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ABSTRACT

Mixup is a powerful data augmentation method that interpolates between two or
more examples in the input or feature space and between the corresponding tar-
get labels. However, how to best interpolate images is not well defined. Re-
cent mixup methods overlay or cut-and-paste two or more objects into one image,
which needs care in selecting regions. Mixup has also been connected to autoen-
coders, because often autoencoders generate an image that continuously deforms
into another. However, such images are typically of low quality.
In this work, we revisit mixup from the deformation perspective and introduce
AlignMix, where we geometrically align two images in the feature space. The
correspondences allow us to interpolate between two sets of features, while keep-
ing the locations of one set. Interestingly, this retains mostly the geometry or
pose of one image and the appearance or texture of the other. We also show that
an autoencoder can still improve representation learning under mixup, without
the classifier ever seeing decoded images. AlignMix outperforms state-of-the-art
mixup methods on five different benchmarks.

1 INTRODUCTION

Data augmentation (Krizhevsky et al., 2012; Paulin et al., 2014; Cubuk et al., 2019) is a power-
ful regularization method that increases the amount and diversity of data, be it labeled or unla-
beled (Dosovitskiy et al., 2013). It improves the generalization performance and helps learning
invariance (Simard et al., 1998) at almost no cost, because the same example can be transformed in
different ways over epochs. However, by operating on one image at a time and limiting to label-
preserving transformations, it has limited chances of exploring beyond the image manifold. Hence,
it is of little help in combating memorization of training data (Zhang et al., 2017) and sensitivity to
adversarial examples (Szegedy et al., 2014).

Mixup operates on two or more examples at a time, interpolating between them in the input
space (Zhang et al., 2018a) or feature space (Verma et al., 2019), while also interpolating between
target labels for image classification. This flattens class representations (Verma et al., 2019), reduces
overly confident incorrect predictions, and smoothens decision boundaries far away from training
data. However, input mixup images are overlays and tend to be unnatural (Yun et al., 2019). In-
terestingly, recent mixup methods focus of combining two (Yun et al., 2019; Kim et al., 2020) or
more (Kim et al., 2021) objects from different images into one in the input space, making efficient
use of training pixels. However, randomness in the patch selection and thereby label mixing may
mislead the classifier to learn uninformative features (Uddin et al., 2021), which raises the question:
what is a good interpolation of images?

Bengio et al. (2013) show that traversing along the manifold of representations obtained from deeper
layers of the network more likely results in finding realistic examples. This is because the interpo-
lated points smoothly traverse the underlying manifold of the data, capturing salient characteristics
of the two images. Furthermore, Berthelot et al. (2018) show the ability of autoencoders to capture
semantic correspondences obtained by decoding mixed latent codes. This is because the autoen-
coder may disentangle the underlying factors of variation. Efforts have followed on mixing latent
representations of autoencoders to generate realistic images for data augmentation. However, these
approaches are more expensive, requiring three networks (encoder, decoder, classifier) (Berthelot
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Figure 1: Different mixup methods. AlignMix retains the pose of image 2 and the texture of image 1.
This is different from overlay (Input and Manifold mixup) or combination of two objects (CutMix).
Manifold mixup and AlignMix visualized by a decoder (subsection 3.3) that is not used at training.

et al., 2018) and more complex, often also requiring an adversarial discriminator (Beckham et al.,
2019; Liu et al., 2018). More importantly, they perform poorly compared to standard input mixup
on large datasets (Liu et al., 2018), due to the low quality of generated images.

In this work, we are motivated by the idea of deformation as a natural way of interpolating images,
where one image may deform into another, in a continuous way. Contrary to previous efforts, we
do not interpolate directly in the input space, we do not limit to vectors as latent codes and we
do not decode. We rather investigate geometric alignment for mixup, based on explicit semantic
correspondences in the feature space. In particular, we explicitly align the feature tensors of two im-
ages, resulting in soft correspondences. The tensors can be seen as sets of features with coordinates.
Hence, each feature in one set can be interpolated with few features in the other.

By choosing to keep the coordinates of one set or the other, we define an asymmetric operation. What
we obtain is one object continuously morphing, rather than two objects in one image. Interestingly,
observing this asymmetric morphing reveals that we retain the geometry or pose of the image where
we keep the coordinates and the appearance or texture of the other. Figure 1 illustrates that our
method, AlignMix, retains the pose of image 2 and the texture of image 1, which is different from
existing mixup methods. Note that, as in manifold mixup, we do not decode, hence we are not
concerned about the quality of generated images.

We make the following contributions:

1. We introduce a novel mixup operation, called AlignMix, advocating interpolation of local
structure in the feature space (subsection 3.2). Feature tensors are ideal for alignment,
giving rise to semantic correspondences and being of low resolution. Alignment is efficient
by using Sinkhorn distance (Cuturi, 2013).

2. We also show that a vanilla autoencoder can further improve representation learning under
mixup training, without the classifier seeing decoded clean or mixed images (section 4).

3. We set a new state-of-the-art on image classification, robustness to adversarial attacks,
calibration, weakly-supervised localization and out-of-distribution detection against more
sophisticated mixup operations on several networks and datasets (section 4).

2 RELATED WORK

Mixup Zhang et al. (2018a), concurrently with similar methods (Inoue, 2018; Tokozume
et al., 2018), introduce mixup, augmenting data by linear interpolation between two examples.
While (Zhang et al., 2018a) attempt to apply mixup on intermediate representations of the network,
it is Verma et al. (2019) who make this work, introducing manifold mixup. Without alignment,
the result is an overlay of either images (Zhang et al., 2018a) or features (Verma et al., 2019). Guo
et al. (2019) eliminate “manifold intrusion”—mixed data conflicting with true data. Unlike manifold
mixup, AlignMix interpolates feature tensors from deeper layers after aligning them.

Nonlinear mixing over random image regions is an alternative, e.g. from masking square re-
gions (DeVries & Taylor, 2017) to cutting a rectangular region from one image and pasting it onto
another (Yun et al., 2019), as well as several variants using arbitrary regions (Takahashi et al., 2018;
Summers & Dinneen, 2019; Harris et al., 2020). Instead of choosing regions at random, saliency
can be used to locate objects from different images and fit them in one (Uddin et al., 2021; Qin
et al., 2020; Kim et al., 2020; 2021). Exploiting the knowledge of a teacher network to mix images
based on saliency has been proposed in (Dabouei et al., 2021). Instead of combining more than one
objects in an image, AlignMix attempts to deform one object into another.
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Another alternative is Automix (Zhu et al., 2020), which employs a U-Net rather than an autoen-
coder, mixing at several layers. Still, it is limited to small datasets and provides little improvement
over manifold mixup (Verma et al., 2019). StyleMix and StyleCutMix (Hong et al., 2021) interpolate
content and style between two images, using AdaIN (Huang & Belongie, 2017), a style transfer au-
toencoder network. By contrast, AlignMix aligns feature tensors and interpolates matching features
directly, without using any additional network.

Alignment Local correspondences from intra-class alignment of feature tensors have been used in
image registration (Choy et al., 2016; Long et al., 2014), optical flow (Weinzaepfel et al., 2013),
semantic alignment (Rocco et al., 2018; Han et al., 2017) and image retrieval (Siméoni et al.,
2019). Here, we mostly use inter-class alignment. In few-shot learning, local correspondences
between query and support images are important in finding attention maps, used e.g. by CrossTrans-
formers (Doersch et al., 2020) and DeepEMD (Zhang et al., 2020). The earth mover’s distance
(EMD) (Rubner et al., 2000), or Wasserstein metric, is an instance of optimal transport (Villani,
2008), addressed by linear programming. To accelerate, Cuturi (2013) computes optimal matching
by Sinkhorn distance with entropic regularization. This distance is widely applied between distri-
butions in generative models (Genevay et al., 2018; Patrini et al., 2020).

EMD has been used for mixup in the input space, for instance point mixup for 3D point clouds (Chen
et al., 2020) and OptTransMix for images (Zhu et al., 2020), which is the closest to our work. How-
ever, aligning coordinates only applies to images with clean background. We rather align tensors
in the feature space, which is generic. We do so using the Sinkhorn distance, which is orders of
magnitude faster than EMD (Cuturi, 2013).

3 ALIGNMIX

3.1 PRELIMINARIES

Problem formulation Let (x, y) be an image x ∈ X with its one-hot encoded class label y ∈ Y ,
where X is the input image space, Y = [0, 1]k and k is the number of classes. The encoder network
consists of two stages. The first is F : X → Rc×w×h, which maps x to feature tensor A := F (x),
where c is the number of channels and w×h is the spatial resolution. The second is f : Rc×w×h →
Rd, which maps tensor A to embedding e := f(A). Finally, the classifier g : Rd → Rk maps the
embedding e to the vector p := g(e) of probabilities over classes.

Mixup We follow (Verma et al., 2019) in mixing the representations from different layers of the
network, focusing on the deepest layers at or near the embedding. We are given two labeled images
(x, y), (x′, y′) ∈ X × Y . We draw an interpolation factor λ ∈ [0, 1] from Beta(α, α) (Zhang et al.,
2018a) and then we interpolate labels y, y′ linearly by the standard mixup operator

mixλ(y, y
′) := λy + (1− λ)y′ (1)

and inputs x, x′ by the generic formula

Mixf1,f2λ (x, x′) := f2(Mixλ(f1(x), f1(x
′)), (2)

where Mixλ is a mixup operator to be defined. This generic formula allows interpolation of the
input, feature or embedding by decomposing the network mapping f ◦ F as f2 ◦ f1 according to

input (x) : f1 := id, f2 := f ◦ F (3)
feature (A) : f1 := F, f2 := f (4)

embedding (e) : f1 := f ◦ F, f2 := id, (5)
where id is the identity mapping. For (3) and (5), we define Mixλ in (2) as standard mixup mixλ (1),
like input (Zhang et al., 2018a) and manifold mixup (Verma et al., 2019), respectively; while for (4),
we define Mixλ as discussed in subsection 3.2.

By default, we train the encoder network and the classifier by using a classification loss Lc on the
output of the classifier g for mixed examples along with the corresponding mixed labels:

Lc(g(Mixf1,f2λ (x, x′)),mixλ(y, y
′)), (6)

where Lc(p, y) := −
∑k
i=1 yi log pi is the standard cross-entropy loss. More options using an

autoencoder architecture are investigated in section 4 and subsection C.1 of the Appendix.
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Figure 2: Feature tensor alignment and interpolation. Cost matrix M contains pairwise distances
of feature vectors in tensors A,A′. Assignment matrix R is obtained by Sinkhorn-Knopp (Knight,
2008) on similarity matrix e−M/ε. A is aligned to A′ according to R, giving rise to Ã. We then
interpolate between A, Ã. Symmetrically, we can align A′ to A and interpolate between A′, Ã′.
A,A′ on the left (toy example of 16 points in 2D) shown semi-transparent on the right for reference.

3.2 INTERPOLATION OF ALIGNED FEATURE TENSORS

Alignment Alignment refers to finding a geometric correspondence between image elements be-
fore interpolation. The feature tensor is ideal for this purpose, because its spatial resolution is low,
reducing the optimization cost, and allows for semantic correspondence, because features close to
the classifier—the second encoder f are small. Importantly, we are not attempting to combine two
or more objects into one image (Kim et al., 2020), but put two objects in correspondence and then
interpolate into one. We make no assumptions on the structure of input images in terms of objects
and we use no ground truth correspondences.

Our feature tensor alignment is based on optimal transport theory (Villani, 2008) and Sinkhorn
distance (SD) (Cuturi, 2013) in particular. Let A := F (x),A′ := F (x′) be the c × w × h feature
tensors of images x, x′ ∈ X . We reshape them to c × r matrices A,A′ by flattening the spatial
dimensions, where r := hw. Then, every column aj , a′j ∈ Rc of A,A′ for j = 1, . . . , r is a feature
vector representing corresponding to a spatial position in the original image x, x′. Let M be the
r × r cost matrix with its elements being the pairwise distances of these vectors:

mij :=
∥∥ai − a′j∥∥2 (7)

for i, j ∈ {1, . . . , r}. We are looking for a transport plan, that is, a r × r matrix P ∈ Ur, where

Ur := {P ∈ Rr×r+ : P1 = P>1 = 1/r} (8)

and 1 is an all-ones vector in Rr. That is, P is non-negative with row-wise and column-wise sum
1/r, representing a joint probability over spatial positions of A,A′ with uniform marginals. It is
chosen to minimize the expected pairwise distance of their features, as expressed by the linear cost
function 〈P,M〉, under an entropic regularizer:

P ∗ = arg min
P∈Ur

〈P,M〉 − εH(P ), (9)

where H(P ) := −
∑
ij pij log pij is the entropy of P , 〈·, ·〉 is Frobenius inner product and ε is

a regularization coefficient. The optimal solution P ∗ is unique and can be found by forming the
r×r similarity matrix e−M/ε and then applying the Sinkhorn-Knopp algorithm (Knight, 2008), i.e.,
iteratively normalizing rows and columns. A small ε leads to sparser P , which improves one-to-one
matching but makes the optimization harder (Alvarez-Melis & Jaakkola, 2018), while a large ε leads
to denser P , causing more correspondences and poor matching.

Interpolation The assignment matrixR := rP ∗ is a doubly stochastic r×r matrix whose element
rij expresses the probability that column ai of A corresponds to column a′j of A′. Thus, we align A
and A′ as follows:

Ã := A′R> (10)

Ã′ := AR. (11)
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Figure 3: Visualizing alignment. For different λ ∈ [0, 1], we interpolate feature tensors A,A′

without alignment (top) or aligned feature tensors (bottom) of two images x, x′ and then we generate
a new image by decoding the resulting embedding through the decoder D. (a), (c) We align A to
A′ and mix with (12). (b), (d) We align A′ to A and mix with (13). Only meant for illustration: No
decoded images are seen by the classifier at training.

Here, column ãi of c× r matrix Ã is a convex combination of columns of A′ that corresponds to the
same column ai of A. We reshape Ã back to c × w × h tensor Ã by expanding spatial dimensions
and we say that Ã represents A aligned to A′. We then interpolate between Ã and the original
feature tensor A:

mixλ(A, Ã). (12)

As shown in Figure 2 (toy example, top right), Ã is geometrically close to A. The correspondence
with A′ and the geometric proximity to A makes Ã appropriate for interpolation with A. Symmet-
rically, we can also align A′ to A and interpolate between Ã′ and A′:

mixλ(A
′, Ã′). (13)

When mixing feature tensors with alignment (4), we define Mixλ in (2) as the mapping of (A,A′)
to either (12) or (13), chosen at random.

3.3 VISUALIZATION AND DISCUSSION

Decoder We use a decoder to study images generated without or with feature alignment. Specif-
ically, we use f ◦ F as an encoder and a decoder D : Rd → X maps the embedding e back to the
image space, reconstructing image x̂ := D(e). The autoencoder is trained using only clean images
(without mixup) using reconstruction loss Lr between x and x̂, where Lr(x, x′) := ‖x− x′‖2 is
the squared Euclidean distance. We use generated images only for visualization purposes below, but
we also use the decoder optionally during AlignMix training in section 4.

Discussion For different λ ∈ [0, 1], we interpolate the feature tensors A,A′ of two images x, x′
without or with alignment, using (12) or (13), and we generate a new image by decoding the resulting
embedding through the decoder D.

In Figure 3, we visualize such generated images. Interestingly, by aligning A to A′ and mixing
using (12) with λ = 0, the generated image retains the pose of x and the texture of x′. In Figure 3(a)
in particular, when x is ‘penguin’ and x′ is ‘dog’, the generated image retains the pose of the penguin,
while the texture of the dog aligns to the body of the penguin. Similarly, in Figure 3(c), the texture
from the goldfish is aligned to that of the stork, while the pose of the stork is retained. Vice versa, as
shown in Figure 3(b,d), by aligning A′ to A and mixing using (13) with λ = 0, the generated image
retains the pose of x′ and the texture of x. By contrast, the image generated from unaligned features
appears to be an overlay.

Randomly sampling several values of λ ∈ [0, 1] during training generates an abundance of samples,
which captures texture from one image and the pose from another. This allows the model to explore
beyond the image manifold, thereby improving its generalization and enhancing its performance
across multiple benchmarks, as discussed in section 4.
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DATASET CIFAR-10 CIFAR-100 TI
NETWORK R-18 W16-8 R-18 W16-8 R-18

Baseline 5.19 5.11 23.24 20.63 43.40
Input (Zhang et al., 2018a) 4.03 3.98 20.21 19.88 43.48
CutMix (Yun et al., 2019) 3.27 3.54 19.37 19.71 43.11
Manifold (Verma et al., 2019) 2.95 3.56 19.80 19.23 40.76
PuzzleMix (Kim et al., 2020) 2.93 2.99 20.01 19.25 36.52
Co-Mixup (Kim et al., 2021) 2.89 3.04 19.81 19.57 35.85
SaliencyMix (Uddin et al., 2021) 2.99 3.53 19.69 19.59 33.81
StyleMix (Hong et al., 2021) 3.76 3.89 20.04 20.45 36.13
StyleCutMix (Hong et al., 2021) 3.06 3.12 19.34 19.28 33.49

AlignMix (ours) 2.95 3.09 18.08 18.67 31.81
AlignMix/AE (ours) 2.83 3.15 17.82 18.09 32.73

Gain +0.06 -0.10 +1.52 +1.14 +1.68

(a) Image classification top-1 error (%) on CIFAR-10/100
and TI (TinyImagenet). R: PreActResnet, W: WRN.

PARAM. MSEC/ TOP-1
METHOD BATCH ERROR

Baseline 25M 418 23.68
Input† (Zhang et al., 2018a) 25M 436 22.58
CutMix† (Yun et al., 2019) 25M 427 21.40
Manifold† (Verma et al., 2019) 25M 441 22.50
PuzzleMix† (Kim et al., 2020) 25M 846 21.24
Co-Mixup (Kim et al., 2021) 25M 1022 –
SaliencyMix∗ (Uddin et al., 2021) 25M 462 21.26
StyleMix∗ (Hong et al., 2021) 25M 828 24.06
StyleCutMix∗ (Hong et al., 2021) 25M 912 22.71

AlignMix (ours) 28M 450 20.32
AlignMix/AE (ours) 35M 688 18.83

Gain +2.41

(b) Image classification top-1 error (%) and com-
putational analysis on ImageNet using Resnet-50.
∗: reported by authors; †: reported by PuzzleMix.

Table 1: Image classification top-1 error (%, lower is better) and computational analysis. Blue:
second best. Gain: reduction of error over best performing baseline.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Architecture We use a residual network as the stage 1 encoder F . The output A is a c × 4 × 4
tensor. This is followed by a fully-connected layer as stage 2 encoder f with output embedding
e ∈ Rd and another fully-connected layer as classifier g.

Autoencoder In Figure 3, we have used a decoder to visualize the effect of feature tensor align-
ment. In our experiments, we also use a decoder optionally during training of AlignMix, to inves-
tigate its effect on representation learning under mixup. This results in a vanilla autoencoder archi-
tecture, which we denote as AlignMix/AE, while other options are investigated in subsection C.1 of
the Appendix. We use a residual generator (Gulrajani et al., 2018) as the decoder D. The encoder
and decoder have the same architecture.

Training By default, we train AlignMix using only the classfication loss Lc (6) on mixed ex-
amples. For a given mini-batch during training, we mix either x, A (using either (12) or (13) for
alignment) or e. We choose between the four cases uniformly at random. For AlignMix/AE, we
either use the reconstruction loss Lr on clean examples, training the encoder and decoder, or the
classfication loss Lc (6) on mixed examples, training the encoder and classifier. This gives rise
to a fifth case and we choose again uniformly at random. The complete algorithm is summarized
in Appendix A.

Hyperparameters The hyperparameters used for different datasets are reported in Appendix B.

4.2 IMAGE CLASSIFICATION AND ROBUSTNESS

We use PreActResnet18 (He et al., 2016) (R-18) and WRN16-8 (Zagoruyko & Komodakis, 2016) as
the backbone architecture on CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009). Using
our experimental settings (in supplementary material), we reproduce the state-of-the-art (SOTA)
mixup methods: Baseline network (without mixup), Input mixup (Zhang et al., 2018a), Mani-
fold mixup (Verma et al., 2019), CutMix (Yun et al., 2019), PuzzleMix (Kim et al., 2020), Co-
Mixup (Kim et al., 2021), SaliencyMix (Uddin et al., 2021), StyleMix (Hong et al., 2021) and
StyleCutMix (Hong et al., 2021) using official code provided by the authors. We do not compare
AlignMix with AutoMix (Zhu et al., 2020) and Re-Mix (Cao et al., 2021), since its experimental
settings are different from ours and there is no available code.

In addition, we use R-18 as the backbone network on TinyImagenet (Yao & Miller, 2015) (TI) and
reproduce SaliencyMix (Uddin et al., 2021), StyleMix (Hong et al., 2021) and StyleCutMix (Hong
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ATTACK FGSM PGD

DATASET CIFAR-10 CIFAR-100 TI CIFAR-10 CIFAR-100
NETWORK R-18 W16-8 R-18 W16-8 R-18 R-18 W16-8 R-18 W16-8

Baseline 89.41 88.02 87.12 72.81 91.85 99.99 99.94 99.97 99.99
Input (Zhang et al., 2018a) 78.42 79.21 81.30 67.33 88.68 99.77 99.43 99.96 99.37
CutMix (Yun et al., 2019) 77.72 78.33 86.96 60.16 88.68 99.82 98.10 98.67 97.98
Manifold (Verma et al., 2019) 77.63 76.11 80.29 56.45 89.25 97.22 98.49 99.66 98.43
PuzzleMix (Kim et al., 2020) 41.11 50.73 78.70 57.77 83.91 97.73 97.00 96.42 95.28
Co-Mixup (Kim et al., 2021) 40.19 48.93 77.61 56.59 – 97.59 96.19 95.35 94.23
SaliencyMix (Uddin et al., 2021) 57.43 68.10 77.79 58.10 81.16 97.51 97.04 95.68 93.76
StyleMix (Hong et al., 2021) 79.54 71.05 80.54 67.94 84.93 98.23 97.46 98.39 98.24
StyleCutMix (Hong et al., 2021) 38.79 46.12 77.49 56.83 80.59 97.87 96.70 93.88 93.78

AlignMix (ours) 38.33 53.41 77.29 55.05 77.34 96.36 96.73 93.18 92.16
AlignMix/AE (ours) 32.13 44.86 76.40 55.44 78.98 97.16 95.32 93.69 92.23

Gain +6.66 +1.26 +1.09 +1.40 +3.25 +0.86 +0.87 +0.70 +1.40

Table 2: Robustness to FGSM & PGD attacks. Top-1 error (%): lower is better. Blue: second best.
Gain: reduction of error. TI: TinyImagenet. R: PreActResnet, W: WRN.

et al., 2021) following the experimental settings of (Kim et al., 2021), and Resnet-50 (R-50) on
ImageNet (Russakovsky et al., 2015), following the training protocol of (Kim et al., 2020). Using
top-1 error (%) as evaluation metric, we show the effectiveness of AlignMix on image classification
and robustness to FGSM (Goodfellow et al., 2015) and PGD (Madry et al., 2018) attacks.

Image classification As shown in Table 1(a), AlignMix and AlignMix/AE is on par or outperforms
the SOTA methods by achieving the lowest top-1 error, especially on large datasets. On CIFAR-10,
AlignMix and AlignMix/AE is on par with Co-Mixup and Puzzlemix with R-18 and WRN16-8. On
CIFAR-100, AlignMix outperforms StyleCutMix and Manifold mixup by 1.52% and 1.14% with
R-18 and WRN16-8, respectively. On TI, AlignMix outperforms Co-Mixup by 3.12% using R-18.
According to Table 1(b), AlignMix/AE outperforms PuzzleMix by 2.41% on ImageNet. Impor-
tantly, while the overall improvement by SOTA methods on ImageNet over Baseline is around 2%,
AlignMix improves SOTA by another 2.5%.

Computational complexity Table 1(b) shows the computational analysis of AlignMix training as
compared with baseline and SOTA mixup methods on ImageNet, in terms of number of parameters
and msec/batch on a NVIDIA RTX 2080 TI GPU. AlignMix has nearly the same computational
overhead as Manifold mixup while achieving 3.16% increase of accuracy. While SOTA methods
like Co-Mixup, PuzzleMix, StyleMix and StyleCutMix are computationally more expensive than
AlignMix by 1.8×, 2.3×,1.8× and 2× respectively, they are outperformed by AlignMix by 2% on
average. AlignMix/AE brings a further 1.49% gain in accuracy over AlignMix. It is important to
note that 40% increase in number of parameters of AlignMix/AE is due to the residual decoder,
which is only used in one out of five cases on clean images without mixup. Computational com-
plexity during inference is the same for all methods.

Robustness to FGSM and PGD attacks Following the evaluation protocol of (Kim et al., 2020),
we use 8/255 l∞ ε-ball for FGSM and 4/255 l∞ ε-ball with step size 2/255 for PGD. We reproduce
the results of competitors for FGSM and PGD on CIFAR-10 and CIFAR-100; results of baseline,
Input, Manifold, Cutmix and Puzzlemix on TI for FGSM are as reported in (Kim et al., 2020) and
reproduced for SaliencyMix, StyleMix and StyleCutMix.

As shown in Table 2, AlignMix is more robust comparing to SOTA methods. While AlignMix is on
par with PuzzleMix and Co-Mixup on CIFAR-10 image classification, it outperforms Co-Mixup and
PuzzleMix by 8.06% and 8.98% in terms of robustness to FGSM attacks. There is also significant
gain of robustness to FGSM on Tiny-ImageNet and to the stronger PGD on CIFAR-100.

4.3 OVERCONFIDENCE

Deep neural networks tend to be overconfident about incorrect predictions far away from the training
data and mixup helps combat this problem. Two standard benchmarks to evaluate this improvement
are their ability to detect out-of-distribution data and their calibration, i.e., the discrepancy between
accuracy and confidence.
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TASK OUT-OF-DISTRIBUTION DETECTION

DATASET LSUN (CROP) ISUN TI (CROP)

METRIC
DET AUROC AUPR AUPR DET AUROC AUPR AUPR DET AUROC AUPR AUPR
ACC (ID) (OOD) ACC (ID) (OOD) ACC (ID) (OOD)

Baseline 54.0 47.1 54.5 45.6 66.5 72.3 74.5 69.2 61.2 64.8 67.8 60.6
Input (Zhang et al., 2018a) 57.5 59.3 61.4 55.2 59.6 63.0 60.2 63.4 58.7 62.8 63.0 62.1
Cutmix (Yun et al., 2019) 63.8 63.1 61.9 63.4 67.0 76.3 81.0 77.7 70.4 84.3 87.1 80.6
Manifold (Verma et al., 2019) 58.9 60.3 57.8 59.5 64.7 73.1 80.7 76.0 67.4 69.9 69.3 70.5
PuzzleMix (Kim et al., 2020) 64.3 69.1 80.6 73.7 73.9 77.2 79.3 71.1 71.8 76.2 78.2 81.9
Co-Mixup (Kim et al., 2021) 70.4 75.6 82.3 70.3 68.6 80.1 82.5 75.4 71.5 84.8 86.1 80.5
SaliencyMix (Uddin et al., 2021) 68.5 79.7 82.2 64.4 65.6 76.9 78.3 79.8 73.3 83.7 87.0 82.0
StyleMix (Hong et al., 2021) 62.3 64.2 70.9 63.9 61.6 68.4 67.6 60.3 67.8 73.9 71.5 78.4
StyleCutMix (Hong et al., 2021) 70.8 78.6 83.7 74.9 70.6 82.4 83.7 76.5 75.3 82.6 82.9 78.4

AlignMix (ours) 76.1 80.7 85.9 75.8 73.4 85.1 84.3 80.2 79.4 85.0 88.4 85.0
AlignMix/AE (ours) 76.9 83.5 86.7 79.4 75.6 84.1 85.9 81.7 79.7 88.0 89.7 85.7

Gain +6.1 +3.8 +3.0 +4.5 +1.7 +2.7 +2.2 +1.9 +4.4 +3.2 +2.6 +3.8

Table 3: Out-of-distribution detection using PreActResnet18. Det Acc (detection accuracy), Au-
ROC, AuPR (ID) and AuPR (OOD): higher is better; Blue: second best. Gain: increase in perfor-
mance. TI: TinyImagenet. Additional results are in Appendix C.

Vanilla Input Manifold CutMix PuzzleMix Co-Mixup AlignMix

0 1 0 1 0 1 0 1 0 10 10 1

1 1 11111
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Figure 4: Calibration plots on CIFAR-100 using PreActResnet18: near diagonal is better. Baseline
is clearly overconfident while Input and Manifold mixup are clearly under-confident. AlignMix has
the best calibrated predictions.

Out-of-distribution detection According to (Hendrycks & Gimpel, 2017), in-distribution (ID)
refers to a test example drawn from the same distribution which the network is trained on, while a
sample drawn from any other distribution is out-of-distribution (OOD). At inference, given a mixture
of ID and OOD examples, the network assigns probabilities to the known classes by softmax. An
example is then classified as OOD if the maximum class probability is below a certain threshold,
else ID. A well-calibrated network should be able to assign a higher probability to ID than OOD
examples, making it easier to distinguish the two distributions.

We compare AlignMix with SOTA methods trained using R-18 on CIFAR-100 as discussed in sub-
section 4.2. At inference, ID examples are test images from CIFAR-100, while OOD examples
are test images from LSUN (crop) (Yu et al., 2015), iSUN (Xiao et al., 2010) and Tiny-ImageNet
(crop); where crop denotes that the OOD examples are center-cropped to 32 × 32 to match the
resolution of ID images (Yun et al., 2019). Following (Hendrycks & Gimpel, 2017), we measure
detection accuracy (Det Acc) using a threshold of 0.5, area under ROC curve (AuROC) and area
under precision-recall curve (AuPR).

As shown in Table 3, AlignMix outperforms SOTA methods under all metrics by a large margin,
indicating that it is better in reducing over-confident predictions. We further observe that Input
mixup is inferior to Baseline, which is consistent with the findings of (Yun et al., 2019). More
results are given in Table 6 of Appendix C.

Calibration According to (DeGroot & Fienberg, 1983), calibration measures the discrepancy be-
tween the accuracy and confidence level of a network’s predictions. A poorly calibrated network
may make incorrect predictions with high confidence.

As shown in Figure 4, while SOTA methods are under-confident compared to Baseline, AlignMix
results in the best calibration among all competitors. We quantitatively evaluate the calibration of
AlignMix against SOTA methods in terms of expected calibration error (ECE) (Guo et al., 2017) and
overconfidence error (OE) (Thulasidasan et al., 2019) using R-18 on CIFAR-100. Results indicating
that AlignMix has the lowest ECE and OE are given in Table 7 of Appendix C.
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METRIC TOP-1 LOC. MAXBOXACC-V2
NETWORK VGG-GAP RESNET-50 VGG-GAP RESNET-50

ACoL (Zhang et al., 2018b) 45.9 – 57.4 –
ADL (Choe & Shim, 2019) 52.4 – 61.3 58.4

Baseline CAM (Zhou et al., 2016) 37.1 49.4 59.0 59.7
Input (Zhang et al., 2018a) 41.7 49.3 57.1 60.6
Cutout (DeVries & Taylor, 2017) 44.8 52.8 – –
CutMix (Yun et al., 2019) 52.5 54.8 62.6 64.8
AlignMix (ours) 53.7 57.8 64.5 65.9

Gain +1.2 +3.0 +1.9 +1.1

Table 4: Weakly-supervised object localization on CUB200-2011. Top-1 loc.: Top-1 localization
accuracy (%), MaxBoxAcc-v2: Maximal box accuracy (Choe et al., 2020). Higher is better. Blue:
second best. Gain: increase of accuracy.

4.4 WEAKLY-SUPERVISED OBJECT LOCALIZATION (WSOL)

WSOL aims to localize an object of interest using only class labels without bounding boxes at
training. WSOL works by extracting visually discriminative cues to guide the classifier to focus on
salient regions in the image.

We train AlignMix using the same procedure as for image classification. At inference, follow-
ing (Yun et al., 2019), we compute a saliency map using CAM (Zhou et al., 2016), binarize it using
a threshold of 0.15 and take the bounding box of the mask. We use VGG-GAP (Simonyan & Zis-
serman, 2015) and Resnet-50 (He et al., 2016) as pretrained on Imagenet (Russakovsky et al., 2015)
and we fine-tune them on CUB200-2011 (Wah et al., 2011). We follow the evaluation protocol
by Choe et al. (2020) and use top-1 localization accuracy with IoU threshold of 0.5 and Maximal
Box Accuracy (MaxBoxAcc-v2) to compare AlignMix with baseline CAM (without mixup), Input
mixup (Zhang et al., 2018a), CutOut (DeVries & Taylor, 2017) and CutMix (Yun et al., 2019).

According to Table 4, AlignMix outperforms Input mixup, CutOut and CutMix by 11.98%, 8.88%
and 1.18% respectively using VGG-GAP and by 8.5%, 5.02% and 3% respectively using Resnet-50
in terms of top-1 localization accuracy. Furthermore, AlignMix outperforms CutMix by 1.9% and
1.1% using VGG-GAP and Resnet-50 respectively in terms of MaxBoxAcc-v2. It also outperforms
dedicated WSOL methods ACoL (Zhang et al., 2018b) and ADL (Choe & Shim, 2019), which
focus on learning spatially dispersed representations. Qualitative localization results are given in
Appendix C.

4.5 ABLATION

We study the effect of mixing different layers (x, A or e), aligning A or not before mixing, the
resolution used when aligning, as well as the autoencoder architecture in subsection C.1. The anal-
ysis also includes studying the effect of using a vanilla autoencoder (AlignMix/AE), a variational
autoencoder (Kingma & Welling, 2013) (AlignMix/VAE) and no decoder (AlignMix).

5 CONCLUSION

We have shown that mixup of a combination of input and latent representations is a simple and very
effective pairwise data augmentation method. The gain is most prominent on large datasets and in
combating overconfidence in predictions, as indicated by out-of-distribution detection. Interpolation
of feature tensors boosts performance significantly, but only if they are aligned. There is a clear
message in favor of alignment, rather than packing, of objects.

Our work is a compromise between a “good” hand-crafted interpolation in the image space and a
fully learned one in the latent space. A challenge is to make progress in the latter direction without
compromising speed and simplicity, which would affect wide applicability.
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A ALGORITHM

AlignMix and AlignMix/AE are summarized in algorithm 1. By default (AlignMix), for each mini-
batch, we uniformly draw at random one among four choices (line 2) over mixup on input (x),
embeddings (e), or feature tensors (A, using either (12) or (13) for mixing). For AlignMix/AE,
there is a fifth choice where we only use reconstruction loss on clean examples (line 7).

For mixup, use only classification loss (6) (line 27). Following (Verma et al., 2019), we form, for
each example (x, y) in the mini-batch, a paired example (x′, y′) from the same mini-batch regardless
of class labels, by randomly permuting the indices (lines 1,10). Inputs x, x′ are mixed by (2),(3)
(line 12) and embeddings e, e′ by (2),(5) (line 14). Feature tensors A and A′ are first aligned and
then mixed by (2),(12) (A aligns to A′) or (2),(13) (A′ aligns to A) (lines 17,26).

Algorithm 1: AlignMix/AE (parts involved in the AE variant indicated in blue)
Input: encoders F, f ; decoder D; classifier g
Input: mini-batch B := {(xi, yi)}bi=1

Output: loss values L := {`i}bi=1

1 π ∼ unif(Sb) . random permutation of {1, . . . , b}
2 mode ∼ unif{clean, input, embed, feat, feat′} . mixup?
3 for i ∈ {1, . . . , b} do
4 (x, y)← (xi, yi) . current example
5 if mode = clean then . no mixup
6 x̂← D(f(F (x))) . encode/decode
7 `i ← Lr(x, x̂) . reconstruction loss

8 else . mixup
9 λ ∼ Beta(α, α) . interpolation factor

10 (x′, y′)← (xπ(i), yπ(i)) . paired example
11 if mode = input then . as in (Zhang et al., 2018a)
12 e← f(F (mixλ(x, x

′))) . (2),(3)

13 else if mode = embed then . as in (Verma et al., 2019)
14 e← mixλ(f(F ((x)), f(F (x′))) . (2),(5)

15 else . mode ∈ {feat, feat′}
16 if mode = feat′ then . choose (13) over (12)
17 SWAP (x, x′), SWAP (y, y′)

18 A← F (x) , A′ ← F (x′) . feature tensors
19 A← RESHAPE c×r(A) . to matrix
20 A′ ← RESHAPE c×r(A′)
21 M ← DIST(A,A′) . pairwise distances (7)
22 P ∗ ← SINKHORN(exp(−M/ε)) . tran. plan (9)
23 R← DETACH(rP ∗) . assignments
24 Ã← A′R> . alignment (10)
25 Ã← RESHAPE c×w×h(Ã) . to tensor
26 e← f(mixλ(A, Ã)) . (2),(12)

27 `i ← Lc(g(e),mixλ(y, y
′)) . classification loss (6)

In computing loss derivatives, we backpropagate through embeddings e, e′ or feature tensors A,A′

but not through the transport plan P ∗ (line 23). Hence, although the Sinkhorn-Knopp algo-
rithm (Knight, 2008) is differentiable, its iterations take place only in the forward pass. Importantly,
AlignMix is easy to implement and does not require sophisticated optimization like (Kim et al.,
2020; 2021).

B HYPERPARAMETER SETTINGS

CIFAR-10/CIFAR-100 We train AlignMix using SGD for 2000 epochs with an initial learning
rate of 0.1, decayed by a factor 0.1 every 500 epochs. We set the momentum as 0.9 with a weight
decay of 0.0001 and use a batch size of 128. The interpolation factor is drawn from Beta(α, α)
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NETWORK RESNET-50

Baseline 24.03
Input (Zhang et al., 2018a) 22.97
Manifold (Verma et al., 2019) 23.30
CutMix (Yun et al., 2019) 22.92
PuzzleMiz (Kim et al., 2020) 22.49
Co-Mixup (Kim et al., 2021) 22.39
AlignMix (ours) 20.76

Gain +1.63

Table 5: Image classification on ImageNet for 100 epochs using ResNet-50. Top-1 error (%): lower
is better. Blue: second best. Gain: reduction of error.

where α = 2.0. Using these settings, we reproduce the results of SOTA mixup methods for image
classification, robustness to FGSM and PGD attacks, calibration and out-of-distribution detection.
For alignment, we apply the Sinkhorn-Knopp algorithm (Knight, 2008) for 100 iterations with en-
tropic regularization coefficient ε = 0.1.

TinyImagenet We follow the training protocol of Kim et al. (Kim et al., 2020), training R-18 as
stage-1 encoder F using SGD for 1200 epochs. We set the initial learning rate to 0.1 and decay it by
0.1 at 600 and 900 epochs. We set the momentum as 0.9 with a weight decay of 0.0001 and use a
batch size of 128 on 2 GPUs. The interpolation factor is drawn from Beta(α, α) where α = 2.0. For
alignment, we apply the Sinkhorn-Knopp algorithm (Knight, 2008) for 100 iterations with entropic
regularization coefficient ε = 0.1.

ImageNet We follow the training protocol of Kim et al. (Kim et al., 2020), where training R-50
as F using SGD for 300 epochs. The initial learning rate of the classifier and the remaining layers
is set to 0.1 and 0.01, respectively. We decay the learning rate by 0.1 at 100 and 200 epochs. We
set the momentum as 0.9 with a weight decay of 0.0001 and use a batch size of 100 on 4 GPUs.
The interpolation factor is drawn from Beta(α, α) where α = 2.0. For alignment, we apply the
Sinkhorn-Knopp algorithm (Knight, 2008) for 100 iterations with entropic regularization coefficient
ε = 0.1.

We also train R-50 on ImageNet for 100 epochs, following the training protocol described in Kim et
al. (Kim et al., 2021).

CUB200-2011 For weakly-supervised object localization (WSOL), we use VGG-GAP and R-50
pretrained on ImageNet as F . The training strategy for WSOL is the same as image classification
and the network is trained without bounding box information. In R-50, following (Yun et al., 2019),
we modify the last residual block (layer 4) to have stride 2 instead of 1, resulting in a feature
map of spatial resolution 14× 14. The modified architecture of VGG-GAP is the same as described
in (Zhou et al., 2016). The classifier is modified to have 200 classes instead of 1000.

For fair comparisons with (Yun et al., 2019), during training, we resize the input image to 256×256
and randomly crop the resized image to 224× 224. During testing, we directly resize to 224× 224.
We train the network for 600 epochs using SGD. For R-50, the initial learning rate of the classifier
and the remaining layers is set to 0.01 and 0.001, respectively. For VGG, the initial learning rate of
the classifier and the remaining layers is set to 0.001 and 0.0001, respectively. We decay the learning
rate by 0.1 every 150 epochs. The momentum is set to 0.9 with weight decay of 0.0001 and batch
size of 16.

C ADDITIONAL EXPERIMENTS

ImageNet classification Following the training protocol of (Kim et al., 2021), Table 5 reports
classification performance when training for 100 epochs on ImageNet. Using the top-1 error (%)
reported for competitors by (Kim et al., 2021), AlignMix outperforms all methods, including Co-
Mixup (Kim et al., 2021). Importantly, while the overall improvement by SOTA methods over
Baseline is around 1.64%, AlignMix improves SOTA by another 1.63%.
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DATASET LSUN (RESIZE) TI (RESIZE)

METRIC
DET AU AUPR AUPR DET AU AUPR AUPR
ACC ROC (ID) (OOD) ACC ROC (ID) (OOD)

Baseline 67.6 73.3 76.6 68.9 65.1 70.6 73.1 67.1
Input (Zhang et al., 2018a) 61.5 66.5 66.4 65.8 59.6 63.8 63.0 63.4
Cutmix (Yun et al., 2019) 71.3 77.4 79.1 75.5 69.1 79.4 79.8 73.3
Manifold (Verma et al., 2019) 67.8 78.9 76.3 71.3 62.5 77.8 76.8 72.2
PuzzleMix (Kim et al., 2020) 74.9 79.9 84.0 77.5 73.9 77.3 80.6 71.9
Co-Mixup (Kim et al., 2021) 73.8 82.6 86.8 76.9 68.1 78.9 82.5 74.2
SaliencyMix (Uddin et al., 2021) 75.8 79.7 82.2 84.4 75.3 81.2 83.8 79.5
StyleMix (Hong et al., 2021) 73.0 74.6 72.4 73.4 72.9 79.5 78.2 74.6
StyleCutMix (Hong et al., 2021) 74.3 83.1 86.9 78.9 73.8 80.9 83.1 76.3

AlignMix (ours) 76.1 84.3 87.1 85.8 74.7 82.6 86.1 80.9
AlignMix/AE (ours) 77.0 85.8 87.9 83.7 76.2 84.8 87.2 82.3

Gain +2.1 +2.7 +1.0 +1.4 +0.9 +3.6 +3.4 +2.8

NOISE UNIFORM GAUSSIAN

Baseline 58.3 75.3 75.0 69.0 60.8 64.3 62.9 63.9
Input (Zhang et al., 2018a) 50.0 67.9 71.8 71.7 60.2 65.0 63.1 64.1
Cutmix (Yun et al., 2019) 74.8 80.0 84.9 72.4 75.7 79.0 84.0 70.9
Manifold (Verma et al., 2019) 69.8 75.9 83.2 71.9 70.8 78.8 81.3 71.6
PuzzleMix (Kim et al., 2020) 78.6 85.2 86.0 74.4 78.5 85.1 85.9 74.3
Co-Mixup (Kim et al., 2021) 80.4 87.6 87.4 75.2 81.6 78.6 89.5 74.2
SaliencyMix (Uddin et al., 2021) 83.1 87.4 89.1 76.6 82.4 85.4 81.1 81.3
StyleMix (Hong et al., 2021) 75.3 71.8 77.8 65.5 78.0 75.2 84.3 71.0
StyleCutMix (Hong et al., 2021) 84.5 83.2 88.6 78.3 84.8 81.9 83.3 73.9

AlignMix (ours) 86.9 89.1 93.6 77.7 86.7 87.9 91.8 77.4
AlignMix/AE (ours) 88.0 90.6 94.0 80.8 86.0 87.2 91.9 75.6

Gain +3.5 +3.0 +4.9 +2.5 +1.9 +2.8 +2.4 -3.9

Table 6: OOD detection using PreActResnet18. Det Acc (detection accuracy), AuROC, AuPR
(ID) and AuPR (OOD): higher is better. Blue: second best. Gain: increase in performance. TI:
TinyImagenet.
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METRIC ECE OE

Baseline 10.25 1.11
Input (Zhang et al., 2018a) 18.50 1.42
CutMix (Yun et al., 2019) 7.60 1.05
Manifold (Verma et al., 2019) 18.41 0.79
PuzzleMix (Kim et al., 2020) 8.22 0.61
Co-Mixup (Kim et al., 2021) 5.83 0.55
SaliencyMix (Uddin et al., 2021) 5.89 0.59
StyleMix (Hong et al., 2021) 11.43 1.31
StyleCutMix (Hong et al., 2021) 9.30 0.87

AlignMix (ours) 5.78 0.41
AlignMix/AE (ours) 5.06 0.48

Gain +0.77 +0.14

Table 7: Calibration using PreActResnet18 on CIFAR-100. ECE : expected calibration error; OE:
overconfidence error. Lower is better. Blue: second best. Gain: reduction of error.

Out-of-distribution detection We compare AlignMix with SOTA methods, training R-18 on
CIFAR-100 as discussed in subsection 4.2. At inference, ID examples are test images from CIFAR-
100, while OOD examples are test images from LSUN (Yu et al., 2015) and Tiny-ImageNet, resizing
OOD examples to 32× 32 to match the resolution of ID images (Yun et al., 2019). We also use test
images from CIFAR-100 with Uniform and Gaussian noise as OOD samples. Uniform is drawn
from U(0, 1) and Gaussian from N (µ, σ) with µ = σ = 0.5. All SOTA mixup methods are repro-
duced using the same experimental settings. Following (Hendrycks & Gimpel, 2017), we measure
detection accuracy (Det Acc) using a threshold of 0.5, area under ROC curve (AuROC) and area
under precision-recall curve (AuPR).

As shown in Table 6, AlignMix outperforms SOTA methods under all metrics by a large margin,
indicating that it is better in reducing over-confident predictions.

Calibration We compare AlignMix with SOTA methods, training R-18 on CIFAR-100 as dis-
cussed in subsection 4.2. All SOTA mixup methods are reproduced using the same experimental
settings. Following (Thulasidasan et al., 2019), we measure measure the expected calibration error
(ECE) and overconfidence error (OE). As shown in Table 7, AlignMix outperforms SOTA methods
by achieveing lower ECE and OE, indicating that it is better calibrated.

Qualitative results of WSOL Qualitative localization results shown in Figure 5 indicate that
AlignMix encodes semantically discriminative representations, resulting in better localization per-
formance.

C.1 ABLATION STUDY

All ablations are performed on CIFAR-100 using R-18 as stage 1 encoder F with feature tensor
A being 512 × 4 × 4 and embedding e ∈ R512. We study the effect of mixing different layers
(x, A or e), aligning A or not before mixing, the resolution used when aligning, as well as the
autoencoder architecture. The latter includes a vanilla autoencoder (AlignMix/AE), a variational
autoencoder (Kingma & Welling, 2013) (AlignMix/VAE) and no decoder (AlignMix). We report
top-1 accuracy (%). All results are shown in Table 8.

Layers In general, we may mix any layer in {x,A, e} in a given iteration. We ablate the effect of
allowing only a particular subset of layers. In general, e ∈ R512 is a vector. Here, we also consider
the case where e is a 128 × 2 × 2 tensor, denoted as E and obtained from A by a convolutional
layer of kernel size 2 × 2 and stride 2. In AlignMix/AE architecture, among different choices of
unaligned layer sets, mixing from {x, e} results in the highest classification accuracy. Furthermore,
AlignMix/AE outperforms Baseline and the best performing competitor StyleCutMix for all choices
of layer sets, even when features are unaligned.
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Figure 5: Localization examples using ResNet-50 on CUB200-2011. Red boxes: predicted; green:
ground truth.

METHOD/ARCH LAYERS UNALIGNED ALIGNED

Baseline 76.76 –
Manifold (Verma et al., 2019) 80.20 -
StyleCutMix (Hong et al., 2021) 80.66 -

AlignMix

{x, e} 80.81 –
{x,A} 80.34 81.61
{x,A, E} 80.46 81.36
{x,A, e} 80.33 81.92

AlignMix/AE

{x, e} 81.92 -
{x,A} 81.78 81.85
{x,E} 80.80 81.54
{x,A, e} 81.61 82.18

AlignMix/AE
{x,A2×2, e} 81.47 81.20
{x,A4×4, e} 81.61 82.18
{x,A8×8, e} 80.49 82.20

AlignMix/VAE

{x, (µ, σ)} 81.81 –
{x,A} 81.35 81.85

{x, (M,Σ)} 80.45 81.10
{x,A, (µ, σ)} 81.00 81.89

Table 8: Ablation study using R-18 on CIFAR-100. Top-1 classification accuracy (%): higher is
better. Arch: autoencoder architecture. AE: vanilla; VAE: variational (Kingma & Welling, 2013)..
Layer x,A, e: (3), (4), (5).
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Tensor alignment We ablate the effect of aligning feature tensor A or not before mixing it, by
using standard mixup (2) or (12), (13), respectively. In AlignMix/AE architecture, we observe that
aligning A before mixing improves classification accuracy significantly. It is important to note
that when e is a vector, we do not align it. However, when it is a tensor E, aligning it improves
significantly. Overall, AlignMix/AE works the best when x,A, e are mixed, with A being aligned.
This setting outperforms StyleCutMix by 1.52%. Mixing A only helps when it is aligned; otherwise,
it is preferable to just mix e.

Alignment resolution We ablate the effect of aligning A at different spatial resolutions. The
default is 4× 4, denoted as A4×4. Here, we investigate 2× 2 (A2×2), obtained by average pooling,
and 8 × 8 (A8×8), by removing downsampling from the last convolutional layer. The accuracy of
8×8 is only slightly better than 4×4 by 0.02%, while being computationally more expensive. Thus,
we choose 4× 4 as the default. By contrast, aligning at 2× 2 is worse than not aligning at all. This
may be due to soft correspondences causing loss of information by averaging.

Autoencoder architecture We investigate two more autoencoder architectures, AlignMix/VAE.
The former has two vectors µ, σ ∈ R512 instead of e, representing mean and standard deviation,
respectively. We also investigate 128× 2× 2 tensors, denoted as M,Σ where the two variables are
mixed simultaneously. As for AlignMix/AE, we investigate different combinations of layers with
or without alignment. Both AlignMix and AlignMix/VAE are inferior to AlignMix/AE. However,
their best setting still outperforms Baseline and StyleCutmix. All three architecture work best when
x,A, e are mixed. Alignment improves consistently on all three architectures.
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