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CFDiffusion: Controllable Foreground Relighting in Image
Compositing via Diffusion Model

Anonymous Author(s)

Composite image Image harmonization Shadow generation Our result GT

Figure 1: In this illustration, we demonstrate the specific effects of image harmonization and shadow generation. The areas
enclosed by the red rectangles represent our foreground objects. From the composite image to the ground truth (GT), we
integrate these two operations into a unified model: adjusting the appearance of the foreground object to harmonize it with the
background and generating reasonable shadows for the foreground object.

ABSTRACT
Inserting foreground objects into specific background scenes and
eliminating the illumination inconsistency (eg., color, brightness)
between them is an important and challenging task. It typically
involves multiple processing tasks, such as image harmonization
and shadow generation. In these two domains, there are already
many mature solutions, but they often only focus on one of the
tasks. Recently, some image composition methods have utilized
diffusion models to address both of these issues simultaneously, but
they cannot guarantee the complete reconstruction of foreground
content. In this work, we propose CFDiffusion, which can simulta-
neously handle image harmonization and shadow generation. We
first employ a shadow mask predictor to estimate the shadow mask
of the foreground object. Next, we design a harmonization-shadow
generator based on a diffusion model to harmonize the foreground
and generate shadows concurrently. Additionally, we propose a
foreground content enhancement module to ensure the complete
preservation of foreground content at the insertion location, and
we also develpp an adaptive encoder to guide the harmonization
process in the foreground area. The experimental results on the
iHarmony4 dataset and our IH-SG dataset demonstrate the superi-
ority of our CFDiffusion approach.

KEYWORDS
CFDiffusion, image composition, object relighting, image harmo-
nization, shadow generation

1 INTRODUCTION
Image composition stands as a fundamental task in computer vision
and augmented reality, aimed at seamlessly integrating objects from
one image into another to craft a convincingly realistic composite
image. Merely inserting the foreground object into a background
image without careful consideration results in noticeable discrep-
ancies between the foreground and background, such as differences
in color, brightness, and shadows. Based on this, we can decompose
the image compositing process into multiple subtasks, each address-
ing specific issues: image harmonization [2, 5, 6, 9, 19, 23, 48, 51]
and shadow generation [17, 28, 44, 55].

Image harmonization aims to adjust the compatibility between
the foreground and background in terms of color and brightness,
while shadow generation ensures that the inserted foreground ob-
jects cast realistic and reasonable shadows. Various practical meth-
ods exist for both of these subtasks. However, employing multiple
models to address each subproblem individually is both cumber-
some and impractical. What we need is a unified network that can
address both of these issues simultaneously, achieving excellent
results for each. Figure 1 illustrates the problems we need to deal
with and the results we should achieve

In recent years, generative models such as GANs [3, 18, 20, 43]
and diffusion models [1, 16, 30, 34, 36, 39, 40] have demonstrated
significant potential in image composition. Particularly, diffusion
models have surpassed various preceding methods in image editing
[1, 22, 34] and other applications [15, 33, 37]. Conditional diffusion
model aims to generate images under the guidance of conditional
information, such as text or semantic masks. Among them, Stable
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Diffusion (SD) [39] stands out as one of the most popular models,
successfully integrating text from CLIP [38] into latent diffusion.

Some existing works have introduced the diffusion model into
related research domains, particularly in image editing and image
composition. For example, SDEdit [34] composites images by adding
noise to the input image and then iteratively denoises it through sto-
chastic differential equations. However, these methods lacks proper
and sufficient guidance during the denoising process, resulting in
the final image lacking sufficient content fedelity. Besides, most
diffusion models for image editing focus on manipulating images
using text input, which is inappropriate for image composition.

Recently, some image compositing methods [46, 52] have at-
tempted to address all issues within a unified model, which can
significantly simplify both model size and complexity. For exam-
ple, ObjectStitch [46] utilizes a bounding box that encompasses
the foreground object to specify the region for foreground object
insertion and shadow generation, then processes the foreground
within this designated area. Given the recent successful applications
of diffusion models in image processing, these methods typically
rely on pretrained diffusion models. However, in practice, these
methods result in uncontrollable adjustments to the foreground in
terms of both position and content texture, raising concerns about
preserving the fidelity and credibility of the foreground object.

In this paper, our aim is to address the issue of inadequate fore-
ground fidelity observed in previous discussions on image com-
position. We introduce a method called CFDiffusion that concur-
rently handles image harmonization and shadow generation tasks.
Building upon stable diffusion, we introduce a foreground content
enhancement module (FCEM), which utilizes a foreground content
encoder to extract foreground content information, thus guiding
the reconstruction of foreground content. Furthermore, we equip
SD with a lightweight adaptive encoder designed to extract cru-
cial conditional information from the composite image, such as
background style and color, to guide the denoising process of SD.

To validate the effectiveness of our approach, we compare it with
state-of-the-art methods and conduct experiments on benchmark
datasets such as iHarmony4 [7] and our proposed IH-SG dataset.
The experimental results demonstrate that our method achieves
more realistic image harmonization and produces shadows that are
both genuine and believable.

Our contributions can be summarized as follows:
• We introduce a novel image composition method called

CFDiffusion. This method simultaneously handles image
harmonization and shadow generation tasks for foreground
objects with masked insertion points.

• We design a foreground content enhancement module to
fully reconstruct the foreground content and texture details.

Extensive experiments conducted on both public datasets and our
newly created dataset IH-SG validate the effectiveness of our pro-
posed method.

2 RELATEDWORK
2.1 Image Harmonization
As a subtask of image compositing, the objective of image harmo-
nization is to integrate objects from a given foreground image into
a background image to create a cohesive composite image. This

process involves adjusting the color and lighting information of the
foreground object to ensure its compatibility with the background
of the composite image.

Traditional methods [26, 47] rely on adjusting the appearance of
the foreground to match the color statistics of the background, typ-
ically focusing on obtaining color statistics and then transferring
this information between the foreground and background. These
methods are fast and straightforward but often struggle with com-
plex scenes and produce artifacts because the realism of the image
is often not well captured by these statistics.

Particularly, with the release of the first large-scale image harmo-
nization dataset, iHarmony4 [7], supervised image harmonization
methods [4, 8, 10, 11, 13, 27] have garnered increasing attention.
For instance, [11] employed attention blocks to compute non-local
information for foreground adjustment. SSAM [8] integrates them
using a dual-path attention model, focusing on the relationship
between spliced and unspliced regions. DoveNet [7] treats image
harmonization as a domain translation task. CDT-Net [6] combines
pixel-to-pixel and RGB-to-RGB transformations for high-resolution
image harmonization. [27] introduced the concept of style from
the background image, treating the harmonization task as a style
transfer problem. They proposed a novel Region-Aware Instance
Normalization (RAIN) method, which extracts style information
solely from the background features and applies it to the foreground
of the image harmonization task.However, when the task extends
to shadow generation, these methods do not scale well to handle
both tasks simultaneously.

2.2 Shadow Generation
Previous work on shadow generation can be categorized into two
main approaches: rendering-based methods and image-to-image
translation methods.

Rendering-based methods [21, 24] relies on a clear understand-
ing of lighting, reflectance, material properties, and scene geometry
to generate shadows for inserted virtual objects using rendering
techniques. However, such knowledge is often unavailable or im-
practical for applications in real-world scenarios. Image-to-image
translation methods predominantly employ deep learning tech-
niques, characterized by encoder-decoder architectures. By training
on paired images, including images with shadows and those with-
out, these methods directly learn the mapping from shadow-free
images to shadowed images from the input data. Importantly, this
approach typically eliminates the need for explicit knowledge about
lighting, reflectance, material properties, and scene geometry. The
ARShadowGAN [28]model introduces an attention-guided network
capable of directly modeling the mapping relationship between the
shadows of foreground objects and their corresponding real envi-
ronments, accompanied by the release of the Shadow-AR dataset.
SGRNet [17] promotes comprehensive information interaction be-
tween the foreground and background. It initially predicts a mask
for shadow regions and subsequently forecasts shadow parameters
to fill these regions. Additionally, a new shadow training dataset,
DESOBA, is introduced. ShadowGAN [55] combines both global
conditional discriminators and local conditional discriminators to
generate shadows for inserted 3D foreground objects without re-
lying on background lighting information.Shadow generation is
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Figure 2: The display of the data pairs of the dataset we created, from left to right: ground truth, composite image, foreground
object mask, shadow mask of foreground object, background object mask, shadow mask of the background object. We captured
foreground and background separately under different lighting environments, paying attention to collecting various scenes,
ground surfaces, and shadow casting situations.

associated with the foreground objects, but it targets different areas
than image harmonization. We aim to combine both aspects using
a single network framework.

3 PROPOSED METHOD
Given a composite image 𝐼𝑐 , a binary mask 𝑀𝑏𝑠 representing the
background object-shadow pair, and a binary mask𝑀𝑓 indicating
the foreground object, our goal is to obtain an image �̃� that harmo-
nizes the foreground object and produces reliable shadows under
background illumination conditions.

As illustrated in Figure 4, our method consists of two stages: fore-
ground object shadowmask prediction stage and shadow-harmonization
generation stage. It mainly comprises four components: foreground
object shadow generator 𝐺 𝑓 𝑠 , foreground content encoder 𝐸 (·),
adaptive encoder 𝐸𝑎 , foreground content enhancement module
𝐹𝐶𝐸𝑀 , and shadow-harmonization generator 𝐺 (·) based on a sta-
ble diffusion model.

The network workflow is as follows: Firstly, we use the back-
ground object-shadow data pair as reference to predict the shadow
mask of the foreground object, identifying the approximate location
for shadow generation. Then, we input the synthesized image into
the shadow-harmonization generator to produce the final result.
Simultaneously, we use the foreground content encoder to extract
the foreground content embedding, inputting it into the foreground
content enhancementmodule to constrain and complete foreground
texture details. The adaptive encoder transfers the background style
to the foreground region, providing additional generation guidance
for the harmonization-shadow generator.

3.1 Harmony-Shadow Generator
Recently, diffusion models have shown remarkable performance in
many fields: image generation [16, 45], text-to-image generation
[39], image translation [25], image inpainting [32, 41], and image
editing [12, 34]. The backbone of our Harmony-Shadow Generator
is built upon a Stable Diffusion (SD) [39] model.

SD is a latent diffusion model that undergoes a two-stage pre-
training process, involving an autoencoder and a denoising U-Net
[16]. In the first stage, the SD model trains an autoencoder: the
encoder E converts the images I into a latent representation 𝑧′0 =

E(𝐼 ), and then the decoder D reconstructs the images, resulting in

Figure 3: Overview of Cross-Attention Integration (Cross-
Attention Integration) layer [17]. The 𝑔, 𝑓 , ℎ, 𝑣 shown in the
figure represent 1 × 1 convolution, ⊗ represents matrix mul-
tiplication.

𝐼 = D(𝑧′0). In the second stage, the autoencoder’s parameters are
fixed, and SD introduces noise to the latent space representation 𝑧′0
over T steps to generate 𝑧′𝑡 . This process involves the creation of a
denoising U-Net 𝜖𝜃 , which is trained using a latent denoising loss

L𝐿𝐷𝑀 : =E𝑧′0,𝑦,𝜖 N(0,1),𝑡 [∥ 𝜖 − 𝜖𝜃1 (𝑧
′
𝑡 , 𝑡, 𝜏𝜃2 (𝑦)) ∥

2
2], (1)

Here 𝜖 is the noise added to the latent space feature 𝑧′0 at each
noise step, 𝜖𝜃1 is the denoising U-Net that predicts the noise 𝜖 at
the current step 𝑡 , and y represents additional conditions (e.g. text,
mask, etc.), 𝜏𝜃2 is instead a domain-specific encoder that projects y
to an intermediate representation.

In this work, we add conditional information using an adaptive
encoder similar to that of composite images with foreground masks.
During the inference process, noise is first added to 𝑧′0 to generate
𝑧′
𝑇
, and then 𝑧′

𝑇
is used as 𝑧

𝑇
, which is the initial input of 𝜖𝜃1 . Then

iteratively use 𝜖𝜃1 to estimate the noise at each denoising step 𝑡 ,
thereby gradually refining the latent map 𝑧

𝑇
, and ultimately become

a clean latent feature 𝑧0. Finally, the clean latent features 𝑧0 are fed
to the decoder D to generate images.

3
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Figure 4: Overview of our CFDiffusion. It consists of two stages: foreground object shadow mask prediction stage and shadow-
harmonization generation stage. It mainly comprises four components: foreground object shadow generator 𝐺 𝑓 𝑠 , foreground
content encoder 𝐸 (·), adaptive encoder 𝐸𝑎 , foreground content enhancement module 𝐹𝐶𝐸𝑀 , and shadow-harmonization
generator 𝐺 (·). 𝐸𝑓 and 𝐸𝑏 respectively represent the foreground encoder and background encoder of the foreground object
shadow mask generator.

3.2 Foreground shadow mask generator
Inspired by [17], we apply a shadowmask predictor to generate fore-
ground object shadow predictor. First, we predict the foreground
shadow mask𝑀𝑓 𝑠 through the foreground shadow mask generator
𝐺𝑠 . 𝐺𝑠 consists of an encoder and a decoder 𝐷 , and the encoder is
divided into a foreground encoder 𝐸𝑓 and a background encoder
𝐸𝑏 . We believe that the background object-shadow pair contains
clues that are beneficial for inferring the foreground shadow area.
In order to generate the shadow mask of the foreground object,
we take the concatenation of the composite image 𝐼𝑐 and the back-
ground object-shadow mask 𝑀𝑏𝑠 as the input of the background
encoder 𝐸𝑏 , and generate the background feature map 𝑋𝑏 . At the
same time, the concatenation of the composite image 𝐼𝑐 and the
foreground object mask𝑀𝑓 is used as the input of the foreground
encoder 𝐸𝑓 to obtain the foreground feature map 𝑋𝑓 . The process
is summarized as follows:

𝑋𝑏 = 𝐸𝑏 (𝑀𝑏𝑠 , 𝐼𝑐 ) , (2)

𝑋𝑓 = 𝐸𝑓

(
𝑀𝑓 , 𝐼𝑐

)
. (3)

Following [17], we use a Cross-Attention Integration (CAI) [17, 49,
50, 54] layer to help the foreground feature map notice the relevant
lighting information of the background feature map. As the picture
3 shows, the input of the CAI layer consists of 𝑋𝑓 and 𝑋𝑏 , which
are outputs of foreground encoder 𝐸𝑓 and a background encoder
𝐸𝑏 , and the output feature map is denoted as 𝑋 . Then 𝑋 is fed into
the decoder 𝐷 to obtain the mask of the foreground object shadow.
Subsequently, we add it to the foreground object mask𝑀𝑓 to obtain
the foreground object-shadow mask𝑀𝑓 𝑠 , which serves as one of
the inputs for the subsequent shadow-harmonization generator.
The process is summarized as follows:

𝑀𝑓 𝑠 = 𝐷 (𝑋 ) +𝑀𝑓 . (4)

3.3 Foreground Encoder
Following [53], in order to further enhance the detailed texture of
the foreground generation, we employ the pre-trained model𝑉𝑖𝑇 −
𝐿/14 from CLIP [38] as the foreground image encoder 𝐸. Initially,
we extract the foreground object region from the synthesized image
𝐼𝑐 using the foreground object mask 𝑀𝑓 ,which is then inputted
into the foreground image encoder 𝐸 to extract the local content
embedding of the foreground 𝐸𝑙 . This process can be represented
as follows:

𝐸𝑙 = 𝐸 (𝐼𝑓 ). (5)

The intermediate layer of the CLIP encoder outputs 256 patch tokens
containing local details. We extract the information of these patch
tokens and integrate these foreground content embeddings into the
Foreground content enhancement module (FCEM) of the denoising
U-Netmodel to help us control the generation of foreground content
details. The specific details of the FCEMmodule is located in Section
3.4.

3.4 Foreground content enhancement
module(FCEM)

Following [53], we utilize a foreground content enhancement mod-
ule to embed foreground content into the intermediate features
of the diffusion model, thereby constraining the stable diffusion
model for foreground appearance generation and promoting the
composite generation of foreground appearance with high fidelity.

Our foreground content enhancement module is built upon the
publicly released v1-4 SD model. To identify foreground regions
that need to be constrained, we append the binary foreground
object-shadow mask𝑀𝑓 𝑠 to the model input. To achieve this, in the
first convolutional layer of U-Net, we attach two additional input
channels to respectively contain the foreground object mask𝑀𝑓 𝑠

4
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Figure 5: Overview of FCEMmodule. A in the figure is the at-
tentionmap output by the cross attention part. 𝐹𝑖 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖

is feature map of i-th transformer block

and the predicted foreground object-shadow mask𝑀𝑓 𝑠 . Eventually,
the input images are uniformly resized to a resolution of 256 × 256 .

Denoising U-Net of SD consists of a series of basic blocks, each
block includes a residual block and a transformer block. The trans-
former block consists of a self-attention module, a cross-attention
module, and a feedforward network.

As illustrated in Figure 5. We record the features from the 𝑖 − 𝑡ℎ

transformer block as 𝐹𝑖 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 , where ℎ𝑖 ,𝑤𝑖 , 𝑐𝑖 represent its
height, width, and channel dimensions respectively. We first use the
foreground local feature 𝐹 𝑙

𝑖
intercepted by the foreground object

mask (𝑀𝑓 ) resized to ℎ𝑖 ,𝑤𝑖 , 𝑐𝑖 . The feature map will be flattened to
𝐹 𝑙
𝑖
∈ R𝑁×𝑐𝑖 , and then passed through cross attention together with

the foreground local embedding 𝐸𝑙 , and then we get an attention
map 𝐴 and refined foreground local feature map 𝐹 𝑙

𝑖
. Then align

the foreground local embedding 𝐸𝑙 with 𝐹 𝑙
𝑖
to obtain the aligned

foreground embedding map 𝐸𝑙 . Further use 𝐸𝑙 to modulate 𝐹 𝑙
𝑖
. 𝐸𝑙 is

passed through a convolutional layer of 3 × 3 to obtain the spatial
awareness modulation weight, and the modulation is normalized
The transformed 𝐹 𝑙

𝑖
is as follows:

𝐹 𝑙𝑖 = 𝑛𝑜𝑟𝑚(𝐹 𝑙𝑖 ) • 𝑐𝑜𝑛𝑣 (𝐸𝑙 ) . (6)

Finally, after resizing 𝐹 𝑙
𝑖
, it is added to the foreground object region

of 𝐹𝑖 . The output of the Foreground Content Enhancement Mod-
ule (FCEM) is then delivered as the enhanced foreground content
features 𝐹

𝑖
to the next residual block.

3.5 Adaptive Encoder
Following [31, 35], we adopt an adaptive encoder, which is a light-
weight model that can align the internal knowledge in the SDmodel
with external control signals. Through this adaptive encoder, we
can achieve rich control effects on the color and structure of the
SD generation results.

The adaptive encoder takes into account encoding additional
conditions and provides multi-step guidance for denoising U-Net
in the denoising step. Previous adaptive encoder implementations
focused more on coarse structures (e.g., sketches, poses, semantic
masks) and exploited textual conditions to indicate additional re-
quirements (e.g., style or context). Different from previous work,
we abandon the text CLIP model, splice the composite image 𝐼𝑐 and
the foreground mask𝑀𝑓 , and use a lightweight adaptive encoder to
encode while retaining content details and extracting background
styles. The structure of the adaptive encoder includes four feature
extraction blocks and three DownSample (DS) blocks.

First, the input image will be resized to 64×64, and we name it 𝐹 0
𝑐 .

Each feature extraction module (EM) includes a convolutional layer
and two residual blocks. The generation process of 𝐹 𝑖𝑐 , 𝑖 ∈ 1, 2, 3, 4
can be expressed as follows:

𝐹 1
𝑐 = 𝐸𝑀1

(
𝐹 0
𝑐

)
, (7)

𝐹 𝑖𝑐 = 𝐸𝑀𝑖

(
𝐷𝑆 (𝐹 𝑖−1

𝑐 )
)
. (8)

The resolutions of 𝐹 1
𝑐 , 𝐹

2
𝑐 , 𝐹

3
𝑐 , and 𝐹 4

𝑐 are 64×64, 32×32, 16×16, 8×8
respectively. Then we use foreground mask 𝑀𝑓 to separate the
foreground features 𝐹 𝑖

𝑐,𝑓
and background features 𝐹 𝑖

𝑐,𝑏
:

𝐹 𝑖
𝑐,𝑓

= 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹 𝑖𝑐 ◦𝑀𝑓 ), (9)

𝐹 𝑖
𝑐,𝑏

= 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹 𝑖𝑐 (1 −𝑀𝑓 )) . (10)

Among them,𝑀𝑓 represents the foreground object mask scaled to
the corresponding 𝐹 𝑖𝑐 size, ◦ represents element-wise product, and
𝐹𝑙𝑎𝑡𝑡𝑒𝑛(·) represents expanding a 2D feature map into a 1D feature
feature sequence.

We use a transformer layer to extract and transfer the style of
the background to the foreground area to achieve harmonious pro-
cessing of the foreground. In addition, the parts of the background
area that are related to the foreground can provide more references
when harmonizing the foreground, so they are very important. We
will also pay more attention to the areas that are more related to the
background and foreground. 𝐹 𝑖

𝑐,𝑓
is used as query, 𝐹 𝑖

𝑐,𝑏
is used as

keys/values, and the final background stylized foreground feature
𝐹 𝑖
𝑐,𝑓

can be expressed as:

𝐹 𝑖
𝑐,𝑓

= 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝐹 𝑖
𝑐,𝑓

, 𝐹 𝑖
𝑐,𝑏

, 𝐹 𝑖
𝑐,𝑏

) . (11)

3.6 Traning Losses and Details
Our total loss function 𝐿𝑡𝑜𝑡𝑎𝑙 consists of the standard noise loss
L𝐿𝐷𝑀 of the diffusion model and a reconstruction loss 𝐿𝑟𝑒𝑐 , There-
fore, the final loss function of our CFDiffusion is:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑟𝑒𝑐 + 𝜆2L𝐿𝐷𝑀 + 𝜆3𝐿𝑓 𝑠 , (12)

where 𝜆1, 𝜆2,𝜆3 are hyper-parameters which control the influence
of terms.

Noise Loss. First, we adopt the standard noise loss of the diffu-
sion model, aiming to reconstruct the image features in the latent
space, shown as Equation (13):

L𝐿𝐷𝑀 : =E𝑧′0,𝑦,𝜖 N(0,1),𝑡 [∥ 𝜖 − 𝜖𝜃1 (𝑧
′
𝑡 , 𝑡, 𝜏𝜃2 (𝑦)) ∥

2
2] . (13)

Reconstruction loss. It is a classical 𝐿1 loss between the generator
output image 𝐼 and real ground-truth image 𝐼 , to further constrain
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Figure 6: The comparison between our method and two image harmonization methods: DucoNet [48] and DIH-GAN [2], three
shadow generation methods [28, 29, 46] on our dataset. It can be clearly seen that our CFDiffusion has achieved the best results
in both real shadow generation and image harmonization.

the generated image towards the ground truth, which is expressed
as:

𝐿𝑟𝑒𝑐 =∥ �̃� − 𝐼 ∥1 . (14)
MSE Loss. Additionally, we compute the loss for the foreground
mask prediction module using the following method:

𝐿𝑓 𝑠 =∥ 𝑀𝑓 𝑠 −𝑀𝑓 𝑠 ∥2
2 . (15)

4 EXPERIMENTS
To verify the superiority of our proposed CFDiffusion, we compare
CFDiffusion with state-of-the-arts on the real-world iHarmony4
[7] dataset and our proposed dataset, and provide assessments both
quantitatively and qualitatively.

4.1 Experimental Settings
The proposed method is implemented using PyTorch, which is
trained using one NVIDIA RTX 3090 GPU. All images are resized to
256 × 256 for training and testing. We adopt adam optimizer with
the momentum as (0.9,0.999), and the learning rate initialized as
0.00003. Following [42], we use the Kaiming initialization technique
[14] to initialize the weights of the proposed model and use a 0.9999
Exponetial Moving Average(EMA) for all our experiments. We used
1000 diffusion steps T and noise schedule 𝛽𝑡 linearly increasing
from 0.0001 to 0.002 for training, and 25 steps for inference. After a
few trials, we set 𝜆2 = 𝜆3 = 10, 𝜆1 = 1 by observing the grenerated
images. The training epoch is set as 1500.

Compared methods.We compared our model with five deep
learning-based methods from the related fields: two image har-
monization methods including DucoNet [48], DIH-GAN [2], three
shadow generation methods include ARShadowGAN [28], SGDif-
fusion [29], and ObjectStitch [46]. Among them, SGDiffusion is
the latest method using a diffusion model for shadow generation
tasks, while ObjectStitch is the newest image composition method

that addresses both image harmonization and shadow generation
tasks. DucoNet for image harmonization based on dual color spaces.
ARShadowGAN makes full use of the background information to
guide the shadow generation of foreground objects. We train and
test all these methods based on our dataset. For detailed informa-
tion about our IH-SG dataset, please refer to the remainder of this
section.

In addition, we also tested our image harmonization capabilities
on the iHarmony4 dataset, and compared the three image harmo-
nization methods of CDT-Net [6], Harmonizer [23] and DucoNet
[48] to further prove the superiority of our CFDiffusion. CDT-Net
coherently combines pixel-to-pixel conversion and RGB-to-RGB
conversion in an end-to-end network.

Evaluation metrics. We use four metrics to evaluate the im-
age illumination harmonization results, which are Relative Mean
Square Error (RMSE), Structural Similarity Index Measure (SSIM),
foreground Mean Square Error (fMSE), foreground Structural Sim-
ilarity Index Measure (fSSIM). Generally, the smaller RMSE and
fMSE, and the larger fSSIM and SSIM indicate the better image
illumination harmonization results.

Dataset. To better train ourmodel, we have constructed a dataset
called IH-SG that can address both of image harmonization and
shadow generation concurrently. Each data pair we construct in-
cludes: composite images, ground truth images, foreground object
masks, foreground object shadow masks, background object masks
and background object shadow masks.

In total, our dataset comprises over 1000 outdoor scenes and
more than 10000 data pairs. We also captured numerous shadow
scenes under complex conditions, such as shadows cast on walls
and steps, to enrich the shadow data samples, making our dataset
more realistic and diverse. Our data pairs are illustrated in the
Figure 2.
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4.2 Comparison with State-of-the-Arts
Experiments on our dataset. The quantitative comparison results
of different methods on our testing set are summarized in Table 1.
Apparently, our method CFDiffusion achieves the better quantita-
tive results than other state-of-the-art methods on all four metrics.
On the one hand, this is due to the powerful image generation
capability of the diffusion model. On the other hand, our FCEM and
adaptive encoder make full use of the foreground and background
information, proving the superiority of our CFDiffusion.

Experiments on iHarmony4. The iHarmony4 dataset is one
of the most popular large-scale datasets in the field of image har-
monization, covering a variety of scenes and foreground objects.
Therefore, we compared our method with several image harmo-
nization techniques on the iHarmony4 dataset, and the quantitative
comparison results are shown in Table 3. Our proposed approach
also achieved the best results.

Experiments on DESOBAv2. Recently, Liu et al. [29] extended
the DESOBA [17] dataset to DESOBAv2, which has become the
latest shadow generation dataset. To validate the generalization
ability of our model, we conducted experiments on the DESOBAv2
dataset by applying slight perturbations to foreground objects, and
the results are shown in Figure 13.

4.3 Ablation Study
In order to verify the effectiveness of each component of ourmethod,
we conduct ablation studies by modifying the CFDiffusion archi-
tecture. Specifically, we set the following variants:

To verify the crucial roles played by our FCEMmodule and adap-
tive encoder module in the overall model, we set up several variants.
Firstly, we chose the original diffusion model as the baseline, which
is referred to as "baseline" in Table 2. To demonstrate the pivotal
roles of the FCEM module and adaptive encoder module in the
entire model, we removed these two modules separately from the
complete model, which are referred to as "w/o FCEM" and "w/o
adaptive encoder" in Table 2. Finally, we compared these variants
with the full model "Ours (full model)" for comprehensive analysis,
and some results are shown in Figure 12.

Composite image Result GT

Figure 10: In order to simulate scenarios where there are no
background objects available as reference, we only utilize the
foreground encoder module during the foreground shadow
mask prediction stage, hence not referring to background
shadow information. Consequently, the inferred shadow
shapes will deviate significantly from the ground truth.

Table 1: Results of quantitative comparison on our testing
set. "↑" indicates the higher the better, and "↓" indicates the
lower the better. The best results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
SGDiffusion [29] 8.591 0.825 875.882 0.809

ARShadowGAN [28] 9.164 0.817 942.154 0.816
ObjectStitch [46] 9.357 0.773 1145.116 0.773
DucoNet [48] 7.346 0.861 454.213 0.915
DIH-GAN [2] 6.145 0.847 567.311 0.894

Ours 5.582 0.917 367.919 0.937

We trained these variants using the same training data and quan-
titatively evaluated their impact on the test results. The evaluation
results are presented in Table 2. From the table, we can observe
that: after introducing guided supervision with FCEM, the model’s
quantitative performance has made significant strides, sufficiently
demonstrating the strong guiding role of the FCEM module in cap-
turing texture details of foreground objects. Moreover, with the
inclusion of the adaptive encoder, the model’s performance has
also noticeably improved compared to the original diffusion model,
confirming its guiding role in the harmonization generation of
foreground objects.

With the simultaneous introduction of both the FCEM and adap-
tive encoder modules, our full model achieved the best performance,
demonstrating the effectiveness of our approach. Additionally, in-
corporating the FCEM and adaptive encoder modules into the orig-
inal diffusion model significantly improves performance.

Table 2: Ablation study of FCEM and adaptive encoder. The
best results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
baseline 11.192 0.687 543.417 0.675

w/o FCEM 7.264 0.746 398.542 0.785
w/o adaptive encoder 8.437 0.727 485.534 0.841

Ours 5.582 0.917 367.919 0.937

4.4 Limitations
Our CFDiffusion still has the following limitations: (1) As shown
in Figure 10, for scenarios lacking background object references or
involving complex situations where shadows are cast onto inter-
secting planes, our model struggles to generate shadows effectively.
(2) Due to computational costs and processing speed limitations,
our method is currently not applicable to real-time video light-
ing harmonization, which is also one of our future directions for
improvement.

4.5 Conclusion and Future Work
In this paper, we proposed an image composite method based on
the diffusion model, which focuses on harmonizing the illumina-
tion inconsistency between foreground objects and background,
while generating realistic shadows. We employed an adaptive en-
coder to extract style features from the background to guide the

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Composite image CDT-Net Harmonizer DucoNet Ours GT

Figure 11: The visual results of harmonization experiments on iHarmony4 [7]. It can be seen that our results are closest to the
Ground Truth.

Table 3: Results of quantitative comparison on iHarmony4.
"↑" indicates the higher the better, and "↓" indicates the lower
the better. The best results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
CDT-Net [6] 6.847 0.804 379.187 0.858

Harmonizer [23] 6.308 0.854 410.847 0.821
DucoNet [48] 6.152 0.876 365.236 0.915

Ours 5.582 0.917 367.919 0.937

(a) (b) (c) (d) (e) (f)

Figure 12: Ablation experiment results. From (a) to (f), they
are respectively the composite images, w/o FCEM, w/o adap-
tive encoder, our complete method, and GT.

diffusion model in better harmonizing the foreground. Specifically,
we introduced a FCEM module to further improve the ability to
preserve details of foreground content. Finally, we have conducted

Input Result GT

Figure 13: The experimental results on DESOBAv2 dataset.
The area enclosed by the red box is where the shadow is
expected to be generated.

experiments on our proposed IH-SG dataset, as well as the pop-
ular DESOBAv2 dataset and iHarmony4 dataset, demonstrating
that our method achieves significant improvements. In the future,
we will expand CFDiffusion to adapt to real-time video lighting
harmonization and shadow generation.
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