samples for both methods.

reflects the true underlying probability distribution p(x|y)
by measuring the coverage probability of the samples over
randomly-generated credible regions. We perform a TARP
test on the power spectra of the fields with the results be-
ing depicted in Figure 3. The optimal case is a straight
diagonal line indicating samples being generated within the
underlying distribution formed by the hydro-simulation.
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Figure 3. Coverage probability test using the TARP method to as-
sess the accuracy of power spectra from samples generated by
the diffusion model and the HOD method over the 100 hydro-
simulations from the test set. The blue and orange curves represent
the results for the diffusion model and HOD, respectively, with
shaded areas indicating the 1o and 3o error obtained by bootstrap-
ping examples from the test set. The dashed red line indicates the
ideal calibrated line signifying accurate power spectra predictions.
The diffusion model results show improved alignment with the di-
agonal compared to the HOD method, which exhibits a substantial
deviation, indicating less accurate coverage.

6. Discussion

Our score-based generative model addresses the limitations
of previous methods for predicting galaxy count fields from
N-body simulations by learning the score V log p;(x|y) of
the conditional probability distribution of galaxy counts
x and employing a reverse-diffusion process to generate
samples from this distribution conditioned on dark matter
N-body simulation y. The model is benchmarked against
the halo occupation distribution (HOD) model, which also
employs probabilistic sampling but relies on significant as-
sumptions about the distribution of galaxy counts.

A critical shortcoming of the HOD method is its failure to
incorporate information about the local environment. In
contrast, the U-net architecture used for learning the score
of the distribution mitigates this by analyzing the field at
multiple resolution levels, and is therefore capable of extract-
ing information from a wider spatial region. Additionally,
HOD-based predictions are not dependent on cosmologi-
cal or astrophysical parameter values, whereas in principle,
score-based generative models are capable of extracting
and marginalizing over this information from dark matter N-
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body simulations. This incorporation of local environmental
factors and cosmological parameters renders score-based
generative models as a more flexible approach for generat-
ing accurate galaxy count fields. A demonstration of this can
be seen from Figure 1, where the fields generated by HOD
appear to struggle to predict galaxy count features in regions
of low density. Furthermore, it can be seen from Figure 1
that HOD predicts an overly high galaxy counts in certain re-
gions of high density. In comparison, the samples generated
with our diffusion model are capable of reliably replicating
features which are consistent with the hydro-simulation in
both low and high density regions. Additionally, our model
is able to accurately capture sudden changes in density as
can be seen with the voids in Figure 1.

The limitations of the HOD model are further illustrated
by our results in Figure 2, which presents various sum-
mary statistics of the fields. As shown, the score-based
generative model produces samples with power spectra that
accurately match the true hydro-simulation across all rel-
evant scales. In contrast, the HOD model is under confi-
dent across all scales with a bias at lower k modes. The
cross-correlation displayed in Figure 2 also highlights our
model’s ability to interpolate positional differences between
high density regions in N-body and hydro-simulations. The
cross-correlation is sensitive to the position of features in
images as it captures their Fourier phase. It is known that
halo positions slightly differ in N-body simulations com-
pared to hydro-simulations due to the gravitational effects
of the additional baryons. The HOD cannot correct for
this difference in halo positions, however, the fact that our
model’s cross-correlation is higher than the HOD for all
scales highlights its ability to correct this discrepancy.

Although the ideal cross-correlation is one across all scales,
it is important to note that the decrease in cross-correlation
at higher k modes for both the diffusion model samples
and the HOD samples is expected, as non-linear processes
dominate making it inherently more difficult in predicting
the exact spatial distribution of galaxies solely from dark
matter density fields. Regardless, in future work, we are
interested in examining whether the score-generative model
is able to extract the full information content available in
dark matter N-body density fields for predicting the spatial
distribution of galaxies.

While Figure 2 visually assesses the accuracy of the HOD
model compared to the diffusion model for a single hydro-
dynamical simulation, Figure 3 quantitatively evaluates the
accuracy of the power spectra across all 100 hydrodynami-
cal simulation examples in the test set. Specifically, Figure
3 illustrates whether the power spectra of samples generated
from the HOD and diffusion models accurately represent the
distribution of possible power spectra of hydrodynamical
galaxy count fields. Our diffusion model, which is closer to

the diagonal line indicating perfect accuracy, demonstrates
a significant improvement over the HOD model. However,
our model still exhibits a bias at lower credibility values,
indicating the need for further training improvements. This
bias may result from the insufficient number of training
examples (900 hydro-simulations) used in training the diffu-
sion model. To address this, future work will explore data
augmentation and pretraining on additional cosmological
simulation datasets to enhance the model’s generalization
capabilities.

The primary objective of this work is to evaluate the po-
tential of score-based generative models as reliable emula-
tors of hydrodynamical fields, such as galaxy counts, at a
fraction of the computational cost. Achieving this would
facilitate cosmological inference tasks where many hydro-
dynamical simulations need to be generated to compare
different models with observed galaxy distributions. By
directly conditioning on the dark matter density field, this
method also represents a significant step towards making
forward models differentiable in cosmological simulations,
completely removing the need to run a non-differentiable
halo finder algorithm (Davis et al., 1985; Springel et al.,
2001). Consequently, to assess the viability of our diffu-
sion model for cosmological inference, we aim to determine
whether galaxy count samples generated by our diffusion
model are sufficiently accurate to serve as training data for
simulation-based inference methods to predict unbiased cos-
mological parameter values. Specifically, we will verify
if the predictions derived from our model’s samples are
consistent with those obtained from real hydrodynamical
simulations. This validation would demonstrate the poten-
tial of score-based generative models as an efficient method
for producing training data of hydrodynamical simulations
that are otherwise computationally prohibitive.

Acknowledgements

This project was developed as part of the Simons Collabo-
ration on “Learning the Universe.” The Flatiron Institute is
supported by the Simons Foundation. The work is in part
supported by computational resources provided by Calcul
Quebec and the Digital Research Alliance of Canada. A.B.
and M.H. are supported by the Simons Collaboration on
“Learning the Universe.” Y. H. and L. P.-L. acknowledge
support from the Canada Research Chairs Program, the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) through grants RGPIN- 2020-05073 and 05102,
and the Fonds de recherche du Québec through grants 2022-
NC-301305 and 300397. R.L. and A.A. are supported by
NSERC CGS D scholarship.



Inpainting Galaxy Counts onto N-Body Simulations over Multiple Cosmologies and Astrophysics

References
Anderson, B. D. Reverse-time diffusion equation
models.  Stochastic Processes and their Applica-

tions, 12(3):313-326, 1982. ISSN 0304-4149.
doi:  https://doi.org/10.1016/0304-4149(82)90051-5.
URL https://www.sciencedirect.com/
science/article/pii/0304414982900515.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in discrete
state-spaces, 2023.

Baldi, M., Pettorino, V., Robbers, G., and Springel, V. Hy-
drodynamical n-body simulations of coupled dark energy
cosmologies. Monthly Notices of the Royal Astronomical
Society, 403(4):1684-1702, 2010.

Bird, S., Ni, Y., Di Matteo, T., Croft, R., Feng, Y., and
Chen, N. The ASTRID simulation: galaxy formation
and reionization. Monthly Notices of the Royal Astro-
nomical Society, 512(3):3703-3716, 03 2022. ISSN
0035-8711. doi: 10.1093/mnras/stac648. URL https:
//doi.org/10.1093/mnras/stac648.

Bozorgnia, N. and Bertone, G. Implications of hydrody-
namical simulations for the interpretation of direct dark
matter searches. International Journal of Modern Physics
A, 32(21):1730016, 2017.

Brock, A., Donahue, J., and Simonyan, K. Large Scale
GAN Training for High Fidelity Natural Image Synthesis.
arXiv e-prints, art. arXiv:1809.11096, September 2018.
doi: 10.48550/arXiv.1809.11096.

Campbell, A., Benton, J., Bortoli, V. D., Rainforth, T., Deli-
giannidis, G., and Doucet, A. A continuous time frame-
work for discrete denoising models, 2022.

Chen, N., Ni, Y., Tremmel, M., Di Matteo, T., Bird, S.,
DeGraf, C., and Feng, Y. Dynamical friction modelling
of massive black holes in cosmological simulations and
effects on merger rate predictions. Monthly Notices of the
Royal Astronomical Society, 510(1):531-550, 2022.

Cuesta-Lazaro, C. and Mishra-Sharma, S. A point cloud
approach to generative modeling for galaxy surveys at
the field level. arXiv preprint arXiv:2311.17141, 2023.

Davis, M., Efstathiou, G., Frenk, C. S., and White, S. D.
The evolution of large-scale structure in a universe dom-
inated by cold dark matter. Astrophysical Journal, Part
1 (ISSN 0004-637X), vol. 292, May 15, 1985, p. 371-
394. Research supported by the Science and Engineering
Research Council of England and NASA., 292:371-394,
1985.

Davé, R., Anglés-Alcdzar, D., Narayanan, D., Li, Q.,
Rafieferantsoa, M. H., and Appleby, S. simba: Cos-
mological simulations with black hole growth and feed-
back. Monthly Notices of the Royal Astronomical Soci-
ety, 486(2):2827-2849, 04 2019. ISSN 0035-8711. doi:
10.1093/mnras/stz937. URL https://doi.org/10.
1093/mnras/stz937.

de Santi, N. S., Shao, H., Villaescusa-Navarro, F., Abramo,
L. R., Teyssier, R., Villanueva-Domingo, P., Ni, Y.,
Anglés-Alcézar, D., Genel, S., Herndndez-Martinez, E.,
et al. Robust field-level likelihood-free inference with
galaxies. The Astrophysical Journal, 952(1):69, 2023.

Desjacques, V., Jeong, D., and Schmidt, F. Large-scale
galaxy bias. Physics reports, 733:1-193, 2018.

Garcia-Quintero, C., Mena-Fernandez, J., Rocher, A., Yuan,
S., Hadzhiyska, B., Alves, O., Rashkovetskyi, M., Seo,
H., Padmanabhan, N., Nadathur, S., et al. Hod-dependent
systematics in emission line galaxies for the desi 2024
bao analysis. arXiv preprint arXiv:2404.03009, 2024.

Hadzhiyska, B., Bose, S., Eisenstein, D., Hernquist, L.,
and Spergel, D. N. Limitations to the ‘basic’ HOD
model and beyond. Monthly Notices of the Royal As-
tronomical Society, 493(4):5506-5519, 03 2020. ISSN
0035-8711. doi: 10.1093/mnras/staa623. URL https:
//doi.org/10.1093/mnras/staa623.

Heitmann, K., Finkel, H., Pope, A., Morozov, V., Frontiere,
N., Habib, S., Rangel, E., Uram, T., Korytov, D., Child,
H., et al. The outer rim simulation: A path to many-core
supercomputers. The Astrophysical Journal Supplement
Series, 245(1):16, 2019.

Ho, M., Soltis, J., Farahi, A., Nagai, D., Evrard, A.,
and Ntampaka, M. Benchmarks and explanations for
deep learning estimates of x-ray galaxy cluster masses.
Monthly Notices of the Royal Astronomical Society, 524
(3):3289-3302, 2023.

Ho, M., Bartlett, D. J., Chartier, N., Cuesta-Lazaro, C., Ding,
S., Lapel, A., Lemos, P., Lovell, C. C., Makinen, T. L.,
Modi, C., et al. Ltu-ili: An all-in-one framework for
implicit inference in astrophysics and cosmology. arXiv
preprint arXiv:2402.05137, 2024.

Hyvirinen, A. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning
Research, 6(24):695-709, 2005. URL http://jmlr.
org/papers/v6/hyvarinen05a.html.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), San Diega, CA, USA, 2015.


https://www.sciencedirect.com/science/article/pii/0304414982900515
https://www.sciencedirect.com/science/article/pii/0304414982900515
https://doi.org/10.1093/mnras/stac648
https://doi.org/10.1093/mnras/stac648
https://doi.org/10.1093/mnras/stz937
https://doi.org/10.1093/mnras/stz937
https://doi.org/10.1093/mnras/staa623
https://doi.org/10.1093/mnras/staa623
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html

Inpainting Galaxy Counts onto N-Body Simulations over Multiple Cosmologies and Astrophysics

Kingma, D., Salimans, T., Poole, B., and Ho, J. Variational
diffusion models. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 21696-21707. Curran Associates, Inc.,
2021.
cc/paper_files/paper/2021/file/

b578£2a52a0229873fefc2ad4b06377fa-Paper.

pdf.

Kugel, R., Schaye, J., Schaller, M., Helly, J. C., Braspen-
ning, J., Elbers, W., Frenk, C. S., McCarthy, 1. G., Kwan,
J., Salcido, J., et al. Flamingo: calibrating large cosmolog-
ical hydrodynamical simulations with machine learning.
Monthly Notices of the Royal Astronomical Society, 526
(4):6103-6127, 2023.

Legin, R., Ho, M., Lemos, P., Perreault-Levasseur, L.,
Ho, S., Hezaveh, Y., and Wandelt, B. Posterior sam-
pling of the initial conditions of the universe from non-
linear large scale structures using score-based genera-
tive models. Monthly Notices of the Royal Astronomical
Society: Letters, 527(1):L173-L178, 10 2023. ISSN
1745-3925. doi: 10.1093/mnrasl/slad152. URL https:
//doi.org/10.1093/mnrasl/sladl52.

Lemos, P, Coogan, A., Hezaveh, Y., and Perreault-
Levasseur, L. Sampling-based accuracy testing of poste-
rior estimators for general inference. In International
Conference on Machine Learning, pp. 19256-19273.
PMLR, 2023.

Maksimova, N. A., Garrison, L. H., Eisenstein, D. J.,
Hadzhiyska, B., Bose, S., and Satterthwaite, T. P. Abacus-
summit: a massive set of high-accuracy, high-resolution
n-body simulations. Monthly Notices of the Royal Astro-
nomical Society, 508(3):4017-4037, 2021.

National Academies of Sciences, Engineering, and
Medicine. Pathways to Discovery in Astronomy and As-
trophysics for the 2020s. The National Academies Press,
Washington, DC, 2023. ISBN 978-0-309-46734-6. doi:
10.17226/26141.

Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez,
V., Torrey, P., Genel, S., Vogelsberger, M., Pakmor, R.,
Marinacci, F., Weinberger, R., Kelley, L., Lovell, M.,
Diemer, B., and Hernquist, L. The illustristng simulations:
public data release. Computational Astrophysics and
Cosmology, 6(1):2, 05 2019. ISSN 2197-7909. doi: 10.
1186/s40668-019-0028-x. URL https://doi.org/
10.1186/s40668-019-0028-x.

Ono, V., Park, C. F., Mudur, N., Ni, Y., Cuesta-Lazaro, C.,
and Villaescusa-Navarro, F. Debiasing with diffusion:
Probabilistic reconstruction of dark matter fields from

URL https://proceedings.neurips.

galaxies with camels. arXiv preprint arXiv:2403.10648,
2024.

Papamakarios, G., Sterratt, D., and Murray, I. Sequen-
tial neural likelihood: Fast likelihood-free inference with
autoregressive flows. In Chaudhuri, K. and Sugiyama,
M. (eds.), Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 89 of Proceedings of Machine Learn-
ing Research, pp. 837-848. PMLR, 16-18 Apr 2019.
URL https://proceedings.mlr.press/v89/
papamakariosl9a.html.

Richardson, J., Zheng, Z., Chatterjee, S., Nagai, D., and
Shen, Y. The halo occupation distribution of sdss quasars.
The Astrophysical Journal, 755(1):30, 2012.

Ronneberger, O., Fischer, P, and Brox, T. U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597, 2015. URL
http://dblp.uni-trier.de/db/journals/
corr/corrl505.html#RonnebergerFB15.

Rouhiainen, A., Gira, M., Miinchmeyer, M., Lee, K., and
Shiu, G. Super-resolution emulation of large cosmolog-
ical fields with a 3d conditional diffusion model. arXiv
preprint arXiv:2311.05217, 2023.

Santos, J. E., Fox, Z. R., Lubbers, N., and Lin, Y. T. Black-
out diffusion: Generative diffusion models in discrete-
state spaces, 2023.

Schaye, J., Kugel, R., Schaller, M., Helly, J. C., Braspen-
ning, J., Elbers, W., McCarthy, I. G., van Daalen, M. P,,
Vandenbroucke, B., Frenk, C. S., et al. The flamingo
project: cosmological hydrodynamical simulations for
large-scale structure and galaxy cluster surveys. Monthly
Notices of the Royal Astronomical Society, 526(4):4978—
5020, 2023.

Song, Y. and Ermon, S. Improved techniques for training
score-based generative models. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 12438-12448. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
92c3b916311a5517d9290576e3ea37ad-Paper.
pdf.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative mod-
eling through stochastic differential equations. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
1d=PxTIG12RRHS.


https://proceedings.neurips.cc/paper_files/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf
https://doi.org/10.1093/mnrasl/slad152
https://doi.org/10.1093/mnrasl/slad152
https://doi.org/10.1186/s40668-019-0028-x
https://doi.org/10.1186/s40668-019-0028-x
https://proceedings.mlr.press/v89/papamakarios19a.html
https://proceedings.mlr.press/v89/papamakarios19a.html
http://dblp.uni-trier.de/db/journals/corr/corr1505.html#RonnebergerFB15
http://dblp.uni-trier.de/db/journals/corr/corr1505.html#RonnebergerFB15
https://proceedings.neurips.cc/paper_files/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

Inpainting Galaxy Counts onto N-Body Simulations over Multiple Cosmologies and Astrophysics

Springel, V., White, S. D., Tormen, G., and Kauffmann,
G. Populating a cluster of galaxies—i. results at z= 0.
Monthly Notices of the Royal Astronomical Society, 328
(3):726-750, 2001.

Villaescusa-Navarro, F., Hahn, C., Massara, E., Banerjee,
A., Delgado, A. M., Ramanah, D. K., Charnock, T,
Giusarma, E., Li, Y., Allys, E., et al. The quijote simula-
tions. The Astrophysical Journal Supplement Series, 250
(1):2, 2020.

Villaescusa-Navarro, F., Genel, S., Anglé s-Alcézar, D.,
Thiele, L., Dave, R., Narayanan, D., Nicola, A., Li, Y.,
Villanueva-Domingo, P., Wandelt, B., Spergel, D. N.,
Somerville, R. S., Matilla, J. M. Z., Mohammad, F. G.,
Hassan, S., Shao, H., Wadekar, D., Eickenberg, M.,
Wong, K. W. K., Contardo, G., Jo, Y., Moser, E., Lau,
E. T., Valle, L. F. M. P, Perez, L. A., Nagai, D.,
Battaglia, N., and Vogelsberger, M. The CAMELS
multifield data set: Learning the universe’s fundamen-
tal parameters with artificial intelligence. The Astro-
physical Journal Supplement Series, 259(2):61, 04 2022.
doi: 10.3847/1538-4365/ac5ab0. URL https://doi.
0rg/10.3847%2F1538-4365%2Fac5ab0.

Villaescusa-Navarro, F., Genel, S., Anglés-Alcédzar, D.,
Perez, L. A., Villanueva-Domingo, P., Wadekar, D., Shao,
H., Mohammad, F. G., Hassan, S., Moser, E., et al. The
camels project: public data release. The Astrophysical
Journal Supplement Series, 265(2):54, 2023.

Vincent, P. A Connection Between Score Matching and
Denoising Autoencoders. Neural Computation, 23(7):
1661-1674, 07 2011. ISSN 0899-7667. doi: 10.
1162/NECO_a_00142. URL https://doi.org/10.
1162/NECO_a_00142.

Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki,
D., Xu, D., Snyder, G., Nelson, D., and Hernquist, L.
Introducing the illustris project: simulating the coevolu-
tion of dark and visible matter in the universe. Monthly
Notices of the Royal Astronomical Society, 444(2):1518—
1547, 2014.

Vogelsberger, M., Marinacci, F., Torrey, P., and Puchwein,
E. Cosmological simulations of galaxy formation. Nature
Reviews Physics, 2(1):42-66, 2020.

Yuan, S., Garrison, L. H., Hadzhiyska, B., Bose, S., and
Eisenstein, D. J. Abacushod: a highly efficient extended
multitracer hod framework and its application to boss and
eboss data. Monthly Notices of the Royal Astronomical
Society, 510(3):3301-3320, 2022.

Zhang, X., Wang, Y., Zhang, W., Sun, Y., He, S., Contardo,
G., Villaescusa-Navarro, F., and Ho, S. From dark matter
to galaxies with convolutional networks, 2019.

10

Zheng, Z., Berlind, A. A., Weinberg, D. H., Benson, A.J.,
Baugh, C. M., Cole, S., Davé, R., Frenk, C. S., Katz,
N., and Lacey, C. G. Theoretical models of the halo
occupation distribution: Separating central and satellite
galaxies. The Astrophysical Journal, 633(2):791, 11 2005.
doi: 10.1086/466510. URL https://dx.doi.org/
10.1086/466510.

Zheng, Z., Coil, A. L., and Zehavi, I. Galaxy evolution
from halo occupation distribution modeling of deep2 and
sdss galaxy clustering. The Astrophysical Journal, 667
(2):760, oct 2007. doi: 10.1086/521074. URL https:
//dx.doi.org/10.1086/521074.


https://doi.org/10.3847%2F1538-4365%2Fac5ab0
https://doi.org/10.3847%2F1538-4365%2Fac5ab0
https://doi.org/10.1162/NECO_a_00142
https://doi.org/10.1162/NECO_a_00142
https://dx.doi.org/10.1086/466510
https://dx.doi.org/10.1086/466510
https://dx.doi.org/10.1086/521074
https://dx.doi.org/10.1086/521074

Inpainting Galaxy Counts onto N-Body Simulations over Multiple Cosmologies and Astrophysics

A. Appendix

We present further summary statistics at different cosmologies to demonstrate our model’s ability to generalize.
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Figure 4. Summary statistics from various hydrodynamical simulations from the test set, encompassing a broad range of cosmological
parameter values, are presented alongside results from samples generated using both the HOD method and the diffusion model. These
results demonstrate that the diffusion model effectively generalizes across a wide range of cosmological parameter values beyond the
training set. In contrast, the HOD method shows inferior generalization capabilities for simulations with different cosmological parameter
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