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ABSTRACT

We propose a Competitive Low-Rank Adaptation (CoLoRA) framework to ad-
dress the limitations of the LoRA method, which either lacks capacity with a sin-
gle rank-r LoRA or risks inefficiency and overfitting with a larger rank-Kr LoRA,
where K is an integer larger than 1. The proposed CoLoRA method initializes K
distinct LoRA components, each with rank r, and allows them to compete dur-
ing training. This competition drives each LoRA component to outperform the
others, improving overall model performance. The best-performing LoRA is se-
lected based on validation metrics, ensuring that the final model outperforms a
single rank-r LoRA and matches the effectiveness of a larger rank-Kr LoRA, all
while avoiding extra computational overhead during inference. To the best of our
knowledge, this is the first work to introduce and explore competitive learning in
the context of LoRA optimization. The CoLoRA’s code will be released later.

1 INTRODUCTION

Large Language Models (LLMs) have transformed various natural language processing tasks by
leveraging their vast number of parameters and advanced architectures (Radford et al., 2019; Achiam
et al., 2023; Touvron et al., 2023; Dubey et al., 2024). Despite their success, efficiently adapt-
ing LLMs to specific tasks remains a challenge due to the prohibitive costs of full fine-tuning (FFT).
Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA) (Hu et al.,
2021), have emerged as promising solutions by updating only a small portion of parameters, signif-
icantly reducing computational burdens.

While LoRA provides an efficient alternative for adapting LLMs, it faces challenges in balanc-
ing model expressiveness with parameter efficiency. A single low-rank LoRA module may lack
sufficient representational capacity to handle complex tasks, whereas simply increasing the rank in-
troduces additional parameters and the risk of overfitting. Empirical studies on PEFT methods have
shown that higher-rank configurations do not consistently outperform lower-rank setups in prac-
tice (Hu et al., 2021; Sidahmed et al., 2024; Kalajdzievski, 2023), indicating that merely adding
more parameters is not a straightforward solution for performance enhancement. Therefore, there is
a need for training strategies that can better exploit existing LoRA components to enhance expres-
siveness without increasing computational overhead during inference.

Existing LoRA training methods typically employ fixed hyperparameters and adaptation strategies
across different tasks and throughout the training process. This lack of adaptability may hinder
the model’s ability to adjust to tasks with varying levels of complexity, such as those requiring
deeper reasoning, context understanding, or handling of specialized terminology. Consequently, the
model may fail to strike an optimal balance between efficiency and expressiveness, especially in
more demanding tasks (Lialin et al., 2023). This limitation leads to the underperformance of LoRA
modules when applied to a diverse range of tasks that challenge the model’s capacity to represent
complex patterns and relationships in the data.

To address these challenges, we draw inspiration from competitive learning, which has been ap-
plied successfully in feature discovery and clustering (Nowlan, 1989; Rumelhart & Zipser, 1985;
Grossberg, 1987). Competitive learning allows multiple components of a model to compete dur-
ing training, dynamically optimizing their performance based on feedback. Despite its successes in
other domains, this mechanism has not yet been explored within the context of LoRA or other PEFT
methods.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We propose the Competitive Low-Rank Adaptation (CoLoRA) framework, which incorporates
competitive learning to dynamically train multiple LoRA components. In CoLoRA, multiple LoRA
components compete during adaptation, guided by a dynamic selector that evaluates their perfor-
mance at each training step. This competitive process allows each component to improve iteratively,
achieving an optimal balance between expressiveness and parameter efficiency without significantly
increasing computational overhead during inference. By leveraging the strengths of the most effec-
tive LoRA components, CoLoRA enhances model adaptation across diverse tasks while maintaining
inference efficiency.

Our key contributions are as follows:

• We propose the first competitive learning framework for LoRA.

• We develop a selector mechanism that optimizes LoRA component selection during train-
ing.

• Extensive experiments demonstrate the superiority of CoLoRA over LoRA, without in-
creasing inference overhead.

2 RELATED WORKS

LoRA. Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a widely used technique for efficient fine-
tuning of large pre-trained models by introducing low-rank updates to parameter matrices, thereby
reducing computational overhead. While LoRA maintains strong performance with fewer param-
eters, its fixed rank can limit expressiveness. Attempts to increase the rank, such as using K × r,
enhance capacity but at the cost of higher computational demands and increased risk of overfit-
ting. CoLoRA addresses these challenges by incorporating a competitive mechanism where mul-
tiple LoRA components compete during training, enhancing adaptability and robustness without
sacrificing the efficiency that defines LoRA.

Mixture of Experts (MoE). MoE models have gained significant attention in the context of large
language models (LLMs) due to their ability to scale efficiently by selectively activating only a sub-
set of the model’s parameters during inference. A prominent example is the Switch Transformer (Fe-
dus et al., 2022), which uses an MoE layer to route inputs to different expert networks, significantly
reducing computational costs while maintaining performance. Similarly, GLaM (Du et al., 2022)
dynamically selects a subset of experts based on the input, allowing the model to adapt efficiently to
diverse tasks. MoELoRA (Luo et al., 2024) extends the MoE framework to LoRA by using a gating
network to route inputs to multiple LoRA experts during inference, emphasizing diversity among
components. In contrast, CoLoRA focuses on learning a single LoRA component after competitive
training, minimizing inference overhead. Hence, MoELoRA needs to utilize multiple LoRA experts
and the gating network during inference, while the proposed CoLoRA method acts exactly the same
as LoRA during the inference.

3 METHODOLOGY

In this section, we introduce the Competitive Low-Rank Adaptation (CoLoRA) framework.

3.1 OVERVIEW

CoLoRA initializes K distinct LoRA components, each with a rank r. A LoRA selector is intro-
duced to dynamically choose the most suitable LoRA component based on the input context. This
competitive framework drives the LoRA components to refine their individual strengths, effectively
combining them to enhance the model’s overall performance without adding inference overhead. An
illustration of the proposed CoLoRA method is shown in Figure 1.

3.2 MULTIPLE LORA COMPONENTS

We begin by initializing K separate LoRA components {LoRA1,LoRA2, . . . ,LoRAK}, each with
rank r. For LoRAk, we have projection matrices Ak ∈ Rd×r and Bk ∈ Rr×l, where d and l denotes

2
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Figure 1: An illustration of the CoLoRA pipeline.

the dimension of the input and output in this layer, respectively. The matrices Ak are initialized
using the Kaiming initialization method (He et al., 2015), while the matrices Bk are initialized to
zero, following standard LoRA practices.

3.3 LORA SELECTOR

The LoRA selector is designed to evaluate the input sequence and select the most suitable LoRA
component. It operates by computing similarity scores between a representation of the input se-
quence and embeddings associated with each LoRA component.

Input Representation. Given an input sequence X ∈ RL×d of length L, where each token is
embedded in a d-dimensional space, we obtain a contextualized representation using a lightweight
one-layer transformer encoder. This neural network produces hidden states H ∈ RL×dsel , where dsel
is the dimensionality of the selector’s hidden states. To obtain a fixed-length representation of the
input sequence, we average the hidden states across the sequence length as

havg =
1

L

L∑
i=1

Hi, (1)

where Hi is the hidden state corresponding to the i-th token.

LoRA Embeddings. Each LoRA component k is associated with a learnable embedding vector
ek ∈ Rdsel . These embeddings serve as representatives for their respective LoRA, allowing the
selector to compute and update the similarity scores efficiently.

Computation of Similarity Score. The similarity score between the input representation and each
LoRA component embedding is calculated using a dot product:

simk = h⊤
avgek for k = 1, 2, . . . ,K. (2)

This results in a similarity score vector s ∈ RK as

s = [sim1, sim2, . . . , simK ]. (3)

3.4 OBJECTIVE FUNCTION

The objective function to train CoLoRA consists of three losses, including the language modeling
loss, selector loss, and alignment loss. In the following section, we introduce them one by one.

Language Modeling Loss. The language modeling loss, denoted as LLM, is calculated to guide the
updates of the LoRA components. For each LoRA component k, the loss is defined as:

LLM,k = −
L∑

t=1

logP (yt|y<t, θ,Ak,Bk), LLM =
1

K

K∑
k=1

LLM,k, (4)

where yt is the target token at position t, θ represents the base model parameters, and Ak and Bk are
the projection matrices of the k-th LoRA component. This loss function drives the training process,
ensuring that the LoRA components are optimized to minimize the prediction error of the next token
in the sequence.

3
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Alignment Loss. To ensure that the LoRA selector effectively influences the language model (LM)
during training, we introduce an alignment loss that reflects the selector’s preferences in the LM
updates. This alignment loss is designed to align the similarity scores, as predicted by the selector,
with the next-token prediction losses for the top-N ranked LoRA components. The loss is defined
as:

Lalign = η(t) ·
(

StopGrad (psim, top-N )
⊤ LLM, top-N

)
, (5)

where psim, top-N denotes the normalized similarity scores of the top-N selected LoRA components
with largest similarity scores, LLM, top-N is a vector containing LM losses for the top-N selected
LoRA components, StopGrad(·) indicates that the input is detached to prevent it from contributing
to the gradient, and η(t) is an annealing scalar that evolves over training steps. By focusing on
the top-N components, the alignment loss directs LM updates based on the top preferences of the
LoRA selector. With the annealing strategy, we expect that during the initial stage of the training
process, LoRA components can learn more independently to encourage exploration and as train-
ing progresses, the influence of the guidance from the LoRA selector on the LoRA components
gradually increases.

Pairwise Loss. The LoRA selector is trained to align the similarity scores with the actual perfor-
mance of the LoRA components using a pairwise loss approach. This ensures that the similarity
scores correlate with the relative performance (as measured by the language modeling loss) of the
LoRA components. To avoid overly deterministic selection, a Gaussian noise term is added to the
language modeling loss for each LoRA component. The modified LM loss for component k is
defined as:

L̃LM,k = LLM,k + αϵk, (6)
where ϵk ∼ N (0, 1) is a Gaussian noise term, and α is a small constant that controls the noise
intensity (e.g., α = 0.1). The differences between similarity scores and the corresponding noisy LM
losses for each pair of LoRA components (i, j) are defined as:

∆sim,i,j = simi − simj , ∆LM,i,j = L̃LM,i − L̃LM,j . (7)
Those differences are normalized using the softmax operation to produce log-softmax values as

logsoftmax(∆sim) = log(softmax(∆sim)), logsoftmax(∆LM) = log(softmax(∆LM)). (8)
The pairwise loss is then computed as the ℓ1 loss between the log-softmax similarity score differ-
ences and the log-softmax LM loss differences:

Lpairwise = ∥logsoftmax(∆sim)− StopGrad(logsoftmax(∆LM))∥1, (9)
where ∥ · ∥1 denotes the ℓ1 norm of a vector. This pairwise loss encourages the selector to assign
higher similarity scores to LoRA components that demonstrate better performance (i.e., lower noisy
LM losses), ensuring that the predictions of the selector align with the actual capabilities of each
component.

Objective Function. The total loss combines the LM loss, the alignment loss, and the selector loss
as

Ltotal = LLM + Lalign + Lpairwise. (10)
During training, we optimize Ltotal with respect to the parameters in LoRA components and the
LoRA selector.

3.5 DETERMINATION OF LORA WINNER

After training, we use the LoRA selector to determine the LoRA winner based on the validation
dataset. Specifically, we pass the validation data through the LoRA Selector to compute the similar-
ity scores for each LoRA component as

sval = [simval,1, simval,2, . . . , simval,K ], (11)
where simval,k is the accumulated similarity score for LoRA component k over the validation dataset.

We then select the LoRA winner as the one with the highest total similarity score as

kwin = argmax
k

simval,k. (12)

During inference on the test set, we only use the LoRA winner LoRAkwin , without using the LoRA
selector or other LoRA components. This ensures that the inference is efficient, as it avoids any
additional computational overhead associated with the selector or dynamic selection.
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Table 1: Comparison of Full Fine-Tuning (FFT), LoRA, MoE of LoRA, and CoLoRA, where ∼
means moderate.

FFT LoRA MoE of LoRA CoLoRA
Overfitting Risk High Low Medium Low
High Inference Overhead Low Low High Low
Competitive Learning Low Low Low High
Model Complexity High Low High Medium

3.6 COMPARISONS WITH FFT, LORA, AND MOE OF LORA

During the training process, we can see that the proposed CoLoRA method needs to train K LoRAs,
leading to training complexity comparable to MoE with K LoRAs but higher than LoRA. During
the inference process, the proposed CoLoRA method only uses the LoRA winner, which can be
merged into the base model. Hence, CoLoRA preserves low inference overhead as LoRA did, while
MoE of LoRA, which needs to use a gating network to choose from K LoRAs, cannot be merged
into the base model, yielding additionally computational costs. In summary, the comparisons with
FFT, LoRA, and MoE of LoRA are shown in Table 1.

4 EXPERIMENTS

In this section, we evaluate the proposed CoLoRA method by comparing with LoRA to compare
between the competitive training in CoLoRA and the conventional training process in LoRA.

4.1 EXPERIMENTAL SETTINGS

All experiments were conducted using the LLaMA-3-8B model (Dubey et al., 2024). To compare
CoLoRA with LoRA across different rank configurations, we use LoRA ranks of 4, 8, 16, 32, and
128, and CoLoRA configurations with (K = 4, r = 4), (K = 2, r = 8), (K = 4, r = 8), and
(K = 4, r = 32).

The AdamW optimizer (Loshchilov & Hutter, 2019) is used to train LoRA and CoLoRA. The learn-
ing rates for both LoRA and CoLoRA methods are selected from [1e − 3, 1e − 4], and fine-tuning
is conducted for 3 epochs for all the tasks. Each experiment runs with 5 different seeds, and the
average results are reported.

4.2 EVALUATION TASKS

Commonsense Reasoning. We evaluate our models using a comprehensive commonsense reason-
ing dataset, which includes eight sub-tasks: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-c (Clark et al., 2018), ARC-e (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). These
tasks cover various aspects of commonsense knowledge, such as physical reasoning, social implica-
tions, and natural language inference. We aggregate the training sets from all sub-tasks into a single
corpus of 170,420 entries, from which we randomly select 120 entries for validation to identify the
optimal model.

MMLU. The MMLU (Massive Multitask Language Understanding) benchmark (Hendrycks et al.,
2021b;a) includes 57 diverse subjects spanning the humanities, STEM, social sciences, and more.
Each subject comprises questions of varying difficulty, with multiple-choice answers provided.

Personalized Conversation Task. We assess model performance on personalized conversational
understanding using the CONVAI2 dataset (Dinan et al., 2019; Zhang et al., 2018). This dataset
is designed to evaluate a model’s ability to engage in meaningful and coherent conversations while
maintaining a personalized dialogue. The task involves training the model to respond in a way that
reflects an understanding of personal preferences and contextual nuances.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Performance of LoRA and CoLoRA on commonsense reasoning tasks. The Params (%)
(L/S) column indicates the percentage of trainable parameters in LoRA component(s) (denoted by
L) and the LoRA selector (denoted by S). The best performance is in bold, and the second best
performance is underlined.

Method Params (%) (L/S) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average
LoRAr=4 0.09/0.00 65.72 73.67 73.49 63.31 78.70 72.80 80.06 75.93 72.96
LoRAr=8 0.18/0.00 52.02 70.40 64.94 59.04 76.39 64.20 74.72 72.38 66.76
LoRAr=16 0.35/0.00 65.66 77.64 71.65 71.93 87.42 73.60 82.06 73.40 75.42
LoRAr=32 0.70/0.00 70.80 85.20 79.90 71.20 84.20 79.00 91.70 84.30 80.79
LoRAr=128 2.74/0.00 71.99 88.19 79.63 80.03 91.37 86.40 93.42 88.00 84.88
CoLoRAK=4,r=4 0.35/1.45 69.02 86.56 79.68 78.84 92.21 83.40 92.39 86.35 83.56
CoLoRAK=2,r=8 0.35/1.45 75.14 90.04 82.09 82.42 93.14 89.00 96.03 88.87 87.09
CoLoRAK=4,r=8 0.70/1.45 73.79 88.79 81.47 83.11 92.68 89.00 95.45 88.24 86.57
CoLoRAK=4,r=32 2.74/1.39 71.53 87.65 79.99 80.12 92.42 87.40 94.56 86.50 85.02

4.3 EVALUATION METRICS

To evaluate performance on the commonsense reasoning datasets, we use accuracy as the primary
metric, following the approach of (Hu et al., 2023). For each test instance, the language models
generate answers based on the provided queries, and specific keywords (e.g., ”true” or ”false” for
BoolQ) are searched within the responses. The first occurrence of a relevant keyword is recorded as
the model’s answer, while responses lacking relevant keywords are considered incorrect. A similar
evaluation method is employed for MMLU.

For the CONVAI2 dataset, we assess linguistic similarity using BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee & Lavie, 2005), and ROUGE-L (R-L) (Lin, 2004), which calculate the overlap of
n-grams between model predictions and ground truth. To measure semantic similarity, we use BERT
Score (Zhang et al., 2019), which evaluates the cosine similarity of normalized BERT embeddings
between predictions and ground truth. We report BERT Score’s F1 (BERTF1), Recall (BERTR),
and Precision (BERTP ).

4.4 RESULTS

Commonsense Reasoning. The results on commonsense reasoning are shown in Table 2. Among
the LoRA configurations, LoRAr=128 achieves the highest average score of 84.88%, indicating
that a higher rank enhances the model capacity to learn complex patterns in the data. In con-
trast, the CoLoRA framework shows strong performance across all tested configurations. Notably,
CoLoRAK=2,r=8, which selects the winner LoRA with rank 8 for inference, achieves the highest
average score of 87.09%, outperforming all LoRA baselines, including LoRAr=128. This result un-
derscores the effectiveness of CoLoRA’s competitive learning mechanism, where multiple low-rank
adapters compete during training, leading to improved overall performance.

Table 3: Performance comparison of LoRA and
CoLoRA on MMLU. The best performance is
in bold, and the second best performance is
underlined.

Method Params (L/S) (%) Accuracy
LoRAr=4 0.09/0.00 56.44
LoRAr=8 0.18/0.00 56.79
LoRAr=16 0.35/0.00 55.25
LoRAr=32 0.70/0.00 55.97
LoRAr=128 2.74/0.00 59.36
CoLoRAK=2,r=8 0.35/1.45 59.81
CoLoRAK=4,r=4 0.35/1.45 59.41
CoLoRAK=4,r=8 0.70/1.45 59.14
CoLoRAK=4,r=32 2.74/1.39 61.09

Moreover, CoLoRA configurations with lower
ranks still outperform higher-rank LoRA. For
example, CoLoRAK=4,r=4 achieves an aver-
age score of 83.56%, surpassing LoRAr=32

which has an average score of 80.79%. This
demonstrates that CoLoRA can achieve supe-
rior performance with fewer parameters com-
pared to conventional LoRA methods.

For individual tasks, CoLoRAK=2,r=8 con-
sistently outperforms different LoRA meth-
ods. In tasks such as PIQA and HellaSwag,
CoLoRAK=2,r=8 achieves remarkable scores
of 90.04% and 96.03%, respectively, signif-
icantly higher than the corresponding perfor-
mance of LoRAr=128. This indicates that the
competition among LoRA components in CoL-
oRA enable the model to learn from complex reasoning tasks.
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Table 4: Performance comparison of LoRA and CoLoRA on CONVAI2 Dataset. The best perfor-
mance is in bold, and the second best performance is underlined.

Method Params (L/S) (%) BLEU METEOR R-L BERTF1 BERTR BERTP Average
LoRAr=4 0.09/0.00 2.54 12.97 12.27 84.76 85.04 84.54 47.02
LoRAr=8 0.18/0.00 2.37 12.69 11.89 84.66 84.97 84.40 46.83
LoRAr=16 0.35/0.00 3.15 14.00 13.32 84.70 84.25 85.19 47.43
LoRAr=32 0.70/0.00 3.27 15.06 14.05 84.78 84.41 85.19 47.79
LoRAr=128 2.74/0.00 3.24 15.24 14.06 84.79 84.42 85.20 47.82
CoLoRAK=2,r=8 0.35/1.45 3.69 17.05 16.09 85.23 84.74 85.75 48.76
CoLoRAK=4,r=4 0.35/1.45 3.67 16.99 15.98 85.22 84.73 85.74 48.72
CoLoRAK=4,r=8 0.70/1.45 3.65 16.90 15.95 85.19 84.70 85.72 48.69
CoLoRA K=4,r=32 2.74/1.39 3.62 16.06 14.75 84.83 84.53 85.17 48.16
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Figure 2: Loss Curves for LoRA and CoLoRA.
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Figure 3: Number of times being the winner for
each LoRA component inside CoLoRA every
50 training steps.

MMLU. As shown in Table 3, CoLoRA demonstrates superior performance across various configu-
rations. Notably, CoLoRAK=4,r=32 achieves the highest accuracy of 61.09%, surpassing all LoRA
baselines, including LoRAr=128, which achieves 59.36%. CoLoRAK=2,r=8 secures the second-best
accuracy at 59.81%, followed closely by CoLoRAK=4,r=4 with 59.41%. These results highlight the
effectiveness of CoLoRA’s competitive learning approach, as it consistently outperforms traditional
LoRA methods even with lower ranks per component. Additionally, CoLoRAK=4,r=8 maintains
strong performance, further demonstrating CoLoRA’s robustness across various configurations.

CONVAI2. According to the results shown in Table 4, CoLoRAK=2,r=8 outperforms all other
configurations across multiple metrics, including BLEU, METEOR, ROUGE-L (denoted by R-L),
and BERT scores (i.e., BERTF1, BERTR, and BERTP ). Specifically, CoLoRAK=2,r=8 achieves
a BLEU score of 3.69, a METEOR score of 17.05, and a ROUGE-L score of 16.09, significantly
higher than the corresponding scores from LoRAr=4 to LoRAr=128. This demonstrates the effec-
tiveness of competitive learning approach in CoLoRA to capturing diverse conversational patterns.

Additionally, CoLoRAK=4,r=4 secures the second-best performance across all metrics, maintain-
ing high scores and further validating the effectiveness of the CoLoRA framework. The average
scores reflect CoLoRA’s ability to consistently outperform traditional LoRA, even with lower ranks,
thereby offering a more parameter-efficient alternative without sacrificing model performance.

5 ABLATION STUDIES

To thoroughly evaluate the effectiveness of the proposed CoLoRA framework, we conduct a series
of ablation studies on commonsense reasoning tasks. Unless otherwise specified, all experiments
are performed using the LLaMA-3-8B model with K = 4 and r = 8 in CoLoRA.

5.1 ANALYSIS ON LOSS AND LORA COMPONENTS

To assess the effectiveness of CoLoRA, we analyze its training losses when K = 4 and r = 4
and compare with LoRAr=4 and LoRAr=16. As shown in Figure 2, the training losses of all LoRA

7
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Table 5: Impact of removing one of the losses or selector from total loss.
Method BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average
CoLoRAK=4,r=4 69.02 86.56 79.68 78.84 92.21 83.40 92.39 86.35 83.56
w/o LLM 67.31 84.82 76.97 77.99 91.08 79.80 91.23 80.82 81.25
w/o Lalign 67.46 79.16 75.28 69.80 81.65 78.20 83.07 80.90 76.94
w/o Lpairwise 69.20 85.69 74.21 77.56 90.87 78.60 89.86 77.51 80.44
w/o Selector 65.38 83.84 70.98 74.74 90.07 75.20 72.24 71.03 75.44

components in CoLoRA are consistently lower than those of LoRAs, despite each LoRA component
having only a rank of 4. Different LoRA components in CoLoRA intertwine, collectively forming
lower losses through their competitive interaction during training. This results in that CoLoRA
achieves a faster convergence compared to a single LoRA model under the standard fine-tuning
process.

Figure 3 plots the number of times being the winner among the four LoRA components for each
LoRA component over every 50 steps, where the winner at a training step has the lowest training
loss. Figure 3 reveals how the LoRA component 0 gradually gains dominance through competitive
training, ultimately being the LoRA winner in CoLoRA.

5.2 EFFECT OF DIFFERENT LOSSES AND SELECTOR

To better understand the impact of each loss component and the selector in the CoLoRA frame-
work, we conduct ablation studies by removing one component at a time and observing its effect on
performance across commonsense reasoning tasks.

According to the results presented in Table 5, we can see that removing the language modeling loss
LLM leads to a noticeable performance drop, with the average accuracy decreasing from 83.56%
to 81.25%. This indicates that the LM loss is essential for optimizing the model’s predictions and
driving CoLoRA’s performance.

The alignment loss Lalign, which ensures that the LoRA selector’s preferences influence the LM
updates, has an even larger impact. Without this loss, the model’s average performance decreases
significantly to 76.94%, showing the critical role of aligning the selector’s guidance with the LM
performance.

Similarly, removing the pairwise loss Lpairwise, which fosters competition among LoRA components,
also reduces performance, with the average accuracy falling to 80.44%. This suggests that competi-
tion between components is important for enhancing the model’s performance.

Lastly, we also evaluate the impact of removing the selector entirely from the framework. Without
the selector, the average accuracy drops drastically to 75.44%, indicating that the selector plays a
central role in CoLoRA’s performance.

5.3 EFFECT OF THE NUMBER OF LORA COMPONENTS K

Table 6: Performance of CoLoRA with varying numbers of LoRA components K (with fixed rank
r = 8) across commonsense reasoning tasks.

r K BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

8

1 52.02 70.40 64.94 59.04 76.39 64.20 74.72 72.38 66.76
2 75.14 90.04 82.09 82.42 93.14 89.00 96.03 88.87 87.09
3 73.06 86.29 80.40 81.57 93.10 87.60 94.75 87.61 85.55
4 71.65 84.33 79.79 79.01 88.80 86.20 92.55 85.71 83.51
5 70.64 85.80 80.30 81.91 92.34 85.80 94.12 85.79 84.59
6 68.56 84.87 79.27 77.39 91.46 80.00 93.19 83.82 82.32
7 67.13 84.87 78.10 79.35 90.07 82.60 92.17 84.21 82.31
8 70.86 87.11 81.06 80.38 92.09 83.60 93.46 87.45 84.50

In this section, we investigate the impact of the number of LoRA components K to the performance
of CoLoRA, while fixing the rank r to be 8. According to the results shown in Table 6, we observe
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Table 7: Impact of top-N selection to task performance when varying N .
r K Top-N BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

8 4

1 74.19 88.47 80.86 82.76 92.13 86.80 94.81 88.87 86.11
2 72.14 88.19 82.65 82.42 92.93 88.20 95.27 87.37 86.15
3 73.49 89.39 80.81 83.28 92.85 87.80 95.38 87.06 86.26
4 74.53 89.01 82.55 83.53 93.06 88.80 95.86 89.34 87.08

Table 8: Performance of different annealing strategies.
Annealing Strategy BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average
Constant 70.21 87.43 79.84 80.12 91.58 84.00 92.83 85.79 83.98
Cosine 70.52 88.79 80.14 79.95 91.33 83.20 93.60 84.29 83.98
Exponential 73.79 88.79 81.47 83.11 92.68 89.00 95.45 88.24 86.57
Linear 74.31 87.60 80.60 81.06 91.71 86.60 94.50 86.58 85.37

that when K = 1, which corresponds to the standard LoRA with rank r = 8, the average perfor-
mance across tasks is 66.76%. As we increase K, the performance improves significantly, reaching
the highest average performance (i.e., 87.09%) when K equals 2. This demonstrates that introduc-
ing competition among multiple LoRA components can substantially enhance the model capability
even with a small number of components.

Interestingly, the performance does not continue to improve with larger values of K beyond 2.
While K = 3 and K = 5 still achieve good average performance (i.e., 85.55% and 84.59%), they
are slightly lower than the peak performance at K = 2. This suggests that having many competing
LoRA components may introduce redundancy or interference to affect the training of each LoRA
component.

5.4 EFFECT OF N IN TOP-N SELECTION

We evaluate the impact of N in selecting the top-N LoRA components when defining the alignment
loss in Eq. (5). According to the results shown in Table 7, we can see that increasing N gener-
ally improves the performance, with N = 4 achieving the highest average accuracy of 87.08%.
This indicates that allowing more LoRA components to update during training enhances the model
performance. Moreover, training with top-2 or top-3 components also yields competitive results,
providing a balance between the computational efficiency and performance.

5.5 EFFECT OF ANNEALING STRATEGY

In this section, we evaluate the impact of the annealing strategy used in the alignment loss (i.e., Eq.
(5)) to the performance of CoLoRA. We compare four annealing strategies, including the constant,
cosine, exponential, and linear annealing strategy. The four strategies are defined as

Constant: η(t) = 1, Cosine: η(t) = 0.5 ·
(
1− cos

(
π · t
T

))
(13)

Exponential: η(t) = 1− exp

(
−α · t

T

)
, Linear: η(t) =

t

T
, (14)

where t denotes the index of the current training step and T denotes the number of total steps in
the whole training process. According to the results presented in Table 8, we can see that the ex-
ponential annealing strategy yields the highest average performance, achieving an average accuracy
of 86.57%, which indicates its effectiveness in dynamically adjusting the guidance of the LoRA
selector. The other three annealing strategies exhibit inferior average performance, making the the
exponential annealing strategy a good and default choice in our experiments.

5.6 EFFECT OF NOISE INTENSITY

To evaluate the impact of noise intensity in the pairwise loss, we conduct an ablation study on the
effect of the value of the noise intensity parameter α to the performance. According to the results
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Table 9: Impact of varying noise intensity parameter α in the pairwise loss on task performance
r K Noise Intensity (α) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

8 4

0.0 72.81 87.65 79.99 81.31 92.47 84.60 91.97 87.29 84.76
0.1 73.79 88.79 81.47 83.11 92.68 89.00 95.45 88.24 86.57
1.0 73.09 88.14 80.19 80.80 92.21 85.20 94.55 87.21 85.18
10.0 71.59 87.87 80.76 80.55 93.06 84.00 94.46 85.87 84.77

Table 10: Performance comparison of LoRA components (indexed from 0 to 3) in CoLoRA. The
LoRA winner determined by CoLoRA for inference is highlighted as 0.

LoRA Index BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average
0 (Winner) 73.79 88.79 81.47 83.11 92.68 89.00 95.45 88.24 86.57
1 74.92 88.52 82.14 81.40 92.42 89.00 95.44 87.21 86.38
2 73.61 88.47 81.63 82.08 92.97 87.40 95.45 87.85 86.18
3 74.40 88.41 81.22 81.14 91.67 86.00 95.32 86.98 85.64

shown in Table 9, we can see that introducing a moderate level of noise (i.e., α = 0.1) yields the best
overall performance across tasks, achieving an average accuracy of 86.57%. In contrast, removing
the noise entirely (i.e., α = 0.0) results in a lower average accuracy of 84.76%, highlighting the
importance of controlled noise in improving the generalization. As α increases, the performance
generally decreases, indicating that excessive noise (e.g., α = 10.0) hinders the model capacity.

5.7 EFFECTIVENESS OF THE LORA WINNER

In this section, we examine whether the LoRA winner selected by the CoLoRA framework dur-
ing training is indeed the best-performing one. Table 10 presents the performance of each LoRA
component (indexed from 0 to 3) on commonsense reasoning tasks.

As shown in Table 10, the LoRA winner, indexed as 0, achieves the highest average accuracy
of 86.57% across tasks. This confirms that the CoLoRA framework effectively selects the best-
performing LoRA component during training. Those results underscore that CoLoRA’s selection
mechanism reliably identifies the most effective LoRA component, ensuring that the final model
benefits from the best available adaptation to the task at hand.

6 CONCLUSIONS

In this work, we introduced the CoLoRA framework, a novel approach to enhance LoRA by integrat-
ing competitive learning. CoLoRA enhances the efficiency and adaptability of LoRA by initializing
multiple LoRA components that compete during training, with each component striving to achieve
better performance through competition. The proposed CoLoRA method significantly outperforms
the conventional LoRA method across various tasks, while maintaining parameter efficiency and
avoiding computational overhead during inference. Our future work will explore the competitive
learning paradigm to other fine-tuning methods.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Jade Goldstein, Alon Lavie, Chin-Yew Lin, and
Clare Voss (eds.), Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Mea-
sures for Machine Translation and/or Summarization, pp. 65–72, Ann Arbor, Michigan, June
2005. Association for Computational Linguistics. URL https://aclanthology.org/
W05-0909.

10

https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander H. Miller, Kurt Shuster, Jack Ur-
banek, Douwe Kiela, Arthur D. Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W.
Black, Alexander I. Rudnicky, Jason Williams, Joelle Pineau, Mikhail S. Burtsev, and Jason We-
ston. The second conversational intelligence challenge (convai2). arXiv:1902.00098, 2019.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–
5569. PMLR, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23(1), jan 2022. ISSN 1532-4435.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive reso-
nance. Cognitive Science, 11(1):23–63, 1987. ISSN 0364-0213. doi: https://doi.org/10.
1016/S0364-0213(87)80025-3. URL https://www.sciencedirect.com/science/
article/pii/S0364021387800253.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5254–5276, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
319. URL https://aclanthology.org/2023.emnlp-main.319.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

11

https://aclanthology.org/N19-1300
https://www.sciencedirect.com/science/article/pii/S0364021387800253
https://www.sciencedirect.com/science/article/pii/S0364021387800253
https://aclanthology.org/2023.emnlp-main.319


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates. In International Conference on Learning Representations,
2023. URL https://api.semanticscholar.org/CorpusID:259836974.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large lan-
guage models. arXiv preprint arXiv:2402.12851, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL
https://aclanthology.org/D18-1260.

Steven Nowlan. Maximum likelihood competitive learning. In D. Touretzky (ed.),
Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/d1c38a09acc34845c6be3a127a5aacaf-Paper.pdf.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, Association for Computational Linguistics, pp. 311–318, USA,
2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//doi.org/10.3115/1073083.1073135.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

David E. Rumelhart and David Zipser. Feature discovery by competitive learning. Cognitive
Science, 9(1):75–112, 1985. ISSN 0364-0213. doi: https://doi.org/10.1016/S0364-0213(85)
80010-0. URL https://www.sciencedirect.com/science/article/pii/
S0364021385800100.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Hakim Sidahmed, Samrat Phatale, Alex Hutcheson, Zhuonan Lin, Zhan Chen, Zac Yu, Jarvis Jin,
Simral Chaudhary, Roman Komarytsia, Christiane Ahlheim, Yonghao Zhu, Bowen Li, Saravanan
Ganesh, Bill Byrne, Jessica Hoffmann, Hassan Mansoor, Wei Li, Abhinav Rastogi, and Lucas
Dixon. Parameter efficient reinforcement learning from human feedback. 2024. URL https:
//api.semanticscholar.org/CorpusID:272654269.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

https://api.semanticscholar.org/CorpusID:259836974
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/D18-1260
https://proceedings.neurips.cc/paper_files/paper/1989/file/d1c38a09acc34845c6be3a127a5aacaf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/d1c38a09acc34845c6be3a127a5aacaf-Paper.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.sciencedirect.com/science/article/pii/S0364021385800100
https://www.sciencedirect.com/science/article/pii/S0364021385800100
https://api.semanticscholar.org/CorpusID:272654269
https://api.semanticscholar.org/CorpusID:272654269


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston.
Personalizing dialogue agents: I have a dog, do you have pets too? In Iryna Gurevych and
Yusuke Miyao (eds.), Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 2204–2213, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1205. URL https:
//aclanthology.org/P18-1205.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

13

https://aclanthology.org/P18-1205
https://aclanthology.org/P18-1205

	Introduction
	Related Works
	Methodology
	Overview
	Multiple LoRA Components
	LoRA Selector
	Objective Function
	Determination of LoRA Winner
	Comparisons with FFT, LoRA, and MoE of LoRA

	Experiments
	Experimental Settings
	Evaluation Tasks
	Evaluation Metrics
	Results

	Ablation Studies
	Analysis on Loss and LoRA Components
	Effect of Different Losses and Selector
	Effect of the Number of LoRA Components K
	Effect of N in Top-N Selection
	Effect of Annealing Strategy
	Effect of Noise Intensity
	Effectiveness of the LoRA Winner

	Conclusions

